
DirectInput
[This is preliminary documentation and subject to change.]

This section provides information about the DirectInput® component of DirectX®

application programming interface (API). The information is divided into the
following topics:

· About DirectInput
· Why Use DirectInput?
· DirectInput Architecture
· DirectInput Essentials
· DirectInput Tutorials
· DirectInput Reference
· DirectInput Samples

About DirectInput
[This is preliminary documentation and subject to change.]

[C++]
Microsoft® DirectInput® is an application programming interface for input devices
including the mouse, keyboard, joystick, and other game controllers, as well as for
force-feedback (input/output) devices. Like other DirectX® components, DirectInput
is based on the Component Object Model (COM).

[Visual Basic]
Microsoft® DirectInput® is an application programming interface for input devices
including the mouse, keyboard, joystick, and other game controllers. DirectX for
Visual Basic does not support force feedback devices.

Why Use DirectInput?
[This is preliminary documentation and subject to change.]

Aside from providing new services for devices not supported by the Win32® API,
DirectInput gives faster access to input data by communicating directly with the
hardware drivers rather than relying on Windows® messages.

DirectInput enables an application to gain access to input devices even when the
application is in the background.

in.doc – page 2

The extended services and improved performance of DirectInput make it a valuable
tool for games, simulations, and other real-time interactive applications running
under Windows.

DirectInput Architecture
[This is preliminary documentation and subject to change.]

This section covers the basic structure of DirectInput and how it works with both the
Windows operating system and input hardware. For practical information on how to
implement the elements of DirectInput introduced here, see DirectInput Essentials.

· Architectural Overview of DirectInput
· Integration with Windows
· Human Interface Device

Architectural Overview of
DirectInput

[This is preliminary documentation and subject to change.]

[C++]
The basic architecture of DirectInput consists of the DirectInput object, which
supports the IDirectInput COM interface, and an object for each input device that
provides data. Each device in turn has device object instances, or more simply
device objects, which are individual controls or switches such as keys, buttons, or
axes.

Note
The word "object" is used to describe both a code object and one of the
individual controls on an input device. In this documentation, "device object"
means a input device control rather than a code object that instantiates the
IDirectInputDevice or IDirectInputDevice2 interface. Code objects
representing whole devices are referred to as DirectInputDevice objects.

Each DirectInputDevice object represents one input device such as a mouse,
keyboard, or joystick. (In this documentation, the term "joystick" includes all game
controllers other than mouse or keyboard.) A piece of hardware that is really a
combination of different types of input devices, such as a keyboard with a touchpad,
may be represented by two or more DirectInputDevice objects. A force-feedback
device is represented by a single joystick object that handles both input and output.

DirectInputDevice objects instantiate the IDirectInputDevice interface. Additional
methods for polled devices (including most game controllers) and force feedback
devices are provided by the IDirectInputDevice2 interface.

in.doc – page 3

The application ascertains the number and type of device objects available by using
the IDirectInputDevice::EnumObjects method. Individual device objects are not
encapsulated as code objects but are described in DIDEVICEOBJECTINSTANCE
structures.

Force feedback effects are represented by the IDirectInputEffect interface. Methods
of this interface are used to create, modify, start, and stop effects.

All DirectInput interfaces are available in ANSI and Unicode versions. If
"UNICODE" is defined during compilation, the Unicode versions are used.

[Visual Basic]
The basic architecture of DirectInput consists of a single DirectInput object and a
DirectInputDevice object for each input device that is being used by the
application. The DirectInputDevice object is used for retrieving the input data.

Any available device, regardless of whether it is being used by DirectInput, can also
be represented by a DirectInputDeviceInstance object, which can be used to
retrieve miscellaneous information about that device.

Each DirectInputDevice object represents one input device such as a mouse,
keyboard, or joystick. (In this documentation, the term "joystick" includes all game
controllers other than mouse or keyboard.) A piece of hardware that is really a
combination of different types of input devices, such as a keyboard with a touchpad,
may be represented by two or more DirectInputDevice objects.

Each device in turn has "device objects," which are individual controls or switches
such as keys, buttons, or axes. Each device object is represented by an instance of
the DirectInputDeviceObjectInstance class, whose methods can be used to retrieve
information about the device object. (The input data, however, is always retrieved by
DirectInputDevice.)

Note
The word "object" is used to describe both a code object and one of the
individual controls on an input device. In this documentation, "device object"
means an input device control rather than a DirectInputDevice object.

Devices and device objects can be enumerated, and the resulting collections are
represented by DirectInputEnumDevices and DirectInputEnumDeviceObjects
objects.

Integration with Windows
[This is preliminary documentation and subject to change.]

Because DirectInput works directly with the device drivers, it either suppresses or
ignores mouse and keyboard messages. When using the mouse in exclusive mode,

in.doc – page 4

DirectInput suppresses mouse messages, and as a result Windows is unable to show
the standard cursor.

DirectInput also ignores mouse and keyboard settings made by the user in Control
Panel.

For the keyboard, character repeat settings are not used by DirectInput. When using
buffered data, DirectInput interprets each press and release as a single event, with no
repetition. When using immediate data, DirectInput is concerned only with the
present physical state of the keys, not with keyboard events as interpreted by
Windows.

For the mouse, DirectInput ignores Control Panel settings such as acceleration and
swapped buttons. Again, DirectInput works directly with the mouse driver, bypassing
the subsystem of Windows that interprets mouse data for windowed applications.

Note
Settings in the driver itself will be recognized by DirectInput. For example, if
the user has a three-button mouse and uses the driver utility software to make
the middle button a double-click shortcut, DirectInput will report a click of the
middle button as two clicks of the primary button.

For a joystick or other game controller, DirectInput does use the calibrations set by
the user in Control Panel.

Human Interface Device
[This is preliminary documentation and subject to change.]

Human Interface Device (HID) is a class under the Universal Serial Bus (USB)
standard. DirectInput provides full support for devices that conform with HID.

Getting data from HID devices is substantially the same as with traditional devices.
In addition, HID devices may accept output: for example, you can turn the keyboard
LEDs on and off.

By querying a HID device, DirectInput is able to determine its usage page and
usage. These are predefined codes that give information about the type and subtype
of the device.

HID controls are grouped in collections. Collections may be nested.

For more information about HID, see .

DirectInput Essentials
[This is preliminary documentation and subject to change.]

in.doc – page 5

This section is a practical guide to the concepts and components of DirectInput, and
provides enough information for you to get started in implementing the DirectInput
system in your application. For a broader overview, see DirectInput Architecture.

The following topics are discussed:

· Creating DirectInput
· DirectInput Device Enumeration
· DirectInput Devices
· DirectInput Device Data
· Force Feedback
· Designing for Previous Versions of DirectInput

Creating DirectInput
[This is preliminary documentation and subject to change.]

[C++]
The first step in any DirectInput application is obtaining the IDirectInput interface.
You can do this most easily by calling the DirectInputCreate function.

You should create a single DirectInput object and not release it until the application
terminates,

[Visual Basic]
The first step in any DirectInput application is creating the DirectInput object. You
do this by using the DirectX7.DirectInputCreate method.

You should create a single DirectInput object and not destroy it until the application
terminates,

DirectInput Device Enumeration
[This is preliminary documentation and subject to change.]

DirectInput is able to query the system for all available input devices, determine
whether they are connected, and return information about them. This process is
called enumeration.

[C++]
If your application is using only the standard keyboard or mouse, or both, you don't
need to enumerate the available input devices. As explained under Creating the
DirectInput Device, you can simply use predefined global variables when calling the
IDirectInput::CreateDevice method.

in.doc – page 6

For all other input devices, and for systems with multiple keyboards or mice, you
need to call IDirectInput::EnumDevices in order to obtain at least the instance
GUIDs (globally unique identifiers) so that DirectInputDevice objects can be
created. You might also want to enumerate in order to give the user a choice of
available devices.

Here's a sample implementation of the IDirectInput::EnumDevices method:

/* lpdi is a valid DirectInput interface pointer. */

GUID KeyboardGUID = GUID_SysKeyboard;

lpdi->EnumDevices(DIDEVTYPE_KEYBOARD,
 DIEnumDevicesProc,
 &KeyboardGUID,
 DIEDFL_ATTACHEDONLY);

The first parameter determines what types of devices are to be enumerated. It is
NULL if you want to enumerate all devices regardless of type; otherwise it is one of
the DIDEVTYPE_* values described in the reference for DIDEVICEINSTANCE.

The second parameter is a pointer to a callback function that will be called once for
each device enumerated. This function can be called by any name; the
documentation uses the placeholder name DIEnumDevicesProc.

The third parameter to the EnumDevices method is any 32-bit value that you want
to pass into the callback function. In this example, it's a pointer to a variable of type
GUID, passed in so that the callback can assign a keyboard instance GUID.

The fourth parameter is a flag to request enumeration of either all devices or only
those that are attached (DIEDFL_ALLDEVICES or DIEDFL_ATTACHEDONLY).

If your application is using more than one input device, the callback function is a
good place to initialize each device as it is enumerated. (For an example, see
Tutorial 3: Using the Joystick.) The callback function is where you obtain the
instance GUID of the device. You can also perform other processing here, such as
looking for particular subtypes of devices, or adding the device name to a listbox.

Here is a sample callback function that checks for the presence of an enhanced
keyboard and stops the enumeration as soon as it finds one. It assigns the instance
GUID of the last keyboard found to the KeyboardGUID variable (passed in as pvRef
by the previous example of a EnumDevices call), which can then be used in a call to
IDirectInput::CreateDevice.

BOOL hasEnhanced;

BOOL CALLBACK DIEnumKbdProc(LPCDIDEVICEINSTANCE lpddi,
 LPVOID pvRef)
{
 (GUID) pvRef = lpddi->guidInstance;
 if (GET_DIDEVICE_SUBTYPE(lpddi->dwDevType) ==

in.doc – page 7

 DIDEVTYPEKEYBOARD_PCENH)
 {
 hasEnhanced = TRUE;
 return DIENUM_STOP;
 }
 return DIENUM_CONTINUE;
} // end of callback

The first parameter points to a structure containing information about the device.
This structure is created for you by DirectInput.

The second parameter points to data passed in from EnumDevices. In this case it is a
pointer to the variable KeyboardGUID. This variable was assigned a default value
earlier, but it will be given a new value each time a device is enumerated. It is not
actually important what instance GUID you use for a single keyboard, but the code
does illustrate a technique for retrieving an instance GUID from the callback.

The return value in this case indicates that enumeration is to stop if the sought-for
device has been found, or otherwise that it is to continue. Enumeration will
automatically stop as soon as all devices have been enumerated.

[Visual Basic]
If your application is using only the standard keyboard or mouse, or both, you don't
need to enumerate the available input devices. As explained under Creating the
DirectInput Device, you can simply use predefined GUID aliases when calling the
DirectInput.CreateDevice method.

For all other input devices, and for systems with multiple keyboards or mice, you
need to call DirectInput.GetDIEnumDevices in order to build a collection of
available devices. This method returns a DirectInputEnumDevices object
representing the collection. Each device in the collection can be retrieved as a
DirectInputDeviceInstance object by using the DirectInputEnumDevices.GetItem
method.

At the very least, you need to retrieve the unique identifier for a nonstandard device,
by calling DirectInputDeviceInstance.GetGuidInstance, before you can create a
DirectInputDevice object for that device. You might also want to enumerate
devices in order to look for particular types and subtypes (by using
DirectInputDeviceInstance.GetDevType) or to populate a listbox that allows the
user to select a game controller.

You might even want to search for a device with particular capabilities. In order to
do this, you must create a DirectInputDevice object for each candidate in order to
examine it further with the DirectInputDevice.GetCapabilities method.

in.doc – page 8

DirectInput Devices
[This is preliminary documentation and subject to change.]

This section contains information about the code objects that represent devices such
as mice, keyboards, and joysticks. The following topics are covered:

· Device Setup
· Creating a DirectInput Device
· Device Capabilities
· Cooperative Levels
· Device Object Enumeration
· Device Data Formats
· Device Properties
· Acquiring Devices

For information on how to retrieve and interpret data from devices, see DirectInput
Device Data.

Device Setup
[This is preliminary documentation and subject to change.]

Your application must create an object for each device from which it expects input.
It must also prepare each device for use, which requires, at the very least, setting the
data format and acquiring the device. You may also wish to carry out other
preparatory tasks such as getting information about the devices and changing their
properties.

The following tasks are part of the setup process. Certain steps are always required;
others may only be necessary if you need further information about devices or need
to change default values.

1. Create the DirectInput device (required). See Creating a DirectInput Device.
2. Get the device capabilities (optional).
3. Enumerate the keys, buttons, and axes on the device (optional). See Device

Object Enumeration.
4. Set the cooperative level (recommended).
5. Set the data format (required).
6. Set the device properties (optional).
7. When ready to read data, acquire the device (required). See Acquiring Devices.

Creating a DirectInput Device
[This is preliminary documentation and subject to change.]

in.doc – page 9

In order to get input data from a device, you first have to create an object to
represent that device.

[C++]
The IDirectInput::CreateDevice method is used to obtain a pointer to the
IDirectInputDevice interface. Methods of this interface are then used to manipulate
the device and obtain data.

The following example, where lpdi is a pointer to the IDirectInput interface, creates
a keyboard device:

LPDIRECTINPUTDEVICE lpdiKeyboard;
lpdi->CreateDevice(GUID_SysKeyboard, &lpdiKeyboard, NULL);

The first parameter in IDirectInput::CreateDevice is an instance GUID that
identifies the instance of the device for which the interface is to be created.
DirectInput has two predefined GUIDs, GUID_SysMouse and GUID_SysKeyboard,
which represent the system mouse and keyboard, and you can pass these identifiers
into the CreateDevice method. The global variable GUID_Joystick should not be
used as a parameter for CreateDevice, because it is a product GUID, not an instance
GUID.

Note
If the workstation has more than one mouse, input from all of them is combined
to form the system device. The same is true for multiple keyboards.

For devices other than the system mouse or keyboard, use the instance GUID for the
device returned by IDirectInput::EnumDevices. The instance GUID for a device
will always be the same. You can allow the user to select a device from a list of
those enumerated, then save the GUID to a configuration file and use it again in
future sessions.

If you want to use the IDirectInputDevice2 interface methods for force-feedback
devices, you must obtain a pointer to that interface instead of IDirectInputDevice.
The following function is a wrapper for the CreateDevice method that attempts to
obtain the IDirectInputDevice2 interface. Note the use of macros to call the Release
and CreateDevice methods according to either the C or C++ syntax.

HRESULT IDirectInput_CreateDevice2(LPDIRECTINPUT pdi,
 REFGUID rguid,
 LPDIRECTINPUTDEVICE2 *ppdev2,
 LPUNKNOWN punkOuter)
{
 LPDIRECTINPUTDEVICE *pdev;
 HRESULT hres;

 hres = IDirectInput_CreateDevice(pdi, rguid, &pdev, punkOuter);

in.doc – page 10

 if (SUCCEEDED(hres)) {
#ifdef __cplusplus
 hres = pdev->QueryInterface(IID_IDirectInputDevice2,
 (LPVOID *)ppdev2);
#else
 hres = pdev->lpVtbl->QueryInterface(pdev,
 &IID_IDirectInputDevice2,
 (LPVOID *)ppdev2);
#endif
 IDirectInputDevice_Release(pdev);
 } else {
 *ppdev2 = 0;
 }
 return hres;
}

[Visual Basic]
The DirectInput.CreateDevice method is used to obtain a DirectInputDevice
object. Methods of this interface are then used to manipulate the device and obtain
data.

The following sample code, where di is the DirectInput object, creates a keyboard
device:

Dim diDev As DirectInputDevice
Set diDev = di.CreateDevice("GUID_SysKeyboard")

The parameter is an alias for a GUID that identifies the instance of the device for
which the interface is to be created. DirectInput provides two predefined GUIDs,
"GUID_SysMouse" and "GUID_SysKeyboard", which represent the system mouse
and keyboard, and you can pass either of these aliases to the CreateDevice method.

Note
If the workstation has more than one mouse, input from all of them is combined
to form the system device. The same is true for multiple keyboards.

For devices other than the system mouse or keyboard, use the instance GUID for the
device obtained from DirectInputDeviceInstance.GetGuidInstance. The instance
GUID for a device will always be the same. You can allow the user to select a device
from a list of those enumerated, then save the GUID to a configuration file and use it
again in future sessions.

In the following example it is presumed that the application has enumerated devices
and found a suitable one, diDevInstance, which is to be created as a
DirectInputDevice:

Dim guid As String
guid = diDevInstance.GetGuidInstance

in.doc – page 11

Set diDev = di.CreateDevice(guid)

For more information on obtaining the DirectInputDeviceInstance object, see
DirectInput Device Enumeration.

Device Capabilities
[This is preliminary documentation and subject to change.]

Before you begin asking for input from a device, you may need to find out
something about its capabilities. Does the joystick have a point-of-view hat? Is the
mouse currently attached to the user's machine?

[C++]
Such questions are answered with a call to the
IDirectInputDevice::GetCapabilities method, which returns the data in a
DIDEVCAPS structure. As with other such structures in DirectX, you must initialize
the dwSize member before passing this structure to the method.

Note
To optimize speed or memory usage, you can use the smaller
DIDEVCAPS_DX3 structure instead.

Here's an example that checks whether the mouse is attached and whether it has a
third axis (presumably a wheel):

// LPDIRECTINPUTDEVICE lpdiMouse; // initialized previously

DIDEVCAPS DIMouseCaps;
HRESULT hr;
BOOLEAN WheelAvailable;

DIMouseCaps.dwSize = sizeof(DIDEVCAPS);
hr = lpdiMouse->GetCapabilities(&DIMouseCaps);
WheelAvailable = ((DIMouseCaps.dwFlags & DIDC_ATTACHED)
 && (DIMouseCaps.dwAxes > 2));

Another way to check for a certain button or axis is to call
IDirectInputDevice::GetObjectInfo for that object. If the call returns
DIERR_OBJECTNOTFOUND, the object is not present. The following code
determines whether there is a z-axis even if it is not the third axis:

DIDEVICEOBJECTINSTANCE didoi;

didoi.dwSize = sizeof(DIDEVICEOBJECTINSTANCE);
hr = lpdiMouse->GetObjectInfo(&didoi,DIMOFS_Z, DIPH_BYOFFSET);
WheelAvailable = SUCCEEDED(hr);

in.doc – page 12

[Visual Basic]
Such questions are answered with a call to the DirectInputDevice.GetCapabilities
method, which returns the data in a DIDEVCAPS type.

Here's an example that checks whether the mouse is attached and whether it has a
third axis (presumably a wheel):

/* diMouse is a valid DirectInputDevice object. */

Dim WheelAvailable As Boolean
Dim dicaps as DIDEVCAPS

Call diDev.GetCapabilities(dicaps)
WheelAvailable = ((dicaps.lFlags And DIDC_ATTACHED) _
 And (dicaps.lAxes > 2))

Another way to check for a certain button or axis is to call
DirectInputDevice.GetObjectInfo for that object. If the call raises an error, the
object is not present. The following code determines whether there is a z-axis even if
it is not the third axis:

Dim didoi As DirectInputDeviceObjectInstance
On Error GoTo NOTFOUND
Set didoi = diDev.GetObjectInfo(DIMOFS_Z, DIPH_BYOFFSET)
On Error GoTo 0
.
.
.
NOTFOUND:
MsgBox "No z-axis found."

Cooperative Levels
[This is preliminary documentation and subject to change.]

[C++]
The cooperative level of a device determines how the input is shared with other
applications and with the Windows system. You set it by using the
IDirectInputDevice::SetCooperativeLevel method, as in this example:

/* hwnd is the top-level window handle. */
lpdiDevice->SetCooperativeLevel(hwnd,
 DISCL_NONEXCLUSIVE | DISCL_FOREGROUND)

in.doc – page 13

The parameters are the handle to the top-level window associated with the device
(generally the application window) and one or more flags.

[Visual Basic]
The cooperative level of a device determines how the input is shared with other
applications and with the Windows system. You set it by using the
DirectInputDevice.SetCooperativeLevel method, as in this example:

diDevice.SetCooperativeLevel(hWnd,
 DISCL_NONEXCLUSIVE | DISCL_FOREGROUND)

The parameters are the handle to the top-level window associated with the device
(generally the application window) and one or more flags. Note that the hWnd
property of a form does not become valid until the form is shown. If you are
initializing the DirectInput device in the Load method of the application's main
form, you must call Show before attempting to set the cooperative level.

Note
Although DirectInput provides a default setting, you should still explicitly set
the cooperative level, because doing so is the only way to give DirectInput the
window handle. Without this handle, DirectInput will not be able to react to
situations that involve window messages, such as joystick recalibration.

The valid flag combinations are shown in the following table:

Flags Notes

DISCL_NONEXCLUSIVE |
DISCL_BACKGROUND

The default setting

DISCL_NONEXCLUSIVE |
DISCL_FOREGROUND
DISCL_EXCLUSIVE |
DISCL_FOREGROUND

Not valid for keyboard

DISCL_EXCLUSIVE |
DISC_BACKGROUND

Not valid for keyboard or mouse

The cooperative level has two components: whether the device is being used in the
foreground or the background, and whether it is being used exclusively or
nonexclusively . Both these components require some explanation.

Foreground and Background
A foreground cooperative level means that the input device is available only when
the application is in the foreground or, in other words, has the input focus. If the
application moves to the background, the device is automatically unacquired, or
made unavailable.

in.doc – page 14

A background cooperative level really means "foreground and background." A
device with a background cooperative level can be acquired and used by an
application at any time.

You will usually want to have foreground access only, since most applications are
not interested in input that takes place when another program is in the foreground.

While developing an application, it is useful to employ conditional compilation so
that the background cooperative level is always set for debugging. This will prevent
your application from losing access to the device every time it moves to the
background as you switch to the debugging environment.

Exclusive and Nonexclusive
The fact that your application is using a device at the exclusive level does not mean
that other applications cannot get data from the device. However, it does mean that
no other application can also acquire the device exclusively.

Why does it matter? Take the example of a music player that accepts input from a
hand-held remote-control device, even when the application is running in the
background. Now suppose you run a similar application that plays movies in
response to signals from the same remote control. What happens when the user
presses Play? Both programs start playing, which is probably not what the user
wants. To prevent this from happening, each application should have the
DISCL_EXCLUSIVE flag set, so that only one of them can be running at a time.

In order to use force-feedback effects, an application must have exclusive access to
the device.

Windows itself requires exclusive access to the mouse and keyboard. The reason is
that mouse and keyboard events such as a click on an inactive window or ALT+TAB
could force an application to unacquire the device, with potentially harmful results
such as a loss of data from the input buffer.

When an application has exclusive access to the mouse, Windows is not allowed any
access at all. No mouse messages are generated. A further side effect is that the
cursor disappears.

DirectInput does not allow any application to have exclusive access to the keyboard.
If it did, Windows would not have access to the keyboard and the user would not
even be able to use CTRL+ALT+DELETE to restart the system.

Device Object Enumeration
[This is preliminary documentation and subject to change.]

It may be necessary for your application to determine what buttons or axes are
available on a given device. To do this you enumerate the device objects in much the
same way you enumerate devices.

[C++]

in.doc – page 15

To some extent IDirectInputDevice::EnumObjects overlaps the functionality of
IDirectInputDevice::GetCapabilities. Either method may be used to determine
how many buttons or axes are available. However, EnumObjects is really intended
for cataloguing all the available objects rather than checking for a particular one.
The DirectInput Quick Test application provided with the DirectX SDK, for
example, uses EnumObjects to populate the list on the Objects page for the selected
device.

Like IDirectInput::EnumDevices, the EnumObjects method has a callback
function that gives you the chance to do other processing on each object — for
example, adding it to a list or creating a corresponding element on a user interface.

Here's a callback function that simply extracts the name of each object so that it can
be added to a string list or array. This standard callback is documented under the
placeholder name DIEnumDeviceObjectsProc, but you can give it any name you
like. Remember, this function is called once for each object enumerated.

char szName[MAX_PATH];

BOOL CALLBACK DIEnumDeviceObjectsProc(
 LPCDIDEVICEOBJECTINSTANCE lpddoi,
 LPVOID pvRef)
{
 lstrcpy(szName, lpddoi->tszName);
 // Now add szName to a list or array
 .
 .
 .
 return DIENUM_CONTINUE;
}

The first parameter points to a structure containing information about the object.
This structure is created for you by DirectInput.

The second parameter is an application-defined pointer to data, equivalent to the
second parameter to EnumObjects. In the example, this parameter is not used.

The return value in this case indicates that enumeration is to continue as long as
there are still objects to be enumerated.

Now here's the call to the EnumObjects method, which puts the callback function to
work.

lpdiMouse->EnumObjects(DIEnumDeviceObjectsProc,
 NULL, DIDFT_ALL);

The first parameter is the address of the callback function.

The second parameter can be a pointer to any data you want to use or modify in the
callback. The example does not use this parameter and so passes NULL.

in.doc – page 16

The third parameter is a flag to indicate which type or types of objects are to be
included in the enumeration. In the example, all objects are to be enumerated. To
restrict the enumeration, you can use one or more of the other DIDFT_* flags listed
in the reference for IDirectInput::EnumDevices.

Note
Some of the DIDFT_* flags are combinations of others; for example,
DIDFT_AXIS is equivalent to DIDFT_ABSAXIS | DIDFT_RELAXIS.

[Visual Basic]
You enumerate device objects by calling
DirectInputDevice.GetDeviceObjectsEnum, which returns an instance of the
DirectInputEnumDeviceObjects class representing the collection of available
device objects that match the requested parameters.

The following sample code enumerates axes on a device:

' diDev is a DirectInputDevice object.

Dim diEnumObjects As DirectInputEnumDeviceObjects
Set diEnumObjects = diDev.GetDeviceObjectsEnum(DIDFT_AXIS)

The parameter is a flag to indicate which type or types of objects are to be included
in the enumeration.

Note
Some of the CONST_DIDFTFLAGS flags are combinations of others; for
example, DIDFT_AXIS is equivalent to DIDFT_ABSAXIS Or
DIDFT_RELAXIS.

To obtain information about a particular device object, you call the methods of a
DirectInputDeviceObjectInstance object obtained by calling
DirectInputEnumDeviceObjects.GetItem. Information available for a device
object includes its name, its type, and its offset in the data structure for the device.

The following code lists the names of the axes enumerated in the previous example:

Dim diDevEnumObjects As DirectInputEnumDeviceObjects
Set diDevEnumObjects = diDev.GetDeviceObjectsEnum(DIDFT_AXIS)

Dim diDevObjInstance As DirectInputDeviceObjectInstance
Dim i As Integer
For i = 1 To diEnumObjects.GetCount
 Set diDevObjInstance = diEnumObjects.GetItem(i)
 Call List1.AddItem(diDevObjInstance.GetName)
Next i

in.doc – page 17

Device Data Formats
[This is preliminary documentation and subject to change.]

Setting the data format for a device is an essential step before you can acquire and
begin using the device. This is true even if you do not intend to retrieve immediate
(state) data from the device. DirectInput uses the data format in many methods in
order to identify particular device objects.

[C++]
The IDirectInputDevice::SetDataFormat method tells DirectInput what device
objects will be used and how the data will be arranged.

The examples in the reference for the DIDATAFORMAT structure and
DIOBJECTDATAFORMAT structure will give you an idea of how to set up
custom data formats for nonstandard devices. Fortunately, this step is not necessary
for the joystick, keyboard, and mouse. DirectInput provides four global variables,
c_dfDIJoystick, c_dfDIJoystick2, c_dfDIKeyboard, and c_dfDIMouse, which can be
passed into SetDataFormat to create a standard data format for these devices.

Here is an example, where lpdiMouse is an initialized pointer to the mouse
DirectInputDevice object:

lpdiMouse->SetDataFormat(&c_dfDIMouse);

Note
You cannot change the dwFlags member in the predefined DIDATAFORMAT
global variables (for example, in order to change the property of an axis),
because they are const variables. To change properties, use the
IDirectInputDevice::SetProperty method after setting the data format but
before acquiring the device.

[Visual Basic]
The DirectInputDevice.SetCommonDataFormat and
DirectInputDevice.SetDataFormat methods tell DirectInput what device objects
will be used and how the data will be arranged.

For standard devices—the mouse, keyboard, and any game controller whose input
data can be described in a DIJOYSTATE or DIJOYSTATE2 type—the data format
can be set simply by calling the SetCommonDataFormat method, passing in a
constant from the CONST_DICOMMONDATAFORMATS enumeration. The
common data formats are adequate for most applications.

For specialized devices, you must pass a description of the data format to the
SetDataFormat method.

in.doc – page 18

Device Properties
[This is preliminary documentation and subject to change.]

Properties of DirectInput devices include the size of the data buffer, the range and
granularity of values returned from an axis, whether axis data is relative or absolute,
and the dead zone and saturation values for a joystick axis, which affect the
relationship between the physical position of the stick and the reported data.
Specialized devices may have other properties as well.

With one exception — the gain property of a force-feedback device — properties
can be changed only when the device is in an unacquired state.

[C++]
Before calling the IDirectInputDevice::SetProperty or
IDirectInputDevice::GetProperty methods you need to set up a property structure,
which consists of a DIPROPHEADER structure and one or more elements for data.
There are potentially a great variety of properties for input devices, and SetProperty
must be able to work with all sorts of structures defining those properties. The
purpose of the DIPROPHEADER structure is to define the size of the property
structure and how the data is to be interpreted.

DirectInput includes the following predefined property structures:

· DIPROPDWORD defines a structure containing a DIPROPHEADER and a
DWORD data member, for properties that require a single value, such as a
buffer size.

· DIPROPRANGE is for range properties, which require two values (maximum
and minimum). It consists of a DIPROPHEADER and two LONG data
members.

For SetProperty, the data members of the property structure are the values you want
to set. For GetProperty, the current value is returned in these members.

Before the call to GetProperty or SetProperty, the DIPROPHEADER structure
must be initialized with the following:

· The size of the property structure
· The size of the DIPROPHEADER structure itself
· An object identifier
· A "how" code indicating the way the object identifier should be interpreted

When getting or setting properties for a whole device, the object identifier dwObj is
zero and the "how" code dwHow is DIPH_DEVICE. If you want to get or set
properties for a device object (for example, a particular axis), the combination of
dwObj and dwHow values identifies the object. For details, see the reference for the
DIPROPHEADER structure.

in.doc – page 19

After setting up the property structure, you pass the address of its header into
GetProperty or SetProperty, along with an identifier for the property you want to
obtain or change.

The following values are used to identify the property passed to SetProperty and
GetProperty. For more information see the reference for
IDirectInputDevice::GetProperty.

· DIPROP_BUFFERSIZE. See also Buffered and Immediate Data.
· DIPROP_AXISMODE. See also Relative and Absolute Axis Coordinates.
· DIPROP_CALIBRATIONMODE
· DIPROP_GRANULARITY
· DIPROP_FFGAIN
· DIPROP_FFLOAD
· DIPROP_AUTOCENTER
· DIPROP_RANGE
· DIPROP_DEADZONE
· DIPROP_SATURATION

For more information about the last three properties, see also Interpreting Joystick
Axis Data.

The following example sets the buffer size for a device so that it will hold 10 data
items:

DIPROPDWORD dipdw;
HRESULT hres;
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0;
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.dwData = 10;
hres = lpdiDevice->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

[Visual Basic]
The DirectInputDevice.SetProperty or DirectInputDevice.GetProperty methods
take two parameters: a GUID alias in string form that identifies the property being
set, and data of type Any. The data is actually passed in one of the following types:

· DIPROPDWORD is for properties that require a single value, such as a buffer
size. The property data consists of a single Long.

· DIPROPRANGE is for range properties, which require two values (maximum
and minimum). The property data consists of two Long data members.

in.doc – page 20

For SetProperty, the data members of the property types are the values you want to
set. For GetProperty, the current value is returned in these members.

In addition to the actual property data, both these types contain three other members:
lHow, lObj, and lSize.

The values in lHow and lObj work together, with lHow signifying the system that is
used to identify the device object whose property is being set or retrieved, and lObj
actually identifying the device object.

If lHow is DIPH_BYID, the device object is described by a unique numerical
identifier in lObj. This ID can be extracted from the value returned by
DirectInputDeviceObjectInstance.GetType after device objects have been
enumerated.

For most applications, it is simpler to identify the device object by its offset within
the data structure established by DirectInputDevice.SetCommonDataFormat or
DirectInputDevice.SetDataFormat. In this case, lHow is DIPH_BYOFFSET and
lObj is the offset, in bytes. For the keyboard, mouse, and any game controller whose
data can be returned in a DIJOYSTATE type, the device object can be identified by
a predefined constant. See CONST_DIKEYFLAGS, CONST_DIMOUSEOFS,
and CONST_DIJOYSTICKOFS.

The lHow member can also contain DIPH_DEVICE, which signifies that the
property belongs to the entire device rather than a single device object. Buffer size is
an example of such a property. When lHow is DIPH_DEVICE, lObj is 0.

Finally, the lSize member of the property type must be initialized to the size of the
type. This step is necessary because GetProperty or SetProperty do not know what
type is being passed.

The following strings are used to identify the property passed to SetProperty and
GetProperty. For more information, see the reference for
DirectInputDevice.GetProperty.

· DIPROP_AXISMODE. See also Relative and Absolute Axis Coordinates.
· DIPROP_BUFFERSIZE. See also Buffered and Immediate Data.
· DIPROP_DEADZONE
· DIPROP_GRANULARITY
· DIPROP_RANGE
· DIPROP_SATURATION

For more information about range, deadzone, and saturation, see also Interpreting
Joystick Axis Data.

The following example sets the buffer size for a device:

' diDev is a DirectInputDevice whose data format has been set.

Dim diProp As DIPROPLONG
diProp.lHow = DIPH_BYDEVICE

in.doc – page 21

diProp.lObj = 0
diProp.lData = 10
diProp.lSize = Len(diProp)
Call diDev.SetProperty("DIPROP_BUFFERSIZE", diProp)

Acquiring Devices
[This is preliminary documentation and subject to change.]

Acquiring a DirectInput device means giving your application access to it. As long
as a device is acquired, DirectInput is making its data available to your application.
If the device is not acquired, you may manipulate its characteristics but not obtain
any data.

Acquisition is not permanent. Your application may acquire and unacquire a device
many times.

In certain cases, depending on the cooperative level, a device may be unacquired
automatically whenever your application moves to the background. The mouse is
automatically unacquired when the user clicks on a menu, because at this point
Windows takes over the device.

You need to unacquire a device before changing its properties. The only exception is
that you may change the gain for a force-feedback device while it is in an acquired
state.

Why is the acquisition mechanism needed? There are two main reasons.

First, DirectInput has to be able to tell the application when the flow of data from the
device has been interrupted by the system. For instance, if the user has switched to
another application with ALT+TAB, and used the input device in that application,
your application needs to know that the input no longer belongs to it and that the
state of the buffers may have changed. Or consider an application with the
DISCL_FOREGROUND cooperative level. The user presses the SHIFT key, and
while continuing to press it switches to another application. Then the user releases
the key and switches back to the first application. As far as the first application is
concerned, the SHIFT key is still down. The acquisition mechanism, by telling the
application that input was lost, allows it to recover from these conditions.

Second, because your application can alter the properties of the device, without
safeguards DirectInput would have to check the properties each time you wanted to
retrieve data. Obviously this would be very inefficient. Even worse, potentially
disastrous things could happen like a hardware interrupt accessing a data buffer just
as you were changing the buffer size. So DirectInput requires your application to
unacquire the device before changing properties. When you reacquire it, DirectInput
looks at the properties and decides on the optimal way of transferring data from the
device to the application. This is done only once, so the data retrieval methods can
be very fast.

in.doc – page 22

[C++]
Since the most common cause of losing a device is that your application moves to
the background, you may want to reacquire devices whenever your application is
activated. Be careful, though, about relying on a WM_ACTIVATE handler at startup
time. The first WM_ACTIVATE message will likely arrive when your window is
being initialized, before DirectInput has been set up. To ensure that the device is
acquired at startup, call IDirectInputDevice::Acquire as soon as the device has
been initialized.

Even acquiring the device on activation of your program window might not cover all
cases where a device is unacquired, especially for devices other than the standard
mouse or keyboard. Because your application might unacquire a device
unexpectedly, you need to have a mechanism for checking the acquisition state
before attempting to get data from the device. The Scrawl sample application does
this in the Scrawl_OnMouseInput function, where a DIERR_INPUTLOST error
triggers a message to reacquire the mouse. (See also Tutorial 2: Using the Mouse.)

[Visual Basic]
Because your application might unacquire a device unexpectedly, you need to have a
mechanism for checking the acquisition state before attempting to get data from the
device.

[Information incomplete for this release.]

There's no harm in attempting to reacquire a device that is already acquired.
Redundant calls to Acquire are ignored, and the device can always be unacquired
with a single call to Unacquire.

Remember, Windows doesn't have access to the mouse when your application is
using it in exclusive mode. If you want to let Windows have the mouse, you must let
it go. There's an example in the Scrawl sample, which responds to a click of the right
button by unacquiring the mouse, putting the Windows cursor in the same spot as its
own, popping up a context menu, and letting Windows handle the input until a menu
choice is made.

DirectInput Device Data
[This is preliminary documentation and subject to change.]

This section covers the basic concepts of getting data from DirectInput devices.

· Buffered and Immediate Data
· Time Stamps and Sequence Numbers
· Polling and Events
· Relative and Absolute Axis Coordinates

in.doc – page 23

Specific details about mouse, keyboard, and joystick input data, and about output
data, are given in the following sections:

· Mouse Data
· Keyboard Data
· Joystick Data
· Output Data

[C++]
Examples of retrieving data from input devices are found in the following tutorials:

· Tutorial 1: Using the Keyboard
· Tutorial 2: Using the Mouse
· Tutorial 3: Using the Joystick

[Visual Basic]

Buffered and Immediate Data
[This is preliminary documentation and subject to change.]

DirectInput supplies two types of data: buffered and immediate. Buffered data is a
record of events that are stored until an application retrieves them. Immediate data is
a snapshot of the current state of a device.

You might use immediate data in an application that is concerned only with the
current state of a device—for example, a flight combat simulation that responds to
the current position of the joystick and the state of one or more buttons. Buffered
data might be the better choice where events are more important than states—for
example, in an application that responds to movement of the mouse and button
clicks. You can also use both types of data, as you might for example if you wanted
to get immediate data for joystick axes but buffered data for the buttons.

The Direct Input Quick Test application supplied with the DirectX SDK lets you see
both immediate and buffered data from a device. After you create the device in the
application window, set its properties on the Mode page. Now, on the Data page, you
see immediate data on the left and buffered data on the right.

[C++]
An application retrieves immediate data by calling the
IDirectInputDevice::GetDeviceState method. As the name implies, this method
simply returns the current state of the device: for example, whether each button is up
or down. The method provides no data about what has happened with the device
since the last call, apart from implicit information you can derive by comparing the
current state with the last one. If the user manages to press and release a button
between two calls to GetDeviceState, your application won't know anything about

in.doc – page 24

it. On the other hand, if the user is holding a button down, GetDeviceState will
continue reporting "button down" until the user releases it.

This way of reporting the device state is different from the way Windows reports
events with one-time messages like WM_LBUTTONDOWN; it is more akin to the
results from the Win32 GetKeyboardState function. If you are polling a device with
GetDeviceState, you are responsible for determining what constitutes a button click,
a double-click, a single keystroke, and so on, and for ensuring that your application
doesn't keep responding to a button-down or key-down state when it's not
appropriate to do so.

With buffered data, events are stored until you're ready to deal with them. Every
time a button or key is pressed or an axis is moved, information about the event is
placed in a DIDEVICEOBJECTDATA structure in the buffer. If the buffer
overflows, new data is lost. Your application reads the buffer with a call to
IDirectInputDevice::GetDeviceData. You can read any number of items at a time.

Reading an item normally deletes it from the buffer, but you also have the choice of
peeking without deleting.

In order to get buffered data you must first set the buffer size with the
IDirectInputDevice::SetProperty method. (See the example under Device
Properties.) You set the buffer size before acquiring the device for the first time. For
reasons of efficiency, the default size of the buffer is zero, and you will not be able
to obtain buffered data unless you change this value. The size of the buffer is
measured in items of data for that type of device, not in bytes or words.

You should check the value of the pdwInOut parameter after a call to the
GetDeviceData method. The number of items actually retrieved from the buffer is
returned in this variable.

Note
For devices that do not generate interrupts, such as analog joysticks, DirectInput
does not obtain any data until you call the IDirectInputDevice2::Poll method.
For more information, see Polling and Events.

For examples of retrieving buffered data, see IDirectInputDevice::GetDeviceData.

[Visual Basic]
An application retrieves immediate data by calling one of the following methods:

· DirectInputDevice.GetDeviceStateKeyboard. For devices that retrieve data in
a DIKEYBOARDSTATE type. (For this and the following three methods, the
data format must have been set by using
DirectInputDevice.SetCommonDataFormat.

· DirectInputDevice.GetDeviceStateMouse. For devices that retrieve data in a
DIMOUSESTATE type.

· DirectInputDevice.GetDeviceStateJoystick. For devices that retrieve data in a
DIJOYSTATE type.

in.doc – page 25

· DirectInputDevice.GetDeviceStateJoystick2. For devices that retrieve data in
a DIJOYSTATE2 type.

· DirectInputDevice.GetDeviceState. For devices that use custom data formats,
as set by using DirectInputDevice.SetDataFormat.

As the names imply, each of these methods simply returns the current state of the
device: for example, whether each button is up or down. The method provides no
data about what has happened with the device since the last call, apart from implicit
information you can derive by comparing the current state with the last one. If the
user manages to press and release a button between two calls to the method, your
application won't know anything about it. On the other hand, if the user is holding a
button down, the method will continue reporting "button down" until the user
releases it.

This way of reporting the device state is different from the way Visual Basic reports
events with one-time events like Click and Keydown. If you are polling a device
with one of the GetDeviceState methods, you are responsible for determining what
constitutes a button click, a double-click, a single keystroke, and so on, and for
ensuring that your application doesn't keep responding to a button-down or key-
down state when it's not appropriate to do so.

With buffered data, events are stored until you're ready to deal with them. Every
time a button or key is pressed or an axis is moved, information about the event is
placed in a DIDEVICEOBJECTDATA type in the buffer. If the buffer overflows,
new data is lost. Your application reads the buffer with a call to
DirectInputDevice.GetDeviceData. You can read any number of items at a time.

Reading an item normally deletes it from the buffer, but you also have the choice of
retrieving without deleting, by setting the DIGDD_PEEK flag.

In order to get buffered data you must first set the buffer size by using the
DirectInputDevice.SetProperty method. (See the example under Device
Properties.) You set the buffer size before acquiring the device for the first time. For
reasons of efficiency, the default size of the buffer is zero, and you will not be able
to obtain buffered data unless you change this value. The size of the buffer is
measured in items of data for that type of device, not in bytes or words.

The return value of GetDeviceData tells you the number of items actually retrieved
from the buffer.

Note
For devices that do not generate interrupts, such as analog joysticks, DirectInput
does not obtain any data until you call the DirectInputDevice.Poll method. For
more information, see Polling and Events.

See also:

· Time Stamps and Sequence Numbers
· Mouse Data

in.doc – page 26

· Keyboard Data
· Joystick Data

Time Stamps and Sequence Numbers
[This is preliminary documentation and subject to change.]

[C++]
When DirectInput input data is buffered (see Buffered and Immediate Data), each
DIDEVICEOBJECTDATA structure contains not only information about the type
of event and the device object associated with it, but also a time stamp and a
sequence number.

The dwTimeStamp member contains the system time in milliseconds at the time the
event took place. This is equivalent to the value that would have been returned by
the Win32 GetTickCount function, but at a higher resolution.

The dwSequence member contains a sequence number assigned by DirectInput. The
DirectInput system keeps a single sequence counter, which is incremented by each
non-simultaneous buffered event from any device. You can use this number to
compare events from different devices and see which came first. The
DISEQUENCE_COMPARE macro takes wraparound into account.

[Visual Basic]
When DirectInput input data is buffered (see Buffered and Immediate Data), each
DIDEVICEOBJECTDATA type contains not only information about the type of
event and the device object associated with it, but also a time stamp and a sequence
number.

The lTimeStamp member contains the system time in milliseconds at the time the
event took place. This is equivalent to the value that would have been returned by
the Win32 GetTickCount function, but at a higher resolution.

The lSequence member contains a sequence number assigned by DirectInput. The
DirectInput system keeps a single sequence counter, which is incremented by each
non-simultaneous buffered event from any device. You can use this number to
compare events from different devices and see which came first.

Simultaneous events are assigned the same sequence number. If a mouse or joystick
is moved diagonally, for example, the changes in the x-axis and the y-axis have the
same sequence number.

Note
Events are always placed in the buffer in chronological order, so you don't need
to check the sequence numbers just to sort the events from a single device.

in.doc – page 27

Polling and Events
[This is preliminary documentation and subject to change.]

There are two ways to find out whether input data is available: by polling and by
event notification.

Polling a device means regularly getting the current state of the device objects or
checking the contents of the event buffer. Polling is typically used by real-time
games that are never idle but are constantly updating and rendering the game world.

[C++]
In a C++ application, polling would typically be done within the message loop.

Event notification is suitable for applications like the Scrawl sample that wait for
input before doing anything. To use event notification, you set up a thread
synchronization object with the Win32 CreateEvent function and then associate this
event with the device by passing its handle to the
IDirectInputDevice::SetEventNotification method. The event is then signaled by
DirectInput whenever the state of the device changes. Your application can receive
notification of the event with a Win32 function such as WaitForSingleObject, and
then respond by checking the input buffer to find out what the event was. For sample
code, see the Scrawl sample and the reference for
IDirectInputDevice::SetEventNotification.

Some joysticks and other game devices, or particular objects on them, do not
generate hardware interrupts and will not return any data or signal any events until
you call the IDirectInputDevice2::Poll method. (This behind-the-scenes polling is
not to be confused with the kind of application polling just discussed. Poll does not
retrieve any data, but merely makes data available.)

To find out whether it is necessary to call Poll each time you wish to retrieve data,
first set the data format for the device, then call the
IDirectInputDevice::GetCapabilities method and check for the
DIDC_POLLEDDATAFORMAT flag in the DIDEVCAPS structure.

Do not confuse the DIDC_POLLEDDATAFORMAT flag with the
DIDC_POLLEDDEVICE flag. The latter will be set if any object on the device
requires polling. You can then find out whether this is the case for a particular object
by calling the IDirectInputDevice::GetObjectInfo method and checking for the
DIDOI_POLLED flag in the DIDEVICEOBJECTINSTANCE structure.

The DIDC_POLLEDDEVICE flag describes the worst case for the device, not the
actual situation. For example, a HID mouse with software-controllable resolution
might be marked as DIDC_POLLEDDEVICE because reading the resolution
information requires polling. Polling the device under these conditions is pointless if
all you want is the standard button and axis data.

Nonetheless it doesn't hurt to call the IDirectInputDevice2::Poll method for any
input device. If the call is unnecessary, it will have no effect and will be very fast.

in.doc – page 28

[Visual Basic]
In a Visual Basic application, polling would typically be done in the Sub Main
procedure.

Event notification is suitable for applications like the Scrawl C++ sample that wait
for input before doing anything. To use event notification, you implement
DirectXEvent in the form or module where you wish to retrieve data. Then create an
event handle by using DirectX7.CreateEvent and pass this handle to
DirectInputDevice.SetEventNotification. Now, whenever an input event occurs on
the device, the DirectXEvent.DXCallback method is called, and in your
implementation of this method you can retrieve either the device state or buffered
data just as you would if you were doing so in Sub Main.

Some joysticks and other game devices, or particular objects on them, do not
generate hardware interrupts and will not return any data or signal any events until
you call the DirectInputDevice.Poll method. (This behind-the-scenes polling is not
to be confused with the kind of application polling just discussed. Poll does not
retrieve any data, but merely makes data available.)

To find out whether it is necessary to call Poll each time you wish to retrieve data,
first set the data format for the device, then call the
DirectInputDevice.GetCapabilities method and check for the
DIDC_POLLEDDATAFORMAT flag in the DIDEVCAPS type.

Do not confuse the DIDC_POLLEDDATAFORMAT flag with the
DIDC_POLLEDDEVICE flag. The latter will be set if any object on the device
requires polling. You can then find out whether this is the case for a particular object
by calling the IDirectInputDevice::GetObjectInfo method to get a
DirectInputDeviceObjectInstance object, and then checking for the
DIDOI_POLLED flag in the valued returned by
DirectInputDeviceObjectInstance.GetFlags.

The DIDC_POLLEDDEVICE flag describes the worst case for the device, not the
actual situation. For example, a HID mouse with software-controllable resolution
might be marked as DIDC_POLLEDDEVICE because reading the resolution
information requires polling. Polling the device under these conditions is pointless if
all you want is the standard button and axis data.

Nonetheless it doesn't hurt to call the Poll method for any input device. If the call is
unnecessary, it will have no effect and will be very fast.

Relative and Absolute Axis
Coordinates

[This is preliminary documentation and subject to change.]

Axis coordinates may be returned as relative values; that is, the amount by which
they have changed since the last call to the IDirectInputDevice::GetDeviceState
method or, in the case of buffered input, since the last item was put in the buffer.

in.doc – page 29

Absolute axis coordinates are a running total of all the relative coordinates returned
by the system since the device was acquired; in other words, they show the position
of the axis in relation to a fixed point.

By default, mouse axes are reported as relative coordinates and joystick axes as
absolute coordinates. You can use the IDirectInputDevice::SetProperty method to
change the default behavior of any axis or all the axes of a device.

Mouse Data
[This is preliminary documentation and subject to change.]

To set up the mouse device for data retrieval, first call the
IDirectInputDevice::SetDataFormat method with the c_dfDIMouse global variable
as the parameter.

For maximum performance in a full-screen application, set the cooperative level to
DISCL_EXCLUSIVE | DISCL_FOREGROUND. Note that the exclusive setting will
cause the Windows cursor to disappear. Remember too that the
DISCL_FOREGROUND setting will cause the application to lose access to the
mouse when you switch to a debugging window. Changing to
DISCL_BACKGROUND will allow you to debug the application more easily, at a
cost in performance.

The following sections give more information about getting and interpreting
immediate and buffered mouse data:

· Immediate Mouse Data
· Buffered Mouse Data
· Interpreting Mouse Axis Data
· Checking for Lost Mouse Input

See also
Device Data Formats, Cooperative Levels

Immediate Mouse Data
[This is preliminary documentation and subject to change.]

To retrieve the current state of the mouse, call IDirectInputDevice::GetDeviceState
with a pointer to a DIMOUSESTATE structure. The mouse state returned in the
structure includes axis data and the state of each of the buttons.

The first three members of the DIMOUSESTATE structure hold the axis
coordinates. (See Interpreting Mouse Axis Data.)

The rgbButtons member is an array of bytes, one for each of four buttons. Generally
the first element in the array is the left button, the second is the right button, the third

in.doc – page 30

is the middle button, and the fourth is any other button. The high bit is set if the
button is down and clear if the button is up or not present.

See also
Buffered and Immediate Data

Buffered Mouse Data
[This is preliminary documentation and subject to change.]

To retrieve buffered data from the mouse, you must first set the buffer size (see
Device Properties). The default size of the buffer is zero, so this step is essential.
You then declare an array of DIDEVICEOBJECTDATA structures with the same
number of elements as the buffer size.

After acquiring the device, you can examine and flush the buffer anytime by using
the IDirectInputDevice::GetDeviceData method. (See Buffered and Immediate
Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single object on the mouse. For instance, a typical mouse contains four objects
or input sources: x-axis, y-axis, button 0 and button 1. If the user presses button 0
and moves the mouse diagonally, the array passed to
IDirectInputDevice::GetDeviceData will have three elements filled in: an element
for button 0 being pressed, an element for the change in the x-axis, and an element
for the change in the y-axis.

You can determine which object an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the following
values:

· DIMOFS_BUTTON0 to DIMOFS_BUTTON3
· DIMOFS_X
· DIMOFS_Y
· DIMOFS_Z

Each of these values is derived from the offset of the data for the object in a
DIMOUSESTATE structure. For example, DIMOFS_BUTTON0 is equivalent to
the offset of rgbButtons[0] in the DIMOUSESTATE structure. With the macros
you can use simple comparisons to determine which device object is associated with
an item in the buffer. For example:

DIDEVICEOBJECTDATA *lpdidod;
int n;
.
.
.
/* MouseBuffer is an array of DIDEVICEOBJECTDATA structures

in.doc – page 31

 that has been set by a call to GetDeviceData.
 n is incremented in a loop that examines all filled elements
 in the array. */
lpdidod = &MouseBuffer[n];
if (((int) lpdidod->dwOfs == DIMOFS_BUTTON0)
 && (lpdidod->dwData & 0x80))
{
 ; // do something in response to left button press
}

The data for the change of state of the device object is located in the dwData
member of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value
is returned in this member. For button objects, only the low byte of dwData is
significant; the high bit of this byte is set if the button was pressed and clear if the
button was released. In other words, the button was pressed if (dwData & 0x80) is
nonzero.

For more information on the other members of the DIDEVICEOBJECTDATA
structure, see Time Stamps and Sequence Numbers.

Interpreting Mouse Axis Data
[This is preliminary documentation and subject to change.]

The data returned for the x-axis and y-axis of a mouse indicates the movement of the
mouse itself, not the cursor. The units of measurement, sometimes called mickeys,
are based on the actual values returned by the mouse hardware. Because DirectInput
communicates directly with the mouse driver, the values for mouse speed and
acceleration set by the user in Control Panel do not affect this data.

Axis data returned from the mouse can be either relative or absolute. (See Relative
and Absolute Axis Coordinates.) Because a mouse is a relative device—unlike a
joystick, it does not have a home position—relative data is returned by default.

The axis mode, which specifies whether relative or absolute data should be returned,
is a property that can be changed before the device is acquired. (See Device
Properties.) To set the axis mode to absolute, call IDirectInputDevice::SetProperty
with the DIPROP_AXISMODE value in the rguidProp parameter and with
DIPROPAXISMODE_ABS in the dwData member of the DIPROPDWORD
structure.

When the axis mode for the mouse is set to relative, the axis coordinate represents
the number of mickeys that the device has been moved along the axis since the last
value was returned. A negative value indicates that the mouse was moved to the left
for the x-axis, or away from the user for the y-axis, or that the z-axis (the wheel) was
rotated back. Positive values indicate movement in the opposite direction.

When the axis mode is set to absolute, the coordinates are simply a running total of
all relative motions received by DirectInput. The axis coordinates are not initialized
to any particular value when the device is acquired, so your application should treat

in.doc – page 32

absolute values as relative to an unknown origin. You can record the current absolute
position whenever the device is acquired and save it as the "virtual origin." This
virtual origin can then be subtracted from subsequent absolute coordinates retrieved
from the device to compute the relative distance the mouse has moved from the
point of acquisition.

The data returned for the axis coordinates is also affected by the granularity property
of the device. For the x-axis and y-axis of the mouse, granularity is normally 1,
meaning that the minimum change in value is 1. For the wheel axis it may be larger.

Checking for Lost Mouse Input
[This is preliminary documentation and subject to change.]

Because Windows may force your application to unacquire the mouse when you
have set the cooperative level to DISCL_FOREGROUND and the focus switches to
another application or even to the menu in your own application, you should check
for the DIERR_INPUTLOST return value from the
IDirectInputDevice::GetDeviceData or IDirectInputDevice::GetDeviceState
methods, and attempt to reacquire the mouse if necessary. (See Acquiring Devices.)

Note
You should not attempt to reacquire the mouse on getting a
DIERR_NOTACQUIRED error. If you do, you are likely to get caught in an
infinite loop: acquisition will fail, you will get another
DIERR_NOTACQUIRED error, and so on.

Keyboard Data
[This is preliminary documentation and subject to change.]

As far as DirectInput is concerned, the keyboard is not a text input device but a game
pad with many buttons. When your application requires text input, don't use
DirectInput methods; it is far easier to retrieve the data from the normal Windows
messages, where you can take advantage of services such as character repeat and
translation of physical keys to virtual keys. This is particularly important for
languages other than English, which may require special translation of key presses.

To set up the keyboard device for data retrieval, you must first call the
IDirectInputDevice::SetDataFormat method with the c_dfDIKeyboard global
variable as the parameter. (See Device Data Formats.)

The following sections give more information about obtaining and interpreting
keyboard data:

· Immediate Keyboard Data
· Buffered Keyboard Data
· Interpreting Keyboard Data
· Checking for Lost Keyboard Input

in.doc – page 33

Immediate Keyboard Data
[This is preliminary documentation and subject to change.]

To retrieve the current state of the keyboard, call the
IDirectInputDevice::GetDeviceState method with a pointer to an array of 256
bytes that will hold the returned data.

The GetDeviceState method behaves in the same way as the Win32
GetKeyboardState function, returning a snapshot of the current state of the
keyboard. Each key is represented by a byte in the array of 256 bytes whose address
was passed as the lpvData parameter. If the high bit of the byte is set, the key is
down. The array is most conveniently indexed with the DirectInput Keyboard Device
Constants. (See also Interpreting Keyboard Data.)

Here is an example that does something in response to the ESC key being down:

// LPDIRECTINPUTDEVICE lpdiKeyboard; // previously initialized
 // and acquired

BYTE diKeys[256];
if (lpdiKeyboard->GetDeviceState(256, diKeys) == DI_OK)
{
 if (diKeys[DIK_ESCAPE] & 0x80) DoSomething();
}

Buffered Keyboard Data
[This is preliminary documentation and subject to change.]

To retrieve buffered data from the keyboard, you must first set the buffer size (see
Device Properties). This step is essential, because the default size of the buffer is
zero. You then declare an array of DIDEVICEOBJECTDATA structures with the
same number of elements as the buffer size.

After acquiring the keyboard device, you can examine and flush the buffer anytime
by using the IDirectInputDevice::GetDeviceData method. (See Buffered and
Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single key; that is, a press or release. Because DirectInput gets the data directly
from the keyboard, any settings for character repeat in Control Panel are ignored.
This means that a keystroke is only counted once, no matter how long the key is held
down.

You can determine which key an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the DirectInput
Keyboard Device Constants. (See also Interpreting Keyboard Data.)

in.doc – page 34

The data for the change of state of the key is located in the dwData member of the
DIDEVICEOBJECTDATA structure. Only the low byte of dwData is significant;
the high bit of this byte is set if the key was pressed and clear if it was released. In
other words, the key was pressed if (dwData & 0x80) is nonzero.

Interpreting Keyboard Data
[This is preliminary documentation and subject to change.]

This section covers the identification of keys for which data is reported by the
IDirectInputDevice:GetDeviceState and IDirectInputDevice:GetDeviceData
methods. For more information on interpreting the data from GetDeviceData, see
Time Stamps and Sequence Numbers.

In one important respect, DirectInput differs from other ways of reading the
keyboard in Windows. Keyboard data refers not to virtual keys but to the actual
physical keys; that is, the scan codes. DIK_ENTER, for example, refers to the
ENTER key on the main keyboard but not to the one on the numerical keypad. (For
a list of the DIK_* values, see Keyboard Device Constants.)

DirectInput defines a constant for each key on the enhanced keyboard as well as the
additional keys found on international keyboards. Because NEC keyboards support
different scan codes than the PC-enhanced keyboards, DirectInput translates NEC
key scan codes into PC-enhanced scan codes where possible.

Not all PC-enhanced keyboards have the Windows keys (DIK_LWIN, DIK_RWIN,
and DIK_APPS). There is no way to determine whether the keys are physically
available.

Laptops and other small computers often do not implement a full set of keys.
Instead, some keys (typically numeric keypad keys) are multiplexed with other keys,
selected by an auxiliary mode key, which does not generate a separate scan code.

If the keyboard subtype indicates a PC XT or PC AT keyboard, then the following
keys are not available: DIK_F11, DIK_F12, and all the extended keys (DIK_* values
greater than 0x7F). Furthermore, the PC XT keyboard lacks DIK_SYSRQ.

Japanese keyboards, particularly the NEC PC-98 keyboards, contain a substantially
different set of keys than U.S. keyboards. For more information, see DirectInput and
Japanese Keyboards.

Checking for Lost Keyboard Input
[This is preliminary documentation and subject to change.]

Because Windows may force your application to unacquire the keyboard when you
have set the cooperative level to DISCL_FOREGROUND and the focus switches to
another application, you should check for the DIERR_INPUTLOST return value
from the IDirectInputDevice::GetDeviceData or
IDirectInputDevice::GetDeviceState methods, and attempt to reacquire the
keyboard if necessary. (See Acquiring Devices.)

in.doc – page 35

Note
You should not attempt to reacquire the keyboard on getting a
DIERR_NOTACQUIRED error. If you do, you are likely to get caught in an
infinite loop: acquisition will fail, you will get another
DIERR_NOTACQUIRED error, and so on.

Joystick Data
[This is preliminary documentation and subject to change.]

To set up the joystick device for data retrieval, first call the
IDirectInputDevice::SetDataFormat method with the c_dfDIJoystick or
c_dfDIJoystick2 global variable as the parameter. (See Device Data Formats.)

Because some device drivers do not notify DirectInput of changes in state until
explicitly asked to do so, you should always call the IDirectInputDevice2::Poll
method before attempting to retrieve data from the joystick. For more information,
see Polling and Events.

The following sections cover getting and interpreting data from a joystick or other
similar input device such as a game pad or flight yoke:

· Immediate Joystick Data
· Buffered Joystick Data
· Interpreting Joystick Axis Data
· Checking for Lost Joystick Input

Immediate Joystick Data
[This is preliminary documentation and subject to change.]

To retrieve the current state of the joystick, call the
IDirectInputDevice::GetDeviceState method with a pointer to a DIJOYSTATE or
DIJOYSTATE2 structure, depending on whether the data format was set with
c_dfDIJoystick or c_dfDIJoystick2. (See Device Data Formats.) The joystick state
returned in the structure includes the coordinates of the axes, the state of the buttons,
and the state of the point-of-view controllers.

The first seven members of the DIJOYSTATE structure hold the axis coordinates.
The last of these, rglSlider, is an array of two values. (See Interpreting Joystick Axis
Data.)

The rgdwPOV member contains the position of up to four point-of-view controllers
in hundredths of degrees clockwise from north (or forward). The center position is
reported as –1. For controllers that have only five positions, dwPOV will be one of
the following values:

–1
0

in.doc – page 36

90 * DI_DEGREES
180 * DI_DEGREES
270 * DI_DEGREES.

Note
Some drivers report a value of 65,535 instead of –1 for the neutral position. You
should check for a centered POV indicator as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

The rgbButtons member is an array of bytes, one for each of 32 or 128 buttons,
depending on the data format. For each button, the high bit is set if the button is
down and clear if the button is up or not present.

The DIJOYSTATE2 structure has additional members for information about the
velocity, acceleration, force, and torque of the axes.

See also
Buffered and Immediate Data

Buffered Joystick Data
[This is preliminary documentation and subject to change.]

To retrieve buffered data from the joystick, you must first set the buffer size (see
Device Properties) and declare an array of DIDEVICEOBJECTDATA structures.
The number of elements required in this array is the same as the buffer size. After
acquiring the device, you can examine and flush the buffer anytime with the
IDirectInputDevice:GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state
for a single object on the joystick. For instance, a simple joystick contains four
objects or input sources: x-axis, y-axis, button 0 and button 1. If the user presses
button 0 and moves the stick diagonally, the array passed to
IDirectInputDevice::GetDeviceData will have three elements filled in: an element
for button 0 being pressed, an element for the change in the x-axis, and an element
for the change in the y-axis.

You can determine which object an element in the array refers to by checking the
dwOfs member of the DIDEVICEOBJECTDATA structure against the following
values:

· DIJOFS_X
· DIJOFS_Y
· DIJOFS_Z
· DIJOFS_Rx
· DIJOFS_Ry

in.doc – page 37

· DIJOFS_Rz
· DIJOFS_BUTTON0 to DIJOFS_BUTTON31 or DIJOFS_BUTTON(n)
· DIJOFS_POV(n)
· DIJOFS_SLIDER(n)

Each of these values is equivalent to the offset of the data for the object in a
DIJOYSTATE structure. For example, DIJOFS_BUTTON0 is equivalent to the
offset of rgbButtons[0] in the DIJOYSTATE structure. You can use simple
comparisons to determine which device object is associated with an item in the
buffer. For example:

DIDEVICEOBJECTDATA *lpdidod;
int n;
.
.
.
/* JoyBuffer is an array of DIDEVICEOBJECTDATA structures
 that has been set by a call to GetDeviceData.
 n is incremented in a loop that examines all filled elements
 in the array. */
lpdidod = &JoyBuffer[n];
if (((int) lpdidod->dwOfs == DIJOFS_BUTTON0)
 && (lpdidod->dwData & 0x80))
{
 ; // do something in response to press of primary button
}

The data for the change of state of the device object is located in the dwData
member of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value
is returned in this member. For button objects, only the low byte of dwData is
significant; the high bit of this byte is set if the button is pressed and clear if the
button is released.

For the other members, see Time Stamps and Sequence Numbers.

Interpreting Joystick Axis Data
[This is preliminary documentation and subject to change.]

Axis values for the joystick are like those for the mouse: the value returned for the x-
axis is greater as the stick moves to the right, and the value for the y-axis increases
as the stick moves toward the user.

Data is in arbitrary units determined by the range property of the axis. For example,
if the range for the stick's x-axis is 0 to 10,000, a unit is one ten-thousandth of the
stick's left-right travel, and the center position is 5,000. For some axes the
granularity property may be greater than 1, in which case values will be rounded off;

in.doc – page 38

for example, if the granularity is 10 then values will be reported as 0, 10, 20, and so
on.

Axis data is also affected by the dead zone, a region around the center position in
which motion is ignored. The dead zone provides tolerance for a slight deviation
from the true center position for either or both axes of the stick. An axis value within
the range of the dead zone is reported as true center.

The saturation property of an axis is a zone of tolerance at the minimum and
maximum of the range. An axis value within this zone is reported as the minimum or
maximum value. The purpose of the saturation property is to allow for slight
differences between, for example, the minimum x-axis value reported at the top left
and bottom left positions of the stick.

The following diagram shows the effect of the dead zone and the saturation zones.
The vertical axis represents the returned axis values, where min and max are the
lower and upper limits of the reported range and ctr is the reported center. The
horizontal axis shows the physical position of the stick, where pmin and pmax are the
extremes of the physical range, pctr is neutral position of the axis, dmin and dmax
are the limits of the dead zone, and smin and smax are the boundaries of the lower
and upper saturation zones. The lower saturation zone lies between pmin and smin;
the upper saturation zone lies between smax and pmax; and the dead zone lies
between dmin and dmax.

pctr
pmin smin dmin dmax smax pmax

Physical position

ctr

min

max

Re
tu

rn
ed

For more information on joystick properties, see the following:

· IDirectInputDevice::GetProperty
· IDirectInputDevice::SetProperty
· DIPROPRANGE

Axis coordinates from the joystick can be either relative or absolute. (See Relative
and Absolute Axis Coordinates.) Because a joystick is an absolute device–unlike a
mouse, it cannot travel infinitely far along any axis–absolute data is returned by
default.

in.doc – page 39

The axis mode, which specifies whether relative or absolute data should be returned,
is a property that can be changed before the device is acquired. (See Device
Properties.) To set the axis mode to relative, call the
IDirectInputDevice::SetProperty method with the DIPROP_AXISMODE value in
the rguidProp parameter and with DIPROPAXISMODE_REL in the dwData
member of the DIPROPDWORD structure.

When the axis mode for the joystick is set to relative, the axis coordinate represents
the number of units of movement along the axis since the last value was returned.

Checking for Lost Joystick Input
[This is preliminary documentation and subject to change.]

If you are using the joystick in foreground mode (see Cooperative Levels) you may
lose the device when the focus shifts to another application.

You can check for the DIERR_INPUTLOST return value from the
IDirectInputDevice::GetDeviceData or IDirectInputDevice::GetDeviceState
methods, and attempt to reacquire the joystick if necessary. (See Acquiring Devices.)

Note
You should not attempt to reacquire the joystick on getting a
DIERR_NOTACQUIRED error. If you do, you are likely to get caught in an
infinite loop: acquisition will fail, you will get another
DIERR_NOTACQUIRED error, and so on.

Because access to the joystick is not going to be lost except when your application
moves to the background—unlike the mouse and keyboard, the joystick is never used
by the Windows system—an alternative method is to reacquire the device in
response to a WM_ACTIVATE message.

Output Data
[This is preliminary documentation and subject to change.]

Human Interface Devices may accept output as well as generating input. The
IDirectInputDevice2::SendDeviceData method is used to send packets of data to
such devices.

SendDeviceData may be viewed as IDirectInputDevice::GetDeviceData in
reverse. Like that method, it uses the DIDEVICEOBJECTDATA structure as the
basic unit of data. In this case, however, the dwOfs member contains the instance ID
of the device object associated with the data, rather than its offset in the data format
for the device. (Because offset identifiers exist only for device objects that provide
input in the selected data format, an object that only accepts output may not even
have an offset.) The dwData member contains whatever data is appropriate for the
object. The dwTimeStamp and dwSequence members are not used and must be set
to zero.

in.doc – page 40

To send data to the device, you first set up an array of DIDEVICEOBJECTDATA
structures, fill the required number of elements with data, then pass its address and
the number of elements used to SendDeviceData. Data for different device objects is
combined into a single packet that is then sent to the device.

The form of the data packet is specific to the device, as is the treatment of unused
fields in the packet. Some devices may treat fields as optional, meaning that if no
data is supplied, the state of the object remains unchanged. More commonly, all
fields are significant, even when you do not specifically supply data for them. For
example, if you send data to a single keyboard LED, it is assumed that the data for
the other two LEDs is zero and they will be turned off. However, you can override
this behavior by using the DISDD_CONTINUE flag, in which case the data for the
other two LEDs will be the value you most recently sent them.

The following function, when called repeatedly, causes the LEDs on the keyboard,
as represented by the IDirectInputDevice2 interface pdev, to flash in a recurring
pattern. The device object identifiers, NumLockID, CapsLockID, and ScrollLockID,
have previously been obtained from the dwType member of the
DIDEVICEOBJECTINSTANCE structure, either during enumeration of device
objects or by calling IDirectInputDevice::GetObjectInfo. It is assumed that the
high bit of the data byte determines the state of the LED.

void FlashLEDs(void)
 {
 static int rgiBits[] = { 1, 2, 4, 2 };
 static int iLooper = 0;
 DWORD cdod = 3; // number of items
 DIDEVICEOBJECTDATA rgdod[3];
 HRESULT hres;

 // Must clear dwTimeStamp and dwSequence
 ZeroMemory(rgdod, sizeof(rgdod));

 rgdod[0].dwOfs = NumLockID;
 rgdod[1].dwOfs = CapsLockID
 rgdod[2].dwOfs = ScrollLockID;

 rgdod[0].dwData = (rgiBits[iLooper] & 1) ? 0x80 : 0;
 // 1,0,0,0,...
 rgdod[1].dwData = (rgiBits[iLooper] & 2) ? 0x80 : 0;
 // 0,1,0,1,...
 rgdod[2].dwData = (rgiBits[iLooper] & 4) ? 0x80 : 0;
 // 0,0,1,0,...

 iLooper = (iLooper + 1) % ARRAYSIZE(rgiBits); // loops from 0 to 3

 hres = IDirectInputDevice2_SendDeviceData(pdev,
 sizeof(DIDEVICEOBJECTDATA),

in.doc – page 41

 rgdod, &cdod, 0);
 }

Force Feedback
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Force feedback is the generation of push or resistance in an input/output device, for
example by motors mounted in the base of a joystick. DirectInput allows you to
generate force-feedback effects for devices that have compatible drivers.

The following sections introduce the elements of force feedback:

· Basic Concepts of Force Feedback
· Effect Enumeration
· Information About a Supported Effect
· Creating an Effect
· Effect Direction
· Examples of Setting Effect Direction
· Envelopes and Offsets
· Effect Playback
· Downloading and Unloading Effects
· Changing an Effect
· Gain
· Force-Feedback State
· Effect Object Enumeration
· Constant Forces
· Ramp Forces
· Periodic Effects
· Conditions
· Custom Forces
· Device-Specific Effects

To enumerate, create, and manipulate effects, you must first obtain a pointer to the
IDirectInputDevice2 interface for the force-feedback device. For an example of
how to do this, see Creating the DirectInput Device.

in.doc – page 42

Basic Concepts of Force Feedback
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
A particular instance of force feedback is called an effect, and the push or resistance
is called the force. Most effects fall into one of the following categories:

· Constant force. A steady force in a single direction.
· Ramp force. A force that steadily increases or decreases in magnitude.
· Periodic effect. A force that pulsates according to a defined wave pattern.
· Condition. A force that occurs only in response to input by the user. Two

examples are a friction effect that generates resistance to movement of the
joystick, and a spring effect that tends to move the stick back to a certain
position after it has been moved from that position.

The strength of the force is called its magnitude. Magnitude is measured in units
ranging from zero (no force) to 10,000 (maximum force for the device, defined in
Dinput.h as DI_FFNOMINALMAX). A negative value indicates force in the
opposite direction. Magnitudes are linear: a force of 10,000 is twice as great as one
of 5,000.

Ramp forces have a beginning and ending magnitude. For a periodic effect, the basic
magnitude is the force at the peak of the wave.

The direction of a force is the direction from which it comes; just as a north wind
comes from the north, a positive force on an given axis pushes from the positive
toward the negative.

Effects also have duration, measured in microseconds. Periodic effects have a
period, or the duration of one cycle, also measured in microseconds. The phase of a
periodic effect is the point along the wave where playback begins.

The following diagram represents a sawtooth periodic effect with a magnitude of
5,000, or half the maximum force for the device. The horizontal axis represents the
duration of the effect, and the vertical axis represents the magnitude. Points above
the center line represent positive force in the direction defined for the effect, and
points below the center line represent negative force, or force in the opposite
direction.

in.doc – page 43

-10,000

10,000

0

Duration

A force may be further shaped by an envelope. An envelope defines an attack value
and a fade value, which modify the beginning and ending magnitude of the effect.
Attack and fade also have duration, which determines how long the magnitude takes
to reach or fall away from the sustain value, the magnitude in the middle portion of
the effect.

The following diagram represents an envelope. The attack level is set to 8,000 and
the fade level to 1,000. The sustain level will be defined by the basic magnitude of
the force to which the envelope is being applied; in the example it is 5,000. Note that
in this case the attack is greater than the sustain, giving the effect an initial strong
kick. Both the attack and the fade level can be either greater or lesser than the
sustain level.

Attack Level
Sustain Level

Attack Time Fade Time

Fade Level

-10,000

10,000

0

The next diagram shows the result of the envelope being applied to the periodic
effect in the first diagram. Note that the envelope is mirrored on the negative side of
the magnitude. An attack value of 8,000 means that the initial magnitude of the force
in either direction will be 80 percent of the maximum possible.

in.doc – page 44

-10,000

10,000

0

Periodic effects and conditions can also be modified by the addition of an offset,
which defines the amount by which the waveform is shifted up or down from the
base level. The practical effect of applying a positive offset to the sawtooth example
would be to strengthen the positive force and weaken the negative one — in other
words, the force would peak more strongly in one direction than in the other.

Finally, the overall magnitude of an effect can be scaled by gain, which is analogous
to a volume control in audio. A single gain value can be applied to all effects for a
device; you might want to do this to compensate for stronger or weaker forces on
different hardware, or to accommodate the user's preferences.

Effect Enumeration
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
The IDirectInputDevice2::EnumEffects method returns information about the
support offered by the device for various kinds of effects.

It is important to distinguish between supported effects and created effects, or effect
objects. A supported effect might be a constant force that can be shaped by an
envelope. However, this effect has no properties such as magnitude, direction,
duration, attack, or fade. You set these properties when you create an effect object in
your application. A supported effect may be represented by many effect objects,
each with different parameters—for example, several constant forces each with
different duration, magnitude, and direction.

For information on enumerating created effects, see Effect Object Enumeration.

Like other DirectInput enumerations, the IDirectInputDevice2::EnumEffects
method requires a callback function; this is documented with the placeholder name
DIEnumEffectsProc, but you can use a different name if you wish. This function is

in.doc – page 45

called for each effect enumerated. Within the function you can obtain the GUID for
each effect, get information about the extent of hardware support, and create one or
more effect objects whose methods you can use to manipulate the effect.

Here is a skeletal C++ example of the callback function, and the call to the
IDirectInputDevice2::EnumEffects method that sets the enumeration in motion.
Note that the pvRef parameter of the callback can be any 32-bit value; in this case it
is a pointer to the device interface, used for getting information about effects
supported by the device and for creating effect objects.

HRESULT hr;
// LPDIRECTINPUTDEVICE lpdid2; // already initialized

BOOL CALLBACK DIEnumEffectsProc(LPCDIEFFECTINFO pdei,
 LPVOID pvRef)
{
 LPDIRECTINPUTDEVICE2 lpdid = pvRef; // pointer to calling device
 LPDIRECTINPUTEFFECT lpdiEffect; // pointer to created effect
 DIEFFECT diEffect; // params for created effect
 DICONSTANTFORCE diConstantForce; // type-specific parameters
 // for diEffect

 if (DIEF_GETTYPE(pdei->dwEffType) == DIEFFT_CONSTANTFORCE)
 {
 /* Here you can extract information about support for the
 effect type (from pdei), and tailor your effects
 accordingly. For example, the device might not support
 envelopes for this type of effect. */
 .
 .
 .
 // Create one or more constant force effects.
 // For each you have to initialize a DICONSTANTFORCE
 // and a DIEFFECT structure.
 // See detailed example at Creating an Effect
 .
 .
 .
 hr = pdid->CreateEffect(pdei->guid,
 &diEffect,
 &lpdiEffect,
 NULL);
 .
 .
 .
 }

in.doc – page 46

 // And so on for other types of effect
 .
 .
 .

 return DIENUM_CONTINUE;
} // end of callback
.
.
.
// Set the callback into motion
hr = lpdid2->EnumEffects(&EnumEffectsProc,
 lpdid2, DIEFT_ALL);

For more information on how to initialize an effect, see Creating an Effect.

Information About a Supported Effect
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
The IDirectInputDevice2::GetEffectInfo method can be used to retrieve
information about the device's support for an effect. It retrieves the same information
that is returned in the DIEFFECTINFO structure during enumeration. For more
information, see Effect Enumeration.

The following C++ example fetches information about an enumerated effect whose
GUID is stored in the EffectGuid variable:

DIEFFECTINFO diEffectInfo;
diEffectInfo.dwSize = sizeof(DIEFFECTINFO);
lpdid2->GetEffectInfo(&diEffectInfo, EffectGuid);

Creating an Effect
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

in.doc – page 47

[C++]
You create an effect object by using the IDirectInputDevice2::CreateEffect
method, as in the following C++ example, where pdev2 points to an instance of the
interface. This example creates a very simple effect that will pull the joystick away
from the user at full force for half a second.

HRESULT hr;
LPDIRECTINPUTEFFECT lpdiEffect; // receives pointer to created effect
DIEFFECT diEffect; // parameters for created effect

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
LONG lDirection[2] = { 18000, 0 };

DICONSTANTFORCE diConstantForce;

diConstantForce.lMagnitude = DI_FFNOMINALMAX; // full force

diEffect.dwSize = sizeof(DIEFFECT);
diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
diEffect.dwDuration = 0.5 * DI_SECONDS;
diEffect.dwSamplePeriod = 0; // = default
diEffect.dwGain = DI_FFNOMINALMAX; // no scaling
diEffect.dwTriggerButton = DIEB_NOTRIGGER; // not a button response
diEffect.dwTriggerRepeatInterval = 0; // not applicable
diEffect.cAxes = 2;
diEffect.rgdwAxes = &dwAxes;
diEffect.rglDirection = &lDirection;
diEffect.lpEnvelope = NULL;
diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
diEffect.lpvTypeSpecificParams = &diConstantForce;

hr = pdev2->CreateEffect(GUID_ConstantForce,
 &diEffect,
 &lpdiEffect,
 NULL);

In the method call, the first parameter identifies the supported effect with which the
created effect is to be associated. The example uses one of the predefined GUIDs
found in Dinput.h. Note that if you use a predefined GUID, the call will fail if the
device doesn't support the effect.

The second parameter sets the parameters as specified in the DIEFFECT structure.

The third parameter receives a pointer to the effect object if the call is successful.

The DIEFF_POLAR flag specifies the type of coordinates used for the direction of
the force. (See Effect Direction.) It is combined with DIEFF_OBJECTOFFSETS,

in.doc – page 48

which indicates that any buttons or axes used in other members will be identified by
their offsets within the DIDATAFORMAT structure for the device. The alternative
is to use the DIEFF_OBJECTIDS flag, signifying that buttons and axes will be
identified by the dwType member of the DIDEVICEOBJECTINSTANCE
structure returned for the object when it was enumerated with the
IDirectInputDevice::EnumObjects method.

For more information on the members of the DIEFFECT structure, see Effect
Direction.

Effect Direction
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Directions can be defined for one or more axes. As with the mouse and joystick, the
x-axis increases from left to right, and the y-axis increases from far to near. For
three-dimensional devices, the z-axis increases from up to down.

The direction of an effect is the direction from which it comes. An effect with a
direction along the negative y-axis tends to push the stick along the positive y-axis
(toward the user). It is somewhat easier to visualize the axis values of a direction if
you imagine the user exerting a counteracting force on the device. If the user must
push the stick toward the left in order to counteract an effect, the effect has a "left"
direction; that is, it lies on the negative x-axis.

Direction can be expressed in polar, spherical, or Cartesian coordinates.

Polar coordinates are expressed as a single angle, in hundredths of degrees clockwise
from whatever zero-point, or true north, has been established for the effect. Normally
this is the negative y-axis; that is, away from the user. Thus an effect with a polar
coordinate of 9,000 normally has a direction of east, or to the user's right, and the
user must exert force to the right in order to counteract it.

Spherical coordinates are also in hundredths of degrees but may contain two or more
angles; for each angle, the direction is rotated in the positive direction of the next
axis. For a three-dimensional device, the first angle would normally be rotated from
the positive x-axis toward the positive y-axis (clockwise from east); the second angle
would be rotated toward the positive z-axis (down). Thus a force with a direction of
(0, 0) would be to the user's right and parallel to the tabletop. A direction of 27,000
for the first angle and 4,500 for the second would be directly away from the user
(270 degrees clockwise from east) and angling toward the floor (45 degrees
downward from the tabletop); to counteract a force with this direction, the user
would have to push forward and down.

in.doc – page 49

Cartesian coordinates are similar to 3-D vectors. If you draw a straight line on graph
paper with an origin of (0, 0) at the center of the page, the direction of the line can
be defined by the coordinates of any intersection it crosses, regardless of the distance
from the origin. A direction of (1, -2) and a direction of (5, -10) are exactly the
same.

Note
The coordinates used in creating force-feedback effects define only direction,
not magnitude or distance.

When an effect is created or modified, the cAxes, rgdwAxes, and rglDirection
members of the DIEFFECT structure are used to specify the direction of the force.

The cAxes member simply specifies the number of elements in the arrays pointed to
by the next two members.

The array pointed to by rgdwAxes identifies the axes. If the
DIEFF_OBJECTOFFSETS flag has been set, the axes are identified by the offsets
within the data format structure. These offsets are most readily identified by using
the DIJOFS_* defines. (For a list of these values, see Joystick Device Constants.)

Finally, the rglDirection member specifies the direction of the force.

Note
The cAxes and rgdwAxes members cannot be modified once they have been set.
An effect always has the same axis list.

Regardless of whether you are using Cartesian, polar, or spherical coordinates, you
must provide exactly as many elements in rglDirection as there are axes in the array
pointed to by rgdwAxes.

In the polar coordinate system, "north" (zero degrees) lies along the vector (0, -1),
where the elements of the vector correspond to the elements in the axis list pointed
to by rgdwAxes. Normally those axes are x and y, so north is directly along the
negative y-axis; that is, away from the user. The last element of rglDirection must be
zero.

In the example under Creating an Effect, the direction of a two-dimensional force is
defined in polar coordinates. The force has a south direction—it comes from the
direction of the user, so that the user has to pull the stick to counteract it. The
direction is 180 degrees clockwise from north, and can be assigned as follows:

LONG lDirection[2] = { 18000, 0 };

For greater clarity, the assignment could also be expressed this way:

LONG lDirection[2] = { 180 * DI_DEGREES, 0 };

For spherical coordinates, presuming that you are working with a three-axis device,
the same direction is assigned as follows:

LONG lDirection[3] = { 90 * DI_DEGREES, 0, 0 }

in.doc – page 50

The reference for the DIEFFECT structure tells us that the first angle is measured in
hundredths of degrees from the (1, 0) direction, rotated in the direction of (0, 1); the
second angle is measured in hundredths of degrees towards (0, 0, 1). The elements of
the vector notation again correspond to elements in the array pointed to by the
rgdwAxes member. Suppose the elements of this array represent the x, y, and z axes,
in that order. The point of origin is at x = 1 and y = 0; that is, to the user's right. The
direction of rotation is toward the positive y-axis (0, 1); that is, toward the user, or
clockwise. The force in the example is 90 degrees clockwise from the right; that is,
south. Because the second element of lDirection is 0, there is no rotation on the third
axis.

How do you accomplish the same thing with Cartesian coordinates? Presuming you
have used the DIEFF_CARTESIAN flag in the dwFlags member, you would specify
the direction like this:

LONG lDirection[2] = { 0, 1 };

Here again the elements of the array correspond to the axes listed in the array
pointed to by rgdwAxes. The example sets the x-axis to zero and the y-axis to 1; that
is, the direction lies directly along the positive y-axis, or to the south.

The theory of effect directions can be difficult to grasp, but the practice is fairly
straightforward. For sample code, see Examples of Setting Effect Direction.

Examples of Setting Effect Direction
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]

Single-Axis Effects
Setting up the direction for a single-axis effect is extremely simple, because there is
really nothing to specify. You put the DIEFF_CARTESIAN flag in the dwFlags
member of the DIEFFECT structure and set rglDirection to point to a single
LONG containing the value 0.

The following example sets up the direction and axis parameters for an x-axis effect:

DIEFFECT eff;
LONG lZero = 0; // No direction
DWORD dwAxis = DIJOFS_X; // x-axis effect

in.doc – page 51

ZeroMemory(&eff, sizeof(DIEFFECT));
eff.cAxes = 1; // One axis
eff.dwFlags =
 DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS; // Flags
eff.rglDirection = &lZero; // Direction
eff.rgdwAxes = &dwAxis; // Axis for effect

Two-Axis Effects with Polar Coordinates
Setting up the direction for a polar two-axis effect is only a little more complicated.
You set the DIEFF_POLAR flag in dwFlags and set rglDirection to point to an
array of two LONGs. The first element in this array is the direction from which you
want the effect to come. The second element in the array must be zero.

The following example sets up the direction and axis parameters for a two-axis effect
coming from the east:

DIEFFECT eff;
LONG rglDirection = { 90 * DI_DEGREES, 0 }; // 90 degrees from
 // north, i.e. east
DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // x- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));
eff.cAxes = 2; // Two axes
eff.dwFlags =
 DIEFF_POLAR | DIEFF_OBJECTOFFSETS; // Flags
eff.rglDirection = rglDirection; // Direction
eff.rgdwAxes = rgdwAxes; // Axis for effect

Two-Axis Effects with Cartesian Coordinates
Setting up the direction for a Cartesian two-axis effect is a bit trickier, but not by
much. You set the DIEFF_CARTESIAN flag in dwFlags and again set rglDirection
to point to an array of two LONGs. This time the first element in the array is the x-
coordinate of the direction vector, and the second is the y-coordinate.

The following example sets up the direction and axis parameters for a two-axis effect
coming from the east:

DIEFFECT eff;
LONG rglDirection = { 1, 0 }; // Positive x = east
DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // x- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));
eff.cAxes = 2; // Two axes
eff.dwFlags =
 DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS; // Flags

in.doc – page 52

eff.rglDirection = rglDirection; // Direction
eff.rgdwAxes = rgdwAxes; // Axis for effect

Envelopes and Offsets
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
You can modify the basic magnitude of some effects by applying an envelope and an
offset. For an overview, see Basic Concepts of Force Feedback.

To apply an envelope when creating or modifying an effect, initialize a
DIENVELOPE structure and put a pointer to it in the lpEnvelope member of the
DIEFFECT structure.

The device driver determines which effects support envelopes. Typically you can
apply an envelope to a constant force, a ramp force, or a periodic effect, but not to a
condition. To determine whether a particular effect supports an envelope, you call
the IDirectInputDevice2::GetEffectInfo method and check for the
DIEP_ENVELOPE flag in the dwStaticParams member of the DIEFFECTINFO
structure.

To apply an offset, set the lOffset member of the DIPERIODIC or DICONDITION
structure pointed to by the lpvTypeSpecificParams member of the DIEFFECT
structure. For periodic effects, the absolute value of the offset plus the magnitude of
the effect must not exceed DI_FFNOMINALMAX.

You cannot apply an offset to a constant force or ramp force. In these cases the same
effect can be achieved by altering the magnitude.

Effect Playback
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
There are two principal ways to start playback of an effect: manually by a call to the
IDirectInputEffect::Start method, and automatically in response to a button press.

in.doc – page 53

Playback also starts when you change an effect by calling the
IDirectInputEffect::SetParameters method with the DIEP_START flag.

Passing INFINITE in the dwIterations parameter has the effect of playing the effect
repeatedly, with the envelope being applied each time. If you want to repeat an
effect without repeating the envelope—for example, to begin with a strong kick, then
settle down to a steady throb—set dwIterations to 1 and set the dwDuration member
of the DIEFFECT structure to INFINITE. (This is the structure passed to the
IDirectInputDevice2::CreateEffect method.)

Note
Some devices do not support multiple iterations of an effect and accept only the
value 1 in the dwIterations parameter to the Start method. You should always
check the return value from Start to make sure the effect played successfully.

To associate an effect with a button press, you set the dwTriggerButton member of
the DIEFFECT structure. You also set the dwTriggerRepeatInterval member to
the desired delay between playbacks when the button is held down; this is the
interval, in microseconds, between the end of one playback and the start of the next.
On some devices, multiple effects cannot be triggered by the same button; if you
associate more than one effect with a button; the last effect downloaded will be the
one triggered.

To dissociate an effect from its trigger button, you must either call the
IDirectInputEffect::Unload method or set the parameters for the effect with
dwTriggerButton set to DIEB_NOTRIGGER.

Triggered effects, like all others, are lost when the application loses access to the
device. In order to make them active again, you must download them as soon as the
application reacquires the device. This step is not necessary for effects not associated
with a trigger, because they are automatically downloaded if necessary whenever the
Start method is called.

If an effect has a finite duration and is started by a call to the Start method, it will
stop playing when the time has elapsed. If its duration was set to INFINITE,
playback ends only when the IDirectInputEffect::Stop method is called. An effect
associated with a trigger button starts when the button is pressed and stops when the
button is released or the duration has elapsed, whichever comes sooner.

Downloading and Unloading Effects
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]

in.doc – page 54

Before an effect can be played, it must be downloaded to the device. Downloading
an effect means telling the driver to prepare the effect for playback. It is entirely up
to the driver to determine how this is done. Generally the driver will place the
parameters of the effect in hardware memory in order to minimize the subsequent
transfer of data between the device and the system. The consequent reduction in
latency is particularly important for conditions and for effects played in response to a
trigger, such as a "fire" button. Ideally the device will not have to communicate with
the system at all in order to respond to axis movements and button presses.

Downloading is done automatically when you create an effect, provided the device is
not full and is acquired at the exclusive cooperative level. By default it is also done
when you start the effect or change its parameters. If you specify the
DIEP_NODOWNLOAD flag when changing parameters, you must subsequently use
the IDirectInputEffect::Download method to download or update the effect.

When the device is unacquired — for example, when it has been acquired with the
exclusive foreground cooperative level and the application moves to the background
— effects are unloaded and must be downloaded again when the application regains
the foreground. As previously stated, this will be done automatically when you call
the IDirectInputEffect::Start method, but you may choose to download all effects
immediately on reacquiring the device. You always have to download effects
associated with a trigger button, since the Start method will not normally be called
for such effects.

If your application gets the DIERR_DEVICEFULL error when downloading an
effect, you have to make room for the new effect by unloading an old one. You can
remove an effect from the device by calling the IDirectInputEffect::Unload
method. You can also remove all effects by resetting the device through a call to the
IDirectInputDevice2::SendForceFeedbackCommand method.

When you create a force-feedback device, the hardware and driver are reset, so any
existing effects are cleared.

Changing an Effect
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
You can modify the parameters of an effect, in some cases even while the effect is
playing. You do this by using the IDirectInputEffect::SetParameters method.

The dwDynamicParams member of the DIEFFECTINFO structure tells you which
effect parameters can be changed while an effect is playing. If you attempt to modify
an effect parameter that cannot be modified while the effect is playing, and the effect

in.doc – page 55

is still playing, then DirectInput will normally stop the effect, update the parameters,
and restart the effect. You can override this default behavior by passing the
DIEP_NORESTART flag.

The following C++ example changes the magnitude of the constant force that was
set in the example under Creating an Effect.

DIEFFECT diEffect; // parameters for effect
DICONSTANTFORCE diConstantForce;
 // type-specific parameters.

diConstantForce.lMagnitude = 5000;
diEffect.dwSize = sizeof(DIEFFECT);
diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
diEffect.lpvTypeSpecificParams = &diConstantForce;
hr = lpdiEffect->SetParameters(&diEffect, DIEP_TYPESPECIFICPARAMS);

The flag ensures that the transfer of data from the DIEFFECT structure is restricted
to the relevant members, so that you do not have to initialize the entire structure and
so that the minimum possible amount of data needs to be sent to the device.

Gain
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
You may want to scale the force of your effects according to the actual force exerted
by different devices. For example, if an application's effects feel right on a device
that puts out a maximum force of n Newtons on a given axis, then you may want to
adjust the gain for a device that puts out more force. (You cannot use the gain to
increase the maximum force of the axis, so you should set the basic effect
magnitudes to values suitable for devices that put out less force.)

The actual force generated by a device object such as an axis or button is returned in
the dwFFMaxForce member of the DIDEVICEOBJECTINSTANCE structure
when objects are enumerated. (See Device Object Enumeration.)

You can set the gain for the entire device by using the
IDirectInputDevice::SetProperty method. You can also set the gain for individual
effects when creating or modifying them. Put the new gain value in the dwGain
member of the DIEFFECT structure. If modifying the effect with the SetProperty
method, be sure to include DIEP_GAIN in the flags parameter.

in.doc – page 56

The purpose of setting the device gain is to allow your application to have control
over the strength of all effects all at once. For example, you might have a slider
control in your application to allow the user to specify how strong the force-feedback
effects should be, like the master volume control on a sound mixer. By setting the
device gain, your application won't need to adjust the gain of each individual effect
to suit the user's preferences.

A gain value may be in the range 0 to 10,000 (or DI_FFNOMINALMAX), where
10,000 indicates that magnitudes are not to be scaled, 7,500 means that forces are to
be scaled to 75 percent of their nominal magnitudes, and so on.

Force Feedback State
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
The IDirectInputDevice2::SendForceFeedbackCommand method allows you to
turn off the device's actuators (effectively causing it to ignore any effects that are
being played), pause or stop playback of effects, and reset the device so that all
downloaded effects are removed.

To retrieve the current force-feedback state, use the
IDirectInputDevice2::GetForceFeedbackState method. This method returns
information about whether the actuators are active, whether playback is paused, and
whether the device has been reset. It also retrieves information about various
switches and about whether the device is currently powered.

Effect Object Enumeration
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Whenever you need to examine or manipulate all the effects you have created, you
can use the IDirectInputDevice2::EnumCreatedEffectObjects method. As no flags
are currently defined for this method, you cannot restrict the enumeration to
particular kinds of effects; all effects will be enumerated.

in.doc – page 57

Note
This method enumerates created effects, not effects supported by a device. For
more information on the distinction between the two, see Effect Enumeration.

Like other DirectInput enumerations, the EnumCreatedEffectObjects method
requires a callback function. This standard callback is documented with the
placeholder name DIEnumCreatedEffectObjectsProc, but you can use a different
name. The function is called for each effect enumerated. Within the function you can
perform any processing you want; however, it is not safe to create a new effect while
enumeration is going on.

Here is a skeletal C++ example of the callback function, and the call to the
EnumCreatedEffectObjects method. Note that the pvRef parameter of the callback
can be any 32-bit value; in this case it is a pointer to the device interface.

HRESULT hr;
// LPDIRECTINPUTDEVICE lpdid; // already initialized

BOOL CALLBACK DIEnumCreatedEffectObjectsProc(
 LPDIRECTINPUTEFFECT peff, LPVOID pvRef);
{
 LPDIRECTINPUTDEVICE pdid = pvRef; // pointer to calling device
 DIEFFECT diEffect; // params for created effect

 diEffect.dwSize = sizeof(DIEFFECTINFO);
 peff->GetParameters(&diEffect, DIEP_ALLPARAMS);
 // check or set parameters, or do anything else
 .
 .
 .
} // end of callback

// Set the callback into motion
hr = lpdid->EnumCreatedEffectObjects(&EnumCreatedEffectObjectsProc,
 &lpdid, 0);

Constant Forces
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
A constant force is a force with a defined magnitude and duration.

in.doc – page 58

You can apply an envelope to a constant force in order to give it shape. For example,
suppose you have an effect with a nominal magnitude of 2,000 and a duration of 2
seconds. Then you apply an envelope with the following values:

Attack time 0.5 second
Initial attack level 5,000
Fade time 1 second
Fade level 0

When you play the effect, you get the following:

Elapsed time Magnitude

0.0 5,000
0.1 4,400
0.2 3,800
0.3 3,200
0.4 2,600
0.5 2,000
(duration of sustain) 2,000
1.0: 2,000
1.1 1,800
1.2 1,600
1.3 1,400
1.4 1,200
1.5 1,000
1.6 800
1.7 600
1.8 400
1.9 200
2.0 0

You cannot apply an offset to a constant force.

To create a constant force, pass GUID_ConstantForce to the
IDirectInputDevice2::CreateEffect method. You can also pass any other GUID
obtained by the IDirectInputDevice2::EnumEffects method, provided the low byte
of the dwEffType member of the DIEFFECTINFO structure
(DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_CONSTANTFORCE. In this
way you can use hardware-specific forces designed by the manufacturer, such as a
"constant" force that actually varies in magnitude in a seemingly random fashion to
simulate turbulence.

in.doc – page 59

A constant force uses a DICONSTANTFORCE structure to define the magnitude of
the force, while the duration is taken from the DIEFFECT structure. An envelope
may be applied.

Ramp Forces
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
A ramp force is a force with defined starting and ending magnitudes and a finite
duration. A ramp force may continue in a single direction, or it may start as a strong
push in one direction, weaken, stop, and then strengthen in the opposite direction.

The following diagram shows a ramp force that starts at a magnitude of -5,000 and
ends at 5,000:

-10,000

10,000

0

You can apply an envelope to a ramp force in order to shape it further. The
following diagram shows the effect of applying an envelope, shown in green, to the
ramp force in the previous diagram.

-10,000

10,000

0

in.doc – page 60

Note that during the sustain portion of the envelope, the magnitude of the effect
follows the same straight line as before the envelope was applied. For the duration of
the attack and fade, the slope of the ramp is modified by the attack and fade levels.

You cannot apply an offset to a ramp force.

To create a ramp force, pass GUID_RampForce to the
IDirectInputDevice2::CreateEffect method. You can also pass any other GUID
obtained by the IDirectInputDevice2::EnumEffects method, provided the low byte
of the dwEffType member of the DIEFFECTINFO structure
(DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_RAMPFORCE. In this way
you can use hardware-specific ramp forces designed by the manufacturer.

A ramp force uses a DIRAMPFORCE structure to define the starting and ending
magnitude of the force, while the duration is taken from the DIEFFECT structure.
Duration must never be set to INFINITE.

Periodic Effects
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Periodic effects are waveform effects. DirectInput defines the following forms:

· Square.
· Sine.
· Cosine.
· Triangle.
· SawtoothUp. The waveform drops vertically after it reaches maximum positive

force. See the example at Basic Concepts of Force Feedback.
· SawtoothDown. The waveform rises vertically after it reaches maximum

negative force.

An envelope can be applied to periodic effects. See the example at Basic Concepts
of Force Feedback.

The phase of a periodic effect is the point along the waveform where the effect
begins. Phase is measured in hundredths of a degree, from 0 to 35,999. The
following table indicates where selected phase values (in degrees) lie along the
various waveforms. Max is the top (+) or bottom (–) of the wave and Mid is the
midpoint, where no force is applied in either direction.

0 90 180 270

in.doc – page 61

Square +Max +Max –Max –Max
Sine Mid +Max Mid –Max
Triangle +Max Mid –Max Mid
SawtoothUp –Max –Max/2 Mid +Max/2 (reaches

+Max just before the
cycle repeats)

SawtoothDown +Max +Max/2 Mid –Max/2 (reaches
–Max just before the
cycle repeats)

A driver may round off a phase value to the nearest supported value. For example,
for a sine effect some drivers support only values of 0 and 9,000 (to create a cosine);
for other effects, only values of 0 and 18,000 are supported.

To create a periodic force, pass one of the following values in the rguid parameter of
the IDirectInputDevice2::CreateEffect method:

· GUID_Square
· GUID_Sine
· GUID_Triangle
· GUID_SawtoothUp
· GUID_SawtoothDown

You can also pass any other GUID obtained by the
IDirectInputDevice2::EnumEffects method, provided the low byte of the
dwEffType member of the DIEFFECTINFO structure
(DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_PERIODIC. In this way you
can use hardware-specific forces designed by the manufacturer. For example, a
hardware device might support a periodic effect that rotates the stick in a small
circle.

The type-specific structure for periodic effects is DIPERIODIC.

Conditions
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Conditions are forces applied in response to current sensor values within the device.
In other words, conditions require information about device motion such as position
or velocity of a joystick handle.

in.doc – page 62

In general, conditions are not associated with individual events during a game or
other application. They represent ambient phenomena such as the stiffness or
looseness of a flight stick, or the tendency of a steering wheel to return to a straight-
ahead position.

A condition does not have a predefined magnitude; the magnitude is scaled in
proportion to the movement or position of the input object.

DirectInput defines the following types of condition effects:

· Friction. The force is applied when the axis is moved, and depends on the
defined friction coefficient.

· Damper. The force increases in proportion to the velocity with which the user
moves the axis.

· Inertia. The force increases in proportion to the acceleration of the axis.
· Spring. The force increases in proportion to the distance of the axis from a

defined neutral point.

Most hardware devices do not support the application of envelopes to conditions. To
determine whether a particular effect supports an envelope, check for the
DIEP_ENVELOPE flag in the dwStaticParams member of the DIEFFECTINFO
structure.

Conditions have the following type-specific parameters:

Offset.
The offset from the zero reading of the appropriate sensor value where the
condition begins to be applied. For a spring effect, the neutral point — that is,
the point along the axis where the spring would be considered at rest — would
be defined by the offset for the condition. For a damper, the offset would define
the greatest velocity value for which damping force is zero. Offset is not
normally used for inertia or friction effects.

Coefficient.
A multiplier that scales the effect. For some devices, you can set separate
coefficients for the positive and negative direction along the axis associated with
the condition. For example, a flight stick controlling a damaged aircraft might
move more easily to the right than to the left.

Saturation.
In force feedback, saturation is an expression of the maximum possible force for
an effect. For example, suppose a flight stick has a spring condition on the x-
axis. The offset is 0 and the coefficient is 10,000, so the maximum force is
normally exerted when the stick is furthest from the center. But if you define a
positive and negative saturation of 5,000, the force does not increase after the
stick has been moved halfway to the right or left.

Deadband.
The deadband is a zone around the offset of an axis where the condition is not
active. In the case of a spring that is at rest in the middle of an axis, the
deadband enlarges this area of rest.

in.doc – page 63

Conditions can have duration, though in most cases you would probably want to set
the duration to INFINITE and stop the effect only in response to some event in the
application.

To create a condition, pass one of the following values in the rguid parameter of the
IDirectInputDevice2::CreateEffect method:

· GUID_Spring
· GUID_Damper
· GUID_Inertia
· GUID_Friction

You can also pass any other GUID obtained by the
IDirectInputDevice2::EnumEffects method, provided the low byte of the
dwEffType member of the DIEFFECTINFO structure
(DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_CONDITION. In this way you
can use hardware-specific conditions designed by the manufacturer.

The type-specific structure for conditions is DICONDITION. For multiple-axis
conditions you may provide an array of such structures, one for each axis, or a single
structure that defines the condition in the specified direction. In either case you need
to set the cbTypeSpecificParams member of the DIEFFECT structure to the actual
number of bytes used; that is, to sizeof(DICONDITION) * n, where n is the number
of structures provided. For more information on how to use either single or multiple
structures, see the Remarks for the DICONDITION structure.

An application should call the IDirectInputDevice2::GetEffectInfo method or the
IDirectInputDevice2::EnumEffects method and examine the dwEffectType
member of the DIEFFECTINFO structure in order to determine if the both a
positive and negative coefficient and saturation for the effect are supported on the
device. If the effect does not return the DIEFT_POSNEGCOEFFICIENTS flag, it
will ignore the value in the lNegativeCoefficient member and the value in
lPositiveCoefficient will be applied to the entire axis. Likewise, if the effect does
not return the DIEFT_POSNEGSATURATION flag, it will ignore the value in the
dwNegativeSaturation and the value in dwPositiveSaturation will be used as the
negative saturation level. Finally, if the effect does not return the
DIEFT_SATURATION flag, it will ignore both the lPositiveSaturation and
lNegativeSaturation values and no saturation will be applied.

Note that you can set a coefficient to a negative value, and this has the effect of
generating the force in the opposite direction. For example, for a spring effect it
would cause the spring to push away from the offset point rather than pulling toward
it.

You should also check the dwEffectType member for the DIEFT_DEADBAND
flag, to see if deadband is supported for the condition. If it is not supported, the value
in the lDeadBand member of the DICONDITION structure will be ignored.

in.doc – page 64

Custom Forces
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
Application writers can create their own effects by creating a custom force. A
custom force is an array of constant force values played back by the device.

The type-specific structure for custom waveform effects is DICUSTOMFORCE.

You should set the dwSamplePeriod member of the DICUSTOMFORCE structure
and the dwSamplePeriod member of the DIEFFECT structure to the same value.
This is the length of time, in milliseconds, for which each element in the array of
forces will be played.

The custom force is played repeatedly until the time set in the dwDuration member
of the DIEFFECT structure has elapsed.

Device-Specific Effects
[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++. DirectX for Visual Basic
does not support force feedback.

[C++]
DirectInput provides a way to control device-specific effects. This is useful for
hardware vendors who have extra effects that are not directly supported by
DirectInput.

The hardware vendor must provide a GUID identifying the device-specific effect and
may provide a custom structure for the type-specific parameters of the effect. Your
application then must initialize a DIEFFECT structure and a type-specific structure,
just as with any other effect. You then call the IDirectInputDevice2::CreateEffect
method, passing the device-specific GUID and a pointer to the DIEFFECT
structure.

When you obtain information about a device-specific effect in a DIEFFECTINFO
structure, the low byte of the dwEffType member
(DIEFT_GETTYPE(dwEfftype)) indicates into which of the predefined
DirectInput effect categories (constant force, ramp force, periodic, or condition) the

in.doc – page 65

effect falls. If it does not fall into any of the predefined categories, then the value is
DIEFT_HARDWARE.

If a device-specific effect falls into one of the predefined categories, then the
lpvTypeSpecificParams member of the DIEFFECT structure must point to the
corresponding DICONSTANTFORCE, DIRAMPFORCE, DIPERIODIC, or
DICONDITION structure, and the cbTypeSpecificParams member must be equal
to the size of that structure.

If the (DIEFT_GETTYPE(dwEfftype) == DIEFT_HARDWARE), then the values
of the lpvTypeSpecificParams and cbTypeSpecificParams members depend on
whether the effect requires custom type-specific parameters. If it does, then these
values must refer to the appropriate structure defined in the manufacturer's header
file and declared and initialized by your application. If the effect does not require
custom parameters—that is, if the dwStaticParms member of the DIEFFECTINFO
structure for the hardware effect does not have the DIEP_TYPESPECIFICPARAMS
flag—then lpvTypeSpecificParams must be NULL and cbTypeSpecificParams
must be zero.

DirectInput passes the GUID and the DIEFFECT structure to the device driver for
verification. If the GUID is unknown, the device will return
DIERR_DEVICENOTREG. If the GUID is known but the type-specific data is
incorrect for that effect, the device will return DIERR_INVALIDPARAM.

Designing for Previous Versions of
DirectInput

[This is preliminary documentation and subject to change.]

[Visual Basic]
This topic pertains only to applications developed in C++.

[C++]
In several places, DirectInput requires you to pass a version number to a method.
This parameter specifies which version of DirectX the DirectInput subsystem should
emulate.

Applications designed for the latest version of DirectInput should pass the value
DIRECTINPUT_VERSION as defined in Dinput.h.

Applications designed to run under previous versions should pass a value
corresponding to the version of DirectInput for which they were designed, with the
main version number in the high-order byte. For example, an application that was
designed to run on DirectInput 3 should pass a value of 0x0300.

If you define DIRECTINPUT_VERSION as 0x0300 before including the Dinput.h
header file, then the header file will generate structure definitions compatible with
DirectInput 3.0.

in.doc – page 66

If you do not define DIRECTINPUT_VERSION before including the Dinput.h
header file, then the header file will generate structure definitions compatible with
the current version of DirectInput. However, the DirectX 3–compatible structures
will be available under the same names with "_DX3" appended. For example, the
DirectX 3–compatible DIDEVCAPS structure is called DIDEVCAPS_DX3.

DirectInput Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming
interface (API) elements provided by DirectInput® in C/C++ and Visual Basic.
Reference material is organized by language:

· DirectInput C/C++ Reference
· DirectInput Visual Basic Reference

DirectInput C/C++ Reference
[This is preliminary documentation and subject to change.]

Reference material for the DirectInput C/C++ application programming interface is
divided into the following categories:

· Interfaces
· Functions
· Callback Functions
· Macros
· Structures
· Device Constants
· Return Values

Interfaces
[This is preliminary documentation and subject to change.]

This section contains references for methods of the following DirectInput interfaces:

· IDirectInput
· IDirectInputDevice
· IDirectInputDevice2

in.doc – page 67

· IDirectInputEffect

Note
All DirectInput methods have corresponding macros that expand to C or C++
syntax depending on which language is defined. These macros are found in
Dinput.h and are not documented separately.

IDirectInput
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectInput interface to enumerate, create, and
retrieve the status of DirectInput devices, initialize the DirectInput object, and
invoke an instance of the Windows Control Panel.

The IDirectInput interface is obtained by using the DirectInputCreate function.

The methods of the IDirectInput interface can be organized into the following
groups.

Device Management CreateDevice
EnumDevices
GetDeviceStatus

Miscellaneous Initialize
RunControlPanel

The IDirectInput interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECTINPUT type is defined as a pointer to the IDirectInput interface:

typedef struct IDirectInput *LPDIRECTINPUT;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 68

IDirectInput::CreateDevice
[This is preliminary documentation and subject to change.]

The IDirectInput::CreateDevice method creates and initializes an instance of a
device based on a given GUID.

HRESULT CreateDevice(
 REFGUID rguid,
 LPDIRECTINPUTDEVICE *lplpDirectInputDevice,
 LPUNKNOWN pUnkOuter
);

Parameters
rguid

Reference to (C++) or address of (C) the instance GUID for the desired input
device (see Remarks). The GUID is retrieved through the
IDirectInput::EnumDevices method, or it can be one of the following
predefined GUIDs:
GUID_SysKeyboard

The default system keyboard.
GUID_SysMouse

The default system mouse.
For the preceding GUID values to be valid, your application must define
INITGUID before all other preprocessor directives at the beginning of the
source file, or link to Dxguid.lib.

lplpDirectInputDevice
Address of a variable to receive the IDirectInputDevice interface pointer if
successful.

pUnkOuter
Address of the controlling object's IUnknown interface for COM aggregation,
or NULL if the interface is not aggregated. Most callers will pass NULL.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following:

DIERR_DEVICENOTREG
DIERR_INVALIDPARAM
DIERR_NOINTERFACE
DIERR_NOTINITIALIZED
DIERR_OUTOFMEMORY

in.doc – page 69

Remarks
In C++ the rguid parameter must be passed by reference; in C, which does not have
pass-by-reference, it must be passed by address. The following is an example of a C+
+ call:

lpdi->CreateDevice(GUID_SysKeyboard, &pdev, NULL);

The following shows the same call in C:

lpdi->lpVtbl->CreateDevice(lpdi, &GUID_SysKeyboard, &pdev, NULL);

Calling this method with pUnkOuter = NULL is equivalent to creating the object by
CoCreateInstance(&CLSID_DirectInputDevice, NULL,
CLSCTX_INPROC_SERVER, riid, lplpDirectInputDevice) and then initializing it
with Initialize.

Calling this method with pUnkOuter != NULL is equivalent to creating the object by
CoCreateInstance(&CLSID_DirectInputDevice, punkOuter,
CLSCTX_INPROC_SERVER, &IID_IUnknown, lplpDirectInputDevice). The
aggregated object must be initialized manually.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInput::EnumDevices
[This is preliminary documentation and subject to change.]

The IDirectInput::EnumDevice method enumerates devices that are either
currently attached or could be attached to the computer.

HRESULT EnumDevices(
 DWORD dwDevType,
 LPDIENUMCALLBACK lpCallback,
 LPVOID pvRef,
 DWORD dwFlags
);

Parameters
dwDevType

in.doc – page 70

Device type filter. If this parameter is zero, all device types are enumerated.
Otherwise, it is a DIDEVTYPE_* value (see DIDEVICEINSTANCE),
indicating the device type that should be enumerated.

lpCallback
Address of a callback function that will be called with a description of each
DirectInput device.

pvRef
An application-defined 32-bit value that will be passed to the enumeration
callback each time it is called.

dwFlags
Flag value that specifies the scope of the enumeration. This parameter can be
one or more of the following values:
DIEDFL_ALLDEVICES

All installed devices will be enumerated. This is the default behavior.
DIEDFL_ATTACHEDONLY

Only attached and installed devices.
DIEDFL_FORCEFEEDBACK

Only devices that support force feedback.
DIEDFL_INCLUDEALIASES

Include devices that are aliases for other devices.
DIEDFL_INCLUDEPHANTOMS

Include phantom (placeholder) devices.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
Keep in mind that all installed devices can be enumerated, even if they are not
present. For example, a flight stick may be installed on the system but not currently
plugged into the computer. Set the dwFlags parameter to indicate whether only
attached or all installed devices should be enumerated. If the
DIEDFL_ATTACHEDONLY flag is not present, all installed devices will be
enumerated.

A preferred device type can be passed as a dwDevType filter so that only the devices
of that type are enumerated.

The lpCallback parameter specifies the address of a callback function of the type
documented as DIEnumDevicesProc. DirectInput calls this function for every

in.doc – page 71

device that is enumerated. In the callback, the device type and friendly name, and
the product GUID and friendly name, are given for each device. If a single input
device can function as more than one DirectInput device type, it will be returned for
each device type it supports. For example, a keyboard with a built-in mouse will be
enumerated as a keyboard and as a mouse. The product GUID would be the same for
each device, however.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInput::GetDeviceStatus
[This is preliminary documentation and subject to change.]

The IDirectInput::GetDeviceStatus method retrieves the status of a specified
device.

HRESULT GetDeviceStatus(
 REFGUID rguidInstance
);

Parameters
rguidInstance

Instance identifier of the device whose status is being checked.

Return Values
If the method succeeds, the return value is DI_OK if the device is attached to the
system, or DI_NOTATTACHED otherwise.

If the method fails, the return value may be one of the following error values:

DIERR_GENERIC
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 72

 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInput::Initialize
[This is preliminary documentation and subject to change.]

The IDirectInput::Initialize method initializes a DirectInput object. The
DirectInputCreate function automatically initializes the DirectInput object device
after creating it. Applications normally do not need to call this method.

HRESULT Initialize(
 HINSTANCE hinst,
 DWORD dwVersion
);

Parameters
hinst

Instance handle to the application or DLL that is creating the DirectInput object.
DirectInput uses this value to determine whether the application or DLL has
been certified and to establish any special behaviors that may be necessary for
backwards compatibility.
It is an error for a DLL to pass the handle of the parent application. For
example, an ActiveX control embedded in a Web page that uses DirectInput
must pass its own instance handle and not the handle of the web browser. This
ensures that DirectInput recognizes the control and can enable any special
behaviors that may be necessary.

dwVersion
Version number of DirectInput for which the application is designed. This value
will normally be DIRECTINPUT_VERSION. Passing the version number of a
previous version will cause DirectInput to emulate that version. For more
information, see Designing for Previous Versions of DirectInput.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_BETADIRECTINPUTVERSION
DIERR_OLDDIRECTINPUTVERSION

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 73

Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInput::RunControlPanel
[This is preliminary documentation and subject to change.]

The IDirectInput::RunControlPanel method runs the Windows Control Panel to
allow the user to install a new input device or modify configurations.

HRESULT RunControlPanel(
 HWND hwndOwner,
 DWORD dwFlags
);

Parameters
hwndOwner

Handle to the window to be used as the parent window for the subsequent user
interface. If this parameter is NULL, no parent window is used.

dwFlags
This parameter is currently not used and must be set to zero.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice::RunControlPanel

in.doc – page 74

IDirectInputDevice
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectInputDevice interface to gain and
release access to DirectInput devices, manage device properties and information, set
behavior, perform initialization, and invoke a device's control panel.

The IDirectInputDevice interface is obtained by using the
IDirectInput::CreateDevice method. For an example, see Creating a DirectInput
Device.

The methods of the IDirectInputDevice interface can be organized into the
following groups.

Accessing input devices Acquire
Unacquire

Device information GetCapabilities
GetDeviceData
GetDeviceInfo
GetDeviceState
SetDataFormat
SetEventNotification

Device objects EnumObjects
GetObjectInfo

Device properties GetProperty
SetProperty

Setting behavior SetCooperativeLevel

Miscellaneous Initialize
RunControlPanel

The IDirectInputDevice interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

in.doc – page 75

The LPDIRECTINPUTDEVICE type is defined as a pointer to the
IDirectInputDevice interface:

typedef struct IDirectInputDevice *LPDIRECTINPUTDEVICE;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice2

IDirectInputDevice::Acquire
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::Acquire method obtains access to the input device.

HRESULT Acquire();

Parameters
None.

Return Values
If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OTHERAPPHASPRIO

If the method returns S_FALSE, the device has already been acquired.

Remarks
Before a device can be acquired, a data format must be set by using the
IDirectInputDevice::SetDataFormat method.

Devices must be acquired before calling the IDirectInputDevice::GetDeviceState
or IDirectInputDevice::GetDeviceData methods for that device.

in.doc – page 76

Device acquisition does not use a reference count. Therefore, if an application calls
the IDirectInputDevice::Acquire method twice, then calls the
IDirectInputDevice::Unacquire method once, the device is unacquired.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::EnumObjects
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::EnumObjects method enumerates the input and force-
feedback objects available on a device.

HRESULT EnumObjects(
 LPDIENUMDEVICEOBJECTSCALLBACK lpCallback,
 LPVOID pvRef,
 DWORD dwFlags
);

Parameters
lpCallback

Address of a callback function that receives DirectInputDevice objects.
DirectInput provides a prototype of this function as
DIEnumDeviceObjectsProc.

pvRef
Reference data (context) for callback.

dwFlags
Flags specifying the types of object to be enumerated. Each of the following
values restricts the enumeration to objects of the described type:
DIDFT_ABSAXIS

An absolute axis.
DIDFT_ALL

All objects.
DIDFT_AXIS

An axis, either absolute or relative.
DIDFT_BUTTON

A push button or a toggle button.
DIDFT_COLLECTION

A HID link collection. HID link collections do not generate data of their own.

in.doc – page 77

DIDFT_ENUMCOLLECTION(n)
An object that belongs to HID link collection number n.

DIDFT_FFACTUATOR
An object that contains a force-feedback actuator. In other words, forces may
be applied to this object.

DIDFT_FFEFFECTTRIGGER
An object that can be used to trigger force-feedback effects.

DIDFT_NOCOLLECTION
An object that does not belong to any HID link collection; in other words, an
object for which the wCollectionNumber member of the
DIDEVICEOBJECTINSTANCE structure is 0.

DIDFT_NODATA
An object that does not generate data.

DIDFT_OUTPUT
An object to which data can be sent by using the
IDirectInputDevice2::SendDeviceData method.

DIDFT_POV
A point-of-view controller.

DIDFT_PSHBUTTON
A push button. A push button is reported as down when the user presses it
and as up when the user releases it.

DIDFT_RELAXIS
A relative axis.

DIDFT_TGLBUTTON
A toggle button. A toggle button is reported as down when the user presses it
and remains so until the user presses the button a second time.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
The DIDFT_FFACTUATOR and DIDFT_FFEFFECTTRIGGER flags in the
dwFlags member restrict enumeration to objects that meet all the criteria defined by
the included flags. For all the other flags, an object is enumerated if it meets the
criterion defined by any included flag in this category. For example,
(DIDFT_FFACTUATOR | DIDFT_FFEFFECTTRIGGER) restricts enumeration to
force-feedback trigger objects, and (DIDFT_FFEFFECTRIGGER |

in.doc – page 78

DIDFT_TGLBUTTON | DIDFT_PSHBUTTON) restricts enumeration to buttons of
any kind that can be used as effect triggers.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::GetCapabilitie
s

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetCapabilities method obtains the capabilities of the
DirectInputDevice object.

HRESULT GetCapabilities(
 LPDIDEVCAPS lpDIDevCaps
);

Parameters
lpDIDevCaps

Address of a DIDEVCAPS structure to be filled with the device capabilities.
The dwSize member of this structure must be initialized before calling this
method.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
For compatibility with DirectX 3, it is also valid to pass a DIDEVCAPS_DX3
structure with the dwSize member initialized to sizeof(DIDEVCAPS_DX3). For
more information, see Designing for Previous Versions of DirectInput.

in.doc – page 79

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::GetDeviceData
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetDeviceData method retrieves buffered data from the
device.

HRESULT GetDeviceData(
 DWORD cbObjectData,
 LPDIDEVICEOBJECTDATA rgdod,
 LPDWORD pdwInOut,
 DWORD dwFlags
);

Parameters
cbObjectData

Size of the DIDEVICEOBJECTDATA structure, in bytes.
rgdod

Array of DIDEVICEOBJECTDATA structures to receive the buffered data.
The number of elements in this array must be equal to the value of the pdwInOut
parameter. If this parameter is NULL, then the buffered data is not stored
anywhere, but all other side-effects take place.

pdwInOut
On entry, the number of elements in the array pointed to by the rgdod
parameter. On exit, the number of elements actually obtained.

dwFlags
Flags that control the manner in which data is obtained. This value may be zero
or the following flag:
DIGDD_PEEK

Do not remove the items from the buffer. A subsequent
IDirectInputDevice::GetDeviceData call will read the same data. Normally,
data is removed from the buffer after it is read.

Return Values
If the method succeeds, the return value is DI_OK or DI_BUFFEROVERFLOW.

If the method fails, the return value may be one of the following error values:

in.doc – page 80

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTBUFFERED
DIERR_NOTINITIALIZED

Remarks
Before device data can be obtained, you must set the data format by using the
IDirectInputDevice::SetDataFormat method, set the buffer size with
IDirectInputDevice::SetProperty method, and acquire the device by using the
IDirectInputDevice::Acquire method.

The following example reads up to ten buffered data elements, removing them from
the device buffer as they are read.

DIDEVICEOBJECTDATA rgdod[10];
DWORD dwItems = 10;
hres = IDirectInputDevice_GetDeviceData(
 pdid,
 sizeof(DIDEVICEOBJECTDATA),
 rgdod,
 &dwItems,
 0);
if (SUCCEEDED(hres)) {
 // dwItems = number of elements read (could be zero)
 if (hres == DI_BUFFEROVERFLOW) {
 // Buffer had overflowed.
 }
}

Your application can flush the buffer and retrieve the number of flushed items by
specifying NULL for the rgdod parameter and a pointer to a variable containing
INFINITE for the pdwInOut parameter. The following example illustrates how this
can be done:

dwItems = INFINITE;
hres = IDirectInputDevice_GetDeviceData(
 pdid,
 sizeof(DIDEVICEOBJECTDATA),
 NULL,
 &dwItems,
 0);
if (SUCCEEDED(hres)) {
 // Buffer successfully flushed.
 // dwItems = number of elements flushed

in.doc – page 81

 if (hres == DI_BUFFEROVERFLOW) {
 // Buffer had overflowed.
 }
}

Your application can query for the number of elements in the device buffer by
setting the rgdod parameter to NULL, setting pdwInOut to INFINITE and setting
dwFlags to DIGDD_PEEK. The following code fragment illustrates how this can be
done:

dwItems = INFINITE;
hres = IDirectInputDevice_GetDeviceData(
 pdid,
 sizeof(DIDEVICEOBJECTDATA),
 NULL,
 &dwItems,
 DIGDD_PEEK);
if (SUCCEEDED(hres)) {
 // dwItems = number of elements in buffer
 if (hres == DI_BUFFEROVERFLOW) {
 // Buffer overflow occurred; not all data
 // were successfully captured.
 }
}

To query about whether a buffer overflow has occurred, set the rgdod parameter to
NULL and the pdwInOut parameter to zero. The following example illustrates how
this can be done:

dwItems = 0;
hres = IDirectInputDevice_GetDeviceData(
 pdid,
 sizeof(DIDEVICEOBJECTDATA),
 NULL,
 &dwItems,
 0);
if (hres == DI_BUFFEROVERFLOW) {
 // Buffer overflow occurred
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 82

See Also
IDirectInputDevice2::Poll, Polling and Events

IDirectInputDevice::GetDeviceInfo
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetDeviceInfo method obtains information about the
device's identity.

HRESULT GetDeviceInfo(
 LPDIDEVICEINSTANCE pdidi
);

Parameters
pdidi

Address of a DIDEVICEINSTANCE structure to be filled with information
about the device's identity. An application must initialize the structure's dwSize
member before calling this method.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
For compatibility with DirectX 3, it is also valid to pass a
DIDEVICEINSTANCE_DX3 structure with the dwSize member initialized to
sizeof(DIDEVICEINSTANCE_DX3). For more information, see Designing for
Previous Versions of DirectInput.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 83

IDirectInputDevice::GetDeviceStat
e

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetDeviceState method retrieves immediate data from
the device.

HRESULT GetDeviceState(
 DWORD cbData,
 LPVOID lpvData
);

Parameters
cbData

Size of the buffer in the lpvData parameter, in bytes.
lpvData

Address of a structure that receives the current state of the device. The format of
the data is established by a prior call to the
IDirectInputDevice::SetDataFormat method.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks
Before device data can be obtained, set the cooperative level by using the
IDirectInputDevice::SetCooperativeLevel method, then set the data format by
using IDirectInputDevice::SetDataFormat, and acquire the device by using the
IDirectInputDevice::Acquire method.

The four predefined data formats require corresponding device state structures
according to the following table:

Data Format State Structure

c_dfDIMouse DIMOUSESTATE

in.doc – page 84

c_dfDIKeyboard array of 256 bytes
c_dfDIJoystick DIJOYSTATE
c_dfDIJoystick2 DIJOYSTATE2

For example, if you passed the c_dfDIMouse format to the
IDirectInputDevice::SetDataFormat method, you must pass a DIMOUSESTATE
structure to the IDirectInputDevice::GetDeviceState method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice2::Poll, Polling and Events, Buffered and Immediate Data

IDirectInputDevice::GetObjectInfo
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetObjectInfo method retrieves information about a
device object such as a button or axis.

HRESULT GetObjectInfo(
 LPDIDEVICEOBJECTINSTANCE pdidoi,
 DWORD dwObj,
 DWORD dwHow
);

Parameters
pdidoi

Address of a DIDEVICEOBJECTINSTANCE structure to be filled with
information about the object. The structure's dwSize member must be initialized
before this method is called.

dwObj
Value that identifies the object whose information will be retrieved. The value
set for this parameter depends on the value specified in the dwHow parameter.

dwHow
Value specifying how the dwObj parameter should be interpreted. This value
can be one of the following:

Value Meaning

in.doc – page 85

DIPH_BYOFFSET The dwObj parameter is the offset into the current
data format of the object whose information is being
accessed.

DIPH_BYID The dwObj parameter is the object type/instance
identifier. This identifier is returned in the dwType
member of the DIDEVICEOBJECTINSTANCE
structure returned from a previous call to the
IDirectInputDevice::EnumObjects method.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND

Remarks
For compatibility with DirectX 3, it is also valid to pass a
DIDEVICEOBJECTINSTANCE_DX3 structure with the dwSize member
initialized to sizeof(DIDEVICEOBJECTINSTANCE_DX3). For more information,
see Designing for Previous Versions of DirectInput.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::GetProperty
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::GetProperty method retrieves information about the
input device.

HRESULT GetProperty(
 REFGUID rguidProp,
 LPDIPROPHEADER pdiph
);

in.doc – page 86

Parameters
rguidProp

Identifier of the property to be retrieved. This can be one of the predefined
values, or a pointer to a GUID that identifies the property. The following
properties are predefined for an input device:
DIPROP_AUTOCENTER

Specifies whether device objects are self-centering. See
IDirectInputDevice::SetProperty for more information.

DIPROP_AXISMODE
Retrieves the axis mode. The retrieved value (DIPROPAXISMODE_ABS or
DIPROPAXISMODE_REL) is set in the dwData member of the associated
DIPROPDWORD structure. See the description for the pdiph parameter for
more information.

DIPROP_BUFFERSIZE
Retrieves the input-buffer size. The retrieved value is set in the dwData
member of the associated DIPROPDWORD structure. See the description
for the pdiph parameter for more information.
The buffer size determines the amount of data that the buffer can hold
between calls to the IDirectInputDevice::GetDeviceData method before
data is lost. This value may be set to zero to indicate that the application will
not be reading buffered data from the device. If the buffer size in the dwData
member of the DIPROPDWORD structure is too large to be supported by
the device, the largest possible buffer size is set. To determine whether the
requested buffer size was set, retrieve the buffer-size property and compare
the result with the value you previously attempted to set.

DIPROP_DEADZONE
Retrieves a value for the dead zone of a joystick, in the range 0 to 10,000,
where 0 indicates there is no dead zone, 5,000 indicates that the dead zone
extends over 50 percent of the physical range of the axis on both sides of
center, and 10,000 indicates that the entire physical range of the axis is dead.
When the axis is within the dead zone, it is reported as being at the center of
its range.

DIPROP_FFGAIN
Retrieves the gain of the device. See IDirectInputDevice::SetProperty for
more information.

DIPROP_FFLOAD
Retrieves the memory load for the device. This setting applies to the entire
device, rather than to any particular object, so the dwHow member of the
associated DIPROPDWORD structure must be DIPH_DEVICE.
The dwData member contains a value in the range 0 to 100, indicating the
percentage of device memory in use.

DIPROP_GRANULARITY

in.doc – page 87

Retrieves the input granularity. The retrieved value is set in the dwData
member of the associated DIPROPDWORD structure. See the description of
the pdiph parameter for more information.
Granularity represents the smallest distance the object will report movement.
Most axis objects have a granularity of one, meaning that all values are
possible. Some axes may have a larger granularity. For example, the wheel
axis on a mouse may have a granularity of 20, meaning that all reported
changes in position will be multiples of 20. In other words, when the user
turns the wheel slowly, the device reports a position of zero, then 20, then 40,
and so on.
This is a read-only property; you cannot set its value by calling the
IDirectInputDevice::SetProperty method.

DIPROP_RANGE
Retrieves the range of values an object can possibly report. The retrieved
minimum and maximum values are set in the lMin and lMax members of the
associated DIPROPRANGE structure. See the description of the pdiph
parameter for more information.
For some devices, this is a read-only property; you cannot set its value by
calling the IDirectInputDevice::SetProperty method.

DIPROP_SATURATION
Retrieves a value for the saturation zones of a joystick, in the range 0 to
10,000. The saturation level is the point at which the axis is considered to be
at its most extreme position. For example, if the saturation level is set to
9,500, then the axis reaches the extreme of its range when it has moved 95
percent of the physical distance from its center position (or from the dead
zone).

pdiph
Address of the DIPROPHEADER portion of a larger property-dependent
structure that contains the DIPROPHEADER structure as a member. When
retrieving object range information, this value is the address of the
DIPROPHEADER structure contained within the DIPROPRANGE structure.
For most other properties, this value is the address of the DIPROPHEADER
structure contained within the DIPROPDWORD structure.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND
DIERR_UNSUPPORTED

in.doc – page 88

Remarks
The following C example illustrates how to obtain the value of the
DIPROP_BUFFERSIZE property:

DIPROPDWORD dipdw; // DIPROPDWORD contains a DIPROPHEADER structure.
HRESULT hr;
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwObj = 0; // device property
dipdw.diph.dwHow = DIPH_DEVICE;

hr = IDirectInputDevice_GetProperty(pdid, DIPROP_BUFFERSIZE, &dipdw.diph);
if (SUCCEEDED(hr)) {
 // The dipdw.dwData member contains the buffer size.
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice::SetProperty

IDirectInputDevice::Initialize
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::Initialize method initializes a DirectInputDevice object.
The IDirectInput::CreateDevice method automatically initializes a device after
creating it; applications normally do not need to call this method.

HRESULT Initialize(
 HINSTANCE hinst,
 DWORD dwVersion,
 REFGUID rguid
);

Parameters
hinst

in.doc – page 89

Instance handle to the application or DLL that is creating the DirectInput device
object. DirectInput uses this value to determine whether the application or DLL
has been certified and to establish any special behaviors that may be necessary
for backwards compatibility.
It is an error for a DLL to pass the handle to the parent application. For
example, an ActiveX control embedded in a Web page that uses DirectInput
must pass its own instance handle and not the handle to the web browser. This
ensures that DirectInput recognizes the control and can enable any special
behaviors that may be necessary.

dwVersion
Version number of DirectInput for which the application is designed. This value
will normally be DIRECTINPUT_VERSION. Passing the version number of a
previous version will cause DirectInput to emulate that version. For more
information, see Designing for Previous Versions of DirectInput.

rguid
Identifier for the instance of the device for which the interface should be
associated. The IDirectInput::EnumDevices method can be used to determine
which instance GUIDs are supported by the system.

Return Values
If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value may be one of the following error values:

DIERR_ACQUIRED
DIERR_DEVICENOTREG

If the method returns S_FALSE, the device had already been initialized with the
instance GUID passed in though rGUID.

Remarks
If this method fails, the underlying object should be considered to be in an
indeterminate state and must be reinitialized before use.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 90

IDirectInputDevice::RunControlPa
nel

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::RunControlPanel method runs the DirectInput control
panel associated with this device. If the device does not have a control panel
associated with it, the default device control panel is launched.

HRESULT RunControlPanel(
 HWND hwndOwner,
 DWORD dwFlags
);

Parameters
hwndOwner

Parent window handle. If this parameter is NULL, no parent window is used.
dwFlags

Not currently used. Zero is the only valid value.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::SetCooperativ
eLevel

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::SetCooperativeLevel method establishes the cooperative
level for this instance of the device. The cooperative level determines how this

in.doc – page 91

instance of the device interacts with other instances of the device and the rest of the
system.

HRESULT SetCooperativeLevel(
 HWND hwnd,
 DWORD dwFlags
);

Parameters
hwnd

Window handle to be associated with the device. This parameter must be a valid
top-level window handle that belongs to the process. The window associated
with the device must not be destroyed while it is still active in a DirectInput
device.

dwFlags
Flags that describe the cooperative level associated with the device. The
following flags are defined:
DISCL_BACKGROUND

The application requires background access. If background access is granted,
the device may be acquired at any time, even when the associated window is
not the active window.

DISCL_EXCLUSIVE
The application requires exclusive access. If exclusive access is granted, no
other instance of the device may obtain exclusive access to the device while
it is acquired. Note, however, non-exclusive access to the device is always
permitted, even if another application has obtained exclusive access.
An application that acquires the mouse or keyboard device in exclusive mode
should always unacquire the devices when it receives
WM_ENTERSIZEMOVE and WM_ENTERMENULOOP messages.
Otherwise, the user will not be able to manipulate the menu or move and
resize the window.

DISCL_FOREGROUND
The application requires foreground access. If foreground access is granted,
the device is automatically unacquired when the associated window moves to
the background.

DISCL_NONEXCLUSIVE
The application requires non-exclusive access. Access to the device will not
interfere with other applications that are accessing the same device.

Applications must specify either DISCL_FOREGROUND or
DISCL_BACKGROUND; it is an error to specify both or neither. Similarly,
applications must specify either DISCL_EXCLUSIVE or
DISCL_NONEXCLUSIVE.

in.doc – page 92

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
If the system mouse is acquired in exclusive mode, then the pointer will be removed
from the screen until the device is unacquired.

Applications must call this method before acquiring the device by using the
IDirectInputDevice::Acquire method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice::SetDataForma
t

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::SetDataFormat method sets the data format for the
DirectInput device.

HRESULT SetDataFormat(
 LPCDIDATAFORMAT lpdf
);

Parameters
lpdf

Address of a structure that describes the format of the data the
DirectInputDevice should return. An application can define its own
DIDATAFORMAT structure or use one of the following predefined global
variables:
· c_dfDIKeyboard
· c_dfDIMouse
· c_dfDIJoystick

in.doc – page 93

· c_dfDIJoystick2

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_ACQUIRED
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
The data format must be set before the device can be acquired by using the
IDirectInputDevice::Acquire method. It is necessary to set the data format only
once. The data format cannot be changed while the device is acquired.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice::GetDeviceState

IDirectInputDevice::SetEventNotifi
cation

[This is preliminary documentation and subject to change.]

The IDirectInputDevice::SetEventNotification method sets the event notification
status. This method specifies an event that is to be set when the device state changes.
It is also used to turn off event notification.

HRESULT SetEventNotification(
 HANDLE hEvent
);

Parameters
hEvent

in.doc – page 94

Handle to the event that is to be set when the device state changes. DirectInput
will use the Win32 SetEvent function on the handle when the state of the device
changes. If the hEvent parameter is NULL, then notification is disabled.
The application may create the handle as either a manual-reset or automatic-
reset event by using the Win32 CreateEvent function. If the event is created as
an automatic-reset event, then the operating system will automatically reset the
event once a wait has been satisfied. If the event is created as a manual-reset
event, then it is the application's responsibility to call the Win32 ResetEvent
function to reset it. DirectInput will not call the Win32 ResetEvent function for
event notification handles. Most applications will create the event as an
automatic-reset event.

Return Values
If the method succeeds, the return value is DI_OK or DI_POLLEDDEVICE.

If the method fails, the return value may be one of the following error values:

DIERR_ACQUIRED
DIERR_HANDLEEXISTS
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
A device state change is defined as any of the following:

· A change in the position of an axis
· A change in the state (pressed or released) of a button
· A change in the direction of a POV control
· Loss of acquisition

Do not call the Win32 CloseHandle function on the event while it has been selected
into a DirectInputDevice object. You must call this method with the hEvent
parameter set to NULL before closing the event handle.

The event notification handle cannot be changed while the device is acquired. If the
function is successful, then the application can use the event handle in the same
manner as any other Win32 event handle.

The following example checks if the handle is currently set without blocking:

dwResult = WaitForSingleObject(hEvent, 0);
if (dwResult == WAIT_OBJECT_0) {
 // Event is set. If the event was created as
 // automatic-reset, then it has also been reset.
}

in.doc – page 95

The following example illustrates blocking indefinitely until the event is set. Note
that this behavior is strongly discouraged because the thread will not respond to the
system until the wait is satisfied. In particular, the thread will not respond to
Windows messages.

dwResult = WaitForSingleObject(hEvent, INFINITE);
if (dwResult == WAIT_OBJECT_0) {
 // Event has been set. If the event was created
 // as automatic-reset, then it has also been reset.
}

The following example illustrates a typical message loop for a message-based
application that uses two events:.

HANDLE ah[2] = { hEvent1, hEvent2 };

while (TRUE) {

 dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,
 INFINITE, QS_ALLINPUT);
 switch (dwResult) {
 case WAIT_OBJECT_0:
 // Event 1 has been set. If the event was created as
 // automatic-reset, then it has also been reset.
 ProcessInputEvent1();
 break;

 case WAIT_OBJECT_0 + 1:
 // Event 2 has been set. If the event was created as
 // automatic-reset, then it has also been reset.
 ProcessInputEvent2();
 break;

 case WAIT_OBJECT_0 + 2:
 // A Windows message has arrived. Process
 // messages until there aren't any more.
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){
 if (msg.message == WM_QUIT) {
 goto exitapp;
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 break;

 default:

in.doc – page 96

 // Unexpected error.
 Panic();
 break;
 }
}

The following example illustrates a typical application loop for a non-message-based
application that uses two events:

HANDLE ah[2] = { hEvent1, hEvent2 };
DWORD dwWait = 0;

while (TRUE) {

 dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,
 dwWait, QS_ALLINPUT);
 dwWait = 0;

 switch (dwResult) {
 case WAIT_OBJECT_0:
 // Event 1 has been set. If the event was
 // created as automatic-reset, then it has also
 // been reset.
 ProcessInputEvent1();
 break;

 case WAIT_OBJECT_0 + 1:
 // Event 2 has been set. If the event was
 // created as automatic-reset, then it has also
 // been reset.
 ProcessInputEvent2();
 break;

 case WAIT_OBJECT_0 + 2:
 // A Windows message has arrived. Process
 // messages until there aren't any more.
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){
 if (msg.message == WM_QUIT) {
 goto exitapp;
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 break;

 default:

in.doc – page 97

 // No input or messages waiting.
 // Do a frame of the game.
 // If the game is idle, then tell the next wait
 // to wait indefinitely for input or a message.
 if (!DoGame()) {
 dwWait = INFINITE;
 }
 break;
 }
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
Polling and Events

IDirectInputDevice::SetProperty
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::SetProperty method sets properties that define the device
behavior. These properties include input buffer size and axis mode.

HRESULT SetProperty(
 REFGUID rguidProp,
 LPCDIPROPHEADER pdiph
);

Parameters
rguidProp

Identifier of the property to be set. This can be one of the predefined values, or a
pointer to a GUID that identifies the property. The following property values are
predefined for an input device:
DIPROP_AUTOCENTER

Specifies whether device objects are self-centering. This setting applies to the
entire device, rather than to any particular object, so the dwHow member of
the associated DIPROPDWORD structure must be DIPH_DEVICE.
The dwData member may be one of the following values:

in.doc – page 98

DIPROPAUTOCENTER_OFF: The device should not automatically center
when the user releases the device. An application that uses force-feedback
should disable the auto-centering spring before playing effects.
DIPROPAUTOCENTER_ON: The device should automatically center when
the user releases the device. For example, in this mode, a joystick would
engage the self-centering spring.
Note that the use of force-feedback effects may interfere with the auto-
centering spring. Some devices disable the auto-centering spring when a
force-feedback effect is played.
Not all devices support the auto-center property.

DIPROP_AXISMODE
Sets the axis mode. The value being set (DIPROPAXISMODE_ABS or
DIPROPAXISMODE_REL) must be specified in the dwData member of the
associated DIPROPDWORD structure. See the description of the pdiph
parameter for more information.
This setting applies to the entire device, so the dwHow member of the
associated DIPROPDWORD structure must be set to DIPH_DEVICE.

DIPROP_BUFFERSIZE
Sets the input-buffer size. The value being set must be specified in the
dwData member of the associated DIPROPDWORD structure. See the
description of the pdiph parameter for more information.
This setting applies to the entire device, so the dwHow member of the
associated DIPROPDWORD structure must be set to DIPH_DEVICE.

DIPROP_CALIBRATIONMODE
Allows the application to specify whether DirectInput should retrieve
calibrated or uncalibrated data from an axis. By default, DirectInput retrieves
calibrated data.
Setting the calibration mode for the entire device is equivalent to setting it for
each axis individually.
The dwData member of the DIPROPDWORD structure may be one of the
following values:
DIPROPCALIBRATIONMODE_COOKED: DirectInput should return data
after applying calibration information. This is the default mode.
DIPROPCALIBRATIONMODE_RAW: DirectInput should return raw,
uncalibrated data. This mode is typically used only by Control Panel–type
applications.
Note that setting a device into raw mode causes the dead zone, saturation,
and range settings to be ignored.

DIPROP_DEADZONE
Sets the value for the dead zone of a joystick, in the range 0 to 10,000, where
0 indicates there is no dead zone, 5,000 indicates that the dead zone extends
over 50 percent of the physical range of the axis on both sides of center, and
10,000 indicates that the entire physical range of the axis is dead. When the
axis is within the dead zone, it is reported as being at the center of its range.

in.doc – page 99

This setting can be applied to either the entire device or to a specific axis.
DIPROP_FFGAIN

Sets the gain for the device. This setting applies to the entire device, rather
than to any particular object, so the dwHow member of the associated
DIPROPDWORD structure must be DIPH_DEVICE.
The dwData member contains a gain value that is applied to all effects
created on the device. The value is an integer in the range 0 to 10,000,
specifying the amount by which effect magnitudes should be scaled for the
device. For example, a value of 10,000 indicates that all effect magnitudes
are to be taken at face value. A value of 9,000 indicates that all effect
magnitudes are to be reduced to 90% of their nominal magnitudes.
Setting a gain value is useful when an application wishes to scale down the
strength of all force-feedback effects uniformly, based on user preferences.
Unlike other properties, the gain can be set when the device is in an acquired
state.

DIPROP_RANGE
Sets the range of values an object can possibly report. The minimum and
maximum values are taken from the lMin and lMax members of the
associated DIPROPRANGE structure.
For some devices, this is a read-only property.
You cannot set a reverse range; lMax must be greater than lMin.

DIPROP_SATURATION
Sets the value for the saturation zones of a joystick, in the range 0 to 10,000.
The saturation level is the point at which the axis is considered to be at its
most extreme position. For example, if the saturation level is set to 9,500,
then the axis reaches the extreme of its range when it has moved 95 percent
of the physical distance from its center position (or from the dead zone).
This setting can be applied to either the entire device or to a specific axis.

pdiph
Address of the DIPROPHEADER structure contained within the type-specific
property structure.

Return Values
If the method succeeds, the return value is DI_OK or DI_PROPNOEFFECT.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND
DIERR_UNSUPPORTED

in.doc – page 100

Remarks
The buffer size determines the amount of data that the buffer can hold between calls
to the IDirectInputDevice::GetDeviceData method before data is lost. This value
may be set to zero to indicate that the application will not be reading buffered data
from the device. If the buffer size in the dwData member of the DIPROPDWORD
structure is too large to be supported by the device, the largest possible buffer size is
set. To determine whether the requested buffer size was set, retrieve the buffer-size
property and compare the result with the value you previously attempted to set.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
IDirectInputDevice::GetProperty

IDirectInputDevice::Unacquire
[This is preliminary documentation and subject to change.]

The IDirectInputDevice::Unacquire method releases access to the device.

HRESULT Unacquire();

Parameters
None.

Return Values
The return value is DI_OK is the device was unacquired, or DI_NOEFFECT if the
device was not in an acquired state.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 101

IDirectInputDevice2
[This is preliminary documentation and subject to change.]

The IDirectInputDevice2 interface inherits all the methods of IDirectInputDevice,
and adds methods for polling devices and using force feedback. The inherited
methods are unchanged, and it is unnecessary to obtain this interface unless you want
to use the new methods.

The IDirectInputDevice2 interface is obtained by calling the
IDirectInputDevice::QueryInterface method. For an example, see Creating a
DirectInput Device.

The new methods of the IDirectInputDevice2 interface can be grouped as follows:

Polling Poll

Effects CreateEffect
EnumCreatedEffectObjects
EnumEffects
GetEffectInfo

Control Escape
SendDeviceData
SendForceFeedbackCommand

Status GetForceFeedbackState

The IDirectInputDevice2 interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECTINPUTDEVICE2 type is defined as a pointer to the
IDirectInputDevice2 interface:

typedef struct IDirectInputDevice2 *LPDIRECTINPUTDEVICE2;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 102

 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::CreateEffect
[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::CreateEffect method creates and initializes an instance
of an effect identified by the effect GUID.

HRESULT CreateEffect(
 REFGUID rguid,
 LPCDIEFFECT lpeff,
 LPDIRECTINPUTEFFECT * ppdeff,
 LPUNKNOWN punkOuter
);

Parameters
rguid

The identity of the effect to be created. This can be a predefined effect GUID, or
it can be a GUID obtained from IDirectInputDevice2::EnumEffects.
The following effect GUIDs are defined:
GUID_ConstantForce
GUID_RampForce
GUID_Square
GUID_Sine
GUID_Triangle
GUID_SawtoothUp
GUID_SawtoothDown
GUID_Spring
GUID_Damper
GUID_Inertia
GUID_Friction
GUID_CustomForce

lpeff
A DIEFFECT structure that provides parameters for the created effect. This
parameter is optional. If it is NULL, then the effect object is created without
parameters. The application must then call the
IDirectInputEffect::SetParameters method to set the parameters of the effect
before it can download the effect.

ppdeff
Address of a variable to receive a pointer to the IDirectInputEffect interface, if
successful.

punkOuter

in.doc – page 103

The controlling unknown for COM aggregation. The value is NULL if the
interface is not aggregated. Most callers will pass NULL.

Return Values
If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value may be one of the following error values:

DIERR_DEVICENOTREG
DIERR_DEVICEFULL
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

If the return value is S_FALSE, the effect was created and the parameters of the
effect were updated, but the effect could not be downloaded because the associated
device is not acquired in exclusive mode.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::EnumCreated
EffectObjects

[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::EnumCreatedEffectObjects method enumerates all of
the currently created effects for this device. Effects created by
IDirectInputDevice2::CreateEffect are enumerated.

HRESULT EnumCreatedEffectObjects(
 LPDIENUMCREATEDEFFECTOBJECTSCALLBACK lpCallback,
 LPVOID pvRef,
 DWORD fl
);

Parameters
lpCallback

Address of an application-defined callback function. DirectInput provides the
prototype function DIEnumCreatedEffectObjectsProc.

pvRef

in.doc – page 104

Reference data (context) for callback.
fl

No flags are currently defined. This parameter must be 0.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
The results will be unpredictable if you create or destroy an effect while an
enumeration is in progress. However, the callback function can safely release the
effect passed to it.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::EnumEffects
[This is preliminary documentation and subject to change.]

The IDirectinputDevice2::EnumEffects method enumerates all of the effects
supported by the force-feedback system on the device. The enumerated GUIDs may
represent predefined effects as well as effects peculiar to the device manufacturer.

HRESULT EnumEffects(
 LPDIENUMEFFECTSCALLBACK lpCallback,
 LPVOID pvRef,
 DWORD dwEffType
);

Parameters
lpCallback

Address of an application-defined callback function. DirectInput provides the
prototype function DIEnumEffectsProc.

pvRef

in.doc – page 105

A 32-bit application-defined value to be passed to the callback function. This
parameter may be any 32-bit value; it is declared as LPVOID for convenience.

dwEffType
Effect type filter. Use one of the DIEFT_* values to indicate the effect type to
be enumerated, or DIEFT_ALL to enumerate all effect types. For a list of these
values, see DIEFFECTINFO.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

If the callback stops the enumeration prematurely, the enumeration is considered to
have succeeded.

Remarks
An application can use the dwEffType member of the DIEFFECTINFO structure
to obtain general information about the effect, such as its type and which envelope
and condition parameters are supported by the effect.

In order to exploit an effect to its fullest, you must contact the device manufacturer
to obtain information on the semantics of the effect and its effect-specific
parameters.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::Escape
[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::Escape method sends a hardware-specific command to
the driver.

HRESULT Escape(
 LPDIEFFESCAPE pesc
);

in.doc – page 106

Parameters
pesc

A DIEFFESCAPE structure that describes the command to be sent. On success,
the cbOutBuffer member contains the number of bytes of the output buffer
actually used.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_DEVICEFULL
DIERR_NOTINITIALIZED

Other device-specific error codes are also possible. Ask the hardware manufacturer
for details.

Remarks
Since each driver implements different escapes, it is the application's responsibility
to ensure that it is sending the escape to the correct driver by comparing the value of
the guidFFDriver member of the DIDEVICEINSTANCE structure against the
value the application is expecting.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::GetEffectInfo
[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::GetEffectInfo method obtains information about an
effect.

HRESULT GetEffectInfo(
 LPDIEFFECTINFO pdei,
 REFGUID rguid
);

in.doc – page 107

Parameters
pdei

A DIEFFECTINFO structure that receives information about the effect. The
caller must initialize the dwSize member of the structure before calling this
method.

rguid
Identifier of the effect for which information is being requested.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_DEVICENOTREG
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
In C++ the rguid parameter must be passed by reference; in C, which does not have
pass-by-reference, it must be passed by address. The following is an example of a C+
+ call:

lpdev2->GetEffectInfo(&dei, GUID_Effect);

The following shows the same call in C:

lpdev2->lpVtbl->GetEffectInfo(lpdev2, &dei, &GUID_Effect);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::GetForceFee
dbackState

[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::GetForceFeedbackState method retrieves the state of
the device's force-feedback system.

HRESULT GetForceFeedbackState(

in.doc – page 108

 LPDWORD pdwOut
);

Parameters
pdwOut

Location for flags that describe the current state of the device's force-feedback
system.
The value is a combination of the following constants:
DIGFFS_ACTUATORSOFF

The device's force-feedback actuators are disabled.
DIGFFS_ACTUATORSON

The device's force-feedback actuators are enabled.
DIGFFS_DEVICELOST

The device suffered an unexpected failure and is in an indeterminate state. It
must be reset either by unacquiring and reacquiring the device, or by sending
a DISFFC_RESET command.

DIGFFS_EMPTY
The device has no downloaded effects.

DIGFFS_PAUSED
Playback of all active effects has been paused.

DIGFFS_POWEROFF
The force-feedback system is not currently available. If the device cannot
report the power state, then neither DIGFFS_POWERON nor
DIGFFS_POWEROFF will be returned.

DIGFFS_POWERON
Power to the force-feedback system is currently available. If the device
cannot report the power state, then neither DIGFFS_POWERON nor
DIGFFS_POWEROFF will be returned.

DIGFFS_SAFETYSWITCHOFF
The safety switch is currently off, meaning that the device cannot operate. If
the device cannot report the state of the safety switch, then neither
DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF will be
returned.

DIGFFS_SAFETYSWITCHON
The safety switch is currently on, meaning that the device can operate. If the
device cannot report the state of the safety switch, then neither
DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF will be
returned.

DIGFFS_STOPPED
No effects are playing and the device is not paused.

DIGFFS_USERFFSWITCHOFF
The user force-feedback switch is currently off, meaning that the device
cannot operate. If the device cannot report the state of the user force-

in.doc – page 109

feedback switch, then neither DIGFFS_USERFFSWITCHON nor
DIGFFS_USERFFSWITCHOFF will be returned.

DIGFFS_USERFFSWITCHON
The user force-feedback switch is currently on, meaning that the device can
operate. If the device cannot report the state of the user force-feedback
switch, then neither DIGFFS_USERFFSWITCHON nor
DIGFFS_USERFFSWITCHOFF will be returned.

Future versions of DirectInput may define additional flags. Applications should
ignore any flags that are not currently defined.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTEXCLUSIVEACQUIRED
DIERR_NOTINITIALIZED
DIERR_UNSUPPORTED

Remarks
The device must be acquired at the exclusive cooperative level for this method to
succeed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::Poll
[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::Poll method retrieves data from polled objects on a
DirectInput device. If the device does not require polling, then calling this method
has no effect. If a device that requires polling is not polled periodically, no new data
will be received from the device. Calling this method causes DirectInput to update
the device state, generate input events (if buffered data is enabled), and set
notification events (if notification is enabled).

HRESULT Poll()

in.doc – page 110

Parameters
None.

Return Values
If the method succeeds, the return value is DI_OK, or DI_NOEFFECT if the device
does not require polling.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED

Remarks
Before a device data can be polled, the data format must be set by using the
IDirectInputDevice::SetDataFormat method, and the device must be acquired by
using the IDirectInputDevice::Acquire method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

See Also
Polling and Events

IDirectInputDevice2::SendDeviceD
ata

[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::SendDeviceData method sends data to a device that
accepts output. The device must be in an acquired state.

HRESULT SendDeviceData(
 DWORD cbObjectData,
 LPCDIDEVICEOBJECTDATA rgdod,
 LPDWORD pdwInOut,
 DWORD fl

in.doc – page 111

);

Parameters
cbObjectData

Size in bytes of a single DIDEVICEOBJECTDATA structure.
rgdod

Array of DIDEVICEOBJECTDATA structures containing the data to send to
the device. It must consist of *pdwInOut elements.
The dwOfs field of each DIDEVICEOBJECTDATA structure must contain the
device object identifier (as obtained from the dwType field of the
DIDEVICEOBJECTINSTANCE structure) for the device object to which the
data is directed. The dwTimeStamp and dwSequence members must be zero.

pdwInOut
On entry, the variable pointed to by this parameter contains the number of
elements in the array pointed to by rgdod. On exit, it contains the number of
elements actually sent to the device.

fl
Flags controlling the manner in which data is sent. This may be zero or the
following value:
DISDD_CONTINUE

The device data sent will be overlaid on the previously sent device data. See
Remarks.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_NOTACQUIRED
DIERR_REPORTFULL
DIERR_UNPLUGGED

Remarks
There is no guarantee that the individual data elements will be sent in a particular
order. However, data sent by successive calls to
IDirectInputDevice2::SendDeviceData will not be interleaved. Furthermore, if
multiple pieces of data are sent to the same object with a single call, it is unspecified
which piece of data is sent.

Consider, for example, a device that can be sent data in packets, each packet
describing two pieces of information, call them A and B. Suppose the application
attempts to send three data elements: B = 2, A = 1, and B = 0.

in.doc – page 112

The actual device will be sent a single packet. The A field of the packet will contain
the value 1, and the B field of the packet will be either 2 or 0.

If the data must to be sent to the device exactly as specified, then three calls to
IDirectInputDevice2::SendDeviceData should be performed, each call sending one
data element.

In response to the first call, the device will be sent a packet where the A field is
blank and the B field contains the value 2.

In response to the second call, the device will be sent a packet where the A field
contains the value 1, and the B field is blank.

Finally, in response to the third call, the device will be sent a packet where the A
field is blank and the B field contains the value 0.

If the DISDD_CONTINUE flag is set, then the device data sent will be overlaid on
the previously sent device data. Otherwise, the device data sent will start from
scratch.

For example, suppose a device supports two button outputs, Button0 and Button1. If
an application first calls IDirectInputDevice2::SendDeviceData passing "Button0
pressed", then a packet of the form "Button0 pressed, Button1 not pressed" is sent to
the device. If the application then makes another call, passing "Button1 pressed" and
the DISDD_CONTINUE flag, then a packet of the form "Button0 pressed, Button1
pressed" is sent to the device. However, if the application had not passed the
DISDD_CONTINUE flag, the packet sent to the device would have been "Button0
not pressed, Button1 pressed".

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputDevice2::SendForceFe
edbackCommand

[This is preliminary documentation and subject to change.]

The IDirectInputDevice2::SendForceFeedbackCommand method sends a
command to the device's force-feedback system.

HRESULT SendForceFeedbackCommand(
 DWORD dwFlags
);

in.doc – page 113

Parameters
dwFlags

A single value indicating the desired change in state. The value may be one of
the following:
DISFFC_CONTINUE

Paused playback of all active effects is to be continued. It is an error to send
this command when the device is not in a paused state.

DISFFC_PAUSE
Playback of all active effects is to be paused. This command also stops the
clock on effects, so that they continue playing to their full duration when
restarted.
While the device is paused, new effects may not be started and existing ones
may not be modified. Doing so may result in the subsequent
DISFFC_CONTINUE command failing to perform properly.
To abandon a pause and stop all effects, use the DISFFC_STOPALL or
DISFCC_RESET commands.

DISFFC_RESET
The device's force-feedback system is to be put in its startup state. All effects
are removed from the device, are no longer valid, and must be recreated if
they are to be used again. The device's actuators are disabled.

DISFFC_SETACTUATORSOFF
The device's force-feedback actuators are to be disabled. While the actuators
are off, effects continue to play but are ignored by the device. Using the
analogy of a sound playback device, they are muted rather than paused.

DISFFC_SETACTUATORSON
The device's force-feedback actuators are to be enabled.

DISFFC_STOPALL
Playback of any active effects is to be stopped. All active effects will be
reset, but are still being maintained by the device and are still valid. If the
device is in a paused state, that state is lost.
This command is equivalent to calling the IDirectInputEffect::Stop method
for each effect playing.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTEXCLUSIVEACQUIRED
DIERR_NOTINITIALIZED
DIERR_UNSUPPORTED

in.doc – page 114

Remarks
The device must be acquired at the exclusive cooperative level for this method to
succeed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect
[This is preliminary documentation and subject to change.]

Applications use the methods of the IDirectInputEffect interface to manage effects
of force-feedback devices.

The interface is obtained by using the IDirectInputDevice2::CreateEffect method.

The methods of the IDirectInputEffect interface can be organized into the
following groups.

Effect information GetEffectGuid
GetEffectStatus

 GetParameters

Effect manipulation Download
Initialize
SetParameters
Start
Stop
Unload

Miscellaneous Escape

The IDirectInputEffect interface, like all COM interfaces, inherits the IUnknown
interface methods. The IUnknown interface supports the following three methods:

IUnknown AddRef
QueryInterface

in.doc – page 115

Release

The LPDIRECTINPUTEFFECT type is defined as a pointer to the
IDirectInputEffect interface:

typedef struct IDirectInputEffect *LPDIRECTINPUTEFFECT;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Download
[This is preliminary documentation and subject to change.]

The IDirectinputEffect::Download method places the effect on the device. If the
effect is already on the device, then the existing effect is updated to match the values
set by the IDirectInputEffect::SetParameters method.

HRESULT Download(void);

Return Values
If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value may be one of the following error values:

DIERR_NOTINITIALIZED
DIERR_DEVICEFULL
DIERR_INCOMPLETEEFFECT
DIERR_INPUTLOST
DIERR_NOTEXCLUSIVEACQUIRED
DIERR_INVALIDPARAM
DIERR_EFFECTPLAYING

If the method returns S_FALSE, the effect has already been downloaded to the
device.

Remarks
It is valid to update an effect while it is playing. The semantics of such an operation
are explained in the reference for IDirectInputEffect::SetParameters.

in.doc – page 116

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Escape
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::Escape method sends a hardware-specific command to the
driver.

HRESULT Escape(
 LPDIEFFESCAPE pesc
);

Parameters
pesc

A DIEFFESCAPE structure that describes the command to be sent. On success,
the cbOutBuffer member contains the number of bytes of the output buffer
actually used.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_NOTINITIALIZED
DIERR_DEVICEFULL

Other device-specific error codes are also possible. Ask the hardware manufacturer
for details.

Remarks
Since each driver implements different escapes, it is the application's responsibility
to ensure that it is sending the escape to the correct driver by comparing the value of
the guidFFDriver member of the DIDEVICEINSTANCE structure against the
value the application is expecting.

in.doc – page 117

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::GetEffectGuid
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::GetEffectGuid method retrieves the GUID for the effect
represented by the IDirectInputEffect object.

HRESULT GetEffectGuid(
 LPGUID pguid
);

Parameters
pguid

A GUID structure that is filled by the method.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
Additional information about the effect can be obtained by passing the GUID to
IDirectInputDevice2::GetEffectInfo.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

in.doc – page 118

IDirectInputEffect::GetEffectStatus
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::GetEffectStatus method retrieves the status of an effect.

HRESULT GetEffectStatus(
 LPDWORD pdwFlags
);

Parameters
pdwFlags

Status flags for the effect. The value may be zero, or one or more of the
following constants:
DIEGES_PLAYING

The effect is playing.
DIEGES_EMULATED

The effect is emulated.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::GetParameters
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::GetParameters method retrieves information about an
effect.

HRESULT GetParameters(
 LPDIEFFECT peff,
 DWORD dwFlags
);

in.doc – page 119

Parameters
peff

Address of a DIEFFECT structure that receives effect information. The dwSize
member must be filled in by the application before calling this method.

dwFlags
Flags specifying which portions of the effect information is to be retrieved. The
value may be zero, or one or more of the following constants:
DIEP_ALLPARAMS

The union of all other DIEP_* flags, indicating that all members of the
DIEFFECT structure are being requested.

DIEP_ALLPARAMS_DX5
The union of all other DIEP_* flags.

DIEP_AXES
The cAxes and rgdwAxes members should receive data. The cAxes member
on entry contains the sizes (in DWORDs) of the buffer pointed to by the
rgdwAxes member. If the buffer is too small, then the method returns
DIERR_MOREDATA and sets cAxes to the necessary size of the buffer.

DIEP_DIRECTION
The cAxes and rglDirection members should receive data. The cAxes
member on entry contains the size (in DWORDs) of the buffer pointed to by
the rglDirection member. If the buffer is too small, then the GetParameters
method returns DIERR_MOREDATA and sets cAxes to the necessary size of
the buffer.
The dwFlags member must include at least one of the coordinate system
flags (DIEFF_CARTESIAN, DIEFF_POLAR, or DIEFF_SPHERICAL).
DirectInput will return the direction of the effect in one of the coordinate
systems you specified, converting between coordinate systems as necessary.
On exit, exactly one of the coordinate system flags will be set in the dwFlags
member, indicating which coordinate system DirectInput used. In particular,
passing all three coordinate system flags will retrieve the coordinates in
exactly the same format in which they were set.

DIEP_DURATION
The dwDuration member should receive data.

DIEP_ENVELOPE
The lpEnvelope member points to a DIENVELOPE structure that should
receive data. If the effect does not have an envelope associated with it, then
the lpEnvelope member will be set to NULL.

DIEP_GAIN
The dwGain member should receive data.

DIEP_SAMPLEPERIOD
The dwSamplePeriod member should receive data.

in.doc – page 120

DIEP_TRIGGERBUTTON
The dwTriggerButton member should receive data.

DIEP_TRIGGERREPEATINTERVAL
The dwTriggerRepeatInterval member should receive data.

DIEP_TYPESPECIFICPARAMS
The lpvTypeSpecificParams member points to a buffer whose size is
specified by the cbTypeSpecificParams member. On return, the buffer will
be filled in with the type-specific data associated with the effect, and the
cbTypeSpecificParams member will contain the number of bytes copied. If
the buffer supplied by the application is too small to contain all the type-
specific data, then the method returns DIERR_MOREDATA, and the
cbTypeSpecificParams member will contain the required size of the buffer
in bytes.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_MOREDATA
DIERR_NOTINITIALIZED

Remarks
Common errors resulting in a DIERR_INVALIDPARAM error include not setting
the dwSize member of the DIEFFECT structure, passing invalid flags, or not setting
up the members in the DIEFFECT structure properly in preparation for receiving
the effect information. For example, if information is to be retrieved in the
dwTriggerButton member, the dwFlags member must be set to either
DIEFF_OBJECTIDS or DIEFF_OBJECTOFFSETS, so that DirectInput knows how
to describe the button.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Initialize
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::Initialize method initializes a DirectInputEffect object.

in.doc – page 121

HRESULT Initialize(
 HINSTANCE hinst,
 DWORD dwVersion,
 REFGUID rguid
);

Parameters
hinst

Instance handle to the application or DLL that is creating the DirectInputEffect
object. DirectInput uses this value to determine whether the application or DLL
has been certified and to establish any special behaviors that may be necessary
for backwards compatibility. It is an error for a DLL to pass the handle to the
parent application.

dwVersion
Version number of DirectInput for which the application is designed. This value
will normally be DIRECTINPUT_VERSION. Passing the version number of a
previous version will cause DirectInput to emulate that version. For more
information, see Designing for Previous Versions of DirectInput.

rguid
Identifier of the effect with which the interface is associated. The
IDirectInputDevice2::EnumEffects method can be used to determine which
effect GUIDs are supported by the device.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be DIERR_DEVICENOTREG.

Remarks
If this method fails, the underlying object should be considered to be an
indeterminate state and needs to be reinitialized before it can be subsequently used.

The IDirectInputDevice2::CreateEffect method automatically initializes the effect
after creating it. Applications normally do not need to call the Initialize method.

In C++ the rguid parameter must be passed by reference; in C, which does not have
pass-by-reference, it must be passed by address. The following is an example of a C+
+ call:

lpeff->Initialize(g_hinstDll, DIRECTINPUT_VERSION, GUID_Effect);

The following shows the same call in C:

lpeff->lpVtbl->Initialize(lpeff, g_hinstDll,
 DIRECTINPUT_VERSION, &GUID_Effect);

in.doc – page 122

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::SetParameters
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::SetParameters method sets information about an effect.

HRESULT SetParameters(
 LPCDIEFFECT peff,
 DWORD dwFlags
);

Parameters
peff

A DIEFFECT structure that contains effect information. The dwSize member
must be filled in by the application before calling this method, as well as any
members specified by corresponding bits in the dwFlags parameter.

dwFlags
Flags specifying which portions of the effect information are to be set and how
the downloading of the parameters should be handled. The value may be zero, or
one or more of the following constants:
DIEP_AXES

The cAxes and rgdwAxes members contain data.
DIEP_DIRECTION

The cAxes and rglDirection members contain data. The dwFlags member
specifies (with DIEFF_CARTESIAN or DIEFF_POLAR) the coordinate
system in which the values should be interpreted.

DIEP_DURATION
The dwDuration member contains data.

DIEP_ENVELOPE
The lpEnvelope member points to a DIENVELOPE structure that contains
data. To detach any existing envelope from the effect, pass this flag and set
the lpEnvelope member to NULL.

DIEP_GAIN
The dwGain member contains data.

DIEP_NODOWNLOAD

in.doc – page 123

Suppress the automatic IDirectInputEffect::Download that is normally
performed after the parameters are updated. See Remarks.

DIEP_NORESTART
Suppress the stopping and restarting of the effect in order to change
parameters. See Remarks.

DIEP_SAMPLEPERIOD
The dwSamplePeriod member contains data.

DIEP_START
The effect is to be started (or restarted if it is currently playing) after the
parameters are updated. By default, the play state of the effect is not altered.

DIEP_TRIGGERBUTTON
The dwTriggerButton member contains data.

DIEP_TRIGGERDELAY
The dwTriggerDelay member contains data.

DIEP_TRIGGERREPEATINTERVAL
The dwTriggerRepeatInterval member contains data.

DIEP_TYPESPECIFICPARAMS
The lpvTypeSpecificParams and cbTypeSpecificParams members of the
DIEFFECT structure contain the address and size of type-specific data for
the effect.

Return Values
If the method succeeds, the return value is one of the following:

DI_OK
DI_EFFECTRESTARTED
DI_DOWNLOADSKIPPED
DI_TRUNCATED
DI_TRUNCATEDANDRESTARTED

If the method fails, the return value may be one of the following error values:

DIERR_NOTINITIALIZED
DIERR_INCOMPLETEEFFECT
DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_EFFECTPLAYING

Remarks
The dwDynamicParams member of the DIEFFECTINFO structure for the effect
specifies which parameters can be dynamically updated while the effect is playing.

in.doc – page 124

The IDirectInputEffect::SetParameters method automatically downloads the
effect, but this behavior can be suppressed by setting the DIEP_NODOWNLOAD
flag. If automatic download has been suppressed, then you can manually download
the effect by invoking the IDirectInputEffect::Download method.

If the effect is playing while the parameters are changed, then the new parameters
take effect as if they were the parameters when the effect started.

For example, suppose a periodic effect with a duration of three seconds is started.
After two seconds, the direction of the effect is changed. The effect will then
continue for one additional second in the new direction. The envelope, phase,
amplitude, and other parameters of the effect continue smoothly as if the direction
had not changed.

In the same scenario, if after two seconds the duration of the effect were changed to
1.5 seconds, then the effect would stop.

Normally, if the driver cannot update the parameters of a playing effect, the driver is
permitted to stop the effect, update the parameters, and then restart the effect.
Passing the DIEP_NORESTART flag suppresses this behavior. If the driver cannot
update the parameters of an effect while it is playing, the error code
DIERR_EFFECTPLAYING is returned and the parameters are not updated.

No more than one of the DIEP_NODOWNLOAD, DIEP_START, and
DIEP_NORESTART flags should be set. (It is also valid to pass none of them.)

These three flags control download and playback behavior as follows:

If DIEP_NODOWNLOAD is set, the effect parameters are updated but not
downloaded to the device.

If the DIEP_START flag is set, the effect parameters are updated and downloaded to
the device, and the effect is started just as if the IDirectInputEffect::Start method
had been called with the dwIterations parameter set to 1 and with no flags.
(Combining the update with DIEP_START is slightly faster than calling Start
separately, because it requires less information to be transmitted to the device.)

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is not
playing, then the parameters are updated and downloaded to the device.

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is playing,
then the parameters are updated if the device supports on-the-fly updating. Otherwise
the behavior depends on the state of the DIEP_NORESTART flag. If it is set, the
error code DIERR_EFFECTPLAYING is returned. If it is clear, the effect is stopped,
the parameters are updated, and the effect is restarted.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 125

 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Start
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::Start method begins playing an effect. If the effect is
already playing, it is restarted from the beginning. If the effect has not been
downloaded or has been modified since its last download, then it will be downloaded
before being started. This default behavior can be suppressed by passing the
DIES_NODOWNLOAD flag.

HRESULT Start(
 DWORD dwIterations,
 DWORD dwFlags
);

Parameters
dwIterations

Number of times to play the effect in sequence. The envelope is re-articulated
with each iteration.
To play the effect exactly once, pass 1. To play the effect repeatedly until
explicitly stopped, pass INFINITE. To play the effect until explicitly stopped
without re-articulating the envelope, modify the effect parameters with the
IDirectInputEffect::SetParameters method and change its dwDuration
member to INFINITE.

dwFlags
Flags that describe how the effect should be played by the device. The value
may be zero or one or more of the following values:

DIES_SOLO
All other effects on the device should be stopped before the specified effect is
played. If this flag is omitted, then the effect is mixed with existing effects
already started on the device.

DIES_NODOWNLOAD
Do not automatically download the effect.

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INVALIDPARAM
DIERR_INCOMPLETEEFFECT
DIERR_NOTEXCLUSIVEACQUIRED

in.doc – page 126

DIERR_NOTINITIALIZED
DIERR_UNSUPPORTED

Remarks
The device must be acquired at the exclusive cooperative level for this method to
succeed.

Not all devices support multiple iterations.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Stop
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::Stop method stops playing an effect. The parent device
must be acquired.

HRESULT Stop(void);

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_NOTEXCLUSIVEACQUIRED
DIERR_NOTINITIALIZED

Remarks
The device must be acquired at the exclusive cooperative level for this method to
succeed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.

in.doc – page 127

 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

IDirectInputEffect::Unload
[This is preliminary documentation and subject to change.]

The IDirectInputEffect::Unload method removes the effect from the device. If the
effect is playing, it is automatically stopped before it is unloaded.

HRESULT Unload(void);

Return Values
If the method succeeds, the return value is DI_OK.

If the method fails, the return value may be one of the following error values:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTEXCLUSIVEACQUIRED
DIERR_NOTINITIALIZED

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

Functions
[This is preliminary documentation and subject to change.]

This section is a reference for DirectInput functions other than COM interface
methods and callback functions.

The following is the only function that falls into this category:

· DirectInputCreate is used to create the DirectInput system.

DirectInputCreate
[This is preliminary documentation and subject to change.]

The DirectInputCreate function creates a DirectInput object that supports the
IDirectInput COM interface.

in.doc – page 128

HRESULT WINAPI DirectInputCreate(
 HINSTANCE hinst,
 DWORD dwVersion,
 LPDIRECTINPUT * lplpDirectInput,
 LPUNKNOWN punkOuter
);

Parameters
hinst

Instance handle to the application or DLL that is creating the DirectInput object.
DirectInput uses this value to determine whether the application or DLL has
been certified and to establish any special behaviors that may be necessary for
backwards compatibility.
It is an error for a DLL to pass the handle to the parent application. For
example, an ActiveX control embedded in a Web page that uses DirectInput
must pass its own instance handle and not the handle to the web browser. This
ensures that DirectInput recognizes the control and can enable any special
behaviors that may be necessary.

dwVersion
Version number of DirectInput for which the application is designed. This value
will normally be DIRECTINPUT_VERSION. Passing the version number of a
previous version will cause DirectInput to emulate that version. For more
information, see Designing for Previous Versions of DirectInput.

lplpDirectInput
Address of a variable to receive a valid IDirectInput interface pointer if the call
succeeds.

punkOuter
Pointer to the address of the controlling object's IUnknown interface for COM
aggregation, or NULL if the interface is not aggregated. Most callers will pass
NULL. If aggregation is requested, the object returned in *lplpDirectInput will
be a pointer to the IUnknown rather than an IDirectInput interface, as required
by COM aggregation.

Return Values
If the function succeeds, the return value is DI_OK.

If the function fails, the return value may be one of the following error values:

DIERR_BETADIRECTINPUTVERSION
DIERR_INVALIDPARAM
DIERR_OLDDIRECTINPUTVERSION
DIERR_OUTOFMEMORY

in.doc – page 129

Remarks
Calling this function with punkOuter = NULL is equivalent to creating the object
through CoCreateInstance(&CLSID_DirectInput, punkOuter,
CLSCTX_INPROC_SERVER, &IID_IDirectInput, lplpDirectInput), then initializing
it with Initialize.

Calling this function with punkOuter != NULL is equivalent to creating the object
through CoCreateInstance(&CLSID_DirectInput, punkOuter,
CLSCTX_INPROC_SERVER, &IID_IUnknown, lplpDirectInput). The aggregated
object must be initialized manually.

There are separate ANSI and Unicode versions of this service. The ANSI version
creates an object that supports the IDirectInputA interface, whereas the Unicode
version creates an object that supports the IDirectInputW interface. As with other
system services that are sensitive to character set issues, macros in the header file
map DirectInputCreate to the appropriate character set variation.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: Use dinput.lib.

Callback Functions
[This is preliminary documentation and subject to change.]

The following four functions are prototype callback functions for use with various
enumeration methods. Applications can declare one of these callback functions
under any name and define it in any way, but the parameter and return types must be
the same as in the prototype.

· DIEnumCreatedEffectObjectsProc
· DIEnumDeviceObjectsProc
· DIEnumDevicesProc
· DIEnumEffectsProc

DIEnumCreatedEffectObjects
Proc

[This is preliminary documentation and subject to change.]

in.doc – page 130

The DIEnumCreatedEffectObjectsProc function is an application-defined callback
function that receives DirectInputDevice effects as a result of a call to the
IDirectInputDevice2::EnumCreatedEffectObjects method.

BOOL CALLBACK DIEnumCreatedEffectObjectsProc(
 LPDIRECTINPUTEFFECT peff,
 LPVOID pvRef
);

Parameters
peff

Pointer to an effect object that has been created.
pvRef

The application-defined value given in the
IDirectInputDevice2::EnumCreatedEffectObjects method.

Return Values
Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to
stop the enumeration.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: User-defined.

DIEnumDeviceObjectsProc
[This is preliminary documentation and subject to change.]

The DIEnumDeviceObjectsProc function is an application-defined callback
function that receives DirectInputDevice objects as a result of a call to the
IDirectInputDevice::EnumObjects method.

BOOL CALLBACK DIEnumDeviceObjectsProc(
 LPCDIDEVICEOBJECTINSTANCE lpddoi,
 LPVOID pvRef
);

Parameters
lpddoi

in.doc – page 131

A DIDEVICEOBJECTINSTANCE structure that describes the object being
enumerated.

pvRef
The application-defined value given in the IDirectInputDevice::EnumObjects
method.

Return Values
Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to
stop the enumeration.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: User-defined.

DIEnumDevicesProc
[This is preliminary documentation and subject to change.]

The DIEnumDevicesProc function is an application-defined callback function that
receives DirectInput devices as a result of a call to the IDirectInput::EnumDevices
method.

BOOL CALLBACK DIEnumDevicesProc(
 LPCDIDEVICEINSTANCE lpddi,
 LPVOID pvRef
);

Parameters
lpddi

Address of a DIDEVICEINSTANCE structure that describes the device
instance.

pvRef
The application-defined value given in the IDirectInput::EnumDevices
method.

Return Values
Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to
stop the enumeration.

in.doc – page 132

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: User-defined.

DIEnumEffectsProc
[This is preliminary documentation and subject to change.]

The DIEnumEffectsProc function is an application-defined callback function used
with the IDirectInputDevice2::EnumEffects method.

BOOL CALLBACK DIEnumEffectsProc(
 LPCDIEFFECTINFO pdei,
 LPVOID pvRef
);

Parameters
pdei

A DIEFFECTINFO structure that describes the enumerated effect.
pvRef

Address of application-defined data given to the
IDirectInputDevice2::EnumEffects method.

Return Values
Returns DIENUM_CONTINUE to continue the enumeration, or DIENUM_STOP to
stop it.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.
 Import Library: User-defined.

Macros
[This is preliminary documentation and subject to change.]

This section describes the following macros used in DirectInput:

in.doc – page 133

· DIDFT_GETINSTANCE
· DIDFT_GETTYPE
· DIDFT_MAKEINSTANCE
· DIEFT_GETTYPE
· DISEQUENCE_COMPARE
· GET_DIDEVICE_SUBTYPE
· GET_DIDEVICE_TYPE

Dinput.h also defines macros for C calls to all the methods of the IDirectInput and
IDirectInputDevice interfaces. These macros eliminate the need for pointers to
method tables. For example, here is a C call to the IDirectInputDevice::Release
method:

lpdid->lpVtbl->Release(lpdid));

The equivalent macro call looks like this:

IDirectInputDevice_Release(lpdid);

All these macros take the same parameters as the method calls themselves.

DIDFT_GETINSTANCE
[This is preliminary documentation and subject to change.]

The DIDFT_GETINSTANCE macro extracts the object instance number code from
a data format type.

DIDFT_GETINSTANCE(n) LOWORD((n) >> 8)

Parameters
n

The DirectInput data format type. The possible values for this parameter are
identical to those found in the dwType member of the
DIOBJECTDATAFORMAT structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

in.doc – page 134

See Also
DIDFT_MAKEINSTANCE, DIDFT_GETTYPE

DIDFT_GETTYPE
[This is preliminary documentation and subject to change.]

The DIDFT_GETTYPE macro extracts the object type code from a data format
type.

DIDFT_GETTYPE(n) LOBYTE(n)

Parameters
n

The DirectInput data format type. The possible values for this parameter are
identical to those found in the dwType member of the
DIOBJECTDATAFORMAT structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
DIDFT_GETINSTANCE

DIDFT_MAKEINSTANCE
[This is preliminary documentation and subject to change.]

The DIDFT_MAKEINSTANCE macro creates an instance identifier of a device
object for packing in the dwType member of the DIOBJECTDATAFORMAT
structure.

DIDFT_MAKEINSTANCE(n) ((WORD)(n) << 8)

Parameters
n

Instance of the object; for example, 1 for button 1 of a mouse.

in.doc – page 135

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
DIDFT_GETINSTANCE

DIEFT_GETTYPE
[This is preliminary documentation and subject to change.]

The DIEFT_GETTYPE macro extracts the effect type code from an effect format
type.

DIEFT_GETTYPE(n) LOBYTE(n)

Parameters
n

The DirectInput effect format type. The possible values for this parameter are
identical to those found in the dwEffType member of the DIEFFECTINFO
structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DISEQUENCE_COMPARE
[This is preliminary documentation and subject to change.]

The DISEQUENCE_COMPARE macro compares two DirectInput sequence
numbers, compensating for wraparound.

DISEQUENCE_COMPARE(dwSequence1, cmp, dwSequence2) \
 ((int)((dwSequence1) - (dwSequence2)) cmp 0)

Parameters
dwSequence1

in.doc – page 136

First sequence number to compare.
cmp

One of the following comparison operators: ==, !=, <, >, <=, or >=.
dwSequence2

Second sequence number to compare.

Return Values
Returns a nonzero value if the result of the comparison specified by the cmp
parameter is true, or zero otherwise.

Remarks
The following example checks whether the dwSequence1 parameter value precedes
the dwSequence2 parameter value chronologically:

BOOL Sooner = (DISEQUENCE_COMPARE(dwSequence1, <, dwSequence2));

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

GET_DIDEVICE_SUBTYPE
[This is preliminary documentation and subject to change.]

The GET_DIDEVICE_SUBTYPE macro extracts the device subtype code from a
device type description code.

GET_DIDEVICE_SUBTYPE(dwDevType) HIBYTE(dwDevType)

Parameters
dwDevType

DirectInput device type description code. The possible values for this parameter
are identical to those found in the dwDevType member of the
DIDEVICEINSTANCE structure.

Remarks
The interpretation of the subtype code depends on the primary type.

in.doc – page 137

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
GET_DIDEVICE_TYPE, DIDEVICEINSTANCE

GET_DIDEVICE_TYPE
[This is preliminary documentation and subject to change.]

The GET_DIDEVICE_TYPE macro extracts the device primary type code from a
device type description code.

GET_DIDEVICE_TYPE(dwDevType) LOBYTE(dwDevType)

Parameters
dwDevType

DirectInput device type description code. Possible values for this parameter are
identical to those found in the dwDevType member of the
DIDEVICEINSTANCE structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
GET_DIDEVICE_SUBTYPE, DIDEVICEINSTANCE

Structures
[This is preliminary documentation and subject to change.]

This section contains information on the following structures used with DirectInput:

· DICONDITION
· DICONSTANTFORCE
· DICUSTOMFORCE

in.doc – page 138

· DIDATAFORMAT
· DIDEVCAPS
· DIDEVICEINSTANCE
· DIDEVICEOBJECTDATA
· DIDEVICEOBJECTINSTANCE
· DIEFFECT
· DIEFFECTINFO
· DIEFFESCAPE
· DIENVELOPE
· DIJOYSTATE
· DIJOYSTATE2
· DIMOUSESTATE
· DIOBJECTDATAFORMAT
· DIPERIODIC
· DIPROPDWORD
· DIPROPHEADER
· DIPROPRANGE
· DIRAMPFORCE

Note
The memory for all DirectX structures must be initialized to zero before use. In
addition, all structures that contain a dwSize member should set the member to
the size of the structure, in bytes, before use. The following example performs
these tasks on a common structure, DIDEVCAPS:

DIDEVCAPS didevcaps; // Can't use this yet.

ZeroMemory(&didevcaps, sizeof(didevcaps));
didevcaps.dwSize = sizeof(didevcaps);

// Now the structure can be used.
.
.

DICONDITION
[This is preliminary documentation and subject to change.]

The DICONDITION structure contains type-specific information for effects that are
marked as DIEFT_CONDITION.

in.doc – page 139

A pointer to an array of DICONDITION structures for an effect is passed in the
lpvTypeSpecificParams member of the DIEFFECT structure. The number of
elements in the array must be either one, or equal to the number of axes associated
with the effect.

typedef struct DICONDITION {
 LONG lOffset;
 LONG lPositiveCoefficient;
 LONG lNegativeCoefficient;
 DWORD dwPositiveSaturation;
 DWORD dwNegativeSaturation;
 LONG lDeadBand;
} DICONDITION, *LPDICONDITION;

typedef const DICONDITION *LPCDICONDITION;

Members
lOffset

The offset for the condition, in the range -10,000 to +10,000.
lPositiveCoefficient

The coefficient constant on the positive side of the offset, in the range -10,000 to
+10,000.

lNegativeCoefficient
The coefficient constant on the negative side of the offset, in the range -10,000
to +10,000.
If the device does not support separate positive and negative coefficients, then
the value of lNegativeCoefficient is ignored and the value of
lPositiveCoefficient is used as both the positive and negative coefficients.

dwPositiveSaturation
The maximum force output on the positive side of the offset, in the range 0 to
10,000.
If the device does not support force saturations, then the value of this member is
ignored.

dwNegativeSaturation
The maximum force output on the negative side of the offset, in the range 0 to
10,000.
If the device does not support force saturations, then the value of this member is
ignored.
If the device does not support separate positive and negative saturations, then
the value of dwNegativeSaturation is ignored and the value of
dwPositiveSaturation is used as both the positive and negative saturations.

lDeadBand

in.doc – page 140

The region around lOffset where the condition is not active, in the range 0 to
10,000. In other words, the condition is not active between lOffset - lDeadBand
and lOffset + lDeadBand.

Remarks
Different types of conditions will interpret the parameters differently, but the basic
idea is that force resulting from a condition is equal to A(q - q0) where A is a scaling
coefficient, q is some metric, and q0 is the neutral value for that metric.

The preceding simplified formula must be adjusted if a nonzero dead band is
provided. If the metric is less than lOffset - lDeadBand, then the resulting force is
given by the following formula:

force = lNegativeCoefficient * (q - (lOffset - lDeadBand))

Similarly, if the metric is greater than lOffset + lDeadBand, then the resulting force
is given by the following formula:

force = lPositiveCoefficient * (q - (lOffset + lDeadBand))

A spring condition uses axis position as the metric.

A damper condition uses axis velocity as the metric.

An inertia condition uses axis acceleration as the metric.

If the number of DICONDITION structures in the array is equal to the number of
axes for the effect, then the first structure applies to the first axis, the second applies
to the second axis,and so on. For example, a two-axis spring condition with lOffset
set to zero in both DICONDITION structures would have the same effect as the
joystick self-centering spring. When a condition is defined for each axis in this way,
the effect must not be rotated.

If there is a single DICONDITION structure for an effect with more than one axis,
then the direction along which the parameters of the DICONDITION structure are
in effect is determined by the direction parameters passed in the rglDirection field
of the DIEFFECT structure. For example, a friction condition rotated 45 degrees (in
polar coordinates) would resist joystick motion in the northeast-southwest direction
but would have no effect on joystick motion in the northwest-southeast direction.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DICONSTANTFORCE
[This is preliminary documentation and subject to change.]

in.doc – page 141

The DICONSTANTFORCE structure contains type-specific information for effects
that are marked as DIEFT_CONSTANTFORCE.

The structure describes a constant force effect.

A pointer to a single DICONSTANTFORCE structure for an effect is passed in the
lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DICONSTANTFORCE {
 LONG lMagnitude;
} DICONSTANTFORCE, *LPDICONSTANTFORCE;

typedef const DICONSTANTFORCE *LPCDICONSTANTFORCE;

Members
lMagnitude

The magnitude of the effect, in the range -10,000 to +10,000. If an envelope is
applied to this effect, then the value represents the magnitude of the sustain. If
no envelope is applied, then the value represents the amplitude of the entire
effect.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DICUSTOMFORCE
[This is preliminary documentation and subject to change.]

The DICUSTOMFORCE structure contains type-specific information for effects
that are marked as DIEFT_CUSTOMFORCE.

The structure describes a custom or user-defined force.

A pointer to a DICUSTOMFORCE structure for an effect is passed in the
lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DICUSTOMFORCE {
 DWORD cChannels;
 DWORD dwSamplePeriod;
 DWORD cSamples;
 LPLONG rglForceData;
} DICUSTOMFORCE, *LPDICUSTOMFORCE;

typedef const DICUSTOMFORCE *LPCDICUSTOMFORCE;

in.doc – page 142

Members
cChannels

The number of channels (axes) affected by this force.
The first channel is applied to the first axis associated with the effect, the second
to the second, and so on. If there are fewer channels than axes, then nothing is
associated with the extra axes.
If there is but a single channel, then the effect will be rotated in the direction
specified by the rglDirection member of the DIEFFECT structure. If there is
more than one channel, then rotation is not allowed.
Not all devices support rotation of custom effects.

dwSamplePeriod
The sample period in microseconds.

cSample
The total number of samples in the rglForceData. It must be an integral
multiple of the cChannels.

rglForceData
Pointer to an array of force values representing the custom force. If multiple
channels are provided, then the values are interleaved. For example, if
cChannels is 3, then the first element of the array belongs to the first channel,
the second to the second, and the third to the third.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIDATAFORMAT
[This is preliminary documentation and subject to change.]

The DIDATAFORMAT structure carries information describing a device's data
format. This structure is used with the IDirectInputDevice::SetDataFormat
method.

typedef struct DIDATAFORMAT {
 DWORD dwSize;
 DWORD dwObjSize;
 DWORD dwFlags;
 DWORD dwDataSize;
 DWORD dwNumObjs;
 LPDIOBJECTDATAFORMAT rgodf;

in.doc – page 143

} DIDATAFORMAT, *LPDIDATAFORMAT;

typedef const DIDATAFORMAT *LPCDIDATAFORMAT;

Members
dwSize

Size of this structure, in bytes.
dwObjSize

Size of the DIOBJECTDATAFORMAT structure, in bytes.
dwFlags

Flags describing other attributes of the data format. This value can be one of the
following:
DIDF_ABSAXIS

The axes are in absolute mode. Setting this flag in the data format is
equivalent to manually setting the axis mode property using the
IDirectInputDevice::SetProperty method. This may not be combined with
DIDF_RELAXIS flag.

DIDF_RELAXIS
The axes are in relative mode. Setting this flag in the data format is
equivalent to manually setting the axis mode property using the
IDirectInputDevice::SetProperty method. This may not be combined with
the DIDF_ABSAXIS flag.

dwDataSize
Size of a data packet returned by the device, in bytes. This value must be a
multiple of 4 and must exceed the largest offset value for an object's data within
the data packet.

dwNumObjs
Number of objects in the rgodf array.

rgodf
Address to an array of DIOBJECTDATAFORMAT structures. Each structure
describes how one object's data should be reported in the device data. Typical
errors include placing two pieces of information in the same location and
placing one piece of information in more than one location.

Remarks
Applications do not typically need to create a DIDATAFORMAT structure. An
application can use one of the predefined global data format variables, c_dfDIMouse,
c_dfDIKeyboard, c_dfDIJoystick, or c_dfDIJoystick2.

The following declarations set a data format that can be used by applications that
need two axes (reported in absolute coordinates) and two buttons.

// Suppose an application uses the following
// structure to read device data.

in.doc – page 144

typedef struct MYDATA {
 LONG lX; // x-axis goes here
 LONG lY; // y-axis goes here
 BYTE bButtonA; // One button goes here
 BYTE bButtonB; // Another button goes here
 BYTE bPadding[2]; // Must be dword multiple in size
} MYDATA;

// Then it can use the following data format.

DIOBJECTDATAFORMAT rgodf[] = {
 { &GUID_XAxis, FIELD_OFFSET(MYDATA, lX),
 DIDFT_AXIS | DIDFT_ANYINSTANCE, 0, },
 { &GUID_YAxis, FIELD_OFFSET(MYDATA, lY),
 DIDFT_AXIS | DIDFT_ANYINSTANCE, 0, },
 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonA),
 DIDFT_BUTTON | DIDFT_ANYINSTANCE, 0, },
 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonB),
 DIDFT_BUTTON | DIDFT_ANYINSTANCE, 0, },
};
#define numObjects (sizeof(rgodf) / sizeof(rgodf[0]))

DIDATAFORMAT df = {
 sizeof(DIDATAFORMAT), // this structure
 sizeof(DIOBJECTDATAFORMAT), // size of object data format
 DIDF_ABSAXIS, // absolute axis coordinates
 sizeof(MYDATA), // device data size
 numObjects, // number of objects
 rgodf, // and here they are
};

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIDEVCAPS
[This is preliminary documentation and subject to change.]

The DIDEVCAPS structure contains information about a DirectInput device's
capabilities. This structure is used with the IDirectInputDevice::GetCapabilities
method.

in.doc – page 145

typedef struct DIDEVCAPS {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwDevType;
 DWORD dwAxes;
 DWORD dwButtons;
 DWORD dwPOVs;
 DWORD dwFFSamplePeriod;
 DWORD dwFFMinTimeResolution;
 DWORD dwFirmwareRevision;
 DWORD dwHardwareRevision;
 DWORD dwFFDriverVersion;
} DIDEVCAPS, *LPDIDEVCAPS;

Members
dwSize

Size of this structure, in bytes. This member must be initialized by the
application before a call to the IDirectInputDevice::GetCapabilities method.

dwFlags
Flags associated with the device. This value can be a combination of the
following:
DIDC_ALIAS

The device is a duplicate of another DirectInput device. Alias devices are by
default not enumerated by IDirectInput::EnumDevices.

DIDC_PHANTOM
The device does not really exist. It is a placeholder for a device which may
exist in the future. Phantom devices are by default not enumerated by
IDirectInput::EnumDevices.

DIDC_ATTACHED
The device is physically attached.

DIDC_DEADBAND
The device supports deadband for at least one force-feedback condition.

DIDC_EMULATED
Device functionality is emulated.

DIDC_FORCEFEEDBACK
The device supports force feedback.

DIDC_FFFADE
The force-feedback system supports the fade parameter for at least one effect.
If the device does not support fade then the fade level and fade time
parameters of the DIENVELOPE structure will be ignored by the device.
After a call to the IDirectInputDevice2::GetEffectInfo method, an
individual effect will set the DIEFT_FFFADE flag if fade is supported for
that effect.

in.doc – page 146

DIDC_FFATTACK
The force-feedback system supports the attack envelope parameter for at least
one effect. If the device does not support attack then the attack level and
attack time parameters of the DIENVELOPE structure will be ignored by
the device.
After a call to the IDirectInputDevice2::GetEffectInfo method, an
individual effect will set the DIEFT_FFATTACK flag if attack is supported
for that effect.

DIDC_POLLEDDATAFORMAT
At least one object in the current data format is polled rather than interrupt-
driven. For these objects, the application must explicitly call the
IDirectInputDevice2::Poll method in order to obtain data.

DIDC_POLLEDDEVICE
At least one object on the device is polled rather than interrupt-driven. For
these objects, the application must explicitly call the
IDirectInputDevice2::Poll method in order to obtain data. HID devices may
contain a mixture of polled and non-polled objects.

DIDC_POSNEGCOEFFICIENTS
The force-feedback system supports two coefficient values for conditions
(one for the positive displacement of the axis and one for the negative
displacement of the axis) for at least one condition. If the device does not
support both coefficients, then the negative coefficient in the
DICONDITION structure will be ignored.
After a call to the IDirectInputDevice2::GetEffectInfo method, an
individual condition will set the DIEFT_POSNEGCOEFFICIENTS flag if
separate positive and negative coefficients are are supported for that
condition.

DIDC_POSNEGSATURATION
The force-feedback system supports a maximum saturation for both positive
and negative force output for at least one condition. If the device does not
support both saturation values, then the negative saturation in the
DICONDITION structure will be ignored.
After a call to the IDirectInputDevice2::GetEffectInfo method, an
individual condition will set the DIEFT_POSNEGSATURATION flag if
separate positive and negative saturations are are supported for that condition.

DIDC_SATURATION
The force-feedback system supports the saturation of condition effects for at
least one condition. If the device does not support saturation, then the force
generated by a condition is limited only by the maximum force which the
device can generate.
After a call to the IDirectInputDevice2::GetEffectInfo method, an
individual condition will set the DIEFT_SATURATION flag if saturation is
supported for that condition.

dwDevType

in.doc – page 147

Device type specifier. This member can contain values identical to those in the
dwDevType member of the DIDEVICEINSTANCE structure.

dwAxes
Number of axes available on the device.

dwButtons
Number of buttons available on the device.

dwPOVs
Number of point-of-view controllers available on the device.

dwFFSamplePeriod
The minimum time between playback of consecutive raw force commands.

dwFFMinTimeResolution
The minimum amount of time, in microseconds, that the device can resolve. The
device rounds any times to the nearest supported increment. For example, if the
value of dwFFMinTimeResolution is 1000, then the device would round any
times to the nearest millisecond.

dwFirmwareRevision
Specifies the firmware revision of the device.

dwHardwareRevision
The hardware revision of the device.

dwFFDriverVersion
The version number of the device driver.

Remarks
The semantics of version numbers are left to the manufacturer of the device. The
only guarantee is that newer versions will have larger numbers.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
DIDEVICEINSTANCE

DIDEVICEINSTANCE
[This is preliminary documentation and subject to change.]

The DIDEVICEINSTANCE structure contains information about an instance of a
DirectInput device. This structure is used with the IDirectInput::EnumDevices and
IDirectInputDevice::GetDeviceInfo methods.

in.doc – page 148

typedef struct DIDEVICEINSTANCE {
 DWORD dwSize;
 GUID guidInstance;
 GUID guidProduct;
 DWORD dwDevType;
 TCHAR tszInstanceName[MAX_PATH];
 TCHAR tszProductName[MAX_PATH];
 GUID guidFFDriver;
 WORD wUsagePage;
 WORD wUsage;
} DIDEVICEINSTANCE, *LPDIDEVICEINSTANCE;

typedef const DIDEVICEINSTANCE *LPCDIDEVICEINSTANCE;

Members
dwSize
Size of this structure, in bytes. This member must be initialized before the structure
is used.

guidInstance
Unique identifier for the instance of the device. An application may save the
instance GUID into a configuration file and use it at a later time. Instance
GUIDs are specific to a particular computer. An instance GUID obtained from
one computer is unrelated to instance GUIDs on another.

guidProduct
Unique identifier for the product. This identifier is established by the
manufacturer of the device.

dwDevType
Device type specifier. The least-significant byte of the device type description
code specifies the device type. The next-significant byte specifies the device
subtype. This value can be one of the following types combined with their
respective subtypes and optionally with DIDEVTYPE_HID, which specifies a
Human Interface Device.
Device Types
DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).
DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.
DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.
DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.
Mouse subtypes
DIDEVTYPEMOUSE_UNKNOWN

in.doc – page 149

The subtype could not be determined.
DIDEVTYPEMOUSE_TRADITIONAL

The device is a traditional mouse.
DIDEVTYPEMOUSE_FINGERSTICK

The device is a fingerstick.
DIDEVTYPEMOUSE_TOUCHPAD

The device is a touchpad.
DIDEVTYPEMOUSE_TRACKBALL

The device is a trackball.
Keyboard subtypes
DIDEVTYPEKEYBOARD_UNKNOWN

The subtype could not be determined.
DIDEVTYPEKEYBOARD_PCXT

IBM PC/XT 83-key keyboard.
DIDEVTYPEKEYBOARD_OLIVETTI

Olivetti 102-key keyboard.
DIDEVTYPEKEYBOARD_PCAT

IBM PC/AT 84-key keyboard.
DIDEVTYPEKEYBOARD_PCENH

IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.
DIDEVTYPEKEYBOARD_NOKIA1050

Nokia 1050 keyboard.
DIDEVTYPEKEYBOARD_NOKIA9140

Nokia 9140 keyboard.
DIDEVTYPEKEYBOARD_NEC98

Japanese NEC PC98 keyboard.
DIDEVTYPEKEYBOARD_NEC98LAPTOP

Japanese NEC PC98 laptop keyboard.
DIDEVTYPEKEYBOARD_NEC98106

Japanese NEC PC98 106-key keyboard.
DIDEVTYPEKEYBOARD_JAPAN106

Japanese 106-key keyboard.
DIDEVTYPEKEYBOARD_JAPANAX

Japanese AX keyboard.
DIDEVTYPEKEYBOARD_J3100

Japanese J3100 keyboard.
Joystick Subtypes
DIDEVTYPEJOYSTICK_UNKNOWN

The subtype could not be determined.
DIDEVTYPEJOYSTICK_TRADITIONAL

A traditional joystick.
DIDEVTYPEJOYSTICK_FLIGHTSTICK

in.doc – page 150

A joystick optimized for flight simulation.
DIDEVTYPEJOYSTICK_GAMEPAD

A device whose primary purpose is to provide button input.
DIDEVTYPEJOYSTICK_RUDDER

A device for yaw control.
DIDEVTYPEJOYSTICK_WHEEL

A steering wheel.
DIDEVTYPEJOYSTICK_HEADTRACKER

A device that tracks the movement of the user's head.
Flags in the High Word
DIDEVTYPE_HID

The device uses the Human Interface Device (HID) protocol.
tszInstanceName[MAX_PATH]

Friendly name for the instance. For example, "Joystick 1."
tszProductName[MAX_PATH]

Friendly name for the product.
guidFFDriver

Unique identifier for the driver being used for force feedback. This identifier is
established by the manufacturer of the driver.

wUsagePage
If the device is a HID device, then this member contains the HID usage page
code.

wUsage
If the device is a HID, then this member contains the HID usage code.

Remarks
For compatibility with previous versions of DirectX, a
DIDEVICEINSTANCE_DX3 structure is also defined, containing only the first six
members of the DIDEVICEINSTANCE structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIDEVICEOBJECTDATA
[This is preliminary documentation and subject to change.]

in.doc – page 151

The DIDEVICEOBJECTDATA structure contains raw buffered device
information. This structure is used with the IDirectInputDevice::GetDeviceData
and IDirectInputDevice2::SendDeviceData methods.

typedef struct DIDEVICEOBJECTDATA {
 DWORD dwOfs;
 DWORD dwData;
 DWORD dwTimeStamp;
 DWORD dwSequence;
} DIDEVICEOBJECTDATA, *LPDIDEVICEOBJECTDATA;

typedef const DIDEVICEOBJECTDATA *LPCDIDEVICEOBJECTDATA;

Members
dwOfs

For GetDeviceData, the offset into the current data format of the object whose
data is being reported; that is, the location where the dwData would have been
stored if the data had been obtained by a call to the
IDirectInputDevice::GetDeviceState method. If the device is accessed as a
mouse, keyboard, or joystick, the dwOfs member will be one of the mouse
device constants, keyboard device constants, or joystick device constants. If a
custom data format has been set, then it will be an offset relative to the custom
data format.
For SendDeviceData, the instance ID of the object to which the data is being
sent, as obtained from the dwType member of a
DIDEVICEOBJECTINSTANCE structure.

dwData
Data obtained from or sent to the device.
For axis input, if the device is in relative axis mode, then the relative axis
motion is reported. If the device is in absolute axis mode, then the absolute axis
coordinate is reported.
For button input, only the low byte of dwData is significant. The high bit of the
low byte is set if the button went down; it is clear if the button went up.

dwTimeStamp
Tick count at which the input event was generated, in milliseconds. The current
system tick count can be obtained by calling the Win32 GetTickCount
function. Remember that this value wraps around approximately every 50 days.
When the structure is used with the SendDeviceData method, this member must
be zero.

dwSequence
DirectInput sequence number for this event. All input events are assigned an
increasing sequence number. This allows events from different devices to be
sorted chronologically. Since this value can wrap around, care must be taken

in.doc – page 152

when comparing two sequence numbers. The DISEQUENCE_COMPARE
macro can be used to perform this comparison safely.
When the structure is used with the SendDeviceData method, this member must
be zero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIDEVICEOBJECTINSTANCE
[This is preliminary documentation and subject to change.]

The DIDEVICEOBJECTINSTANCE structure contains information about a device
object instance. This structure is used with the IDirectInputDevice::EnumObjects
method to provide the DIEnumDeviceObjectsProc callback function with
information about a particular object associated with a device, like an axis or button.
It is also used with the IDirectInputDevice::GetObjectInfo method to retrieve
information about a device object.

typedef struct DIDEVICEOBJECTINSTANCE {
 DWORD dwSize;
 GUID guidType;
 DWORD dwOfs;
 DWORD dwType;
 DWORD dwFlags;
 TCHAR tszName[MAX_PATH];
 DWORD dwFFMaxForce;
 DWORD dwFFForceResolution;
 WORD wCollectionNumber;
 WORD wDesignatorIndex;
 WORD wUsagePage;
 WORD wUsage;
 DWORD dwDimension;
 WORD wExponent;
 WORD wReserved;
} DIDEVICEOBJECTINSTANCE, *LPDIDEVICEOBJECTINSTANCE;

typedef const DIDEVICEOBJECTINSTANCE *LPCDIDEVICEOBJECTINSTANCE;

Members
dwSize

in.doc – page 153

Size of the structure, in bytes. During enumeration, the application may inspect
this value to determine how many members of the structure are valid. When the
structure is passed to the IDirectInputDevice::GetObjectInfo method, this
member must be initialized to sizeof(DIDEVICEOBJECTINSTANCE).

guidType
Unique identifier that indicates the object type. This member is optional. If
present, it can be one of the following values:
GUID_XAxis

The horizontal axis. For example, it may represent the left-right motion of a
mouse.

GUID_YAxis
The vertical axis. For example, it may represent the forward-backward
motion of a mouse.

GUID_ZAxis
The z-axis. For example, it may represent rotation of the wheel on a mouse,
or movement of a throttle control on a joystick.

GUID_RxAxis
Rotation around the x-axis.

GUID_RyAxis
Rotation around the y-axis.

GUID_RzAxis
Rotation around the z-axis (often a rudder control).

GUID_Slider
A slider axis.

GUID_Button
A button on a mouse.

GUID_Key
A key on a keyboard.

GUID_POV
A point-of-view indicator or "hat".

GUID_Unknown
Unknown.

Other object types may be defined in the future.
dwOfs

Offset within the data format at which data is reported for this object. This value
can be used to identify the object in method calls and structures that accept the
DIPH_BYOFFSET flag.

dwType
Device type that describes the object. It is a combination of DIDFT_* flags that
describe the object type (axis, button, and so forth) and contains the object
instance number in the middle 16 bits. Use the DIDFT_GETINSTANCE macro
to extract the object instance number. For the DIDFT_* flags, see
IDirectInputDevice::EnumObjects.

in.doc – page 154

dwFlags
Flags describing other attributes of the data format. This value can be one of the
following:
DIDOI_ASPECTACCEL

The object reports acceleration information.
DIDOI_ASPECTFORCE

The object reports force information.
DIDOI_ASPECTMASK

The bits that are used to report aspect information. An object can represent at
most one aspect.

DIDOI_ASPECTPOSITION
The object reports position information.

DIDOI_ASPECTVELOCITY
The object reports velocity information.

DIDOI_FFACTUATOR
The object can have force-feedback effects applied to it.

DIDOI_FFEFFECTTRIGGER
The object can trigger playback of force-feedback effects.

DIDOI_POLLED
The object does not return data until the IDirectInputDevice2::Poll method
is called.

tszName[MAX_PATH]
Name of the object; for example, "X-Axis" or "Right Shift."

dwFFMaxForce
The magnitude of the maximum force that can be created by the actuator
associated with this object. Force is expressed in newtons and measured in
relation to where the hand would be during normal operation of the device.

dwFFForceResolution
The force resolution of the actuator associated with this object. The returned
value represents the number of gradations, or subdivisions, of the maximum
force that can be expressed by the force-feedback system from 0 (no force) to
maximum force.

wCollectionNumber
The HID link collection to which the object belongs.

wDesignatorIndex
An index that refers to a designator in the HID physical descriptor. This number
can be passed to functions in the HID parsing library (Hidpi.h) to obtain
additional information about the device object.

wUsagePage
The HID usage page associated with the object, if known. Human Interface
Devices will always report a usage page. Non-HID devices may optionally
report a usage page; if they do not, then the value of this member will be zero.

wUsage

in.doc – page 155

The HID usage associated with the object, if known. Human Interface Devices
will always report a usage. Non-HID devices may optionally report a usage; if
they do not, then the value of this member will be zero.

dwDimension
The dimensional units in which the object's value is reported, if known, or zero
if not known. Applications can use this field to distinguish between, for
example, the position and velocity of a control.

wExponent
The exponent to associate with the dimension, if known.

wReserved
Reserved.

Remarks
Applications can use the wUsagePage and wUsage members to obtain additional
information about how the object was designed to be used. For example, if
wUsagePage has the value 0x02 (vehicle controls) and wUsage has the value 0xB9
(elevator trim), then the object was designed to be the elevator trim control on a
flightstick. A flight simulator application can use this information to provide more
reasonable defaults for objects on the device. HID usage codes are determined by the
USB standards committee.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIEFFECT
[This is preliminary documentation and subject to change.]

The DIEFFECT structure is used by the IDirectInputDevice2::CreateEffect
method to initialize a new IDirectInputEffect object. It is also used by the
IDirectInputEffect::SetParameters and IDirectInputEffect::GetParameters
methods.

typedef struct DIEFFECT {
 DWORD dwSize;
 DWORD dwFlags;
 DWORD dwDuration;
 DWORD dwSamplePeriod;
 DWORD dwGain;
 DWORD dwTriggerButton;
 DWORD dwTriggerRepeatInterval;
 DWORD cAxes;

in.doc – page 156

 LPDWORD rgdwAxes;
 LPLONG rglDirection;
 LPDIENVELOPE lpEnvelope;
 DWORD cbTypeSpecificParams;
 LPVOID lpvTypeSpecificParams;
 } DIEFFECT, *LPDIEFFECT;

typedef const DIEFFECT *LPCDIEFFECT;

Members
dwSize

Specifies the size, in bytes, of the structure. This member must be initialized
before the structure is used.

dwFlags
Flags associated with the effect. This value can be a combination of one or more
of the following values:
DIEFF_CARTESIAN

The values of rglDirection are to be interpreted as Cartesian coordinates.
DIEFF_OBJECTIDS

The values of dwTriggerButton and rgdwAxes are object identifiers as
obtained by IDirectInputDevice::EnumObjects.

DIEFF_OBJECTOFFSETS
The values of dwTriggerButton and rgdwAxes are data format offsets,
relative to the data format selected by IDirectInput::SetDataFormat.

DIEFF_POLAR
The values of rglDirection are to be interpreted as polar coordinates.

DIEFF_SPHERICAL
The values of rglDirection are to be interpreted as spherical coordinates.

dwDuration
The total duration of the effect in microseconds. If this value is INFINITE, then
the effect has infinite duration. If an envelope has been applied to the effect,
then the attack will be applied, followed by an infinite sustain.

dwSamplePeriod
The period at which the device should play back the effect, in microseconds. A
value of zero indicates that the default playback sample rate should be used.
If the device is not capable of playing back the effect at the specified rate, it will
choose the supported rate that is closest to the requested value.
Setting a custom dwSamplePeriod can be used for special effects. For example,
playing a sine wave at an artificially large sample period results in a rougher
texture.

dwGain
The gain to be applied to the effect, in the range 0 to 10,000. The gain is a
scaling factor applied to all magnitudes of the effect and its envelope.

in.doc – page 157

dwTriggerButton
The identifier or offset of the button to be used to trigger playback of the effect.
The flags DIEFF_OBJECTIDS and DIEFF_OBJECTOFFSETS determine the
semantics of the value. If this member is set to DIEB_NOTRIGGER, then no
trigger button is associated with the effect.

dwTriggerRepeatInterval
The interval, in microseconds, between the end of one playback and the start of
the next when the effect is triggered by a button press and the button is held
down. Setting this value to INFINITE suppresses repetition.
Support for trigger repeat for an effect is indicated by the presence of the
DIEP_TRIGGERREPEATINTERVAL flag in the dwStaticParams member of
the DIEFFECTINFO structure.

cAxes
Number of axes involved in the effect. This member must be filled in by the
caller if changing or setting the axis list or the direction list.
The number of axes for an effect cannot be changed once it has been set.

rgdwAxes
Pointer to a DWORD array (of cAxes elements) containing identifiers or offsets
identifying the axes to which the effect is to be applied. The flags
DIEFF_OBJECTIDS and DIEFF_OBJECTOFFSETS determine the semantics of
the values in the array.
The list of axes associated with an effect cannot be changed once it has been set.
No more than 32 axes can be associated with a single effect.

rglDirection
Pointer to a LONG array (of cAxes elements) containing either Cartesian
coordinates or polar coordinates. The flags DIEFF_CARTESIAN,
DIEFF_POLAR, and DIEFF_SPHERICAL determine the semantics of the
values in the array.
If Cartesian, then each value in rglDirection is associated with the
corresponding axis in rgdwAxes.
If polar, then the angle is measured in hundredths of degrees from the (0, –1)
direction, rotated in the direction of (1, 0). This usually means that "north" is
away from the user, and "east" is to the user's right. The last element is not used.
If spherical, then the first angle is measured in hundredths of degrees from the
(1, 0) direction, rotated in the direction of (0, 1). The second angle (if the
number of axes is three or more) is measured in hundredths of degrees towards
(0, 0, 1). The third angle (if the number of axes is four or more) is measured in
hundredths of degrees towards (0, 0, 0, 1), and so on. The last element is not
used.

Note
The rglDirection array must contain cAxes entries, even if polar or spherical

coordinates are given. In these cases the last element in the rglDirection array
is reserved for future use and must be zero.

in.doc – page 158

lpEnvelope
Optional pointer to a DIENVELOPE structure that describes the envelope to be
used by this effect. Note that not all effect types use envelopes. If no envelope is
to be applied, then the member should be set to NULL.

cbTypeSpecificParams
Number of bytes of additional type-specific parameters for the corresponding
effect type.

lpvTypeSpecificParams
Pointer to type-specific parameters, or NULL if there are no type-specific
parameters.
If the effect is of type DIEFT_CONDITION, then this member contains a
pointer to an array of DICONDITION structures that define the parameters for
the condition. A single structure may be used, in which case the condition is
applied in the direction specified in the rglDirection array. Otherwise there
must be one structure for each axis, in the same order as the axes in rgdwAxes
array. If a structure is supplied for each axis, the effect should not be rotated;
you should use the following values in the rglDirection array:
· DIEFF_SPHERICAL: 0, 0, ...
· DIEFF_POLAR: 9000, 0, ...
· DIEFF_CARTESIAN: 1, 0, ...
If the effect is of type DIEFT_CUSTOMFORCE, then this member contains a
pointer to a DICUSTOMFORCE structure that defines the parameters for the
custom force.
If the effect is of type DIEFT_PERIODIC, then this member contains a pointer
to a DIPERIODIC structure that defines the parameters for the effect.
If the effect is of type DIEFT_CONSTANTFORCE, then this member contains
a pointer to a DICONSTANTFORCE structure that defines the parameters for
the constant force.
If the effect is of type DIEFT_RAMPFORCE, then this member contains a
pointer to a DIRAMPFORCE structure that defines the parameters for the ramp
force.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIEFFECTINFO
[This is preliminary documentation and subject to change.]

in.doc – page 159

The DIEFFECTINFO structure is used by the IDirectInputDevice2::EnumEffects
and IDirectInputDevice2::GetEffectInfo methods to return information about a
particular effect supported by a device.

typedef struct DIEFFECTINFO {
 DWORD dwSize;
 GUID guid;
 DWORD dwEffType;
 DWORD dwStaticParams;
 DWORD dwDynamicParams;
 TCHAR tszName[MAX_PATH];
} DIEFFECTINFO, *LPDIEFFECTINFO;

typedef const DIEFFECTINFO *LPCDIEFFECTINFO;

Members
dwSize

The size of the structure in bytes. During enumeration, the application may
inspect this value to determine how many members of the structure are valid.
This member must be initialized before the structure is passed to the
IDirectInputDevice2::GetEffectInfo method.

guid
Identifier of the effect.

dwEffType
Zero or more of the following values:
DIEFT_ALL

Valid only for IDirectInputDevice2::EnumEffects. Enumerate all effects,
regardless of type. This flag may not be combined with any of the other flags.

DIEFT_CONDITION
The effect represents a condition. When creating or modifying a condition,
the lpvTypeSpecificParams member of the DIEFFECT structure must point
to an array of DICONDITION structures (one per axis) and the
cbTypeSpecificParams member must be set to cAxis *
sizeof(DICONDITION).
Not all devices support all the parameters of conditions. Check the effect
capability flags to determine which capabilities are available.
The flag can be passed to IDirectInputDevice2::EnumEffects to restrict the
enumeration to conditions.

DIEFT_CONSTANTFORCE
The effect represents a constant-force effect. When creating or modifying a
constant-force effect, the lpvTypeSpecificParams member of the
DIEFFECT must point to a DICONSTANTFORCE structure and the
cbTypeSpecificParams member must be set to
sizeof(DICONSTANTFORCE).

in.doc – page 160

The flag can be passed to IDirectInputDevice2::EnumEffects to restrict the
enumeration to constant-force effects.

DIEFT_CUSTOMFORCE
The effect represents a custom-force effect. When creating or modifying a
custom-force effect, the lpvTypeSpecificParams member of the DIEFFECT
structure must point to a DICUSTOMFORCE structure and the
cbTypeSpecificParams member must be set to
sizeof(DICUSTOMFORCE).
The flag can be passed to IDirectInputDevice2::EnumEffects to restrict the
enumeration to custom-force effects.

DIEFT_DEADBAND
The effect generator for this condition effect supports the lDeadBand
parameter.

DIEFT_FFATTACK
The effect generator for this effect supports the attack envelope parameter. If
the effect generator does not support attack then the attack level and attack
time parameters of the DIENVELOPE structure will be ignored by the
effect.
If neither DIEFT_FFATTACK nor DIEFT_FFFADE is set, then the effect
does not support an envelope, and any provided envelope will be ignored.

DIEFT_FFFADE
The effect generator for this effect supports the fade parameter. If the effect
generator does not support fade then the fade level and fade time parameters
of the DIENVELOPE structure will be ignored by the effect.
If neither DIEFT_FFATTACK nor DIEFT_FFFADE is set, then the effect
does not support an envelope, and any provided envelope will be ignored.

DIEFT_HARDWARE
The effect represents a hardware-specific effect. For additional information
on using a hardware-specific effect, consult the hardware documentation.
The flag can be passed to the IDirectInputDevice2::EnumEffects method to
restrict the enumeration to hardware-specific effects.

DIEFT_PERIODIC
The effect represents a periodic effect. When creating or modifying a
periodic effect, the lpvTypeSpecificParams member of the DIEFFECT
structure must point to a DIPERIODIC structure and the
cbTypeSpecificParams member must be set to sizeof(DIPERIODIC).
The flag can be passed to IDirectInputDevice2::EnumEffects to restrict the
enumeration to periodic effects.

DIEFT_POSNEGCOEFFICIENTS
The effect generator for this effect supports two coefficient values for
conditions, one for the positive displacement of the axis and one for the
negative displacement of the axis. If the device does not support both
coefficients, then the negative coefficient in the DICONDITION structure
will be ignored and the positive coefficient will be used in both directions.

in.doc – page 161

DIEFT_POSNEGSATURATION
The effect generator for this effect supports a maximum saturation for both
positive and negative force output. If the device does not support both
saturation values, then the negative saturation in the DICONDITION
structure will be ignored and the positive saturation will be used in both
directions.

DIEFT_RAMPFORCE
The effect represents a ramp-force effect. When creating or modifying a
ramp-force effect, the lpvTypeSpecificParams member of the DIEFFECT
structure must point to a DIRAMPFORCE structure and the
cbTypeSpecificParams member must be set to sizeof(DIRAMPFORCE).
The flag can be passed to IDirectInputDevice2::EnumEffects to restrict the
enumeration to ramp-force effects.

DIEFT_SATURATION
The effect generator for this effect supports the saturation of condition
effects. If the effect generator does not support saturation, then the force
generated by a condition is limited only by the maximum force that the
device can generate.

dwStaticParams
Zero or more DIEP_* values describing the parameters supported by the effect.
For example, if DIEP_ENVELOPE is set, then the effect supports an envelope.
For a list of possible values, see IDirectInputEffect::GetParameters.
It is not an error for an application to attempt to use effect parameters which are
not supported by the device. The unsupported parameters are merely ignored.
This information is provided to allow the application to tailor its use of force
feedback to the capabilities of the specific device.

dwDynamicParams
Zero or more DIEP_* values denoting parameters of the effect that can be
modified while the effect is playing. For a list of possible values, see
IDirectInputEffect::GetParameters.
If an application attempts to change a parameter while the effect is playing, and
the driver does not support modifying that effect dynamically, then driver is
permitted to stop the effect, update the parameters, then restart it. For more
information, see IDirectInputEffect::SetParameters.

tszName[MAX_PATH]
Name of the effect; for example, "Sawtooth up" or "Constant force".

Remarks
Use the DIEFT_GETTYPE macro to extract the effect type from the dwEffType
flags.

in.doc – page 162

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIEFFESCAPE
[This is preliminary documentation and subject to change.]

The DIEFFESCAPE structure is used by the IDirectInputDevice2::Escape and
IDirectInputEffect::Escape methods to pass hardware-specific data directly to the
device driver.

typedef struct DIEFFESCAPE {
 DWORD dwSize;
 DWORD dwCommand;
 LPVOID lpvInBuffer;
 DWORD cbInBuffer;
 LPVOID lpvOutBuffer;
 DWORD cbOutBuffer;
} DIEFFESCAPE, *LPDIEFFESCAPE;

Members
dwSize

Size of the structure in bytes. This member must be initialized before the
structure is used.

dwCommand
Driver-specific command number. Consult the driver documentation for a list of
valid commands.

lpvInBuffer
Buffer containing the data required to perform the operation.

cbInBuffer
The size, in bytes, of the lpvInBuffer buffer.

lpvOutBuffer
Buffer in which the operation's output data is returned.

cbOutBuffer
On entry, the size in bytes of the lpvOutBuffer buffer. On exit, the number of
bytes actually produced by the command.

Remarks
Since each driver implements different escapes, it is the application's responsibility
to ensure that it is talking to the correct driver by comparing the guidFFDriver

in.doc – page 163

member in the DIDEVICEINSTANCE structure against the value the application is
expecting.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIENVELOPE
[This is preliminary documentation and subject to change.]

The DIENVELOPE structure is used by the DIEFFECT structure to specify the
optional envelope parameters for an effect. The sustain level for the envelope is
represented by the dwMagnitude member of the DIPERIODIC structure and the
lMagnitude member of the DICONSTANTFORCE structure. The sustain time is
represented by dwDuration member of the DIEFFECT structure.

typedef struct DIENVELOPE {
 DWORD dwSize;
 DWORD dwAttackLevel;
 DWORD dwAttackTime;
 DWORD dwFadeLevel;
 DWORD dwFadeTime;
} DIENVELOPE, *LPDIENVELOPE;

typedef const DIENVELOPE *LPCDIENVELOPE;

Members
dwSize

The size, in bytes, of the structure. This member must be initialized before the
structure is used.

dwAttackLevel
Amplitude for the start of the envelope, relative to the baseline, in the range 0 to
10,000. If the effect's type-specific data does not specify a baseline, then the
amplitude is relative to zero.

dwAttackTime
The time, in microseconds, to reach the sustain level.

dwFadeLevel
Amplitude for the end of the envelope, relative to the baseline, in the range 0 to
10,000. If the effect's type-specific data does not specify a baseline, then the
amplitude is relative to zero.

dwFadeTime

in.doc – page 164

The time, in microseconds, to reach the fade level.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIJOYSTATE
[This is preliminary documentation and subject to change.]

The DIJOYSTATE structure contains information about the state of a joystick
device. This structure is used with the IDirectInputDevice::GetDeviceState
method.

typedef struct DIJOYSTATE {
 LONG lX;
 LONG lY;
 LONG lZ;
 LONG lRx;
 LONG lRy;
 LONG lRz;
 LONG rglSlider[2];
 DWORD rgdwPOV[4];
 BYTE rgbButtons[32];
} DIJOYSTATE, *LPDIJOYSTATE;

Members
lX

Information about the joystick x-axis (usually the left-right movement of a
stick).

lY
Information about the joystick y-axis (usually the forward-backward movement
of a stick).

lZ
Information about the joystick z-axis (often the throttle control). If the joystick
does not have this axis, the value is zero.

lRx
Information about the joystick x-axis rotation. If the joystick does not have this,
the value is zero.

lRy
Information about the joystick y-axis rotation. If the joystick does not have this
axis, the value is zero.

in.doc – page 165

lRz
Information about the joystick z-axis rotation (often called the rudder). If the
joystick does not have this axis, the value is zero.

rglSlider[2]
Two additional axis values (formerly called the u-axis and v-axis) whose
semantics depend on the joystick. Use the IDirectInputDevice::GetObjectInfo
method to obtain semantic information about these values.

rgdwPOV[4]
The current position of up to four direction controllers (such as point-of-view
hats). The position is indicated in hundredths of degrees clockwise from north
(away from the user). The center position is normally reported as -1; but see
Remarks. For indicators that have only five positions, the value for a controller
will be -1, 0, 9,000, 18,000, or 27,000.

rgbButtons[32]
Array of button states. The high-order bit of the byte is set if the corresponding
button is down and clear if the button is up or does not exist.

Remarks
You must prepare the device for joystick-style access by calling the
IDirectInputDevice::SetDataFormat method, passing the c_dfDIJoystick global
data format variable.

If an axis is in relative mode, then the appropriate member contains the change in
position. If it is in absolute mode, then the member contains the absolute axis
position.

Some drivers report the centered position of the POV indicator as 65,535. Determine
whether the indicator is centered as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIJOYSTATE2
[This is preliminary documentation and subject to change.]

The DIJOYSTATE2 structure contains information about the state of a joystick
device with extended capabilities. This structure is used with the
IDirectInputDevice::GetDeviceState method.

typedef struct DIJOYSTATE2 {

in.doc – page 166

 LONG lX;
 LONG lY;
 LONG lZ;
 LONG lRx;
 LONG lRy;
 LONG lRz;
 LONG rglSlider[2];
 DWORD rgdwPOV[4];
 BYTE rgbButtons[128];
 LONG lVX;
 LONG lVY;
 LONG lVZ;
 LONG lVRx;
 LONG lVRy;
 LONG lVRz;
 LONG rglVSlider[2];
 LONG lAX;
 LONG lAY;
 LONG lAZ;
 LONG lARx;
 LONG lARy;
 LONG lARz;
 LONG rglASlider[2];
 LONG lFX;
 LONG lFY;
 LONG lFZ;
 LONG lFRx;
 LONG lFRy;
 LONG lFRz;
 LONG rglFSlider[2];
} DIJOYSTATE2, *LPDIJOYSTATE2;

lX
Information about the joystick x-axis (usually the left-right movement of a
stick).

lY
Information about the joystick y-axis (usually the forward-backward movement
of a stick).

lZ
Information about the joystick z-axis (often the throttle control). If the joystick
does not have this axis, the value is zero.

lRx
Information about the joystick x-axis rotation. If the joystick does not have this,
the value is zero.

lRy

in.doc – page 167

Information about the joystick y-axis rotation. If the joystick does not have this
axis, the value is zero.

lRz
Information about the joystick z-axis rotation (often called the rudder). If the
joystick does not have this axis, the value is zero.

rglSlider[2]
Two additional axis values (formerly called the u-axis and v-axis) whose
semantics depend on the joystick. Use the IDirectInputDevice::GetObjectInfo
method to obtain semantic information about these values.

rgdwPOV[4]
The current position of up to four direction controllers (such as point-of-view
hats). The position is indicated in hundredths of degrees clockwise from north
(away from the user). The center position is normally reported as -1; but see
Remarks. For indicators that have only five positions, the value for a controller
will be -1, 0, 9,000, 18,000, or 27,000.

rgbButtons[128]
Array of button states. The high-order bit of the byte is set if the corresponding
button is down and clear if the button is up or does not exist.

lVX
Information about the x-axis velocity.

lVY
Information about the y-axis velocity.

lVZ
Information about the z-axis velocity.

lVRx
Information about the x-axis angular velocity.

lVRy
Information about the y-axis angular velocity.

lVRz
Information about the z-axis angular velocity.

rglVSlider[2]
Information about extra axis velocities.

lAX
Information about the x-axis acceleration.

lAY
Information about the y-axis acceleration.

lAZ
Information about the z-axis acceleration.

lARx
Information about the x-axis angular acceleration.

lARy
Information about the y-axis angular acceleration.

lARz

in.doc – page 168

Information about the z-axis angular acceleration.
rglASlider[2]

Information about extra axis accelerations.
lFX

Information about the x-axis force.
lFY

Information about the y-axis force.
lFZ

Information about the z-axis force.
lFRx

Information about the x-axis torque.
lFRy

Information about the y-axis torque.
lFRz

Information about the z-axis torque.
rglFSlider[2]

Information about extra axis forces.

Remarks
You must prepare the device for access to a joystick with extended capabilities by
calling the IDirectInputDevice::SetDataFormat method, passing the
c_dfDIJoystick2 global data format variable.

The DIJOYSTATE2 structure has no special association with the
IDirectInputDevice2 interface. You can use either DIJOYSTATE or
DIJOYSTATE2 with either the IDirectInputDevice or the IDirectInputDevice2
interface.

If an axis is in relative mode, then the appropriate member contains the change in
position. If it is in absolute mode, then the member contains the absolute axis
position.

Some drivers report the centered position of the POV indicator as 65,535. Determine
whether the indicator is centered as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

in.doc – page 169

DIMOUSESTATE
[This is preliminary documentation and subject to change.]

The DIMOUSESTATE structure contains information about the state of a mouse
device or another device that is being accessed as if it were a mouse device. This
structure is used with the IDirectInputDevice::GetDeviceState method.

typedef struct DIMOUSESTATE {
 LONG lX;
 LONG lY;
 LONG lZ;
 BYTE rgbButtons[4];
} DIMOUSESTATE, *LPDIMOUSESTATE;

Members
lX

Information about the mouse x-axis.
lY

Information about the mouse y-axis.
lZ

Information about the mouse z-axis (typically a wheel). If the mouse does not
have a z-axis, then the value is zero.

rgbButtons[4]
Array of button states. The high-order bit of the byte is set if the corresponding
button is down.

Remarks
You must prepare the device for mouse-style access by calling the
IDirectInputDevice::SetDataFormat method, passing the c_dfDIMouse global data
format variable.

The mouse is a relative-axis device, so the absolute axis positions for mouse axes are
simply accumulated relative motion. As a result, the value of the absolute axis
position is not meaningful except in comparison with other absolute axis positions.

If an axis is in relative mode, then the appropriate member contains the change in
position. If it is in absolute mode, then the member contains the absolute axis
position.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 170

Windows 95.
 Header: Declared in dinput.h.

DIOBJECTDATAFORMAT
[This is preliminary documentation and subject to change.]

The DIOBJECTDATAFORMAT structure contains information about a device
object's data format for use with the IDirectInputDevice::SetDataFormat method.

typedef struct DIOBJECTDATAFORMAT {
 const GUID * pguid;
 DWORD dwOfs;
 DWORD dwType;
 DWORD dwFlags;
} DIOBJECTDATAFORMAT, *LPDIOBJECTDATAFORMAT;

typedef const DIOBJECTDATAFORMAT *LPCDIOBJECTDATAFORMAT;

Members
pguid

Unique identifier for the axis, button, or other input source. When requesting a
data format, making this member NULL indicates that any type of object is
permissible.

dwOfs
Offset within the data packet where the data for the input source will be stored.
This value must be a multiple of four for DWORD size data, such as axes. It
can be byte-aligned for buttons.

dwType
Device type that describes the object. It is a combination of the following flags
describing the object type (axis, button, and so forth) and containing the object-
instance number in the middle 16 bits. When requesting a data format, the
instance portion must be set to DIDFT_ANYINSTANCE to indicate that any
instance is permissible, or to DIDFT_MAKEINSTANCE(n) to restrict the
request to instance n. See the examples under Remarks.
DIDFT_ABSAXIS

The object selected by the IDirectInput::SetDataFormat method must be an
absolute axis.

DIDFT_AXIS
The object selected by the SetDataFormat method must be an absolute or
relative axis.

DIDFT_BUTTON
The object selected by the SetDataFormat method must be a push button or
a toggle button.

DIDFT_FFACTUATOR

in.doc – page 171

The object selected by the SetDataFormat method must contain a force-
feedback actuator; in other words, it must be possible to apply forces to the
object.

DIDFT_FFEFFECTTRIGGER
The object selected by the SetDataFormat method must be a valid force-
feedback effect trigger.

DIDFT_POV
The object selected by the SetDataFormat method must be a point-of-view
controller.

DIDFT_PSHBUTTON
The object selected by the SetDataFormat method must be a push button.

DIDFT_RELAXIS
The object selected by SetDataFormat must be a relative axis.

DIDFT_TGLBUTTON
The object selected by SetDataFormat must be a toggle button.

dwFlags
Zero or more of the following values:
DIDOI_ASPECTACCEL

The object selected by SetDataFormat must report acceleration information.
DIDOI_ASPECTFORCE

The object selected by SetDataFormat must report force information.
DIDOI_ASPECTPOSITION

The object selected by SetDataFormat must report position information.
DIDOI_ASPECTVELOCITY

The object selected by SetDataFormat must report velocity information.

Remarks
A data format is made up of several DIOBJECTDATAFORMAT structures, one
for each object (axis, button, and so on). An array of these structures is contained in
the DIDATAFORMAT structure that is passed to
IDirectInputDevice::SetDataFormat. An application typically does not need to
create an array of DIOBJECTDATAFORMAT structures; rather, it can use one of
the predefined data formats, c_dfDIMouse, c_dfDIKeyboard, c_dfDIJoystick, or
c_dfDIJoystick2, which have predefined settings for DIOBJECTDATAFORMAT.

The following object data format specifies that DirectInput should choose the first
available axis and report its value in the DWORD at offset 4 in the device data.

DIOBJECTDATAFORMAT dfAnyAxis = {
 0, // Wildcard
 4, // Offset
 DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any axis is okay
 0, // Don't care about aspect
};

in.doc – page 172

The following object data format specifies that the x-axis of the device should be
stored in the DWORD at offset 12 in the device data. If the device has more than
one x-axis, the first available one should be selected.

DIOBJECTDATAFORMAT dfAnyXAxis = {
 &GUID_XAxis, // Must be an X axis
 12, // Offset
 DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any X axis is okay
 0, // Don't care about aspect
};

The following object data format specifies that DirectInput should choose the first
available button and report its value in the high bit of the byte at offset 16 in the
device data.

DIOBJECTDATAFORMAT dfAnyButton = {
 0, // Wildcard
 16, // Offset
 DIDFT_BUTTON | DIDFT_ANYINSTANCE, // Any button is okay
 0, // Don't care about aspect
};

The following object data format specifies that button 0 of the device should be
reported as the high bit of the byte stored at offset 18 in the device data.

If the device does not have a button 0, the attempt to set this data format will fail.

DIOBJECTDATAFORMAT dfButton0 = {
 0, // Wildcard
 18, // Offset
 DIDFT_BUTTON | DIDFT_MAKEINSTANCE(0), // Button zero
 0, // Don't care about aspect
};

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIPERIODIC
[This is preliminary documentation and subject to change.]

The DIPERIODIC structure contains type-specific information for effects that are
marked as DIEFT_PERIODIC.

in.doc – page 173

The structure describes a periodic effect.

A pointer to a single DIPERIODIC structure for an effect is passed in the
lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DIPERIODIC {
 DWORD dwMagnitude;
 LONG lOffset;
 DWORD dwPhase;
 DWORD dwPeriod;
} DIPERIODIC, *LPDIPERIODIC;

typedef const DIPERIODIC *LPCDIPERIODIC;

Members
dwMagnitude

The magnitude of the effect, in the range 0 to 10,000. If an envelope is applied
to this effect, then the value represents the magnitude of the sustain. If no
envelope is applied, then the value represents the amplitude of the entire effect.

lOffset
The offset of the effect. The range of forces generated by the effect will be
lOffset - dwMagnitude to lOffset + dwMagnitude. The value of the lOffset
member is also the baseline for any envelope that is applied to the effect.

dwPhase
The position in the cycle of the periodic effect at which playback begins, in the
range 0 to 35,999. See Remarks.

dwPeriod
The period of the effect in microseconds.

Remarks
A device driver may not provide support for all values in the dwPhase member. In
this case the value will be rounded off to the nearest supported value.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

DIPROPDWORD
[This is preliminary documentation and subject to change.]

The DIPROPDWORD is a generic structure used to access DWORD properties.

in.doc – page 174

typedef struct DIPROPDWORD {
 DIPROPHEADER diph;
 DWORD dwData;
} DIPROPDWORD, *LPDIPROPDWORD;

typedef const DIPROPDWORD *LPCDIPROPDWORD;

Members
diph

A DIPROPHEADER structure that must be initialized as follows:
Member Value

dwSize sizeof(DIPROPDWORD)
dwHeaderSize sizeof(DIPROPHEADER)
dwObj If the dwHow member is DIPH_DEVICE, this member

must be zero.
If the dwHow member is DIPH_BYID, this member must
be the identifier for the object whose property setting is to
be set or retrieved.
If the dwHow member is DIPH_BYOFFSET, this member
must be a data format offset for the object whose property
setting is to be set or retrieved. For example, if the
c_dfDIMouse data format is selected, it must be one of the
DIIMOFS_* values.

dwHow Specifies how the dwObj member should be interpreted. If
dwObj is DIPROP_AXISMODE or
DIPROP_BUFFERSIZE, dwHow should be
DIPH_DEVICE.

dwData
The property-specific value being set or retrieved.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

See Also
IDirectInputDevice::GetProperty, IDirectInputDevice::SetProperty

in.doc – page 175

DIPROPHEADER
[This is preliminary documentation and subject to change.]

DIPROPHEADER is a generic structure placed at the beginning of all property
structures.

typedef struct DIPROPHEADER {
 DWORD dwSize;
 DWORD dwHeaderSize;
 DWORD dwObj;
 DWORD dwHow;
} DIPROPHEADER, *LPDIPROPHEADER;

typedef const DIPROPHEADER *LPCDIPROPHEADER;

Members
dwSize

Size of the enclosing structure. This member must be initialized before the
structure is used.

dwHeaderSize
Size of the DIPROPHEADER structure.

dwObj
Object for which the property is to be accessed. The value set for this member
depends on the value specified in the dwHow member.

dwHow
Value specifying how the dwObj member should be interpreted. This value can
be one of the following:

Value Meaning

DIPH_DEVICE The dwObj member must be zero.
DIPH_BYOFFSET The dwObj member is the offset into the current data

format of the object whose property is being accessed.
DIPH_BYID The dwObj member is the object type/instance

identifier. This identifier is returned in the dwType
member of the DIDEVICEOBJECTINSTANCE
structure returned from a previous call to the
IDirectInputDevice::EnumObjects member.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

in.doc – page 176

DIPROPRANGE
[This is preliminary documentation and subject to change.]

The DIPROPRANGE structure contains information about the range of an object
within a device. This structure is used with the DIPROP_RANGE flag set in the
IDirectInputDevice::GetProperty and IDirectInputDevice::SetProperty methods.

typedef struct DIPROPRANGE {
 DIPROPHEADER diph;
 LONG lMin;
 LONG lMax;
} DIPROPRANGE, *LPDIPROPRANGE;

typedef const DIPROPRANGE *LPCDIPROPRANGE;

Members
diph

A DIPROPHEADER structure that must be initialized as follows:
Member Value
dwSize sizeof(DIPROPRANGE)
dwHeaderSize sizeof(DIPROPHEADER)
dwObj Identifier of the object whose range is being retrieved or

set.
dwHow How the dwObj member should be interpreted.

lMin
The lower limit of the range, inclusive. If the range of the device is unrestricted,
this value will be DIPROPRANGE_NOMIN when the
IDirectInputDevice::GetProperty method returns.

lMax
The upper limit of the range, inclusive. If the range of the device is unrestricted,
this value will be DIPROPRANGE_NOMAX when the
IDirectInputDevice::GetProperty method returns.

Remarks
The range values for devices whose ranges are unrestricted will wrap around.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 177

Windows 95.
 Header: Declared in dinput.h.

See Also
IDirectInputDevice::GetProperty, IDirectInputDevice::SetProperty

DIRAMPFORCE
[This is preliminary documentation and subject to change.]

The DIRAMPFORCE structure contains type-specific information for effects that
are marked as DIEFT_RAMPFORCE. The structure describes a ramp force effect.

A pointer to a single DIRAMPFORCE structure for an effect is passed in the
lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DIPROPRANGE {
 LONG lStart;
 LONG lEnd;
} DIRAMPFORCE, *LPDIRAMPFORCE;

typedef const DIRAMPFORCE *LPCDIRAMPFORCE;

Members
lStart

The magnitude at the start of the effect, in the range -10,000 to +10,000.
lEnd

The magnitude at the end of the effect, in the range -10,000 to +10,000.

Remarks
The dwDuration for a ramp force effect cannot be INFINITE.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dinput.h.

Device Constants
[This is preliminary documentation and subject to change.]

in.doc – page 178

This section is a reference for constants used to interpret data for keys, buttons, and
axes.

· Keyboard Device Constants
· DirectInput and Japanese Keyboards
· Mouse Device Constants
· Joystick Device Constants

Keyboard Device Constants
[This is preliminary documentation and subject to change.]

Keyboard device constants, defined in Dinput.h, represent offsets within a keyboard
device's data packet, a 256-byte array. The data at a given offset is associated with a
keyboard key. Typically, these values will be used in the dwOfs member of the
DIDEVICEOBJECTDATA, DIOBJECTDATAFORMAT or
DIDEVICEOBJECTINSTANCE structures, or as indices when accessing data
within the array using array notation.

The standard keyboard device constants are the following (in ascending order):

Constant Note

DIK_ESCAPE
DIK_1 On main keyboard
DIK_2 On main keyboard
DIK_3 On main keyboard
DIK_4 On main keyboard
DIK_5 On main keyboard
DIK_6 On main keyboard
DIK_7 On main keyboard
DIK_8 On main keyboard
DIK_9 On main keyboard
DIK_0 On main keyboard
DIK_MINUS On main keyboard
DIK_EQUALS On main keyboard
DIK_BACK The BACKSPACE key
DIK_TAB
DIK_Q
DIK_W
DIK_E
DIK_R
DIK_T

in.doc – page 179

DIK_Y
DIK_U
DIK_I
DIK_O
DIK_P
DIK_LBRACKET The [key
DIK_RBRACKET The] key
DIK_RETURN ENTER key on main keyboard
DIK_LCONTROL Left CTRL key
DIK_A
DIK_S
DIK_D
DIK_F
DIK_G
DIK_H
DIK_J
DIK_K
DIK_L
DIK_SEMICOLON
DIK_APOSTROPHE
DIK_GRAVE Grave accent (`) key
DIK_LSHIFT Left SHIFT key
DIK_BACKSLASH
DIK_Z
DIK_X
DIK_C
DIK_V
DIK_B
DIK_N
DIK_M
DIK_COMMA
DIK_PERIOD On main keyboard
DIK_SLASH Forward slash on main keyboard
DIK_RSHIFT Right SHIFT key
DIK_MULTIPLY The * key on numeric keypad
DIK_LMENU Left ALT key
DIK_SPACE SPACEBAR
DIK_CAPITAL CAPS LOCK key

in.doc – page 180

DIK_F1
DIK_F2
DIK_F3
DIK_F4
DIK_F5
DIK_F6
DIK_F7
DIK_F8
DIK_F9
DIK_F10
DIK_NUMLOCK
DIK_SCROLL SCROLL LOCK
DIK_NUMPAD7
DIK_NUMPAD8
DIK_NUMPAD9
DIK_SUBTRACT MINUS SIGN on numeric keypad
DIK_NUMPAD4
DIK_NUMPAD5
DIK_NUMPAD6
DIK_ADD PLUS SIGN on numeric keypad
DIK_NUMPAD1
DIK_NUMPAD2
DIK_NUMPAD3
DIK_NUMPAD0
DIK_DECIMAL PERIOD (decimal point) on numeric keypad
DIK_F11
DIK_F12
DIK_F13
DIK_F14
DIK_F15
DIK_KANA On Japanese keyboard
DIK_CONVERT On Japanese keyboard
DIK_NOCONVERT On Japanese keyboard
DIK_YEN On Japanese keyboard
DIK_NUMPADEQUALS On numeric keypad (NEC PC98)
DIK_CIRCUMFLEX On Japanese keyboard
DIK_AT On Japanese keyboard
DIK_COLON On Japanese keyboard

in.doc – page 181

DIK_UNDERLINE On Japanese keyboard
DIK_KANJI On Japanese keyboard
DIK_STOP On Japanese keyboard
DIK_AX On Japanese keyboard
DIK_UNLABELED On Japanese keyboard
DIK_NUMPADENTER
DIK_RCONTROL Right CTRL key
DIK_NUMPADCOMMA COMMA on NEC PC98 numeric keypad
DIK_DIVIDE Forward slash on numeric keypad
DIK_SYSRQ
DIK_RMENU Right ALT key
DIK_HOME
DIK_UP UP ARROW
DIK_PRIOR PAGE UP
DIK_LEFT LEFT ARROW
DIK_RIGHT RIGHT ARROW
DIK_END
DIK_DOWN DOWN ARROW
DIK_NEXT PAGE DOWN
DIK_INSERT
DIK_DELETE
DIK_LWIN Left Windows key
DIK_RWIN Right Windows key
DIK_APPS Application key
DIK_PAUSE

The following alternate names are available:

Alternate name Regular name Note

DIK_BACKSPACE DIK_BACK BACKSPACE
DIK_NUMPADSTAR DIK_MULTIPLY * key on numeric keypad
DIK_LALT DIK_LMENU Left ALT
DIK_CAPSLOCK DIK_CAPITAL CAPSLOCK
DIK_NUMPADMINUS DIK__SUBTRACT Minus key on numeric

keypad
DIK_NUMPADPLUS DIK_ADD Plus key on numeric keypad
DIK_NUMPADPERIOD DIK_DECIMAL Period key on numeric

keypad
DIK_NUMPADSLASH DIK__DIVIDE Forward slash on numeric

in.doc – page 182

keypad
DIK_RALT DIK_RMENU Right ALT
DIK_UPARROW DIK_UP On arrow keypad
DIK_PGUP DIK_PRIOR On arrow keypad
DIK_LEFTARROW DIK_LEFT On arrow keypad
DIK_RIGHTARROW DIK_RIGHT On arrow keypad
DIK_DOWNARROW DIK_DOWN On arrow keypad
DIK_PGDN DIK_NEXT On arrow keypad

For information on Japanese keyboards, see DirectInput and Japanese Keyboards.

DirectInput and Japanese
Keyboards

[This is preliminary documentation and subject to change.]

There are substantial differences between Japanese and U.S. keyboards. The chart
below lists the additional keys that are available on each type of Japanese keyboard.
It also lists the keys that are available on U.S. keyboards but are missing on the
various Japanese keyboards.

Also note that on some NEC PC-98 keyboards, the DIK_CAPSLOCK and
DIK_KANA keys are toggle buttons and not push buttons. These generate a down
event when first pressed, then generate an up event when pressed a second time.

Keyboard Additional Keys Missing Keys

DOS/V 106 Keyboard, NEC
PC-98 106 Keyboard

DIK_AT,
DIK_CIRCUMFLEX,
DIK_COLON,
DIK_CONVERT,
DIK_KANA, DIK_KANJI,
DIK_NOCONVERT,
DIK_YEN

DIK_APOSTROPHE,
DIK_EQUALS,
DIK_GRAVE

in.doc – page 183

NEC PC-98 Standard
Keyboard, NEC PC-98
Laptop Keyboard

DIK_AT,
DIK_CIRCUMFLEX,
DIK_COLON, DIK_F13,
DIK_F14, DIK_F15,
DIK_KANA, DIK_KANJI,
DIK_NOCONVERT,
DIK_NUMPADCOMMA,
DIK_NUMPADEQUALS,
DIK_STOP,
DIK_UNDERLINE,
DIK_YEN

DIK_APOSTROPHE,
DIK_BACKSLASH,
DIK_EQUALS,
DIK_GRAVE,
DIK_NUMLOCK,
DIK_NUMPADENTER,
DIK_RCONTROL,
DIK_RMENU,
DIK_RSHIFT,
DIK_SCROLL

AX Keyboard DIK_AX, DIK_CONVERT,
DIK_KANJI,
DIK_NOCONVERT,
DIK_YEN

DIK_RCONTROL,
DIK_RMENU

J-3100 Keyboard DIK_KANA, DIK_KANJI,
DIK_NOLABEL, DIK_YEN

DIK_RCONTROL,
DIK_RMENU

Mouse Device Constants
[This is preliminary documentation and subject to change.]

Mouse device constants, defined in Dinput.h, represent offsets within a mouse
device's data packet, the DIMOUSESTATE structure. The data at a given offset is
associated with a device object (button or axis). Typically, these values will be used
in the dwOfs member of the DIDEVICEOBJECTDATA,
DIOBJECTDATAFORMAT or DIDEVICEOBJECTINSTANCE structures.

The mouse device constants are the following:

DIMOFS_BUTTON0 Offset of the data representing the state of mouse
button 0.

DIMOFS_BUTTON1 Offset of the data representing the state of mouse
button 1.

DIMOFS_BUTTON2 Offset of the data representing the state of mouse
button 2.

DIMOFS_BUTTON3 Offset of the data representing the state of mouse
button 3.

DIMOFS_X Offset of the data representing the mouse's position on
the x-axis.

DIMOFS_Y Offset of the data representing the mouse's position on
the y-axis.

DIMOFS_Z Offset of the data representing the mouse's position on

in.doc – page 184

the z-axis.

Joystick Device Constants
[This is preliminary documentation and subject to change.]

Joystick device constants represent offsets within a joystick device's data packet, the
DIJOYSTATE structure. The data at a given offset is associated with a device
object; that is, a button or axis. Typically, these values will be used in the dwOfs
member of the DIDEVICEOBJECTDATA, DIOBJECTDATAFORMAT or
DIDEVICEOBJECTINSTANCE structures.

The following macros return a constant indicating the offset of the data for a
particular button or axis relative to the beginning of the DIJOYSTATE structure:

DIJOFS_BUTTON0 to DIJOFS_BUTTON31 or
DIJOFS_BUTTON(n)

A button.

DIJOFS_POV(n) A point-of-view indicator.
DIJOFS_RX The x-axis rotation.
DIJOFS_RY The y-axis rotation.
DIJOFS_RZ The z-axis rotation (rudder).
DIJOFS_X The x-axis.
DIJOFS_Y The y-axis.
DIJOFS_Z The z-axis.
DIJOFS_SLIDER(n) A slider axis.

Return Values
[This is preliminary documentation and subject to change.]

This table lists the HRESULT values that can be returned by DirectInput methods
and functions. Errors are represented by negative values and cannot be combined.

For a list of the error values each method or function can return, see the individual
descriptions. Lists of error codes in the documentation are necessarily incomplete.
For example, any DirectInput method can return DIERR_OUTOFMEMORY even
though the error code is not explicitly listed as a possible return value in the
documentation for that method.

DI_BUFFEROVERFLOW
The device buffer overflowed and some input was lost. This value is equal to the
S_FALSE standard COM return value.

DI_DOWNLOADSKIPPED
The parameters of the effect were successfully updated, but the effect could not
be downloaded because the associated device was not acquired in exclusive
mode.

in.doc – page 185

DI_EFFECTRESTARTED
The effect was stopped, the parameters were updated, and the effect was
restarted.

DI_NOEFFECT
The operation had no effect. This value is equal to the S_FALSE standard COM
return value.

DI_NOTATTACHED
The device exists but is not currently attached. This value is equal to the
S_FALSE standard COM return value.

DI_OK
The operation completed successfully. This value is equal to the S_OK standard
COM return value.

DI_POLLEDDEVICE
The device is a polled device. As a result, device buffering will not collect any
data and event notifications will not be signaled until the
IDirectInputDevice2::Poll method is called.

DI_PROPNOEFFECT
The change in device properties had no effect. This value is equal to the
S_FALSE standard COM return value.

DI_TRUNCATED
The parameters of the effect were successfully updated, but some of them were
beyond the capabilities of the device and were truncated to the nearest supported
value.

DI_TRUNCATEDANDRESTARTED
Equal to DI_EFFECTRESTARTED | DI_TRUNCATED.

DIERR_ACQUIRED
The operation cannot be performed while the device is acquired.

DIERR_ALREADYINITIALIZED
This object is already initialized

DIERR_BADDRIVERVER
The object could not be created due to an incompatible driver version or
mismatched or incomplete driver components.

DIERR_BETADIRECTINPUTVERSION
The application was written for an unsupported prerelease version of
DirectInput.

DIERR_DEVICEFULL
The device is full.

DIERR_DEVICENOTREG
The device or device instance is not registered with DirectInput. This value is
equal to the REGDB_E_CLASSNOTREG standard COM return value.

DIERR_EFFECTPLAYING
The parameters were updated in memory but were not downloaded to the device
because the device does not support updating an effect while it is still playing.

DIERR_HASEFFECTS

in.doc – page 186

The device cannot be reinitialized because there are still effects attached to it.
DIERR_GENERIC

An undetermined error occurred inside the DirectInput subsystem. This value is
equal to the E_FAIL standard COM return value.

DIERR_HANDLEEXISTS
The device already has an event notification associated with it. This value is
equal to the E_ACCESSDENIED standard COM return value.

DIERR_INCOMPLETEEFFECT
The effect could not be downloaded because essential information is missing.
For example, no axes have been associated with the effect, or no type-specific
information has been supplied.

DIERR_INPUTLOST
Access to the input device has been lost. It must be reacquired.

DIERR_INVALIDPARAM
An invalid parameter was passed to the returning function, or the object was not
in a state that permitted the function to be called. This value is equal to the
E_INVALIDARG standard COM return value.

DIERR_MOREDATA
Not all the requested information fitted into the buffer.

DIERR_NOAGGREGATION
This object does not support aggregation.

DIERR_NOINTERFACE
The specified interface is not supported by the object. This value is equal to the
E_NOINTERFACE standard COM return value.

DIERR_NOTACQUIRED
The operation cannot be performed unless the device is acquired.

DIERR_NOTBUFFERED
The device is not buffered. Set the DIPROP_BUFFERSIZE property to enable
buffering.

DIERR_NOTDOWNLOADED
The effect is not downloaded.

DIERR_NOTEXCLUSIVEACQUIRED
The operation cannot be performed unless the device is acquired in
DISCL_EXCLUSIVE mode.

DIERR_NOTFOUND
The requested object does not exist.

DIERR_NOTINITIALIZED
This object has not been initialized.

DIERR_OBJECTNOTFOUND
The requested object does not exist.

DIERR_OLDDIRECTINPUTVERSION
The application requires a newer version of DirectInput.

DIERR_OTHERAPPHASPRIO

in.doc – page 187

Another application has a higher priority level, preventing this call from
succeeding. This value is equal to the E_ACCESSDENIED standard COM
return value. This error can be returned when an application has only foreground
access to a device but is attempting to acquire the device while in the
background.

DIERR_OUTOFMEMORY
The DirectInput subsystem couldn't allocate sufficient memory to complete the
call. This value is equal to the E_OUTOFMEMORY standard COM return
value.

DIERR_READONLY
The specified property cannot be changed. This value is equal to the
E_ACCESSDENIED standard COM return value.

DIERR_REPORTFULL
More information was requested to be sent than can be sent to the device.

DIERR_UNPLUGGED
The operation could not be completed because the device is not plugged in.

DIERR_UNSUPPORTED
The function called is not supported at this time. This value is equal to the
E_NOTIMPL standard COM return value.

E_PENDING
Data is not yet available.

DirectInput Visual Basic Reference
[This is preliminary documentation and subject to change.]

Reference material for the DirectInput Visual Basic application programming
interface is divided into the following categories:

· Classes
· Types
· Enumerations
· Keyboard Keys
· Error Codes

Classes
[This is preliminary documentation and subject to change.]

This section contains references for methods of the following DirectInput classes:

· DirectInput

in.doc – page 188

· DirectInputDevice
· DirectInputDeviceInstance
· DirectInputDeviceObjectInstance
· DirectInputEnumDeviceObjects
· DirectInputEnumDevices

DirectInput
[This is preliminary documentation and subject to change.]

The DirectInput class represents the DirectInput system. An application should have
a single object of this class, which is used to enumerate available devices, create
devices, and retrieve the status of devices, as well as to invoke an instance of the
Windows Control Panel.

The DirectInput object is obtained by using the DirectX7.DirectInputCreate
method.

The DirectInput class has the following methods:

Device Management CreateDevice
GetDeviceStatus
GetDIEnumDevices

Miscellaneous RunControlPanel

DirectInput.CreateDevice
[This is preliminary documentation and subject to change.]

The DirectInput.CreateDevice method creates and initializes an instance of a
device based on a given GUID.

object.CreateDevice(guid As String) As DirectInputDevice

object
Object expression that resolves to a DirectInput object.

guid
The instance GUID for the desired input device. The GUID is retrieved from the
DirectInputDeviceInstance object returned by the
DirectInputEnumDevices.GetItem method, or it can be one of the following
strings:
GUID_SysKeyboard

The default system keyboard.
GUID_SysMouse

IDH__dx_DirectInput_dinput_vb
IDH__dx_DirectInput.CreateDevice_dinput_vb

in.doc – page 189

The default system mouse.

Return Values
If the method succeeds, a DirectInputDevice object is returned.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following:

DIERR_DEVICENOTREG
DIERR_INVALIDPARAM
DIERR_NOINTERFACE
DIERR_NOTINITIALIZED
DIERR_OUTOFMEMORY

See Also
Using GUIDs

DirectInput.GetDeviceStatus
[This is preliminary documentation and subject to change.]

The DirectInput.GetDeviceStatus method determines whether a device is attached
to the system.

object.GetDeviceStatus(guid As String) As Long

object
Object expression that resolves to a DirectInput object.

guid
The instance GUID for the desired input device. The GUID is retrieved by using
the DirectInputDeviceInstance.GetGuidInstance method on the object
returned by DirectInputEnumDevices.GetItem method, or it can be one of the
following strings:
GUID_SysKeyboard

The default system keyboard.
GUID_SysMouse

The default system mouse.

IDH__dx_DirectInput.GetDeviceStatus_dinput_vb

in.doc – page 190

Return Values
The method returns 0 if the device is attached, and 1 otherwise.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_GENERIC
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

See Also
Using GUIDs

DirectInput.GetDIEnumDevices
[This is preliminary documentation and subject to change.]

The DirectInput.GetDIEnumDevices method returns a DirectInputEnumDevices
object which is used to enumerate devices that are either currently attached or could
be attached to the computer.

object.GetDIEnumDevices(_
 deviceType As CONST_DIDEVICETYPE, _
 flags As CONST_DIENUMDEVICESFLAGS) _
 As DirectInputEnumDevices

object
Object expression that resolves to a DirectInput object.

deviceType
Device type filter. If this parameter is 0, all device types are enumerated.
Otherwise, it is one of the following DIDEVTYPE_* constants of the
CONST_DIDEVICETYPE enumeration, indicating the device type that should
be enumerated.
DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).
DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.
DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.
DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.

IDH__dx_DirectInput.GetDIEnumDevices_dinput_vb

in.doc – page 191

flags
Flag value that specifies the scope of the enumeration. This parameter can be
one of the following constants of the CONST_DIENUMDEVICESFLAGS
enumeration. If this flag is 0 (DIEDFL_ALLDEVICES), then all installed
devices are enumerated. If it is DIEDFL_ATTACHEDONLY, only devices
actually attached to the system are enumerated.

Return Values
If the method succeeds, the method returns a DirectInputEnumDevices object.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
All installed devices can be enumerated, even if they are not present. For example, a
joystick may be installed on the system but not currently plugged into the computer.

If a single piece of hardware can function as more than one DirectInput device type,
it will be returned for each device type it supports. For example, a keyboard with a
built-in mouse will be enumerated as a keyboard and as a mouse. The product GUID
would be the same for each device, however.

DirectInput.RunControlPanel
[This is preliminary documentation and subject to change.]

The DirectInput.RunControlPanel method runs the Windows Control Panel to
allow the user to install a new input device or modify configurations.

object.RunControlPanel(hwndOwner As Long)

object
Object expression that resolves to a DirectInput object.

hwndOwner
Handle to the window to be used as the parent window for the subsequent user
interface. If this parameter is 0, no parent window is used.

IDH__dx_DirectInput.RunControlPanel_dinput_vb

in.doc – page 192

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes::

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

See Also
DirectInputDevice.RunControlPanel

DirectInputDevice
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectInputDevice class to gain and release
access to DirectInput devices, manage device properties and information, set
behavior, perform initialization, and invoke a device's property sheet.

The DirectInputDevice object is obtained by using the DirectInput.CreateDevice
method.

The methods of the DirectInputDevice class can be organized into the following
groups.

Access Acquire
SetCooperativeLevel
Unacquire

Objects GetDeviceObjectsEnum
GetObjectInfo

Properties GetCapabilities
GetDeviceInfo
GetProperty
SetCommonDataFormat
SetDataFormat
SetProperty

Retrieving Data GetDeviceData
GetDeviceState
GetDeviceStateJoystick
GetDeviceStateJoystick2
GetDeviceStateKeyboard

IDH__dx_DirectInputDevice_dinput_vb

in.doc – page 193

GetDeviceStateMouse
Poll
SetEventNotification

Miscellaneous RunControlPanel

DirectInputDevice.Acquire
[This is preliminary documentation and subject to change.]

The DirectInputDevice.Acquire method obtains access to the input device.

object.Acquire()

object
Object expression that resolves to a DirectInputDevice object.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes::

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OTHERAPPHASPRIO

Remarks
Before a device can be acquired, a data format must be set by using the
DirectInputDevice.SetDataFormat or
DirectInputDevice.SetCommonDataFormat format method.

A device must be acquired in order for input data can be retrieved from it.

See Also
DirectInputDevice.Unacquire

DirectInputDevice.GetCapabilities
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetCapabilities method obtains the capabilities of the
DirectInputDevice object.

object.GetCapabilities(caps As DIDEVCAPS)

IDH__dx_DirectInputDevice.Acquire_dinput_vb
IDH__dx_DirectInputDevice.GetCapabilities_dinput_vb

in.doc – page 194

object
Object expression that resolves to a DirectInputDevice object.

caps
A DIDEVCAPS type to be filled with the device capabilities.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

DirectInputDevice.GetDeviceData
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceData method retrieves buffered data from the
device.

object.GetDeviceData(_
 deviceObjectDataArray() As DIDEVICEOBJECTDATA, _
 flags As CONST_DIDGDDFLAGS) As Long

object
Object expression that resolves to a DirectInputDevice object.

deviceObjectDataArray()
Array of DIDEVICEOBJECTDATA types to receive the buffered data.

flags
Flags that control the manner in which data is obtained. This value can be 0 or
one of the constants of the CONST_DIDGDDFLAGS enumeration.

Return Values
If it succeeds, the method returns the number of buffered data elements actually
returned in deviceObjectDataArray.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM

IDH__dx_DirectInputDevice.GetDeviceData_dinput_vb

in.doc – page 195

DIERR_NOTACQUIRED
DIERR_NOTBUFFERED
DIERR_NOTINITIALIZED

Remarks
Before device data can be obtained, you must set the data format by using the
DirectInputDevice.SetDataFormat method, set the buffer size by using
DirectInputDevice.SetProperty method, and acquire the device by using the
DirectInputDevice.Acquire method.

You can use this method to retrieve one or more input events from the buffer you
created by using SetProperty. You do not have to retrieve all pending events with a
single call. You can, for example, pass in a deviceObjectDataArray() consisting of a
single element and loop on GetDeviceData till no more data is returned.

See Also
DirectInputDevice.Poll, Polling and Events

DirectInputDevice.GetDeviceInfo
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceInfo method obtains information about the
device's identity.

object.GetDeviceInfo() As DirectInputDeviceInstance

object
Object expression that resolves to a DirectInputDevice object.

Return Values
If it succeeds, the method returns a DirectInputDeviceInstance object

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

IDH__dx_DirectInputDevice.GetDeviceInfo_dinput_vb

in.doc – page 196

DirectInputDevice.GetDeviceObjec
tsEnum

[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceObjectsEnum method returns a
DirectInputEnumDeviceObjects object which is used to enumerate the objects
available on a device. A device object is typically an axis or a button.

object.GetDeviceObjectsEnum(_
 flags As CONST_DIDFTFLAGS) _
 As DirectInputEnumDeviceObjects

object
Object expression that resolves to a DirectInputDevice object.

flags
Flags specifying the type of object to be enumerated. Can be one or more of the
members of the CONST_DIDFTFLAGS enumeration.

Return Values
If the method succeeds, the return value is a DirectInputEnumDeviceObjects
object.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
An object is enumerated if it meets the criterion defined by any included flag. For
example, (DIDFT_TGLBUTTON Or DIDFT_PSHBUTTON) enumerates buttons of
either kind.

DirectInputDevice.GetDeviceState
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceState method retrieves immediate data for a
device other than a standard keyboard, mouse, or joystick.

IDH__dx_DirectInputDevice.GetDIEnumDeviceObjects_dinput_vb
IDH__dx_DirectInputDevice.GetDeviceState_dinput_vb

in.doc – page 197

object.GetDeviceState(cb As Long, state As Any)

object
Object expression that resolves to a DirectInputDevice object.

cb
Size of the array whose first element is passed as state.

state
First element of an array to receive device state information.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks
Before device data can be obtained, you must set the cooperative level by using the
DirectInputDevice.SetCooperativeLevel method, then set the data format by using
DirectInputDevice.SetDataFormat, and acquire the device by using the
DirectInputDevice.Acquire method.

See Also
DirectInputDevice.GetDeviceStateJoystick,
DirectInputDevice.GetDeviceStateJoystick2,
DirectInputDevice.GetDeviceStateKeyboard,
DirectInputDevice.GetDeviceStateMouse, DirectInputDevice.SetDataFormat,
Buffered and Immediate Data

DirectInputDevice.GetDeviceStateJ
oystick

[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceStateJoystick method retrieves instantaneous
data from a joystick device.

object.GetDeviceStateJoystick(state As DIJOYSTATE)

IDH__dx_DirectInputDevice.GetDeviceStateJoystick_dinput_vb

in.doc – page 198

object
Object expression that resolves to a DirectInputDevice object.

state
A DIJOYSTATE type that receives the current state of the device.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks
Before device data can be obtained, you must set the cooperative level by using the
DirectInputDevice.SetCooperativeLevel method, then set the data format by using
DirectInputDevice.SetCommonDataFormat, and acquire the device by using the
DirectInputDevice.Acquire method.

See Also
DirectInputDevice.Poll

DirectInputDevice.GetDeviceStateJ
oystick2

[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceStateJoystick2 method retrieves instantaneous
data from a joystick device with extended capabilities.

object.GetDeviceStateJoystick2(state As DIJOYSTATE2)

object
Object expression that resolves to a DirectInputDevice object.

state
A DIJOYSTATE2 type that receives the current state of the device. The format
of the data is established by a prior call to the
DirectInputDevice.SetDataFormat method.

IDH__dx_DirectInputDevice.GetDeviceStateJoystick2_dinput_vb

in.doc – page 199

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks
Before device data can be obtained, you must set the cooperative level by using the
DirectInputDevice.SetCooperativeLevel method, then set the data format by using
DirectInputDevice.SetCommonDataFormat, and acquire the device by using the
DirectInputDevice.Acquire method.

See Also
DirectInputDevice.Poll, Polling and Events

DirectInputDevice.GetDeviceState
Keyboard

[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceStateKeyboard method retrieves instantaneous
data from a keyboard device.

object.GetDeviceStateKeyboard(state As DIKEYBOARDSTATE)

object
Object expression that resolves to a DirectInputDevice object.

state
A DIKEYBOARDSTATE type that receives the current state of the device.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM

IDH__dx_DirectInputDevice.GetDeviceStateKeyboard_dinput_vb

in.doc – page 200

DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks
Before device data can be obtained, you must set the cooperative level by using the
DirectInputDevice.SetCooperativeLevel method, then set the data format by using
DirectInputDevice.SetCommonDataFormat, and acquire the device by using the
DirectInputDevice.Acquire method.

See Also
DirectInputDevice.Poll

DirectInputDevice.GetDeviceState
Mouse

[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetDeviceStateMouse method retrieves instantaneous data
from a mouse device.

object.GetDeviceStateMouse(state As DIMOUSESTATE)

object
Object expression that resolves to a DirectInputDevice object.

state
A DIMOUSESTATE type that receives the current state of the device.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

IDH__dx_DirectInputDevice.GetDeviceStateMouse_dinput_vb

in.doc – page 201

Remarks
Before device data can be obtained, you must set the cooperative level by using the
DirectInputDevice.SetCooperativeLevel method, then set the data format by using
DirectInputDevice.SetCommonDataFormat, and acquire the device by using the
DirectInputDevice.Acquire method.

See Also
DirectInputDevice.Poll

DirectInputDevice.GetObjectInfo
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetObjectInfo method retrieves information about a device
object such as a button or axis.

object.GetObjectInfo(_
 Obj As Long, _
 how As CONST_DIPHFLAGS) _
 As DirectInputDeviceObjectInstance

object
Object expression that resolves to a DirectInputDevice object.

Obj
Value that identifies the object whose information will be retrieved. The
interpretation of this parameter depends on the value specified in the how
parameter.

how
Value specifying how the Obj parameter should be interpreted. This value can
be one of the constants of the CONST_DIPHFLAGS enumeration.

Return Values
The method returns a DirectInputDeviceObjectInstance object whose methods can
be used to retrieve information about the object.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND

IDH__dx_DirectInputDevice.GetObjectInfo_dinput_vb

in.doc – page 202

DirectInputDevice.GetProperty
[This is preliminary documentation and subject to change.]

The DirectInputDevice.GetProperty method retrieves information about the input
device.

object.GetProperty(_
 guid As String, _
 propertyInfo As Any)

object
Object expression that resolves to a DirectInputDevice object.

guid
Identifier of the property to be retrieved. The following properties are defined
for an input device and can be passed as strings:
DIPROP_AXISMODE

Retrieves the axis mode. The retrieved value can be
DIPROPAXISMODE_ABS or DIPROPAXISMODE_REL. (See the
CONST_DINPUT enumeration.)

DIPROP_BUFFERSIZE
Retrieves the input-buffer size. The buffer size determines the amount of data
that the buffer can hold between calls to the
DirectInputDevice.GetDeviceData method before data is lost. This value
may be set to 0 to indicate that the application will not be reading buffered
data from the device.

DIPROP_DEADZONE
Retrieves a value for the dead zone of a joystick, in the range 0 to 10,000,
where 0 indicates there is no dead zone, 5,000 indicates that the dead zone
extends over 50 percent of the physical range of the axis on both sides of
center, and 10,000 indicates that the entire physical range of the axis is dead.
When the axis is within the dead zone, it is reported as being at the center of
its range.

DIPROP_GRANULARITY
Retrieves the input granularity. Granularity represents the smallest distance
the object will report movement. Most axis objects have a granularity of 1,
meaning that all values are possible. Some axes may have a larger
granularity. For example, the wheel axis on a mouse may have a granularity
of 20, meaning that all reported changes in position will be multiples of 20.
In other words, when the user turns the wheel slowly, the device reports a
position of 0, then 20, then 40, and so on.
This is a read-only property; you cannot set its value by calling the
DirectInputDevice.SetProperty method.

DIPROP_RANGE
IDH__dx_DirectInputDevice.GetProperty_dinput_vb

in.doc – page 203

Retrieves the range of values an object can possibly report. The retrieved
minimum and maximum values are set in the lMin and lMax members of the
associated DIPROPRANGE type.
For some devices, this is a read-only property; you cannot set its value by
calling the DirectInputDevice.SetProperty method.

DIPROP_SATURATION
Retrieves a value for the saturation zones of a joystick, in the range 0 to
10,000. The saturation level is the point at which the axis is considered to be
at its most extreme position. For example, if the saturation level is set to
9,500, then the axis reaches the extreme of its range when it has moved 95
percent of the physical distance from its center position (or from the dead
zone).

propertyInfo
A DIPROPLONG type to receive a single value, or a DIPROPRANGE type to
receive a pair of values for the property. The lObj, lHow, and lSize members of
this type must be initialized before the method is called.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND
DIERR_UNSUPPORTED

See Also
DirectInputDevice.SetProperty

DirectInputDevice.Poll
[This is preliminary documentation and subject to change.]

The DirectInputDevice.Poll method makes data available from polled objects on a
DirectInput device. If the device does not require polling, then calling this method
has no effect. If a device that requires polling is not polled periodically, no new data
will be received from the device. Calling this method causes DirectInput to update
the device state, generate input events (if buffered data is enabled), and set
notification events (if notification is enabled).

object.Poll()

object

IDH__dx_DirectInputDevice.Poll_dinput_vb

in.doc – page 204

Object expression that resolves to a DirectInputDevice object.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INPUTLOST
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED

Remarks
Before a device data can be polled, the data format must be set by using the
DirectInputDevice.SetDataFormat or
DirectInputDevice.SetCommonDataFormat method, and the device must be
acquired by using the DirectInputDevice.Acquire method.

DirectInputDevice.RunControlPane
l

[This is preliminary documentation and subject to change.]

The DirectInputDevice.RunControlPanel method opens the Control Panel property
sheet associated with this device. If the device does not have a property sheet
associated with it, the default device property sheet is displayed.

object.RunControlPanel(hwnd As Long)

object
Object expression that resolves to a DirectInputDevice object.

hwnd
Handle to the parent window. If this parameter is 0, no parent window is used.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

IDH__dx_DirectInputDevice.RunControlPanel_dinput_vb

in.doc – page 205

DirectInputDevice.SetCommonDat
aFormat

[This is preliminary documentation and subject to change.]

The DirectInputDevice.SetCommonDataFormat method sets the input data format
for standard devices.

object.SetCommonDataFormat(_
 format As CONST_DICOMMONDATAFORMATS)

object
Object expression that resolves to a DirectInputDevice object.

format
One of the CONST_DICOMMONDATAFORMATS enumeration, identifying
the data format to use for the device.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_ACQUIRED
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
The data format must be set before the device can be acquired by using the
DirectInputDevice.Acquire method. It is necessary to set the data format only once.
The data format cannot be changed while the device is acquired.

See Also
DirectInputDevice.SetDataFormat

DirectInputDevice.SetCooperative
Level

[This is preliminary documentation and subject to change.]

The DirectInputDevice.SetCooperativeLevel method establishes the cooperative
level for this instance of the device. The cooperative level determines how this
instance of the device interacts with other instances of the device and the rest of the
system.

IDH__dx_DirectInputDevice.SetCooperativeLevel_dinput_vb

in.doc – page 206

object.SetCooperativeLevel(hwnd As Long, _
 flags As CONST_DISCLFLAGS)

object
Object expression that resolves to a DirectInputDevice object.

hwnd
Window handle to be associated with the device. This parameter must be a valid
top-level window handle that belongs to the process. The window associated
with the device must not be destroyed while it is still active in a DirectInput
device.

flags
Flags that describe the cooperative level associated with the device. The flags
are constants of the CONST_DISCLFLAGS enumeration.
The following combinations of flags are valid:

Flags Meaning Valid for
DISCL_NONEXCLUSIVE Or
DISCL_BACKGROUND

Others can acquire device in
exclusive or nonexclusive
mode; your application has
access to data at all times.

All.

DISCL_NONEXCLUSIVE Or
DISCL_FOREGROUND

Others can acquire device in
exclusive or nonexclusive
mode; your application has
access to data only when in
the foreground.

All.

DISCL_EXCLUSIVE Or
DISCL_BACKGROUND

Others can acquire device in
nonexclusive mode; your
application has access to
data at all times.

Joystick.

DISCL_EXCLUSIVE Or
DISC_FOREGROUND

Others can acquire device in
nonexclusive mode; your
application has access to
data only when in the
foreground.

All except
keyboard. Valid for
mouse but prevents
Windows from
displaying the
cursor.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

in.doc – page 207

Remarks
No two applications (or instances of the same application) can have a device
acquired in exclusive mode at the same time. This is primarily a security feature; it
prevents input intended for one application from going to another that may be
running concurrently.

If the system mouse is acquired in exclusive mode, then the pointer will be removed
from the screen until the device is unacquired.

Applications must call this method before acquiring the device by using the
DirectInputDevice.Acquire method.

DirectInputDevice.SetDataFormat
[This is preliminary documentation and subject to change.]

The DirectInputDevice.SetDataFormat method sets the data format for a
DirectInput device that is not a standard keyboard, mouse, or keyboard.

object.SetDataFormat(format As DIDATAFORMAT, _
 formatArray() As DIOBJECTDATAFORMAT))

object
Object expression that resolves to a DirectInputDevice object.

format
A DIDATAFORMAT type that describes the format of the data the device
should return.

formatArray
Array of DIOBJECTDATAFORMAT types describing data formats for objects
on the device.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_ACQUIRED
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
The data format must be set before the device can be acquired by using the
DirectInputDevice.Acquire method. It is necessary to set the data format only once.
The data format cannot be changed while the device is acquired.

IDH__dx_DirectInputDevice.SetDataFormat_dinput_vb

in.doc – page 208

See Also
DirectInputDevice.SetCommonDataFormat

DirectInputDevice.SetEventNotific
ation

[This is preliminary documentation and subject to change.]

The DirectInputDevice.SetEventNotification method sets the event notification
status. This method specifies an event that is to be set when the device state changes.
It is also used to turn off event notification.

object.SetEventNotification(hEvent As Long)

object
Object expression that resolves to a DirectInputDevice object.

hEvent
Handle to the event that is to be set when the device state changes, or 0 to
disable notification.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_ACQUIRED
DIERR_HANDLEEXISTS
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks
A device state change is defined as any of the following:

· A change in the position of an axis
· A change in the state (pressed or released) of a button
· A change in the direction of a POV control
· Loss of acquisition

You must call this method with the hEvent parameter set to 0 before closing the
event handle.

The event notification handle cannot be changed while the device is acquired.

IDH__dx_DirectInputDevice.SetEventNotification_dinput_vb

in.doc – page 209

See Also
Polling and Events, DirectXEvent

DirectInputDevice.SetProperty
[This is preliminary documentation and subject to change.]

The DirectInputDevice.SetProperty method sets properties that define the device
behavior.

object.SetProperty(_
 guid As String, _
 propertyInfo As Any)

object
Object expression that resolves to a DirectInputDevice object.

guid
Identifier of the property to be set. The following property values are predefined
for an input device and can be passed as strings:
DIPROP_AXISMODE

Sets the axis mode. The value being set (either DIPROPAXISMODE_ABS or
DIPROPAXISMODE_REL from the CONST_DINPUT enumeration) must
be specified in the lData member of the associated DIPROPLONG type.
This setting applies to the entire device, so the lHow member of the
DIPROPLONG type must be set to DIPH_DEVICE.

DIPROP_BUFFERSIZE
Sets the input-buffer size. See Remarks.
This setting applies to the entire device, so the lHow member of the
associated DIPROPLONG type must be set to DIPH_DEVICE.

DIPROP_CALIBRATIONMODE
Allows the application to specify whether DirectInput should retrieve
calibrated or uncalibrated data from an axis. By default, DirectInput retrieves
calibrated data.
Setting the calibration mode for the entire device is equivalent to setting it for
each axis individually.
The lData member of the DIPROPLONG type may be one of the following
values:
DIPROPCALIBRATIONMODE_COOKED: DirectInput should return data
after applying calibration information. This is the default mode.
DIPROPCALIBRATIONMODE_RAW: DirectInput should return raw,
uncalibrated data. This mode is typically used only by Control Panel–type
applications.

IDH__dx_DirectInputDevice.SetProperty_dinput_vb

in.doc – page 210

Note that setting a device into raw mode causes the dead zone, saturation,
and range settings to be ignored.

DIPROP_DEADZONE
Sets the value for the dead zone of a joystick, in the range 0 to 10,000, where
0 indicates there is no dead zone, 5,000 indicates that the dead zone extends
over 50 percent of the physical range of the axis on both sides of center, and
10,000 indicates that the entire physical range of the axis is dead. When the
axis is within the dead zone, it is reported as being at the center of its range.
This setting can be applied to either the entire device or to a specific axis.

DIPROP_RANGE
Sets the range of values an object can possibly report. The minimum and
maximum values are taken from the lMin and lMax members of the
associated DIPROPRANGE type.
For some devices, this is a read-only property.
You cannot set a reverse range; lMax must be greater than lMin.

DIPROP_SATURATION
Sets the value for the saturation zones of a joystick, in the range 0 to 10,000.
The saturation level is the point at which the axis is considered to be at its
most extreme position. For example, if the saturation level is set to 9,500,
then the axis reaches the extreme of its range when it has moved 95 percent
of the physical distance from its center position (or from the dead zone).
This setting can be applied to either the entire device or to a specific axis.

propertyInfo
A DIPROPLONG type containing data for properties that take a single value,
or a DIPROPRANGE type containing data for properties that take a pair of
values.

Error Codes
If the method fails, an error is raised and Err.Number may be one of the following
error codes:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND
DIERR_UNSUPPORTED

Remarks
The buffer size determines the amount of data that the buffer can hold between calls
to the DirectInputDevice.GetDeviceData method before data is lost. This value
may be set to 0 to indicate that the application will not be reading buffered data from
the device. If the buffer size in the lData member of the DIPROPLONG type is too
large to be supported by the device, the largest possible buffer size is set. To

in.doc – page 211

determine whether the requested buffer size was set, retrieve the buffer-size property
and compare the result with the value you previously attempted to set.

See Also
DirectInputDevice.GetProperty

DirectInputDevice.Unacquire
[This is preliminary documentation and subject to change.]

The DirectInputDevice.Unacquire method releases access to the device.

object.Unacquire()

object
Object expression that resolves to a DirectInputDevice object.

Error Codes
None.

See Also
DirectInputDevice.Acquire

DirectInputDeviceInstance
[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance class is used to obtain information about an
instance of a DirectInput device.

An object of this class is returned by the DirectInputDevice.GetDeviceInfo and
DirectInputEnumDevices.GetItem method.

The DirectInputDeviceInstance class has the following methods:

Information GetDevType
GetGuidInstance
GetGuidProduct
GetInstanceName
GetProductName
GetUsage
GetUsagePage

IDH__dx_DirectInputDevice.Unacquire_dinput_vb

in.doc – page 212

DirectInputDeviceInstance.GetDev
Type

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetDevType method retrieves the device type and
subtype.

object.GetDevType() As Long

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
The method returns a device type specifier. This value is a combination of a
type, subtype, and optionally DIDEVTYPE_HID, which specifies a Human
Interface Device. The following constants are from the
CONST_DIDEVICETYPE enumeration.
Device Types
DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).
DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.
DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.
DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.
Mouse subtypes
DIDEVTYPEMOUSE_UNKNOWN

The subtype could not be determined.
DIDEVTYPEMOUSE_TRADITIONAL

The device is a traditional mouse.
DIDEVTYPEMOUSE_FINGERSTICK

The device is a fingerstick.
DIDEVTYPEMOUSE_TOUCHPAD

The device is a touchpad.
DIDEVTYPEMOUSE_TRACKBALL

The device is a trackball.
Keyboard subtypes
DIDEVTYPEKEYBOARD_UNKNOWN

The subtype could not be determined.
DIDEVTYPEKEYBOARD_PCXT

IBM PC/XT 83-key keyboard.

in.doc – page 213

DIDEVTYPEKEYBOARD_OLIVETTI
Olivetti 102-key keyboard.

DIDEVTYPEKEYBOARD_PCAT
IBM PC/AT 84-key keyboard.

DIDEVTYPEKEYBOARD_PCENH
IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.

DIDEVTYPEKEYBOARD_NOKIA1050
Nokia 1050 keyboard.

DIDEVTYPEKEYBOARD_NOKIA9140
Nokia 9140 keyboard.

DIDEVTYPEKEYBOARD_NEC98
Japanese NEC PC98 keyboard.

DIDEVTYPEKEYBOARD_NEC98LAPTOP
Japanese NEC PC98 laptop keyboard.

DIDEVTYPEKEYBOARD_NEC98106
Japanese NEC PC98 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPAN106
Japanese 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPANAX
Japanese AX keyboard.

DIDEVTYPEKEYBOARD_J3100
Japanese J3100 keyboard.

Joystick Subtypes
DIDEVTYPEJOYSTICK_UNKNOWN

The subtype could not be determined.
DIDEVTYPEJOYSTICK_TRADITIONAL

A traditional joystick.
DIDEVTYPEJOYSTICK_FLIGHTSTICK

A joystick optimized for flight simulation.
DIDEVTYPEJOYSTICK_GAMEPAD

A device whose primary purpose is to provide button input.
DIDEVTYPEJOYSTICK_RUDDER

A device for yaw control.
DIDEVTYPEJOYSTICK_WHEEL

A steering wheel.
DIDEVTYPEJOYSTICK_HEADTRACKER

A device that tracks the movement of the user's head.
HID
DIDEVTYPE_HID

The device uses the Human Interface Device (HID) protocol.

in.doc – page 214

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To look for a particular subtype of device such as a wheel, you should check both the
type and the subtype.

DirectInputDeviceInstance.GetGui
dInstance

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetGuidInstance method returns the unique
identifier for the instance of the device.

object.GetGuidInstance() As String

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
The method returns the GUID for the device instance, in string form.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
An application can save the instance GUID into a configuration file and use it at a
later time. Instance GUIDs are specific to a particular computer. An instance GUID
obtained from one computer is unrelated to instance GUIDs on another.

See Also
DirectInputDeviceInstance.GetGuidProduct, Using GUIDs

DirectInputDeviceInstance.GetGui
dProduct

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetGuidProduct method retrieves the
manufacturer's unique identifier for the device.

in.doc – page 215

object.GetGuidProduct() As String

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
The method returns the GUID for the product, in string form. This identifier is
established by the manufacturer of the device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceInstance.GetGuidInstance, Using GUIDs

DirectInputDeviceInstance.GetInst
anceName

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetInstanceName method retrieves the name of
the device instance.

object.GetInstanceName() As String

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
The method returns the friendly name for the instance—for example, "Joystick 1."

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceInstance.GetProductName

in.doc – page 216

DirectInputDeviceInstance.GetPro
ductName

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetProductName method retrieves the product
name of the device.

object.GetProductName() As String

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
The method returns the friendly name for the product—for example, "Microsoft
SideWinder".

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceInstance.GetInstanceName

DirectInputDeviceInstance.GetUsa
ge

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetUsage method retrieves the usage code for
Human Interface Devices.

object.GetUsage() As Integer

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
If the device is a HID, the method returns the usage code.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

in.doc – page 217

See Also
DirectInputDeviceInstance.GetUsagePage

DirectInputDeviceInstance.GetUsa
gePage

[This is preliminary documentation and subject to change.]

The DirectInputDeviceInstance.GetUsagePage method retrieves the usage page for
Human Interface Devices.

object.GetUsagePage() As Integer

object
Object expression that resolves to a DirectInputDeviceInstance object.

Return Values
If the device is a HID, the method returns the HID usage page.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceInstance.GetUsage

DirectInputDeviceObjectInsta
nce

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance class represents an object on a DirectInput
device, such as a button or axis.

A DirectInputDeviceObjectInstance object is returned by the
DirectInputDevice.GetObjectInfo and DirectInputEnumDeviceObjects.GetItem
methods.

This class has the following methods:

Information GetCollectionNumber
GetDesignatorIndex
GetDimension
GetExponent

in.doc – page 218

GetFlags
GetGuidType
GetName
GetOfs
GetType
GetUsage
GetUsagePage

DirectInputDeviceObjectInstance.
GetCollectionNumber

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetCollectionNumber method retrieves the
number of the HID link collection to which the device object belongs.

object.GetCollectionNumber() As Integer

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
If the device is a Human Interface Device and the object belongs to a collection, the
method returns the number of the collection.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.
GetDesignatorIndex

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetDesignatorIndex method retrieves the
designator index for an object on a Human Interface Device.

object.DirectInputDeviceObjectInstance.GetDesignatorIndex()
_
 As Integer

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

in.doc – page 219

Return Values
The method returns an index that refers to a designator in the HID physical
descriptor. This number can be passed to functions in the HID parsing library to
obtain additional information about the device object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.
GetDimension

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetDimension method retrieves the
dimensional units in which the object's value is reported.

object.DirectInputDeviceObjectInstance.GetDimension() _
 As Long

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method returns the dimensional units in which the object's value is reported, if
known, or 0 if not known. Applications can use this field to distinguish between, for
example, the position and velocity of a control.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceObjectInstance.GetExponent

DirectInputDeviceObjectInstance.
GetExponent

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetExponent method retrieves the
exponent to associate with the dimensional units of the device object.

object.DirectInputDeviceObjectInstance.GetExponent() _
 As Integer

in.doc – page 220

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method returns the exponent to associate with the dimension, if known.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceObjectInstance.GetDimension

DirectInputDeviceObjectInstance.
GetFlags

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetFlags method retrieves the flags
associated with the device object.

object.GetFlags() As Long

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method retrieves flags describing miscellaneous attributes of the object. The
return value may consist of one or more members of the
CONST_DIDEVICEOBJINSTANCEFLAGS enumeration.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.
GetGuidType

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetGuidType method retrieves the unique
identifier of the object type.

object.GetGuidType() As String

in.doc – page 221

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method may return one of the following string identifiers, representing the
unique identifier for the object type. If the object type has a GUID not represented in
the following list, a string representing the actual GUID will be returned. If the
object type does not have a GUID, an empty string will be returned.

GUID_XAxis
The horizontal axis. For example, it may represent the left-right motion of a
mouse.

GUID_YAxis
The vertical axis. For example, it may represent the forward-backward
motion of a mouse.

GUID_ZAxis
The z-axis. For example, it may represent rotation of the wheel on a mouse,
or movement of a throttle control on a joystick.

GUID_RxAxis
Rotation around the x-axis.

GUID_RyAxis
Rotation around the y-axis.

GUID_RzAxis
Rotation around the z-axis (often a rudder control).

GUID_Slider
A slider axis.

GUID_Button
A button on a mouse.

GUID_Key
A key on a keyboard.

GUID_POV
A point-of-view indicator or "hat".

GUID_Unknown
Unknown.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

in.doc – page 222

DirectInputDeviceObjectInstance.
GetName

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetName method retrieves the friendly
name of the device object.

object.GetName() As String

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method retrieves the name of the object—for example, "X-Axis" or "Right
Shift."

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.
GetOfs

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetOfs method retrieves the offset of the
device object's data within the data format for the device.

object.GetOfs() As Long

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method returns the offset within the data format at which data is reported for
this object. This value can be used to identify the object in method calls and types
that accept the DIPH_BYOFFSET flag.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

in.doc – page 223

See Also
DirectInputDevice.GetObjectInfo, DIPROPLONG, DIPROPRANGE

DirectInputDeviceObjectInstance.
GetType

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetType method retrieves the type and
instance identifier of the object.

object.GetType() As Long

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
Device type that describes the object. It is a combination of
CONST_DIDFTFLAGS flags that describe the object type (axis, button, and so
forth) and contains the object instance number in the middle 16 bits.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To extract the object instance ID, use the following operation:

Dim ObjID as Long
ObjID = (diObj.GetType And &HFFFF00) \ 256

DirectInputDeviceObjectInstance.
GetUsage

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetUsage method retrieves the Human
Interface Device usage code for the device object.

object.GetUsage() As Integer

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

in.doc – page 224

Return Values
The method returns the HID usage associated with the object, if known. Human
Interface Devices will always report a usage. Non-HID devices may optionally
report a usage; if they do not, then the value of this member will be zero.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceObjectInstance.GetUsagePage

DirectInputDeviceObjectInstance.
GetUsagePage

[This is preliminary documentation and subject to change.]

The DirectInputDeviceObjectInstance.GetUsagePage method retrieves the Human
Interface Device usage page for the device object.

object.GetUsagePage() As Integer

object
Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values
The method returns the HID usage page associated with the object, if known. Human
Interface Devices will always report a usage page. Non-HID devices may optionally
report a usage page; if they do not, then the value of this member will be zero.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectInputDeviceObjectInstance.GetUsage

DirectInputEnumDeviceObjec
ts

[This is preliminary documentation and subject to change.]

IDH__dx_DirectInputEnumDeviceObjects_dinput_vb

in.doc – page 225

The DirectInputEnumDeviceObjects class enumerates the DirectInputDevice
objects installed on a system. This object is created and filled with data as a result of
a call to DirectInputDevice.GetDeviceObjectsEnum method.

This class has the following methods:

Information GetCount
GetItem

DirectInputEnumDeviceObjects.Ge
tCount

[This is preliminary documentation and subject to change.]

The DirectInputEnumDeviceObjects.GetCount method returns the number of
items in the DirectInputEnumDeviceObjects collection.

object.GetCount() As Long

object
Object expression that resolves to a DirectInputEnumDeviceObjects object.

Return Values
The method returns the number of device objects enumerated for the device.

Error Codes
None.

DirectInputEnumDeviceObjects.Ge
tItem

[This is preliminary documentation and subject to change.]

The DirectInputEnumDeviceObjects.GetItem method retrieves an object
describing the specified device object.

object.GetItem(index As Long) _
 As DirectInputDeviceObjectInstance

object
Object expression that resolves to a DirectInputEnumDeviceObjects object.

index
Index of the enumerated item to retrieve.

IDH__dx_DirectInputEnumDeviceObjects.GetCount_dinput_vb
IDH__dx_DirectInputEnumDeviceObjects.GetItem_dinput_vb

in.doc – page 226

Return Values
The method returns a DirectInputDeviceObjectInstance object whose methods can
be used to retrieve information about the device object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To get the number of entries in the DirectInputEnumDeviceObjects first call the
DirectInputEnumDeviceObjects.GetCount method.

DirectInputEnumDevices
[This is preliminary documentation and subject to change.]

The DirectInputEnumDevices enumerates the DirectInput devices installed on a
system. This object is created and filled with data as a result of a call to
DirectInput.GetDIEnumDevices method.

This class has two methods.

This class has the following methods:

Information GetCount
GetItem

DirectInputEnumDevices.GetCount
[This is preliminary documentation and subject to change.]

The DirectInputEnumDevices.GetCount method returns the number of DirectInput
devices in the DirectInputEnumDevices collection.

object.GetCount() As Long

object
Object expression that resolves to a DirectInputEnumDevices object.

Return Values
If the method succeeds, the number of DirectInput devices in the
DirectInputEnumDevices collection is returned.

IDH__dx_DirectInputEnumDevices_dinput_vb
IDH__dx_DirectInputEnumDevices.GetCount_dinput_vb

in.doc – page 227

Error Codes
None.

DirectInputEnumDevices.GetItem
[This is preliminary documentation and subject to change.]

The DirectInputEnumDevices.GetItem method returns information about an
enumerated device.

object.GetItem(index As Long) As DirectInputDeviceInstance

object
Object expression that resolves to a DirectInputEnumDevices object.

index
The specific DirectInput device data entry in DirectInputEnumDevices.

Return Values
The method returns a DirectInputDeviceInstance object whose methods can be
used to retrieve information about the device.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
To get the number of entries in DirectInputEnumDevices first call the
DirectInputEnumDevices.GetCount method.

Types
[This is preliminary documentation and subject to change.]

This section contains information on the following types used with DirectInput:

· DIDATAFORMAT
· DIDEVCAPS
· DIDEVICEOBJECTDATA
·· DIJOYSTATE
· DIJOYSTATE2
· DIKEYBOARDSTATE
· DIMOUSESTATE

IDH__dx_DirectInputEnumDevices.GetItem_dinput_vb

in.doc – page 228

· DIOBJECTDATAFORMAT
· DIPROPLONG
· DIPROPRANGE

DIDATAFORMAT
[This is preliminary documentation and subject to change.]

The DIDATAFORMAT type carries information describing a device's data format.
This type is used with the DirectInputDevice.SetDataFormat method.

Type DIDATAFORMAT
 dataSize As Long
 lFlags As Long
 lObjSize As Long
 numObjs As Long
End Type

dataSize
Size of a data packet returned by the device, in bytes. This value must be a
multiple of 4 and must exceed the largest offset value for an object's data within
the data packet.

lFlags
Flags describing other attributes of the data format. This value can be one of the
CONST_DIDATAFORMATFLAGS enumeration.

lObjSize
Size of the DIOBJECTDATAFORMAT type, in bytes.

numObjs
Number of objects for which data is to be returned.

Remarks
Applications need to create a DIDATAFORMAT type only for nonstandard
devices. For the mouse, keyboard, and joystick, you set the data format by using
DirectInputDevice.SetCommonDataFormat.

DIDEVCAPS
[This is preliminary documentation and subject to change.]

The DIDEVCAPS type contains information about a DirectInput device's
capabilities. This type is used with the DirectInputDevice.GetCapabilities method.

Type DIDEVCAPS
IDH__dx_DIDATAFORMAT_dinput_vb
IDH__dx_DIDEVCAPS_dinput_vb

in.doc – page 229

 lAxes As Long
 lButtons As Long
 lDevType As CONST_DIDEVICETYPE
 lDriverVersion As Long
 lFFMinTimeResolution As Long
 lFFSamplePeriod As Long
 lFirmwareRevision As Long
 lFlags As CONST_DIDEVCAPSFLAGS
 lHardwareRevision As Long
 lPOVs As Long
End Type

lAxes
Number of axes available on the device.

lButtons
Number of buttons available on the device.

lDevType
One of the constants of the CONST_DIDEVICETYPE enumeration specifying
the device type. This member can contain values identical to those returned by
the DirectInputDeviceInstance.GetDevType method.

lDriverVersion
The version number of the device driver.

lFFMinTimeResolution
Force feedback time resolution. DirectX for Visual Basic does not support force
feedback.

lFFSamplePeriod
Force feedback sample period. DirectX for Visual Basic does not support force
feedback.

lFirmwareRevision
Specifies the firmware revision of the device.

lFlags
Flags associated with the device. This value can be a combination of the
constants of the CONST_DIDEVCAPSFLAGS enumeration.

lHardwareRevision
The hardware revision of the device.

lPOVs
Number of point-of-view controllers available on the device.

Remarks
The semantics of version numbers are left to the manufacturer of the device. The
only guarantee is that newer versions will have larger numbers.

in.doc – page 230

DIDEVICEOBJECTDATA
[This is preliminary documentation and subject to change.]

The DIDEVICEOBJECTDATA type contains raw buffered device information.
This type is used with the DirectInputDevice.GetDeviceData method.

Type DIDEVICEOBJECTDATA
 lData As Long
 lOfs As Long
 lSequence As Long
 lTimeStamp As Long
End Type

lData
Data obtained from the device.
For axis input, if the device is in relative axis mode, then the relative axis
motion is reported. If the device is in absolute axis mode, then the absolute axis
coordinate is reported.
For button input, only the low byte of lData is significant. The high bit of the
low byte is set if the button went down; it is clear if the button went up.

lOfs
Offset into the current data format of the object whose data is being reported—
that is, the location where the data would have been stored if it had been
obtained by a call to the DirectInputDevice.GetDeviceStateX method where X
refers to the specific device, for instance GetDeviceStateMouse. If the device is
accessed as a keyboard, you can determine which key generated the event by
comparing this value with the members of the CONST_DIKEYFLAGS
enumeration. For the mouse and joystick, the value in lOfs is equivalent to the
byte offset of the button or axis within the DIMOUSESTATE, DIJOYSTATE,
or DIJOYSTATE2 type (depending on the data format that was established by
using DirectInputDevice.SetCommonDataFormat.) Constants for these offsets
are contained in the CONST_DIMOUSEOFS and
CONST_DIJOYSTICKOFS enumerations. If a custom data format has been
set by using DirectInputDevice.SetDataFormat, then lOfs is the offset of the
device object's place in the custom data format.

lSequence
DirectInput sequence number for this event. All input events are assigned an
increasing sequence number. This allows events from different devices to be
sorted chronologically. Since this value can wrap around, care must be taken
when comparing two sequence numbers.

lTimeStamp
System time (as returned by the Win32 GetTickCount function) at which the
input event was generated, in milliseconds. This value wraps around
approximately every 50 days.

IDH__dx_DIDEVICEOBJECTDATA_dinput_vb

in.doc – page 231

DIJOYSTATE
[This is preliminary documentation and subject to change.]

The DIJOYSTATE type contains information about the state of a joystick device.
(This term includes other controllers such as game pads and steering wheels). This
type is used with the DirectInputDevice.GetDeviceStateJoystick method.

Type DIJOYSTATE
 buttons(0 To 31) As Byte
 POV(0 To 3) As Long
 rx As Long
 ry As Long
 rz As Long
 slider(0 To 1) As Long
 x As Long
 y As Long
 z As Long
End Type

buttons
Array of button states. The high-order bit of the byte is set if the corresponding
button is down and clear if the button is up or does not exist.

POV
The current position of up to four direction controllers (such as point-of-view
hats). The position is indicated in hundredths of degrees clockwise from north
(away from the user). The center position is normally reported as -1; but see
Remarks. For indicators that have only five positions, the value for a controller
will be -1, 0, 9,000, 18,000, or 27,000.

rx
Information about the joystick x-axis rotation. If the joystick does not have this,
the value is 0.

ry
Information about the joystick y-axis rotation. If the joystick does not have this
axis, the value is 0.

rz
Information about the joystick z-axis rotation (often called the rudder). If the
joystick does not have this axis, the value is 0.

slider
Two additional axis values whose semantics depend on the joystick. Use the
DirectInputDevice.GetObjectInfo method to obtain semantic information
about these values.

x

IDH__dx_DIJOYSTATE_dinput_vb

in.doc – page 232

Information about the joystick x-axis (usually the left-right movement of a
stick).

y
Information about the joystick y-axis (usually the forward-backward movement
of a stick).

z
Information about the joystick z-axis (often the throttle control). If the joystick
does not have this axis, the value is zero.

Remarks
You must prepare the device for joystick-style access by calling the
DirectInputDevice.SetCommonDataFormat method, passing the
DIFORMAT_JOYSTICK format constant.

If an axis is in relative mode, then the appropriate member contains the change in
position. If it is in absolute mode, then the member contains the absolute axis
position.

Some drivers report the centered position of the POV indicator as 65,535. You can
determine whether an indicator is centered as follows:

Dim POVCentered as Boolean
POVCentered = MyDijoystate.POV(0) And &HFFFF;

See Also
DIJOYSTATE2

DIJOYSTATE2
[This is preliminary documentation and subject to change.]

The DIJOYSTATE2 type contains information about the state of a joystick device
with extended capabilities. This type is used with the
DirectInputDevice.GetDeviceStateJoystick2 method.

Most applications do not need to use this type, which is for highly specialized
controllers including force-feedback devices. For standard game controllers, use the
DIJOYSTATE type and obtain data by calling
DirectInputDevice.GetDeviceStateJoystick.

Type DIJOYSTATE2
 buttons(0 To 31) As Byte
 frx As Long
 fry As Long
 frz As Long

IDH__dx_DIJOYSTATE2_DESC_dinput_vb

in.doc – page 233

 fslider(0 To 1) As Long
 fx As Long
 fy As Long
 fz As Long
 POV(0 To 3) As Long
 rx As Long
 ry As Long
 rz As Long
 slider(0 To 1) As Long
 vrx As Long
 vry As Long
 vrz As Long
 vslider(0 To 1) As Long
 vx As Long
 vy As Long
 vz As Long
 x As Long
 y As Long
 z As Long
End Type

buttons
Array of button states. The high-order bit of the byte is set if the corresponding
button is down and clear if the button is up or does not exist.

frx
Information about the x-axis torque.

fry
Information about the y-axis torque.

frz
Information about the z-axis torque.

fslider
Information about extra axis forces.

fx
Information about the x-axis force.

fy
Information about the y-axis force.

fz
Information about the z-axis force.

POV
The current position of up to four direction controllers (such as point-of-view
hats). The position is indicated in hundredths of degrees clockwise from north
(away from the user). The center position is normally reported as -1; but see
Remarks. For indicators that have only five positions, the value for a controller
will be -1, 0, 9,000, 18,000, or 27,000.

in.doc – page 234

rx
Information about the joystick x-axis rotation. If the joystick does not have this,
the value is 0.

ry
Information about the joystick y-axis rotation. If the joystick does not have this
axis, the value is 0.

rz
Information about the joystick z-axis rotation (often called the rudder). If the
joystick does not have this axis, the value is zero.

slider
Two additional axis values whose semantics depend on the joystick. Use the
DirectInputDevice.GetObjectInfo method to obtain semantic information
about these values.

vrx
Information about the x-axis angular velocity.

vry
Information about the y-axis angular velocity.

vrz
Information about the z-axis angular velocity.

vslider[0 To 1]
Information about extra axis velocities.

vx
Information about the x-axis velocity.

vy
Information about the y-axis velocity.

vz
Information about the z-axis velocity.

x
Information about the joystick x-axis (usually the left-right movement of a
stick).

y
Information about the joystick y-axis (usually the forward-backward movement
of a stick).

z
Information about the joystick z-axis (often the throttle control). If the joystick
does not have this axis, the value is zero.

Remarks
You must prepare the device for access to a joystick with extended capabilities by
calling the DirectInputDevice.SetCommonDataFormat method, passing the
DIFORMAT_JOYSTICK2 data format variable.

in.doc – page 235

If an axis is in relative mode, then the appropriate member contains the change in
position. If it is in absolute mode, then the member contains the absolute axis
position.

Some drivers report the centered position of the POV indicator as 65,535. You can
determine whether an indicator is centered as follows:

Dim POVCentered as Boolean
POVCentered = MyDijoystate2.POV(0) And &HFFFF;

DIKEYBOARDSTATE
[This is preliminary documentation and subject to change.]

The DIKEYBOARDSTATE type contains information about the state of keyboard
keys. This type is used with the DirectInputDevice.GetDeviceStateKeyboard
method.

Type DIKEYBOARDSTATE
 key(0 To 255) As Byte
End Type

key
Array of key states. The array can be indexed by using members of the
CONST_DIKEYFLAGS enumeration. For each key, the high bit is set if the
key is down, and clear if the key is up or does not exist.

Remarks
The following example checks to see if the Esc key is being pressed:

Dim keyState as DIKEYBOARDSTATE
' diDevice is a valid DirectInputDevice object.

Call diDevice.GetDeviceStateKeyboard(keyState)
If (keyState.key(DIK_ESCAPE) And &H80) Then
 ' Key is down
End If

DIMOUSESTATE
[This is preliminary documentation and subject to change.]

The DIMOUSESTATE type contains information about the state of a mouse device
or another device that is being accessed as if it were a mouse device. This type is
used with the DirectInputDevice.GetDeviceStateMouse method.

IDH__dx_DIKEYBOARDSTATE_dinput_vb
IDH__dx_DIMOUSESTATE_dinput_vb

in.doc – page 236

Type DIMOUSESTATE
 buttons(0 To 3) As Byte
 x As Long
 y As Long
 z As Long
End Type

buttons
Array of button states. The high-order bit of the byte is set if the corresponding
button is down.

x
Information about the mouse x-axis.

y
Information about the mouse y-axis.

z
Information about the mouse z-axis (typically a wheel). If the mouse does not
have a z-axis, then the value is 0.

Remarks
Immediate data is returned in this type from a device that has been prepared by
passing the DIFORMAT_MOUSE constant to the
DirectInputDevice.SetCommonDataFormat method, .

If an axis is in relative mode, then the appropriate member contains the change in
position since the last call to this method. If the axis is in absolute mode, then the
member contains the accumulated relative motion in relation to an arbitrary start
point. The absolute axis position is not meaningful except in comparison with other
absolute axis positions.

DIOBJECTDATAFORMAT
[This is preliminary documentation and subject to change.]

The DIOBJECTDATAFORMAT type contains information about a device object's
data format for use with the DirectInputDevice.SetDataFormat method.

Type DIOBJECTDATAFORMAT {
 lFlags As CONST_DIDEVICEOBJINSTANCEFLAGS
 lOfs As Long
 lType As CONST_DIDFTFLAGS
 strGuid As String
End Type

lFlags

IDH__dx_DIOBJECTDATAFORMAT_dinput_vb

in.doc – page 237

Zero or more of the following values from the
CONST_DIDEVICEOBJINSTANCEFLAGS enumeration.
DIDOI_ASPECTACCEL

The object selected by DirectInput.SetDataFormat must report acceleration
information.

DIDOI_ASPECTFORCE
The object selected by DirectInput.SetDataFormat must report force
information.

DIDOI_ASPECTPOSITION
The object selected by DirectInput.SetDataFormat must report position
information.

DIDOI_ASPECTVELOCITY
The object selected by DirectInput.SetDataFormat must report velocity
information.

lOfs
Byte offset within the data packet where the data for the input source will be
stored. This value must be a multiple of four for Long size data, such as axes. It
can be byte-aligned for buttons.

lType
Device type that describes the object. It is a combination of values from the
CONST_DIDFTFLAGS enumeration describing the object type (axis, button,
and so forth) and containing the object-instance number in the middle 16 bits.

strGuid
Unique identifier for the type of input source. An empty string indicates that any
type of object is permissible.
The following strings can be used in place of actual GUID strings to identify the
type of device object:
GUID_XAxis
GUID_YAxis
GUID_ZAxis
GUID_RxAxis
GUID_RyAxis
GUID_RzAxis
GUID_Slider
GUID_Button
GUID_Key
GUID_POV

DIPROPLONG
[This is preliminary documentation and subject to change.]

The DIPROPLONG type is used to store property information to be set on or
retrieved from the input device by using the DirectInputDevice.SetProperty and
DirectInputDevice.GetProperty methods, where the property is a single value.

in.doc – page 238

Type DIPROPLONG
 lData As Long
 lHow As Long
 lObj As Long
 lSize As Long
End Type

lData
The property-specific value being set or retrieved.

lHow
Value specifying how the lObj parameter should be interpreted. This value may
be one of the members of the CONST_DIPHFLAGS enumeration.
If lObj is DIPROP_AXISMODE or DIPROP_BUFFERSIZE, lHow should be
DIPH_DEVICE, because these properties cannot be set for an individual object.

lObj
Object for which the property is to be accessed.
If the lHow member is DIPH_BYID, this member must be the identifier for the
object whose property setting is to be set or retrieved. This value can be
retrieved for the object by using the
DirectInputDeviceObjectInstance.GetType method.
If the lHow member is DIPH_BYOFFSET, this member must be a data format
offset for the object whose property setting is to be set or retrieved. This value
can be obtained by using the DirectInputDeviceObjectInstance.GetOfs
method.
If lHow is DIPH_DEVICE, this value should be 0.

lSize
Size of this type—that is, Len(DIPROPLONG).

Remarks
All members must be initialized with the proper values before the type is passed to
the SetProperty method. All members except lData must be initialized with the
proper values before the type is passed to GetProperty.

See Also
DIPROPRANGE

DIPROPRANGE
[This is preliminary documentation and subject to change.]

The DIPROPRANGE type is used to store property information to be set on or
retrieved from the input device by using the DirectInputDevice.SetProperty and
DirectInputDevice.GetProperty methods, where the property is a range of values.

in.doc – page 239

Type DIPROPRANGE
 lHow As Long
 lMax As Long
 lMin As Long
 lObj As Long
 lSize As Long
End Type

lHow
Value specifying how the lObj member should be interpreted. This value may
be one of the members of the CONST_DIPHFLAGS enumeration.

lMax
Upper limit of the range. If the range of the device is unrestricted, this value will
be DIPROPRANGE_NOMAX (from the CONST_DINPUT enumeration) when
the DirectInputDevice.GetProperty method returns.

lMin
Lower limit of the range. If the range of the device is unrestricted, this value
will be DIPROPRANGE_NOMIN (from the CONST_DINPUT
enumeration)when the DirectInputDevice.GetProperty method returns.

lObj
Object for which the property is to be accessed.
If the lHow member is DIPH_BYID, this member must be the identifier for the
object whose property setting is to be set or retrieved. This value can be
retrieved for the object by using the
DirectInputDeviceObjectInstance.GetType method.
If the lHow member is DIPH_BYOFFSET, this member must be a data format
offset for the object whose property setting is to be set or retrieved. This value
can be obtained by using the DirectInputDeviceObjectInstance.GetOfs
method.
If lHow is DIPH_DEVICE, this value should be 0.

lSize
Size of this type—that is, Len(DIPROPRANGE).

See Also
DIPROPLONG

Enumerations
[This is preliminary documentation and subject to change.]

DirectInput uses enumerations to group constants in order to take advantage of the
statement completion feature of Visual Basic. The enumerations used in DirectInput
are:

in.doc – page 240

· CONST_DICOMMONDATAFORMATS
· CONST_DIDATAFORMATFLAGS
· CONST_DIDEVCAPSFLAGS
· CONST_DIDEVICEOBJINSTANCEFLAGS
· CONST_DIDEVICETYPE
· CONST_DIDFTFLAGS
· CONST_DIDGDDFLAGS
· CONST_DIENUMDEVICESFLAGS
· CONST_DIJOYSTICKOFS
· CONST_DIKEYFLAGS
· CONST_DIMOUSEOFS
· CONST_DINPUT ›
· CONST_DINPUTERR
· CONST_DIPHFLAGS
· CONST_DISCLFLAGS

CONST_DICOMMONDATAFOR
MATS

[This is preliminary documentation and subject to change.]

Members of the CONST_DICOMMONDATAFORMATS enumeration are used to
specify the data format in the format parameter of the
DirectInputDevice.SetCommonDataFormat method.

Enum CONST_DICOMMONDATAFORMATS
 DIFORMAT_JOYSTICK = 3
 DIFORMAT_JOYSTICK2 = 4
 DIFORMAT_KEYBOARD = 1
 DIFORMAT_MOUSE = 2
End Enum

DIFORMAT_JOYSTICK
Joystick whose state data can be received in a DIJOYSTATE type.

DIFORMAT_JOYSTICK2
Joystick with extended capabilities whose state data can be received in a
DIJOYSTATE2 type.

DIFORMAT_KEYBOARD
Keyboard whose state data can be received in a DIKEYBOARDSTATE type.

DIFORMAT_MOUSE
Mouse whose state data can be received in a DIMOUSESTATE type.

in.doc – page 241

CONST_DIDATAFORMATFLAG
S

[This is preliminary documentation and subject to change.]

The CONST_DIDATAFORMATFLAGS enumeration is used in the lFlags
member of the DIDATAFORMAT type to describe additional attributes of the data
format.

Enum CONST_DIDATAFORMATFLAGS
 DIDF_ABSAXIS = 1
 DIDF_RELAXIS = 2
End Enum

DIDF_ABSAXIS
The axes are in absolute mode. Setting this flag in the data format is equivalent
to manually setting the axis mode property using the
DirectInputDevice.SetProperty method. This may not be combined with
DIDF_RELAXIS flag.

DIDF_RELAXIS
The axes are in relative mode. Setting this flag in the data format is equivalent
to manually setting the axis mode property using the
DirectInputDevice.SetProperty method. This may not be combined with the
DIDF_ABSAXIS flag.

CONST_DIDEVCAPSFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DIDEVCAPSFLAGS enumeration is used in the lFlags member of
the DIDEVCAPS type to describe the DirectInput device.

Enum CONST_DIDEVCAPSFLAGS\
 DIDC_ATTACHED = 1
 DIDC_DEADBAND = 16384 (&H4000)
 DIDC_EMULATED = 4
 DIDC_FFATTACK = 512 (&H200)
 DIDC_FFFADE = 1024 (&H400)
 DIDC_FORCEFEEDBACK = 256 (&H100)
 DIDC_POLLEDDATAFORMAT = 8
 DIDC_POLLEDDEVICE = 2
 DIDC_POSNEGCOEFFICIENTS = 4096 (&H1000)
 DIDC_POSNEGSATURATION = 8192 (&H2000)
 DIDC_SATURATION = 2048 (&H800)

IDH__dx_CONST_DIDATAFORMATFLAGS_dinput_vb
IDH__dx_CONST_DIDEVCAPSFLAGS_dinput_vb

in.doc – page 242

End Enum

DIDC_ATTACHED
The device is physically attached.

DIDC_DEADBAND
The device supports deadband for at least one force-feedback condition.

DIDC_EMULATED
Device functionality is emulated.

DIDC_FFATTACK
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

DIDC_FFFADE
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

DIDC_FORCEFEEDBACK
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

DIDC_POLLEDDATAFORMAT
At least one object in the current data format is polled rather than interrupt-
driven. For these objects, the application must explicitly call the
DirectInputDevice.Poll method in order to obtain data.

DIDC_POLLEDDEVICE
At least one object on the device is polled rather than interrupt-driven. For these
objects, the application must explicitly call the DirectInputDevice.Poll method
in order to obtain data. HID devices may contain a mixture of polled and non-
polled objects.

DIDC_POSNEGCOEFFICIENTS
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

DIDC_POSNEGSATURATION
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

DIDC_SATURATION
For force feedback, which is not currently implemented in DirectX for Visual
Basic.

CONST_DIDEVICEOBJINSTANC
EFLAGS

[This is preliminary documentation and subject to change.]

Members of the CONST_DIDEVICEOBJINSTANCEFLAGS enumeration
describe device object capabilities and are returned by the

IDH__dx_CONST_DIDEVICEOBJINSTACEFLAGS_dinput_vb

in.doc – page 243

DirectInputDeviceObjectInstance.GetFlags method. They are also present in the
DIOBJECTDATAFORMAT type passed to the
DirectInputDevice.SetDataFormat method

Enum CONST_DIDEVICEINSTANCEFLAGS
 DIDOI_ASPECTACCEL = 768 (&H300)
 DIDOI_ASPECTFORCE = 1024 (&H400)
 DIDOI_ASPECTMASK = 3840 (&HF00)
 DIDOI_ASPECTPOSITION = 256 (&H100)
 DIDOI_ASPECTVELOCITY = 512 (&H200)
 DIDOI_FFACTUATOR = 1
 DIDOI_FFEFFECTTRIGGER = 2
 DIDOI_POLLED = 32768 (&H8000)
End Enum

DIDOI_ASPECTACCEL
The object reports acceleration information.

DIDOI_ASPECTFORCE
The object reports force information.

DIDOI_ASPECTMASK
The bits that are used to report aspect information. An object can represent at
most one aspect.

DIDOI_ASPECTPOSITION
The object reports position information.

DIDOI_ASPECTVELOCITY
The object reports velocity information.

DIDOI_FFACTUATOR
The object can have force-feedback effects applied to it.

DIDOI_FFEFFECTTRIGGER
The object can trigger playback of force-feedback effects.

DIDOI_POLLED
The object does not return data until the DirectInputDevice.Poll method is
called.

Remarks
The only one of these flags that is of interest for applications developed with
DirectX for Visual Basic is DIDIO_POLLED.

CONST_DIDEVICETYPE
[This is preliminary documentation and subject to change.]

IDH__dx_CONST_DIDEVICETYPE_dinput_vb

in.doc – page 244

Members of the CONST_DIDEVICETYPE enumeration are used to identify the
input device type and subtype. A packed value representing the type and subtype is
returned by the DirectInputDeviceInstance.GetDevType method and in the
lDevType member of the DIDEVCAPS type returned by
DirectInputDevice.GetCapabilities. A values representing a primary type is passed
as the deviceType parameter to the DirectInput.GetDIEnumDevices method.

For a table of members listed by type and subtype, see
DirectInputDeviceInstance.GetDevType.

Enum CONST_DIDEVICETYPE
 DIDEVTYPE_DEVICE = 1
 DIDEVTYPE_HID = 65536 (&H10000)
 DIDEVTYPE_JOYSTICK = 4
 DIDEVTYPE_KEYBOARD = 3
 DIDEVTYPE_MOUSE = 2
 DIDEVTYPEJOYSTICK_FLIGHTSTICK = 3
 DIDEVTYPEJOYSTICK_GAMEPAD = 4
 DIDEVTYPEJOYSTICK_HEADTRACKER = 7
 DIDEVTYPEJOYSTICK_RUDDER = 5
 DIDEVTYPEJOYSTICK_TRADITIONAL = 2
 DIDEVTYPEJOYSTICK_UNKNOWN = 1
 DIDEVTYPEJOYSTICK_WHEEL = 6
 DIDEVTYPEKEYBOARD_J3100 = 12
 DIDEVTYPEKEYBOARD_JAPAN106 = 10
 DIDEVTYPEKEYBOARD_JAPANAX = 11
 DIDEVTYPEKEYBOARD_NEC98 = 7
 DIDEVTYPEKEYBOARD_NEC98106 = 9
 DIDEVTYPEKEYBOARD_NEC98LAPTOP = 8
 DIDEVTYPEKEYBOARD_NOKIA1050 = 5
 DIDEVTYPEKEYBOARD_NOKIA9140 = 6
 DIDEVTYPEKEYBOARD_OLIVETTI = 2
 DIDEVTYPEKEYBOARD_PCAT = 3
 DIDEVTYPEKEYBOARD_PCENH = 4
 DIDEVTYPEKEYBOARD_PCXT = 1
 DIDEVTYPEKEYBOARD_UNKNOWN = 0
 DIDEVTYPEMOUSE_FINGERSTICK = 3
 DIDEVTYPEMOUSE_TOUCHPAD = 4
 DIDEVTYPEMOUSE_TRACKBALL = 5
 DIDEVTYPEMOUSE_TRADITIONAL = 2
 DIDEVTYPEMOUSE_UNKNOWN = 1
End Enum

DIDEVTYPE_DEVICE
A device that does not fall into the other categories.

DIDEVTYPE_HID
The device uses the Human Interface Device (HID) protocol.

in.doc – page 245

DIDEVTYPE_JOYSTICK
A joystick or similar device, such as a steering wheel.

DIDEVTYPE_KEYBOARD
A keyboard or keyboard-like device.

DIDEVTYPE_MOUSE
A mouse or mouse-like device (such as a trackball).

DIDEVTYPEJOYSTICK_FLIGHTSTICK
A joystick optimized for flight simulation.

DIDEVTYPEJOYSTICK_GAMEPAD
A device whose primary purpose is to provide button input.

DIDEVTYPEJOYSTICK_HEADTRACKER
A device that tracks the movement of the user's head.

DIDEVTYPEJOYSTICK_RUDDER
A device for yaw control.

DIDEVTYPEJOYSTICK_TRADITIONAL
A traditional joystick.

DIDEVTYPEJOYSTICK_UNKNOWN
The subtype could not be determined.

DIDEVTYPEJOYSTICK_WHEEL
A steering wheel.

DIDEVTYPEKEYBOARD_J3100
Japanese J3100 keyboard.

DIDEVTYPEKEYBOARD_JAPAN106
Japanese 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPANAX
Japanese AX keyboard.

DIDEVTYPEKEYBOARD_NEC98
Japanese NEC PC98 keyboard.

DIDEVTYPEKEYBOARD_NEC98106
Japanese NEC PC98 106-key keyboard.

DIDEVTYPEKEYBOARD_NEC98LAPTOP
Japanese NEC PC98 laptop keyboard.

DIDEVTYPEKEYBOARD_NOKIA1050
Nokia 1050 keyboard.

DIDEVTYPEKEYBOARD_NOKIA9140
Nokia 9140 keyboard.

DIDEVTYPEKEYBOARD_OLIVETTI
Olivetti 102-key keyboard.

DIDEVTYPEKEYBOARD_PCAT
IBM PC/AT 84-key keyboard.

DIDEVTYPEKEYBOARD_PCENH
IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.

in.doc – page 246

DIDEVTYPEKEYBOARD_PCXT
IBM PC/XT 83-key keyboard.

DIDEVTYPEKEYBOARD_UNKNOWN
The subtype could not be determined.

DIDEVTYPEMOUSE_FINGERSTICK
The device is a fingerstick.

DIDEVTYPEMOUSE_TOUCHPAD
The device is a touchpad.

DIDEVTYPEMOUSE_TRACKBALL
The device is a trackball.

DIDEVTYPEMOUSE_TRADITIONAL
The device is a traditional mouse.

DIDEVTYPEMOUSE_UNKNOWN
The subtype could not be determined.

CONST_DIDFTFLAGS
[This is preliminary documentation and subject to change.]

Members of the CONST_DIDFTFLAGS enumeration are used in the flags
parameter of the DirectInputDevice.GetDeviceObjectsEnum method to specify the
type of device object to enumerate. These values are also returned by the
DirectInputDeviceObjectInstance.GetFlags method to describe capabilities of the
device object.

Enum CONST_DIDFTFLAGS
 DIDFT_ABSAXIS = 2
 DIDFT_ALL = 0
 DIDFT_ANYINSTANCE = 16776960 (&HFFFF00)
 DIDFT_AXIS = 3
 DIDFT_BUTTON = 12
 DIDFT_COLLECTION = 64 (&H40)
 DIDFT_FFACTUATOR = 16777216 (&H1000000)
 DIDFT_FFEFFECTTRIGGER = 33554432 (&H2000000)
 DIDFT_INSTANCEMASK = 16776960(&HFFFF00)
 DIDFT_NOCOLLECTION = 16776960 (&HFFFF00)
 DIDFT_NODATA = 128 (&H80)
 DIDFT_POV = 16 (&H10)
 DIDFT_PSHBUTTON = 4
 DIDFT_RELAXIS = 1
 DIDFT_TGLBUTTON = 8
End Enum

DIDFT_ABSAXIS

IDH__dx_CONST_DIDFTFLAGS_dinput_vb

in.doc – page 247

An absolute axis.
DIDFT_ALL

All objects.
DIDFT_ANYINSTANCE

Any instance of an object.
DIDFT_AXIS

An axis, either absolute or relative.
DIDFT_BUTTON

A push button or a toggle button.
DIDFT_COLLECTION

A HID link collection. HID link collections do not generate data of their own.
DIDFT_FFACTUATOR

An object that contains a force-feedback actuator. In other words, forces may be
applied to this object.

DIDFT_FFEFFECTTRIGGER
An object that can be used to trigger force-feedback effects.

DIDFT_INSTANCEMASK
Same as DIDFT_ANYINSTANCE.

DIDFT_NOCOLLECTION
An object that does not belong to any HID link collection; in other words, an
object for which DirectInputDeviceObjectInstance.GetCollectionNumber
returns 0.

DIDFT_NODATA
An object that does not generate data.

DIDFT_POV
A point-of-view controller.

DIDFT_PSHBUTTON
A push button. A push button is reported as down when the user presses it and as
up when the user releases it.

DIDFT_RELAXIS
A relative axis.

DIDFT_TGLBUTTON
A toggle button. A toggle button is reported as down when the user presses it
and remains so until the user presses the button a second time.

CONST_DIDGDDFLAGS
[This is preliminary documentation and subject to change.]

Members of the CONST_DIDGDDFLAGS enumeration are used in the flags
parameter of the DirectInputDevice.GetDeviceData method to control the manner
in which data is obtained.

IDH__dx_CONST_DIDGDDFLAGS_dinput_vb

in.doc – page 248

Enum CONST_DIDGDDFLAGS
 DIGDD_DEFAULT = 0
 DIGDD_PEEK = 1
End Enum

DIGDD_DEFAULT
Remove retrieved items from the buffer.

DIGDD_PEEK
Do not remove retrieved items from the buffer. A subsequent GetDeviceData
call will read the same data.

CONST_DIENUMDEVICESFLAG
S

[This is preliminary documentation and subject to change.]

Members of the CONST_DIENUMDEVICESFLAGS enumeration are used in the
flags parameter of the DirectInput.GetDIEnumDevices method to indicate whether
all device, or only attached devices, are to be enumerated.

Enum CONST_DIENUMDEVICESFLAGS
 DIEDFL_ALLDEVICES = 0
 DIEDFL_ATTACHEDONLY = 1
End Enum

DIEDFL_ALLDEVICES
All installed devices will be enumerated. This is the default behavior.

DIEDFL_ATTACHEDONLY
Only attached and installed devices.

CONST_DIJOYSTICKOFS
[This is preliminary documentation and subject to change.]
The members of the CONST_DIJOYSTICKOFS enumeration represent the offset
of the data for the various joystick device objects within the data format.

Enum CONST_DIJOYSTICKOFS
 DIJOFS_BUTTON0 = 48 (&H30)
 DIJOFS_BUTTON1 = 49 (&H31)
 DIJOFS_BUTTON10 = 58 (&H3A)
 DIJOFS_BUTTON11 = 59 (&H3B)
 DIJOFS_BUTTON12 = 60 (&H3C)
 DIJOFS_BUTTON13 = 61 (&H3D)

IDH__dx_CONST_DIENUMDEVICESFLAGS_dinput_vb
IDH__dx_CONST_DIJOYSTICKOFS_dinput_vb

in.doc – page 249

 DIJOFS_BUTTON14 = 62 (&H3E)
 DIJOFS_BUTTON15 = 63 (&H3F)
 DIJOFS_BUTTON16 = 64 (&H40)
 DIJOFS_BUTTON17 = 65 (&H41)
 DIJOFS_BUTTON18 = 66 (&H42)
 DIJOFS_BUTTON19 = 67 (&H43)
 DIJOFS_BUTTON2 = 50 (&H32)
 DIJOFS_BUTTON20 = 68 (&H44)
 DIJOFS_BUTTON21 = 69 (&H45)
 DIJOFS_BUTTON22 = 70 (&H46)
 DIJOFS_BUTTON23 = 71 (&H47)
 DIJOFS_BUTTON24 = 72 (&H48)
 DIJOFS_BUTTON25 = 73 (&H49)
 DIJOFS_BUTTON26 = 74 (&H4A)
 DIJOFS_BUTTON27 = 75 (&H4B)
 DIJOFS_BUTTON28 = 76 (&H4C)
 DIJOFS_BUTTON29 = 77 (&H4D)
 DIJOFS_BUTTON3 = 51 (&H33)
 DIJOFS_BUTTON30 = 78 (&H4E)
 DIJOFS_BUTTON31 = 79 (&H4F)
 DIJOFS_BUTTON4 = 52 (&H34)
 DIJOFS_BUTTON5 = 53 (&H35)
 DIJOFS_BUTTON6 = 54 (&H36)
 DIJOFS_BUTTON7 = 55 (&H37)
 DIJOFS_BUTTON8 = 56 (&H38)
 DIJOFS_BUTTON9 = 57 (&H39)
 DIJOFS_POV0 = 32 (&H20)
 DIJOFS_POV1 = 36 (&H24)
 DIJOFS_POV2 = 40 (&H28)
 DIJOFS_POV3 = 44 (&H2C)
 DIJOFS_RX = 12
 DIJOFS_RY = 16 (&H10)
 DIJOFS_RZ = 20 (&H14)
 DIJOFS_SLIDER0 = 24 (&H18)
 DIJOFS_SLIDER1 = 28 (&H1C)
 DIJOFS_X = 0
 DIJOFS_Y = 4
 DIJOFS_Z = 8
End Enum

DIJOFS_BUTTON(n)
Offset of the data for button n.

DIJOFS_POV(n)
Offset of the data for point-of-view controller n.

DIJOFS_RX, DIJOFS_RY, DIJOFS_RZ

in.doc – page 250

Offset of the data for the axis rotation.
DIJOFS_SLIDER0, DIJOFS_SLIDER1

Offset of the data for the slider.
DIJOFS_X, DIJOFS_Y, DIJOFS_Z

Offset of the data for the axis.

CONST_DIKEYFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DIKEYFLAGS enumeration groups the Keyboard Device Constants.

CONST_DINPUT
[This is preliminary documentation and subject to change.]
The CONST_DINPUT enumeration contains various constants that are used
throughout DirectInput.

Enum CONST_DINPUT
 DIPROPAXISMODE_ABS = 0
 DIPROPAXISMODE_REL = 1
 DIPROPCALIBRATIONMODE_COOKED = 0
 DIPROPCALIBRATIONMODE_RAW = 1
 DIPROPRANGE_NOMAX = 2147483647 (&H7FFFFFFF)
 DIPROPRANGE_NOMIN = -2147483648 (&H80000000)
End Enum

DIPROPAXISMODE_ABS
Used in DirectInputDevice.GetProperty and DirectInputDevice.SetProperty
to represent absolute axis mode.

DIPROPAXISMODE_REL
Used in DirectInputDevice.GetProperty and DirectInputDevice.SetProperty
to represent relative axis mode.

DIPROPCALIBRATIONMODE_COOKED
Used in setting the DIPROP_CALIBRATIONMODE property to indicate that
DirectInput should return axis data after applying calibration information.

DIPROPCALIBRATIONMODE_RAW
Used in setting the DIPROP_CALIBRATIONMODE property to indicate that
DirectInput should return raw, uncalibrated data. This mode is typically used
only by Control Panel–type applications.

DIPROPRANGE_NOMAX

IDH__dx_CONST_DIKEYFLAGS_dinput_vb
IDH__dx_CONST_DINPUT_dinput_vb

in.doc – page 251

Returned from DirectInputDevice.GetProperty if the axis has no upper limit
on its range.

DIPROPRANGE_NOMIN
Returned from DirectInputDevice.GetProperty if the axis has no lower limit
on its range.

CONST_DINPUTERR
[This is preliminary documentation and subject to change.]

The CONST_DINPUTERR enumeration contains the error codes for DirectInput.
All the error codes and definitions can be found in the Error Codes topic.

CONST_DIMOUSEOFS
[This is preliminary documentation and subject to change.]
The members of the CONST_DIMOUSEOFS enumeration represent the offset of
the data for the various mouse device objects within the data format.

Enum CONST_DIMOUSEOFS
 DIMOFS_BUTTON0 = 12
 DIMOFS_BUTTON1 = 13
 DIMOFS_BUTTON2 = 14
 DIMOFS_BUTTON3 = 15
 DIMOFS_X = 0
 DIMOFS_Y = 4
 DIMOFS_Z = 8
End Enum

DIMOFS_BUTTON(n)
Offset of the data for button n.

DIMOFS_X, DIMOFS_Y, DIMOFS_Z
Offset of the data for the axis.

CONST_DIPHFLAGS
[This is preliminary documentation and subject to change.]

Members of the CONST_DIPHFLAGS enumeration are used to specify how a
device object is identified. They are used in the DirectInputDevice.GetObjectInfo
method as well as in the DIPROPLONG and DIPROPRANGE types.

Enum CONST_DIPHFLAGS
IDH__dx_CONST_DINPUTERR_dinput_vb
IDH__dx_CONST_DIMOUSEOFS_dinput_vb
IDH__dx_CONST_DIPHFLAGS_dinput_vb

in.doc – page 252

 DIPH_DEVICE = 0
 DIPH_BYID = 2
 DIPH_BYOFFSET = 1
End Enum

DIPH_DEVICE
The property applies to the entire device, not to a particular object.

DIPH_BYOFFSET
The device object is identified by the offset into the current data format of the
object whose information is being accessed.

DIPH_BYID
The device object is identified by the instance identifier obtained from the return
value of the DirectInputDeviceObjectInstance.GetType method.

CONST_DISCLFLAGS
[This is preliminary documentation and subject to change.]

The CONST_DISCLFLAGS enumeration is used in the flags parameter of the
DirectInputDevice.SetCooperativeLevel method to determine how the device
interacts with other instances of the device and the rest of the system.

Enum CONST_DISCLFLAGS
 DISCL_BACKGROUND = 8
 DISCL_EXCLUSIVE = 1
 DISCL_FOREGROUND = 4
 DISCL_NONEXCLUSIVE = 2
End Enum

DISCL_BACKGROUND
The application requires background access. If background access is granted, the
device may be acquired at any time, even when the associated window is not the
active window.

DISCL_EXCLUSIVE
The application requires exclusive access. If exclusive access is granted, no
other instance of the device may obtain exclusive access to the device while it is
acquired. Note, however, non-exclusive access to the device is always
permitted, even if another application has obtained exclusive access.
If an application acquires the mouse or keyboard device in exclusive mode, the
user will not be able to use the window menu or move and resize the window.

DISCL_FOREGROUND
The application requires foreground access. If foreground access is granted, the
device is automatically unacquired when the associated window moves to the
background.

IDH__dx_CONST_DISCLFLAGS_dinput_vb

in.doc – page 253

DISCL_NONEXCLUSIVE
The application requires non-exclusive access. Access to the device will not
interfere with other applications that are accessing the same device.

Applications must specify either DISCL_FOREGROUND or
DISCL_BACKGROUND; it is an error to specify both or neither. Similarly,
applications must specify either DISCL_EXCLUSIVE or
DISCL_NONEXCLUSIVE.

Keyboard Keys
[This is preliminary documentation and subject to change.]

This section contains information on the following topics:

· Keyboard Device Constants
· DirectInput and Japanese Keyboards

Keyboard Device Constants
[This is preliminary documentation and subject to change.]

Keyboard device constants, which are members of the CONST_DIKEYFLAGS
enumeration, represent offsets within a keyboard device's data packet, a 256-byte
array. The data at a given offset is associated with a keyboard key.

The standard keyboard device constants are the following (in ascending order):

Constant Note

DIK_ESCAPE
DIK_1 On main keyboard
DIK_2 On main keyboard
DIK_3 On main keyboard
DIK_4 On main keyboard
DIK_5 On main keyboard
DIK_6 On main keyboard
DIK_7 On main keyboard
DIK_8 On main keyboard
DIK_9 On main keyboard
DIK_0 On main keyboard
DIK_MINUS On main keyboard
DIK_EQUALS On main keyboard

IDH__dx_Keyboard_Device_Constants_dinput_vb

in.doc – page 254

DIK_BACK Backspace
DIK_TAB
DIK_Q
DIK_W
DIK_E
DIK_R
DIK_T
DIK_Y
DIK_U
DIK_I
DIK_O
DIK_P
DIK_LBRACKET [
DIK_RBRACKET]
DIK_RETURN Enter on main keyboard
DIK_LCONTROL Left Ctrl
DIK_A
DIK_S
DIK_D
DIK_F
DIK_G
DIK_H
DIK_J
DIK_K
DIK_L
DIK_SEMICOLON
DIK_APOSTROPHE
DIK_GRAVE Grave accent (`)
DIK_LSHIFT Left Shift
DIK_BACKSLASH
DIK_Z
DIK_X
DIK_C
DIK_V
DIK_B
DIK_N
DIK_M
DIK_COMMA

in.doc – page 255

DIK_PERIOD On main keyboard
DIK_SLASH Forward slash (/)on main keyboard
DIK_RSHIFT Right Shift
DIK_MULTIPLY Asterisk on numeric keypad
DIK_LMENU Left Alt
DIK_SPACE Spacebar
DIK_CAPITAL Caps Lock
DIK_F1
DIK_F2
DIK_F3
DIK_F4
DIK_F5
DIK_F6
DIK_F7
DIK_F8
DIK_F9
DIK_F10
DIK_NUMLOCK
DIK_SCROLL Scroll Lock
DIK_NUMPAD7
DIK_NUMPAD8
DIK_NUMPAD9
DIK_SUBTRACT Hyphen (minus sign) on numeric keypad
DIK_NUMPAD4
DIK_NUMPAD5
DIK_NUMPAD6
DIK_ADD Plus sign on numeric keypad
DIK_NUMPAD1
DIK_NUMPAD2
DIK_NUMPAD3
DIK_NUMPAD0
DIK_DECIMAL Period (decimal point) on numeric keypad
DIK_F11
DIK_F12
DIK_F13
DIK_F14
DIK_F15
DIK_KANA On Japanese keyboard

in.doc – page 256

DIK_CONVERT On Japanese keyboard
DIK_NOCONVERT On Japanese keyboard
DIK_YEN On Japanese keyboard
DIK_NUMPADEQUALS On numeric keypad (NEC PC98)
DIK_CIRCUMFLEX On Japanese keyboard
DIK_AT On Japanese keyboard
DIK_COLON On Japanese keyboard
DIK_UNDERLINE On Japanese keyboard
DIK_KANJI On Japanese keyboard
DIK_STOP On Japanese keyboard
DIK_AX On Japanese keyboard
DIK_UNLABELED On Japanese keyboard
DIK_NUMPADENTER
DIK_RCONTROL Right Ctrl key
DIK_NUMPADCOMMA Comma on NEC PC98 numeric keypad
DIK_DIVIDE Forward slash (/)on numeric keypad
DIK_SYSRQ
DIK_RMENU Right Alt
DIK_HOME
DIK_UP Up arrow
DIK_PRIOR Page Up
DIK_LEFT Left arrow
DIK_RIGHT Right arrow
DIK_END
DIK_DOWN Down arrow
DIK_NEXT Page Down
DIK_INSERT
DIK_DELETE
DIK_LWIN Left Windows key
DIK_RWIN Right Windows key
DIK_APPS Application key
DIK_PAUSE

For information on Japanese keyboards, see DirectInput and Japanese Keyboards.

in.doc – page 257

DirectInput and Japanese
Keyboards

[This is preliminary documentation and subject to change.]

There are substantial differences between Japanese and U.S. keyboards. The chart
below lists the additional keys that are available on each type of Japanese keyboard.
It also lists the keys that are available on U.S. keyboards but are missing on the
various Japanese keyboards.

Also note that on some NEC PC-98 keyboards, the DIK_CAPSLOCK and
DIK_KANA keys are toggle buttons and not push buttons. These generate a down
event when first pressed, then generate an up event when pressed a second time.

Keyboard Additional Keys Missing Keys

DOS/V 106 Keyboard, NEC
PC-98 106 Keyboard

DIK_AT,
DIK_CIRCUMFLEX,
DIK_COLON,
DIK_CONVERT,
DIK_KANA, DIK_KANJI,
DIK_NOCONVERT,
DIK_YEN

DIK_APOSTROPHE,
DIK_EQUALS,
DIK_GRAVE

NEC PC-98 Standard
Keyboard, NEC PC-98
Laptop Keyboard

DIK_AT,
DIK_CIRCUMFLEX,
DIK_COLON, DIK_F13,
DIK_F14, DIK_F15,
DIK_KANA, DIK_KANJI,
DIK_NOCONVERT,
DIK_NUMPADCOMMA,
DIK_NUMPADEQUALS,
DIK_STOP,
DIK_UNDERLINE,
DIK_YEN

DIK_APOSTROPHE,
DIK_BACKSLASH,
DIK_EQUALS,
DIK_GRAVE,
DIK_NUMLOCK,
DIK_NUMPADENTER,
DIK_RCONTROL,
DIK_RMENU,
DIK_RSHIFT,
DIK_SCROLL

AX Keyboard DIK_AX, DIK_CONVERT,
DIK_KANJI,
DIK_NOCONVERT,
DIK_YEN

DIK_RCONTROL,
DIK_RMENU

J-3100 Keyboard DIK_KANA, DIK_KANJI,
DIK_NOLABEL, DIK_YEN

DIK_RCONTROL,
DIK_RMENU

IDH__dx_DirectInput_and_Japanese_Keyboards_dinput_vb

in.doc – page 258

Error Codes
[This is preliminary documentation and subject to change.]

This table lists the error codes that can be returned by DirectInput methods and
functions. Errors are represented by negative values and cannot be combined.

For a list of the errors each method or function can raise, see the individual
descriptions. Lists of error codes in the documentation are necessarily incomplete.
For example, any DirectInput method can return DIERR_OUTOFMEMORY even
though the error code is not explicitly listed as a possible return value in the
documentation for that method.

DI_BUFFEROVERFLOW
The device buffer overflowed and some input was lost. This value is equal to the
S_FALSE standard COM return value.

DI_DOWNLOADSKIPPED
The parameters of the effect were successfully updated, but the effect could not
be downloaded because the associated device was not acquired in exclusive
mode.

DI_EFFECTRESTARTED
The effect was stopped, the parameters were updated, and the effect was
restarted.

DI_NOEFFECT
The operation had no effect. This value is equal to the S_FALSE standard COM
return value.

DI_NOTATTACHED
The device exists but is not currently attached. This value is equal to the
S_FALSE standard COM return value.

DI_OK
The operation completed successfully. This value is equal to the S_OK standard
COM return value.

DI_POLLEDDEVICE
The device is a polled device. As a result, device buffering will not collect any
data and event notifications will not be signaled until the
DirectInputDevice.Poll method is called.

DI_PROPNOEFFECT
The change in device properties had no effect. This value is equal to the
S_FALSE standard COM return value.

DI_TRUNCATED
The parameters of the effect were successfully updated, but some of them were
beyond the capabilities of the device and were truncated to the nearest supported
value.

DI_TRUNCATEDANDRESTARTED
Equal to DI_EFFECTRESTARTED | DI_TRUNCATED.

DIERR_ACQUIRED

in.doc – page 259

The operation cannot be performed while the device is acquired.
DIERR_ALREADYINITIALIZED

This object is already initialized
DIERR_BADDRIVERVER

The object could not be created due to an incompatible driver version or
mismatched or incomplete driver components.

DIERR_BETADIRECTINPUTVERSION
The application was written for an unsupported prerelease version of
DirectInput.

DIERR_DEVICEFULL
The device is full.

DIERR_DEVICENOTREG
The device or device instance is not registered with DirectInput. This value is
equal to the REGDB_E_CLASSNOTREG standard COM return value.

DIERR_EFFECTPLAYING
The parameters were updated in memory but were not downloaded to the device
because the device does not support updating an effect while it is still playing.

DIERR_HASEFFECTS
The device cannot be reinitialized because there are still effects attached to it.

DIERR_GENERIC
An undetermined error occurred inside the DirectInput subsystem. This value is
equal to the E_FAIL standard COM return value.

DIERR_HANDLEEXISTS
The device already has an event notification associated with it. This value is
equal to the E_ACCESSDENIED standard COM return value.

DIERR_INCOMPLETEEFFECT
The effect could not be downloaded because essential information is missing.
For example, no axes have been associated with the effect, or no type-specific
information has been supplied.

DIERR_INPUTLOST
Access to the input device has been lost. It must be reacquired.

DIERR_INVALIDPARAM
An invalid parameter was passed to the returning function, or the object was not
in a state that permitted the function to be called. This value is equal to the
E_INVALIDARG standard COM return value.

DIERR_MOREDATA
Not all the requested information fitted into the buffer.

DIERR_NOAGGREGATION
This object does not support aggregation.

DIERR_NOINTERFACE
The specified interface is not supported by the object. This value is equal to the
E_NOINTERFACE standard COM return value.

DIERR_NOTACQUIRED

in.doc – page 260

The operation cannot be performed unless the device is acquired.
DIERR_NOTBUFFERED

The device is not buffered. Set the DIPROP_BUFFERSIZE property to enable
buffering.

DIERR_NOTDOWNLOADED
The effect is not downloaded.

DIERR_NOTEXCLUSIVEACQUIRED
The operation cannot be performed unless the device is acquired in
DISCL_EXCLUSIVE mode.

DIERR_NOTFOUND
The requested object does not exist.

DIERR_NOTINITIALIZED
This object has not been initialized.

DIERR_OBJECTNOTFOUND
The requested object does not exist.

DIERR_OLDDIRECTINPUTVERSION
The application requires a newer version of DirectInput.

DIERR_OTHERAPPHASPRIO
Another application has a higher priority level, preventing this call from
succeeding. This value is equal to the E_ACCESSDENIED standard COM
return value. This error can be returned when an application has only foreground
access to a device but is attempting to acquire the device while in the
background.

DIERR_OUTOFMEMORY
The DirectInput subsystem couldn't allocate sufficient memory to complete the
call. This value is equal to the E_OUTOFMEMORY standard COM return
value.

DIERR_READONLY
The specified property cannot be changed. This value is equal to the
E_ACCESSDENIED standard COM return value.

DIERR_REPORTFULL
More information was requested to be sent than can be sent to the device.

DIERR_UNPLUGGED
The operation could not be completed because the device is not plugged in.

DIERR_UNSUPPORTED
The function called is not supported at this time. This value is equal to the
E_NOTIMPL standard COM return value.

E_PENDING
Data is not yet available.

in.doc – page 261

DirectInput Tutorials
[This is preliminary documentation and subject to change.]

The following sections contain tutorials providing step-by-step instructions for
implementing basic Microsoft® DirectInput® functionality:

· DirectInput C/C++ Tutorials
· DirectInput Visual Basic Tutorials

DirectInput C/C++ Tutorials
[This is preliminary documentation and subject to change.]

This section contains four tutorials, each providing step-by-step instructions for
implementing basic DirectInput functionality in a C or C++ application.

· Tutorial 1: Using the Keyboard
The first tutorial shows how to add DirectInput keyboard support to an existing
application.

· Tutorial 2: Using the Mouse
The next tutorial takes you through the steps of providing DirectInput mouse
support in an application. The tutorial is based on the Scrawl sample, and
focuses on buffered data.

· Tutorial 3: Using the Joystick
This tutorial shows how to enumerate all the joysticks connected to a system,
how to create and initialize DirectInputDevice objects for each of them in a
callback function, and how to retrieve immediate data. Sample code is based on
the Space Donuts sample.

· Tutorial 4: Using Force Feedback
The final tutorial illustrates the creation and manipulation of a simple effect on a
force-feedback joystick.

Tutorial 1: Using the Keyboard
[This is preliminary documentation and subject to change.]

To prepare for keyboard input, you first create an instance of a DirectInput object.
Then you use the IDirectInput::CreateDevice method to create an instance of an
IDirectInputDevice interface. The IDirectInputDevice interface methods are used
to manipulate the device, set its behavior, and retrieve data.

The tutorial breaks down the required tasks into the following steps:

· Step 1: Creating the DirectInput Object
· Step 2: Creating the DirectInput Keyboard Device

in.doc – page 262

· Step 3: Setting the Keyboard Data Format
· Step 4: Setting the Keyboard Behavior
· Step 5: Gaining Access to the Keyboard
· Step 6: Retrieving Data from the Keyboard
· Step 7: Closing Down the DirectInput System

Adding DirectInput keyboard support to an application is relatively simple, so this
tutorial is not accompanied by a complete sample application. All of the tutorial
steps are illustrated by code within the text. The related steps for initializing the
system are gathered in Sample Function 1: DI_Init. Another function, Sample
Function 2: DI_Term, is called whenever the system needs to be closed down.

Step 1: Creating the DirectInput Object
[This is preliminary documentation and subject to change.]

The first step in setting up the DirectInput system is to create a single DirectInput
object as overall manager. This is done with a call to the DirectInputCreate
function.

// HINSTANCE hinst; // initialized earlier
HRESULT hr;
LPDIRECTINPUT g_lpdi;

hr = DirectInputCreate(hinst, DIRECTINPUT_VERSION, &g_lpdi, NULL);
if FAILED(hr)
{
 // DirectInput not available; take appropriate action
}

The first parameter for DirectInputCreate is the instance handle to the application
or DLL that is creating the object.

The second parameter tells the DirectInput object which version of the DirectInput
system should be used. You can design your application to be compatible with
earlier versions of DirectInput. For more information, see Designing for Previous
Versions of DirectInput.

The third parameter is the address of a variable that will be initialized with a valid
IDirectInput interface pointer if the call succeeds.

The last parameter specifies the address of the controlling object's IUnknown
interface for use in COM aggregation. Most applications will not be using
aggregation and so will pass NULL.

in.doc – page 263

Step 2: Creating the DirectInput Keyboard
Device

[This is preliminary documentation and subject to change.]

After creating the DirectInput object, your application must create the keyboard
object–the device–and retrieve a pointer to an IDirectInputDevice interface. The
device will perform most of the keyboard-related tasks, using the methods of the
interface.

To do this your application must call the IDirectInput::CreateDevice method, as
shown in Sample Function 1: DI_Init. CreateDevice accepts three parameters.

The first parameter is the GUID for the device being created. Since the system
keyboard will be used, your application should pass the GUID_SysKeyboard
predefined global variable.

The second parameter is the address of a variable that will be initialized with a valid
IDirectInputDevice interface pointer if the call succeeds.

The third parameter specifies the address of the controlling object's IUnknown
interface for use in COM aggregation. Your application will likely not use
aggregation, in which case the parameter is NULL.

The following example attempts to retrieve a pointer to an IDirectInputDevice
interface. If this fails, it calls the DI_Term application-defined sample function to
deallocate existing DirectInput objects, if any.

Note
In all the examples, g_lpdi is the initialized pointer to the DirectInput object.
The method calls are in the C++ form.

HRESULT hr;
LPDIRECTINPUTDEVICE g_lpDIDEVICE

hr = g_lpDI->CreateDevice(GUID_SysKeyboard, &g_lpDIDevice, NULL);
if FAILED(hr)
{
 DI_Term();
 return FALSE;
}

Step 3: Setting the Keyboard Data Format
[This is preliminary documentation and subject to change.]

After retrieving an IDirectInputDevice pointer, your application must set the
device's data format, as shown in Sample Function 1: DI_Init. For keyboards, this is
a very simple task. Call the IDirectInputDevice::SetDataFormat method,

in.doc – page 264

specifying the data format provided for your convenience by DirectInput in the
c_dfDIKeyboard global variable.

The following example attempts to set the data format. If this fails, it calls the
DI_Term sample function to deallocate existing DirectInput objects, if any.

hr = g_lpDIDevice->SetDataFormat(&c_dfDIKeyboard);

if FAILED(hr){
 DI_Term();
 return FALSE;
}

Step 4: Setting the Keyboard Behavior
[This is preliminary documentation and subject to change.]

Before your application can gain access to the keyboard, it must set the device's
behavior using the IDirectInputDevice::SetCooperativeLevel method, as shown in
Sample Function 1: DI_Init. This method accepts the handle to the window to be
associated with the device. DirectInput does not support exclusive access to
keyboard devices, so the DISCL_NONEXCLUSIVE flag must be included in the
dwFlags parameter.

The following example attempts to set the device's cooperative level. If this fails, it
calls the DI_Term application-defined sample function to deallocate existing
DirectInput objects, if any.

// Set the cooperative level
hr = g_lpDIDevice->SetCooperativeLevel(g_hwndMain,
 DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);

if FAILED(hr){
 DI_Term();
 return FALSE;
}

Step 5: Gaining Access to the Keyboard
[This is preliminary documentation and subject to change.]

After your application sets the keyboard's behavior, it can acquire access to the
device by calling the IDirectInputDevice::Acquire method. The application must
acquire the device before retrieving data from it. The Acquire method accepts no
parameters.

The following line of code acquires the keyboard device that was created in Step 2:
Creating the DirectInput Keyboard Device:

if (g_lpDIDevice) g_lpDIDevice->Acquire();

in.doc – page 265

Step 6: Retrieving Data from the Keyboard
[This is preliminary documentation and subject to change.]

Once a device is acquired, your application can start retrieving data from it. The
simplest way to do this is to call the IDirectInputDevice::GetDeviceState method,
which takes a snapshot of the device's state at the time of the call.

The GetDeviceState method accepts two parameters: the size of a buffer to be filled
with device state data, and a pointer to that buffer. For keyboards, always declare a
buffer of 256 unsigned bytes.

The following sample attempts to retrieve the state of the keyboard. If this fails, it
calls an application-defined sample function to deallocate existing DirectInput
objects, if any. (See Sample Function 2: DI_Term.)

After retrieving the keyboard's current state, your application may respond to
specific keys that were down at the time of the call. Each element in the buffer
represents a key. If an element's high bit is on, the key was down at the moment of
the call; otherwise, the key was up. To check the state of a given key, use the
DirectInput Keyboard Device Constants to index the buffer for a given key.

The following skeleton function, called from the main loop of a hypothetical
spaceship game, uses the IDirectInputDevice::GetDeviceState method to poll the
keyboard. It then checks to see if the LEFT ARROW, RIGHT ARROW, UP
ARROW or DOWN ARROW keys were pressed when the device state was
retrieved. This is accomplished with the KEYDOWN macro defined in the body of
the function. The macro accepts a buffer's variable name and an index value, then
checks the byte at the specified index to see if the high bit is set and returns TRUE if
it is.

void WINAPI ProcessKBInput()
{
 #define KEYDOWN(name,key) (name[key] & 0x80)

 char buffer[256];
 HRESULT hr;

 hr = g_lpDIDevice->GetDeviceState(sizeof(buffer),(LPVOID)&buffer);
 if FAILED(hr)
 {
 // If it failed, the device has probably been lost.
 // We should check for (hr == DIERR_INPUTLOST)
 // and attempt to reacquire it here.
 return;
 }

 // Turn the ship right or left

in.doc – page 266

 if (KEYDOWN(buffer, DIK_RIGHT));
 // Turn right.
 else if(KEYDOWN(buffer, DIK_LEFT));
 // Turn left.

 // Thrust or stop the ship
 if (KEYDOWN(buffer, DIK_UP)) ;
 // Move the ship forward.
 else if (KEYDOWN(buffer, DIK_DOWN));
 // Stop the ship.
}

Step 7: Closing Down the DirectInput System
[This is preliminary documentation and subject to change.]

When an application is about to close, it should destroy all DirectInput objects. This
is a three-step process:

· Unacquire all DirectInput devices (IDirectInputDevice::Unacquire)
· Release all DirectInput devices (IDirectInputDevice::Release)
· Release the DirectInput object (IDirectInput::Release)

For a sample function that closes down the DirectInput system, see Sample Function
2: DI_Term.

Sample Function 1: DI_Init
[This is preliminary documentation and subject to change.]

This application-defined sample function creates a DirectInput object, initializes it,
and retrieves the necessary interface pointers, assigning them to global variables.
When initialization is complete, it acquires the device.

If any part of the initialization fails, this function calls the DI_Term application-
defined sample function to deallocate DirectInput objects and interface pointers in
preparation for terminating the program. (See Sample Function 2: DI_Term.)

Besides creating the DirectInput object, the DI_Init function performs the tasks
discussed in the following tutorial steps:

· Step 2: Creating the DirectInput Keyboard Device
· Step 3: Setting the Keyboard Data Format
· Step 4: Setting the Keyboard Behavior
· Step 5: Gaining Access to the Keyboard

Here is the DI_Init function:

in.doc – page 267

// HINSTANCE g_hinst; //initialized application instance
// HWND g_hwndMain; //initialized application window
LPDIRECTINPUT g_lpDI;
LPDIRECTINPUTDEVICE g_lpDIDevice;

BOOL WINAPI DI_Init()
{
 HRESULT hr;

 // Create the DirectInput object.
 hr = DirectInputCreate(g_hinst, DIRECTINPUT_VERSION,
 &g_lpDI, NULL);
 if FAILED(hr) return FALSE;

 // Retrieve a pointer to an IDirectInputDevice interface
 hr = g_lpDI->CreateDevice(GUID_SysKeyboard, &g_lpDIDevice, NULL);
 if FAILED(hr)
 {
 DI_Term();
 return FALSE;
 }

// Now that you have an IDirectInputDevice interface, get
// it ready to use.

 // Set the data format using the predefined keyboard data
 // format provided by the DirectInput object for keyboards.
 hr = g_lpDIDevice->SetDataFormat(&c_dfDIKeyboard);
 if FAILED(hr)
 {
 DI_Term();
 return FALSE;
 }

 // Set the cooperative level
 hr = g_lpDIDevice->SetCooperativeLevel(g_hwndMain,
 DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);
 if FAILED(hr)
 {
 DI_Term();
 return FALSE;
 }

 // Get access to the input device.
 hr = g_lpDIDevice->Acquire();
 if FAILED(hr)

in.doc – page 268

 {
 DI_Term();
 return FALSE;
 }

 return TRUE;
}

Sample Function 2: DI_Term
[This is preliminary documentation and subject to change.]

This application-defined sample function deallocates existing DirectInput interface
pointers in preparation for program shutdown or in the event of a failure to properly
initialize a device.

// LPDIRECTINPUT g_lpDI;
// LPDIRECTINPUTDEVICE g_lpDIDevice;

void WINAPI DI_Term()
{
 if (g_lpDI)
 {
 if (g_lpDIDevice)
 {
 /*

· Always unacquire the device before calling Release().
 */
 g_lpDIDevice->Unacquire();
 g_lpDIDevice->Release();
 g_lpDIDevice = NULL;
 }
 g_lpDI->Release();
 g_lpDI = NULL;
 }
}

Tutorial 2: Using the Mouse
[This is preliminary documentation and subject to change.]

This tutorial guides you through the process of setting up a mouse device and
retrieving buffered input data. The examples are taken from the Scrawl sample.

To prepare for mouse input, you first create an instance of a DirectInput object. Then
you use the IDirectInput::CreateDevice method to create an instance of an

in.doc – page 269

IDirectInputDevice interface. The IDirectInputDevice interface methods are used
to manipulate the device, set its behavior, and retrieve data.

The preliminary step of setting up the DirectInput system and the final step of
closing it down are the same for any application and are covered in Tutorial 1: Using
the Keyboard.

This tutorial breaks down the required tasks into the following steps:

· Step 1: Creating the DirectInput Mouse Device
· Step 2: Setting the Mouse Data Format
· Step 3: Setting the Mouse Behavior
· Step 4: Preparing for Buffered Input from the Mouse
· Step 5: Managing Access to the Mouse
· Step 6: Retrieving Buffered Data from the Mouse

Note
When an application acquires the mouse at the exclusive cooperative level,
Windows does not show a mouse pointer on the screen. For this, your
application needs a simple sprite engine. The Scrawl sample application uses the
Win32 function DrawIcon to display a crosshair cursor.

Step 1: Creating the DirectInput Mouse Device
[This is preliminary documentation and subject to change.]

After creating the DirectInput object, your application should retrieve a pointer to an
IDirectInputDevice interface, which will be used to perform most mouse-related
tasks. To do this, call the IDirectInput::CreateDevice method.

The CreateDevice method accepts three parameters.

The first parameter is the globally unique identifier (GUID) for the device your
application is creating. In this case, since the system mouse will be used, your
application should pass the predefined global variable GUID_SysMouse.

The second parameter is the address of a variable that will be initialized with a valid
IDirectInputDevice interface pointer if the call succeeds.

The third parameter specifies the address of the controlling object's IUnknown
interface for use in COM aggregation. Your application probably won't be using
aggregation, in which case the parameter will be NULL.

The following sample from Scrawl.cpp attempts to retrieve a pointer to an
IDirectInputDevice interface. If the call fails, an error message is displayed and
FALSE is returned.

// LPDIRECTINPUT g_pdi; // This has been initialized
LPDIRECTINPUTDEVICE g_pMouse;
HRESULT hr;

in.doc – page 270

hr = g_pdi->CreateDevice(GUID_SysMouse, &g_pMouse, NULL);

if (FAILED(hr)) {
 Complain(hwnd, hr, "CreateDevice(SysMouse)");
 return FALSE;
}

Step 2: Setting the Mouse Data Format
[This is preliminary documentation and subject to change.]

After retrieving an IDirectInputDevice pointer, your application must set the
device's data format. For mouse devices, this is a very simple task. Call the
IDirectInputDevice::SetDataFormat method, specifying the data format provided
for your convenience by DirectInput in the c_dfDIMouse global variable.

The following code attempts to set the device's data format. If the call fails, an error
message is displayed and FALSE is returned.

hr = g_pMouse->SetDataFormat(&c_dfDIMouse);

if (FAILED(hr)) {
 Complain(hwnd, hr, "SetDataFormat(SysMouse, dfDIMouse)");
 return FALSE;
}

Step 3: Setting the Mouse Behavior
[This is preliminary documentation and subject to change.]

Before it can gain access to the mouse, your application must set the mouse device's
behavior using the IDirectInputDevice::SetCooperativeLevel method. This method
accepts the handle to the window to be associated with the device. In Scrawl, the
DISCL_EXCLUSIVE flag is included to ensure that this application is the only one
that can have exclusive access to the device. This flag is combined with
DISCL_FOREGROUND because Scrawl is not interested in what the mouse is doing
when another application is in the foreground.

The following code from Scrawl.cpp attempts to set the device's cooperative level. If
this attempt fails, an error message is displayed and FALSE is returned.

hr = g_pMouse->SetCooperativeLevel(hwnd,
 DISCL_EXCLUSIVE | DISCL_FOREGROUND);

if (FAILED(hr)) {
 Complain(hwnd, hr, "SetCooperativeLevel(SysMouse)");
 return FALSE;
}

in.doc – page 271

Step 4: Preparing for Buffered Input from the
Mouse

[This is preliminary documentation and subject to change.]

The Scrawl application demonstrates how to use event notification to find out about
mouse activity, and how to read buffered input from the mouse. Both these
techniques require some setup. You can perform these steps at any time after
creating the mouse device and before acquiring it.

First, create an event and associate it with the mouse device. You are instructing
DirectInput to notify the mouse device object whenever a hardware interrupt
indicates that new data is available.

This is how it's done in Scrawl. As usual, the Complain sample function informs the
user of any errors.

// HANDLE g_hevtMouse; // This is global

g_hevtMouse = CreateEvent(0, 0, 0, 0);

if (g_hevtMouse == NULL) {
 Complain(hwnd, GetLastError(), "CreateEvent");
 return FALSE;
}

hr = g_pMouse->SetEventNotification(g_hevtMouse);

if (FAILED(hr)) {
 Complain(hwnd, hr, "SetEventNotification(SysMouse)");
 return FALSE;
}

Now you need to set the buffer size so that DirectInput can store any input data until
you're ready to look at it. Remember, by default the buffer size is zero, so this step is
essential if you want to use buffered data.

It's not necessary to used buffered data with event notification; if you prefer, you can
retrieve immediate data when an event is signaled.

To set the buffer size you need to initialize a DIPROPDWORD structure with
information about itself and about the property you wish to set. Most of the values
are boilerplate; the key value is the last one, dwData, which is initialized with the
number of items you want the buffer to hold.

#define DINPUT_BUFFERSIZE 16

DIPROPDWORD dipdw =

in.doc – page 272

 {
 // the header
 {
 sizeof(DIPROPDWORD), // diph.dwSize
 sizeof(DIPROPHEADER), // diph.dwHeaderSize
 0, // diph.dwObj
 DIPH_DEVICE, // diph.dwHow
 },
 // the data
 DINPUT_BUFFERSIZE, // dwData
 };

You then pass the address of the header (the DIPROPHEADER structure within the
DIPROPDWORD structure), along with the identifier of the property you want to
change, to the IDirectInputDevice::SetProperty method, as follows:

hr = g_pMouse->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

if (FAILED(hr)) {
 Complain(hwnd, hr, "Set buffer size(SysMouse)");
 return FALSE;
 }

The setup is now complete, and you're ready to acquire the mouse and start
collecting data.

Step 5: Managing Access to the Mouse
[This is preliminary documentation and subject to change.]

DirectInput provides the IDirectInputDevice::Acquire and
IDirectInputDevice::Unacquire methods to manage device access. Your
application must call the Acquire method to gain access to the device before
requesting mouse information with the IDirectInputDevice::GetDeviceState and
IDirectInputDevice::GetDeviceData methods.

Most of the time your application will have the device acquired. However, if you
have only foreground access the mouse will automatically be unacquired whenever
your application moves to the background. You are responsible for reacquiring it
when you get the focus back again. This can be done in response to a
WM_ACTIVATE message.

Scrawl handles this message by setting a global variable, g_fActive, according to
whether the application is gaining or losing the focus. It then calls a helper function,
Scrawl_SyncAcquire, which acquires the mouse if g_fActive is TRUE and
unacquires it otherwise.

case WM_ACTIVATE:
 g_fActive = wParam == WA_ACTIVE || wParam == WA_CLICKACTIVE;

in.doc – page 273

 Scrawl_SyncAcquire(hwnd);
 break;

If you have exclusive access, your application may need to let go of the mouse to let
the user interact with Windows—for example, to access a menu or a dialog box. In
Scrawl this can happen when the user opens the system menu with
ALT+SPACEBAR.

The Scrawl window procedure has a handler for WM_ENTERMENULOOP that
responds by setting the global variable g_fActive to FALSE and calling the
Scrawl_SyncAcquire function. This handler allows Windows to have the mouse and
display its own cursor.

When the user is done using a menu, Windows sends the application a
WM_EXITMENULOOP message. In this case, the Scrawl window process posts an
application-defined message, WM_SYNCACQUIRE, to its own message queue.
This allows other pending messages to be processed before the mouse is reacquired
with the Scrawl_SyncAcquire function.

Scrawl also unacquires the mouse in response to a right button click, which opens up
a context menu. Although the mouse would get unacquired later, in the
WM_ENTERMENULOOP handler, it's done here first so that the position of the
Windows cursor can be set before the menu appears.

Finally, Scrawl tries to reacquire the mouse if it receives a DIERR_INPUTLOST
error after an attempt to retrieve data. This is just in case the device has been
unacquired by some mechanism not covered elsewhere; for instance, if the user has
pressed CTRL+ALT+DEL.

In summary, your application needs to acquire the mouse before it can get data from
it. This needs to be done only once, as long as nothing happens to force your
application to give up access to it. In exclusive mode, you are responsible for giving
up control of the mouse when Windows needs it. You are also responsible for
reacquiring the mouse whenever your program needs access to it after losing it to
Windows or another application.

Step 6: Retrieving Buffered Data from the Mouse
[This is preliminary documentation and subject to change.]

Once the mouse is acquired, your application can begin to retrieve data from it.

In the Scrawl sample, retrieval is triggered by a signaled event. In the WinMain
function, the application sleeps until MsgWaitForMultipleObjects indicates that
there is either a signal or a message. If there's a signal associated with the mouse, the
Scrawl_OnMouseInput function is called. This function is a good illustration of how
buffered input is handled, so we'll look at it in detail.

First the function makes sure the old cursor position will be cleaned up. Remember,
Scrawl is maintaining its own cursor and is wholly responsible for drawing and
erasing it.

in.doc – page 274

void Scrawl_OnMouseInput(HWND hwnd)
{
 /* Invalidate the old cursor so it will be erased */
 InvalidateCursorRect(hwnd);

Now the function enters a loop to read and respond to the entire contents of the
buffer. Because it retrieves just one item at a time, it needs only a single
DIDEVICEOBJECTDATA structure to hold the data.

Another way to go about handling input would be to read the entire buffer at once
and then loop through the retrieved items, responding to each one in turn. In that
case, dwElements would be the size of the buffer, and od would be an array with the
same number of elements.

 while (!fDone) {
 DIDEVICEOBJECTDATA od;
 DWORD dwElements = 1; // number of items to be retrieved

The application calls the IDirectInputDevice::GetDeviceData method in order to
fetch the data. The second parameter tells DirectInput where to put the data, and the
third tells it how many items are wanted. The final parameter would be
DIGDD_PEEK if the data was to be left in the buffer, but in this case the data is not
going to be needed again, so it is removed.

 HRESULT hr = g_pMouse->GetDeviceData(
 sizeof(DIDEVICEOBJECTDATA),
 &od,
 &dwElements, 0);

Now the application checks to see if access to the device has been lost and, if so,
tells itself to try to reacquire the mouse at the first opportunity. This step was
discussed in Step 5: Managing Access to the Mouse.

 if (hr == DIERR_INPUTLOST) {
 PostMessage(hwnd, WM_SYNCACQUIRE, 0, 0L);
 break;
 }

Next the application makes sure the call to the GetDeviceData method succeeded
and that there was actually data to be retrieved. Remember, after the call to
GetDeviceData the dwElements variable shows how many items were actually
retrieved.

 /* Unable to read data or no data available */
 if (FAILED(hr) || dwElements == 0) {
 break;
 }

in.doc – page 275

If execution has proceeded to this point, everything is fine: the call succeeded and
there is an item of data in the buffer. Now the application looks at the dwOfs
member of the DIDEVICEOBJECTDATA structure to determine which object on
the device reported a change of state, and calls helper functions to respond
appropriately. The value of the dwData member, which gives information about
what happened, is passed to these functions.

 /* Look at the element to see what happened */

 switch (od.dwOfs) {

 /* DIMOFS_X: Mouse horizontal motion */
 case DIMOFS_X: UpdateCursorPosition(od.dwData, 0); break;

 /* DIMOFS_Y: Mouse vertical motion */
 case DIMOFS_Y: UpdateCursorPosition(0, od.dwData); break;

 /* DIMOFS_BUTTON0: Button 0 pressed or released */
 case DIMOFS_BUTTON0:

 if (od.dwData & 0x80) { /* Button pressed */
 fDone = 1;
 Scrawl_OnButton0Down(hwnd); /* Go into button-down
 mode */
 }
 break;

 /* DIMOFS_BUTTON1: Button 1 pressed or released */
 case DIMOFS_BUTTON1:

 if (!(od.dwData & 0x80)) { /* Button released */
 fDone = 1;
 Scrawl_OnButton1Up(hwnd); /* Context menu time */
 }
 }

 }

Finally, the Scrawl_OnMouseInput sample function invalidates the screen rectangle
occupied by the cursor, in case the cursor has been moved by one of the helper
functions.

 /* Invalidate the new cursor so it will be drawn */
 InvalidateCursorRect(hwnd);
}

in.doc – page 276

Scrawl also collects mouse data in the Scrawl_OnButton0Down function. This is
where the application keeps track of mouse movements while the primary button is
being held down — that is, while the user is drawing. This function does not rely on
event notification, but repeatedly polls the DirectInput buffer until the button is
released.

A key point to note in the Scrawl_OnButton0Down function is that no actual
drawing is done until all pending data has been read. The reason is that each
horizontal or vertical movement of the mouse is reported as a separate event. (Both
events are, however, placed in the buffer at the same time.) If a line were
immediately drawn in response to each separate axis movement, a diagonal
movement of the mouse would produce two lines at right angles.

Another way you can be sure that the movement in both axes is taken into account
before responding in your application is to check the sequence numbers of the x-axis
item and the y-axis item. If the numbers are the same, the two events took place
simultaneously. For more information, see Time Stamps and Sequence Numbers.

Tutorial 3: Using the Joystick
[This is preliminary documentation and subject to change.]

This tutorial shows you how to enumerate joysticks on a system and set up two or
more joysticks for input. Code samples are based on the Space Donuts sample. The
method calls are in the C form.

The preliminary step of setting up the DirectInput system and the final step of
closing it down are the same for any application and are covered in Tutorial 1: Using
the Keyboard.

The first step in the tutorial is to enumerate devices; that is, to see what joysticks are
available. As part of this process you initialize each joystick device and set its
desired characteristics. You then use the IDirectInputDevice interface methods to
retrieve data from each joystick.

The tutorial breaks down the required tasks into the following steps:

· Step 1: Enumerating the Joysticks
· Step 2: Creating the DirectInput Joystick Device
· Step 3: Setting the Joystick Data Format
· Step 4: Setting the Joystick Behavior
· Step 5: Gaining Access to the Joystick
· Step 6: Retrieving Data from the Joystick

Step 1: Enumerating the Joysticks
[This is preliminary documentation and subject to change.]

in.doc – page 277

After creating the DirectInput system, call the IDirectInput::EnumDevices method
to enumerate the joysticks. The following code from Input.c in the Space Donuts
source directory accomplishes this.

// LPDIRECTINPUT pdi; // previously initialized

pdi->lpVtbl->EnumDevices(pdi, DIDEVTYPE_JOYSTICK,
 InitJoystickInput, pdi, DIEDFL_ATTACHEDONLY);

The method call is in the C form. Note that you could use the
IDirectInput_EnumDevices macro to simplify the call. All DirectInput methods
have corresponding macros defined in Dinput.h that expand to the appropriate C or
C++ syntax.

The DIDEVTYPE_JOYSTICK constant, passed as the second parameter, specifies
the type of device to be enumerated.

InitJoystickInput is the address of a callback function to be called each time a
joystick is found; this is where the individual devices will be initialized in the
following steps of the tutorial.

The fourth parameter can be any 32-bit value that you want to make available to the
callback function. In this case it's a pointer to the DirectInput interface, which the
callback function needs to know so it can call the IDirectInput::CreateDevice
method.

The last parameter, DIEDFL_ATTACHEDONLY, is a flag that restricts
enumeration to devices that are attached to the computer.

Step 2: Creating the DirectInput Joystick Device
[This is preliminary documentation and subject to change.]

After creating the DirectInput object, the application must retrieve a pointer to an
IDirectInputDevice interface, which will be used to perform most joystick-related
tasks. In the Space Donuts sample, this is done in the callback function
InitJoystickInput, which is called each time a joystick is enumerated.

Here is the first part of the callback function:

BOOL FAR PASCAL InitJoystickInput(LPCDIDEVICEINSTANCE pdinst,
 LPVOID pvRef)
{
 LPDIRECTINPUT pdi = pvRef;
 LPDIRECTINPUTDEVICE pdev;

 // create the DirectInput joystick device
 if (pdi->lpVtbl->CreateDevice(pdi, &pdinst->guidInstance,
 &pdev, NULL) != DI_OK)
 {
 OutputDebugString("IDirectInput::CreateDevice FAILED\n");

in.doc – page 278

 return DIENUM_CONTINUE;
 }

The parameters to the callback function InitJoystickInput are:

· A pointer to the device instance, supplied by the DirectInput system when the
device is enumerated.

· A pointer to the DirectInput interface, which you supplied as an parameter to
IDirectInput::EnumDevices. This parameter could have been any 32-bit value
but in this case you want the DirectInput interface so that you can call the
IDirectInput::CreateDevice method.

The InitJoystickInput sample function declares a local pointer to the DirectInput
object, pdi, and assigns it the value passed into the callback. It also declares a local
pointer to a DirectInput device, pdev, which is initialized when the device is created.
This device starts life as an instance of the IDirectInputDevice interface, but when
it is added to the application's list of input devices it is converted to an
IDirectInputDevice2 object so that it can use the IDirectInputDevice2::Poll
method.

The first task of the callback function, then, is to create the device. The
IDirectInput::CreateDevice method accepts four parameters.

The first, unnecessary in C++, is a this pointer to the calling DirectInput interface.

The second parameter is a reference to the globally unique identifier (GUID) for the
instance of the device. In this case, the GUID is taken from the
DIDEVICEINSTANCE structure supplied by DirectInput when it enumerated the
device.

The third parameter is the address of the variable that will be initialized with a valid
IDirectInputDevice interface pointer if the call succeeds.

The fourth parameter specifies the address of the controlling object's IUnknown
interface for use in COM aggregation. Space Donuts doesn't use aggregation, so the
parameter is NULL.

Note that if for some reason the device interface cannot be created,
DIENUM_CONTINUE is returned from the callback function. This flag instructs
DirectInput to keep enumerating as long as there are devices to be enumerated.

Step 3: Setting the Joystick Data Format
[This is preliminary documentation and subject to change.]

Now that the application has a pointer to a DirectInput device, it can call the
IDirectInputDevice methods to manipulate that device. The first step, which is an
essential one, is to set the data format for the joystick. This step tells DirectInput
how to format the input data.

in.doc – page 279

The Space Donuts sample performs this action inside the callback function
introduced in the previous step.

 if (pdev->lpVtbl->SetDataFormat(pdev, &c_dfDIJoystick) != DI_OK)
 {
 OutputDebugString("IDirectInputDevice::SetDataFormat FAILED\n");
 pdev->lpVtbl->Release(pdev);
 return DIENUM_CONTINUE;
 }

The pdev variable is a pointer to the device interface created by
IDirectInput::CreateDevice.

The IDirectInputDevice::SetDataFormat method takes two parameters. The first is
a this pointer to the calling instance of the interface and is unnecessary in C++. The
second is a pointer to a DIDATAFORMAT structure containing information about
how the data for the device is to be formatted. For the joystick, the predefined global
variable c_dfDIJoystick can be used here.

As in the previous step, the callback function returns DIENUM_CONTINUE if it
fails to initialize the device. This flag instructs DirectInput to keep enumerating as
long as there are devices to be enumerated.

Step 4: Setting the Joystick Behavior
[This is preliminary documentation and subject to change.]

The joystick device has been created, and its data format has been set. The next step
is to set its cooperative level. In the Space Donuts sample, this is done in the
callback function called when the device is enumerated. As in the previous step,
pdev is a pointer to the device interface.

 if(pdev->lpVtbl->SetCooperativeLevel(pdev, hWndMain,
 DISCL_NONEXCLUSIVE | DISCL_FOREGROUND) != DI_OK)
 {
 OutputDebugString("IDirectInputDevice::SetCooperativeLevel
 FAILED\n");
 pdev->lpVtbl->Release(pdev);
 return DIENUM_CONTINUE;
 }

Once again, the first parameter to IDirectInputDevice::SetCooperativeLevel is a
this pointer.

The second parameter is a window handle. In this case the handle to the main
program window is passed in.

The final parameter is a combination of flags describing the desired cooperative
level. Space Donuts requires input from the joystick only when it is the foreground
application, and does not care whether another program is using the joystick in

in.doc – page 280

exclusive mode, so the flags are set to DISCL_NONEXCLUSIVE |
DISCL_FOREGROUND. (See Cooperative Levels for a full explanation of these
flags.)

The final step carried out for each joystick enumerated in the callback function is to
set the properties of the device. In the sample, the properties changed include the
range and the dead zone for both the x-axis and y-axis.

By setting the range, you are telling DirectInput what maximum and minimum
values you want returned for an axis. If you set a range of -1,000 to +1,000 for the x-
axis, as in the example, you are asking that a value of -1,000 be returned when the
stick is at the extreme left, +1,000 when it is at the extreme right, and zero when it is
in the middle.

The dead zone is a region of tolerance in the middle of the axis, measured in ten-
thousandths of the physical range of axis travel. If you set a dead zone of 1,000 for
the x-axis, you are saying that the stick can travel one-tenth of its range to the left or
right of center before a non-center value will be returned. For more information on
the dead zone, see Interpreting Joystick Axis Data.

Here's the code to set the range of the x-axis:

 DIPROPRANGE diprg;

 diprg.diph.dwSize = sizeof(diprg);
 diprg.diph.dwHeaderSize = sizeof(diprg.diph);
 diprg.diph.dwObj = DIJOFS_X;
 diprg.diph.dwHow = DIPH_BYOFFSET;
 diprg.lMin = -1000;
 diprg.lMax = +1000;

 if FAILED(pdev->lpVtbl->SetProperty(pdev,
 DIPROP_RANGE, &diprg.diph))
 {
 OutputDebugString("IDirectInputDevice::SetProperty(DIPH_RANGE)
 FAILED\n");
 pdev->lpVtbl->Release(pdev);
 return FALSE;
 }

The first task here is to set up the DIPROPRANGE structure diprg, whose address
will be passed into the IDirectInputDevice::SetProperty method. Actually, it's not
the address of the structure itself that is passed but rather the address of its first
member, which is a DIPROPHEADER structure. For more information,see Device
Properties.

The property header is initialized with the following values:

· The size of the property structure
· The size of the header structure

in.doc – page 281

· The value returned by the DIJOFS_X joystick device constant macro, which
points to the object whose property is being changed

· A flag to indicate how the third parameter is to be interpreted

The lmin and lmax members of the DIPROPRANGE structure are assigned the
desired range values.

The application now calls the IDirectInputDevice::SetProperty method. As usual,
the first parameter is a this pointer. The second parameter is a flag indicating which
property is being changed. The third parameter is the address of the
DIPROPHEADER member of the property structure.

Setting the dead zone of the x-axis requires a similar procedure. The Space Donuts
sample uses a helper function, SetDIDwordProperty, to initialize a
DIPROPDWORD property structure. Unlike DIPROPRANGE, this structure
contains only one data member, which in the example is set to 5,000, indicating that
the stick must move half of its range from the center before the axis is reported to be
off-center.

 // set X axis dead zone to 50% (to avoid accidental turning)
 if FAILED(SetDIDwordProperty(pdev, DIPROP_DEADZONE, DIJOFS_X,
 DIPH_BYOFFSET, 5000))
 {
 OutputDebugString("IDirectInputDevice::
 SetProperty(DIPH_DEADZONE) FAILED\n");
 pdev->lpVtbl->Release(pdev);
 return FALSE;
 }

Step 5: Gaining Access to the Joystick
[This is preliminary documentation and subject to change.]

After your application sets a joystick's behavior, it can acquire access to the device
by calling the IDirectInputDevice::Acquire method. The application must acquire
the device before retrieving data from it. The Acquire method accepts no
parameters.

The Space Donuts application takes care of acquisition in the ReacquireInput
function. This function does double duty, serving both to acquire the device on
startup and to reacquire it if for some reason a DIERR_INPUTLOST error is
returned when the application tries to get input data.

In the following code, g_pdevCurrent is a global pointer to whatever DirectInput
device is currently in use.

BOOL ReacquireInput(void)
{
 HRESULT hRes;

in.doc – page 282

 // if we have a current device
 if (g_pdevCurrent)
 {
 // acquire the device
 hRes = IDirectInputDevice_Acquire(g_pdevCurrent);
 // The call above is a macro that expands to:
 // g_pdevCurrent->lpVtbl->Acquire(g_pdevCurrent);

 if (SUCCEEDED(hRes))
 {
 // acquisition successful
 return TRUE;
 }
 else
 {
 // acquisition failed
 return FALSE;
 }
 }
 else
 {
 // we don't have a current device
 return FALSE;
 }
}

In this example, acquisition is effected by a call to IDirectInputDevice_Acquire, a
macro defined in Dinput.h that simplifies the C call to the
IDirectInputDevice::Acquire method.

Step 6: Retrieving Data from the Joystick
[This is preliminary documentation and subject to change.]

Since your application is more likely concerned with the position of the joystick axes
than with their movement, you will probably want to retrieve immediate rather than
buffered data from the device. You can do this by polling with
IDirectInputDevice::GetDeviceState. Remember, not all device drivers will notify
DirectInput when the state of the device changes, so it's always good policy to call
the IDirectInputDevice2::Poll method before checking the device state.

The Space Donuts application calls the following function on each pass through the
rendering loop, provided the joystick is the active input device.

DWORD ReadJoystickInput(void)
{
 DWORD dwKeyState;
 HRESULT hRes;

in.doc – page 283

 DIJOYSTATE js;

 // poll the joystick to read the current state
 hRes = IDirectInputDevice2_Poll(g_pdevCurrent);

 // get data from the joystick
 hRes = IDirectInputDevice_GetDeviceState(g_pdevCurrent,
 sizeof(DIJOYSTATE), &js);

 if (hRes != DI_OK)
 {
 // did the read fail because we lost input for some reason?
 // if so, then attempt to reacquire. If the second acquire
 // fails, then the error from GetDeviceData will be
 // DIERR_NOTACQUIRED, so we won't get stuck an infinite loop.
 if(hRes == DIERR_INPUTLOST)
 ReacquireInput();

 // return the fact that we did not read any data
 return 0;
 }

 // Now study the position of the stick and the buttons.

 dwKeyState = 0;
 if (js.lX < 0) {
 dwKeyState |= KEY_LEFT;
 } else if (js.lX > 0) {
 dwKeyState |= KEY_RIGHT;
 }

 if (js.lY < 0) {
 dwKeyState |= KEY_UP;
 } else if (js.lY > 0) {
 dwKeyState |= KEY_DOWN;
 }

 if (js.rgbButtons[0] & 0x80) {
 dwKeyState |= KEY_FIRE;
 }

 if (js.rgbButtons[1] & 0x80) {
 dwKeyState |= KEY_SHIELD;
 }

 if (js.rgbButtons[2] & 0x80) {

in.doc – page 284

 dwKeyState |= KEY_STOP;
 }

 return dwKeyState;
}

Note the calls to IDirectInputDevice2_Poll and
IDirectInputDevice_GetDeviceState. These are macros that expand to C calls to
the corresponding methods, similar to the macro in the previous step of this tutorial.
The parameters to the macro are the same as those you would pass to the method.
Here is what the call to GetDeviceState looks like:

 hRes = IDirectInputDevice_GetDeviceState(g_pdevCurrent,
 sizeof(DIJOYSTATE), &js);

The first parameter is the this pointer; that is, a pointer to the calling object. The
second parameter is the size of the structure in which the data will be returned, and
the last parameter is the address of this structure, which is of type DIJOYSTATE.
This structure holds data for up to six axes, 32 buttons, and a point-of-view hat. The
sample program looks at the state of two axes and three buttons.

If the position of an axis is reported as nonzero, that axis is outside the dead zone,
and the function responds by setting the dwKeyState variable appropriately. This
variable holds the current set of user commands as entered with either the keyboard
or the joystick. For example, if the x-axis of the stick is greater than zero, that is
considered the same as the RIGHT ARROW key being down.

Joystick buttons work just like keys or mouse buttons: if the high bit of the returned
byte is set, the button is down.

Tutorial 4: Using Force Feedback
[This is preliminary documentation and subject to change.]

This tutorial takes you through the process of creating, playing, and modifying a
simple effect on a force-feedback joystick. The effect is something like a balky chain
saw that you're trying to get started. The sample code uses C++ syntax.

The preliminary step of setting up the DirectInput system and the final step of
closing it down are essentially the same for any application and are covered in
Tutorial 1: Using the Keyboard. However, when closing down the DirectInput force-
feedback system you must take the additional step of releasing any effects you have
created.

The tutorial breaks down the required tasks into the following steps:

· Step 1: Enumerating Force Feedback Devices
· Step 2: Creating the DirectInput Force Feedback Device
· Step 3: Enumerating Supported Effects

in.doc – page 285

· Step 4: Creating an Effect
· Step 5: Playing an Effect
· Step 6: Changing an Effect

Step 1: Enumerating Force Feedback Devices
[This is preliminary documentation and subject to change.]

The first step is to ensure that a force-feedback device is available on the system.
You do this by calling the IDirectInput::EnumDevices method. In the following
example, the global pointer to the game device interface is initialized only if the
enumeration has succeeded in finding at least one suitable device:

LPDIRECTINPUTDEVICE2 g_lpdid2Game = NULL;

lpdi->EnumDevices(DIDEVTYPE_JOYSTICK,
 DIEnumDevicesProc,
 NULL,
 DIEDFL_FORCEFEEDBACK | DIEDFL_ATTACHEDONLY);
if (g_lpdid2Game == NULL)
 {
 // no force-feedback joystick available; take appropriate action
 }

In the example, lpdi is an initialized pointer to the IDirectInput interface. The first
parameter to EnumDevices restricts the enumeration to joystick-type devices. The
second parameter is the callback function that's going to be called each time
DirectInput identifies a device that qualifies for enumeration. The third parameter is
for user-defined data to be passed in or out of the callback function; in this case it's
not used. Finally, the flags restrict the enumeration further to devices actually
attached to the system that support force feedback.

The callback function is a convenient place to initialize the device as soon as it has
been found. (It's assumed that the first device found is the one you want to use.)
You'll do this in Step 2: Creating the DirectInput Force Feedback Device.

Step 2: Creating the DirectInput Force Feedback
Device

[This is preliminary documentation and subject to change.]

In order to have DirectInput enumerate devices, you must create a callback function
of the same type as DIEnumDevicesProc. In Step 1 you passed the address of this
function to the IDirectInput::EnumDevices method.

DirectInput passes into the callback, as the first parameter, a pointer to a
DIDEVICEINSTANCE structure that tells you what you need to know about the
device. The structure member of chief interest in the example is guidInstance, the

in.doc – page 286

unique identifier for the particular piece of hardware on the user's system. You will
need to pass this GUID to the IDirectInput::CreateDevice method.

Here's the first part of the callback, which extracts the GUID and creates the device
object:

BOOL CALLBACK DIEnumDevicesProc(LPCDIDEVICEINSTANCE lpddi,
 LPVOID pvRef)
 {
 HRESULT hr1, hr2;
 LPDIRECTINPUTDEVICE lpdidGame;
 GUID DeviceGuid = lpddi->guidInstance;

 // create game device

 hr1 = lpdi->CreateDevice(DeviceGuid, &lpdidGame, NULL);

Note that the pointer to the IDirectInputDevice object, lpdidGame, is a local
variable. You're not going to keep it, because in order to create force-feedback
effects you need to obtain a pointer to the IDirectInputDevice2 interface, as
follows:

 if (SUCCEEDED(hr1))
 {
 hr2 = lpdidGame->QueryInterface(IID_IDirectInputDevice2,
 (void **) &g_lpdid2Game);
 lpdidGame->Release();
 }
 else
 {
 OutputDebugString("Failed to create device.\n");
 return DIENUM_STOP;
 }
 if (FAILED(hr2))
 {
 OutputDebugString("Failed to obtain interface.\n");
 return DIENUM_STOP;
 }

The next steps, still within the callback function, are similar to those for setting up
any input device. Note that you need the exclusive cooperative level for any force-
feedback device. Since the joystick will be used for input as well as force feedback,
you also need to set the data format.

 // set cooperative level
 if (FAILED(g_lpdid2Game->SetCooperativeLevel(hMainWindow,
 DISCL_EXCLUSIVE | DISCL_FOREGROUND)))
 {

in.doc – page 287

 OutputDebugString(
 "Failed to set cooperative level.\n");
 lpdid2Game->Release();
 lpdi2Game = NULL;
 return DIENUM_STOP;
 }

 // set game data format
 if (FAILED(g_lpdid2Game->SetDataFormat(&c_dfDIJoystick)))
 {
 OutputDebugString("Failed to set game device data format.\n");
 lpdid2Game->Release();
 lpdid2Game = NULL;
 return DIENUM_STOP;
 }

Finally. you may want to turn off the device's autocenter feature. Autocenter is
essentially a condition effect that uses the motors to simulate the springs in a
standard joystick. Turning it off gives you more control over the device.

 DIPROPDWORD DIPropAutoCenter;

 DIPropAutoCenter.diph.dwSize = sizeof(DIPropAutoCenter);
 DIPropAutoCenter.diph.dwHeaderSize = sizeof(DIPROPHEADER);
 DIPropAutoCenter.diph.dwObj = 0;
 DIPropAutoCenter.diph.dwHow = DIPH_DEVICE;
 DIPropAutoCenter.dwData = 0;

 if (FAILED(lpdid2Game->SetProperty(DIPROP_AUTOCENTER,
 &DIPropAutoCenter.diph)))
 {
 OutputDebugString("Failed to change device property.\n");
 }

 return DIENUM_STOP; // One is enough.
 } // end DIEnumDevicesProc

Before using the device, you must acquire it. See Step 5: Gaining Access to the
Joystick in the previous tutorial for an example of how to handle acquisition.

Step 3: Enumerating Supported Effects
[This is preliminary documentation and subject to change.]

Now that you've successfully enumerated and created a force-feedback device, you
can enumerate the effect types it supports.

in.doc – page 288

Effect enumeration is not strictly necessary if you want to create only standard
effects that will be available on any device, such as constant forces. When creating
the effect object, you can identify the desired effect type simply by using one of the
predefined GUIDs, such as GUID_ConstantForce. (For a complete list of these
identifiers, see IDirectInputDevice2::CreateEffect.)

Another, more flexible approach is to enumerate supported effects of a particular
type, and obtain the GUID for the effect from the callback function. This is the
approach taken in the FFDonuts sample, and you'll adopt it here as well. You could,
of course, use the callback to obtain more information about the device's support for
the effect— for example, whether it supports an envelope—but in this tutorial you'll
get only the effect GUID.

First, create the callback function that will be called by DirectInput for each effect
enumerated. For information on this standard callback, see DIEnumEffectsProc.
You can give the function any name you like.

BOOL EffectFound = FALSE; // global flag

BOOL CALLBACK DIEnumEffectsProc(LPCDIEFFECTINFO pei, LPVOID pv)
 {
 *((GUID *)pv) = pei->guid;
 EffectFound = TRUE;
 return DIENUM_STOP; // one is enough
 }

The GUID variable pointed to by the application-defined value pv is assigned the
value passed in the DIEFFECTINFO structure created by DirectInput for the effect.

In order to obtain the effect GUID, you set the callback in motion by calling the
IDirectInputDevice2::EnumEffects method, as follows:

HRESULT hr;
GUID guidEffect;

hr = g_lpdid2Game->EnumEffects(
 (LPDIENUMEFFECTSCALLBACK) DIEnumEffectsProc,
 &guidEffect,
 DIEFT_PERIODIC);
if (FAILED(hr))
 {
 OutputDebugString("Effect enumeration failed\n");
 // Note: success doesn't mean any effects were found,
 // only that the process went smoothly.
 }

Note that you pass the address of a GUID variable, guidEffect, to the EnumEffects
method. This address is passed in turn to the callback as the pv parameter. You also
restrict the enumeration to periodic effects by setting the flag DIEFT_PERIODIC.

in.doc – page 289

Step 4: Creating an Effect
[This is preliminary documentation and subject to change.]

If the EffectFound flag is no longer FALSE after effect enumeration, you can safely
assume that DirectInput has found support for at least one effect of the type you
requested. (Of course, in real life you would probably not be content with finding
just any periodic effect; you would want to use a particular kind such as a sine or
sawtooth.) Armed with the effect GUID, you can now create the effect object.

Before calling the IDirectInputDevice2::CreateEffect method, you need to set up
the following arrays and structures:

· An array of axes that will be involved in the effect. For a joystick this array will
normally consist of the identifiers for the x-axis and the y-axis.

· An array of values for setting the direction. The values will differ according to
the number of axes, and according to whether you want to use polar, spherical,
or Cartesian coordinates. For a full explanation of this rather complicated
business, see Effect Direction.

· A structure of type-specific parameters. In the example, since you are creating a
periodic effect, this will be of type DIPERIODIC.

· A DIENVELOPE structure for defining the envelope to be applied to the effect.
· Finally, a DIEFFECT structure to contain the basic parameters for the effect.

First, declare the arrays and structures. You can initialize the arrays at the same time:

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };
LONG lDirection[2] = { 0, 0 };

DIPERIODIC diPeriodic; // type-specific parameters
DIENVELOPE diEnvelope; // envelope
DIEFFECT diEffect; // general parameters

Now initialize the type-specific parameters. If you use the values in the example,
you will create a full-force periodic effect with a period of one-twentieth of a
second.

diPeriodic.dwMagnitude = DI_FFNOMINALMAX;
diPeriodic.lOffset = 0;
diPeriodic.dwPhase = 0;
diPeriodic.dwPeriod = (DWORD) (0.05 * DI_SECONDS);

To get the effect of the chain-saw motor trying to start, briefly coughing into life,
and then slowly dying, you will set an envelope with an attack time of half a second
and a fade time of one second. You'll get to the sustain value in a moment.

diEnvelope.dwSize = sizeof(DIENVELOPE);
diEnvelope.dwAttackLevel = 0;
diEnvelope.dwAttackTime = (DWORD) (0.5 * DI_SECONDS);

in.doc – page 290

diEnvelope.dwFadeLevel = 0;
diEnvelope.dwFadeTime = (DWORD) (1.0 * DI_SECONDS);

Now you set up the basic effect parameters. These include flags to determine how
the directions and device objects (buttons and axes) are identified, the sample period
and gain for the effect, and pointers to the other data that you have just prepared.
You also associate the effect with the fire button of the joystick, so that it will
automatically be played whenever that button is pressed.

diEffect.dwSize = sizeof(DIEFFECT);
diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;
diEffect.dwDuration = (DWORD) (2 * DI_SECONDS);

diEffect.dwSamplePeriod = 0; // = default
diEffect.dwGain = DI_FFNOMINALMAX; // no scaling
diEffect.dwTriggerButton = DIJOFS_BUTTON0;
diEffect.dwTriggerRepeatInterval = 0;
diEffect.cAxes = 2;
diEffect.rgdwAxes = dwAxes;
diEffect.rglDirection = &lDirection[0];
diEffect.lpEnvelope = &diEnvelope;
diEffect.cbTypeSpecificParams = sizeof(diPeriodic);
diEffect.lpvTypeSpecificParams = &diPeriodic;

So much for the setup. At last you can create the effect:

LPDIEFFECT g_lpdiEffect; // global effect object

HRESULT hr = g_lpdid2Game->CreateEffect(
 guidEffect, // GUID from enumeration
 &diEffect, // where the data is
 &g_lpdiEffect, // where to put interface pointer
 NULL); // no aggregation
if (FAILED(hr))
 {
 OutputDebugString("Failed to create periodic effect");
 }

Remember that, by default, the effect is downloaded to the device as soon as it has
been created, provided that the device is in an acquired state at the exclusive
cooperative level. So if everything has gone according to plan, you should be able to
compile, run, press the "fire" button, and feel the sputtering of a chain saw that's out
of gas.

Step 5: Playing an Effect
[This is preliminary documentation and subject to change.]

in.doc – page 291

The effect created in the previous step starts in response to the press of a button. In
order to create an effect that is to be played in response to an explicit call, you need
to go back to Step 4 and modify the dwTriggerButton member of the DIEFFECT
structure, as follows:

diEffect.dwTriggerButton = DIEB_NOTRIGGER;

Now, suppose you want to make a chain saw that actually starts and keeps going.
This is simply a matter of changing the dwDuration member as follows:

diEffect.dwDuration = INFINITE;

Starting the effect is very simple:

g_lpdiEffect->Start(1, 0);

The effect will keep running until you stop it:

g_lpdiEffect->Stop();

Note that you don't need to change the envelope you created in the previous step.
The attack is played as the effect starts, but the fade value is ignored.

Step 6: Changing an Effect
[This is preliminary documentation and subject to change.]

Your chain saw is merrily rattling away, and now you want to modify the effect to
simulate the slowing down of the engine as the saw bites into wood. Fortunately,
DirectInput lets you modify the parameters of an effect while it is playing.

To change the effect, you need to set up a DIEFFECT structure or have access to
the one you used to create the effect. If you are setting up a new structure with local
scope, you need to initialize only the dwSize member and any members that contain
or point to data that is to be changed.

In this case you want to change a type-specific parameter—the period of the effect—
so you need to have access to the DIPERIODIC structure you used when creating
the effect, or else create a local copy with all members initialized. Make sure that the
address of the DIPERIODIC structure is in the lpvTypeSpecificParams member of
the DIEFFECT structure.

Now set the new period of the effect:

diPeriodic.dwPeriod = (DWORD) (0.08 * DI_SECONDS);

Then call the method that actually makes the changes:

HRESULT hr = g_lpdiEffect->SetParameters(&diEffect,
 DIEP_TYPESPECIFICPARAMS)

in.doc – page 292

Note the flag that restricts the changes to a single member of the DIEFFECT
structure.

You can control the way changes are handled by using other flags. For example, by
using the DIEP_NODOWNLOAD flag you could change the parameters
immediately after starting the effect but delay the implementation until the user
actually started cutting wood. Then you would call the
IDirectInputEffect::Download method. For more information on how to use the
various control flags, see IDirectInputEffect::SetParameters.

DirectInput Visual Basic Tutorials
[This is preliminary documentation and subject to change.]

This section contains the following tutorials, each providing step-by-step instructions
for implementing DirectInput in a Visual Basic application:

[To be added.]

DirectInput Samples
[This is preliminary documentation and subject to change.]

The following sample programs demonstrate the use and capabilities of DirectInput:

· FFDonuts Sample
· JoyFFeed Sample
· JoystImm Sample
· KeybdBuf Sample
· KeybdImm Sample
· MouseExc Sample
· MouseNon Sample
· Scrawl Sample

In addition to the samples that come complete with source code, the DirectX
Programmer's Reference includes a utility (in the \Bin directory of the DirectInput
samples) called DirectInput Quick Test (Diquick.exe). This is a tool for learning
about driver support for devices and experimenting with device parameters.

Although DirectX samples include Microsoft® Visual C++® project workspace files,
you might need to verify other settings in your development environment to ensure

in.doc – page 293

that the samples compile properly. For more information, see Compiling DirectX
Samples and Other DirectX Applications.

FFDonuts Sample
[This is preliminary documentation and subject to change.]

Description
This is a variation on the Space Donuts sample program that adds force-feedback
output if a force-feedback joystick is installed in your computer.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\FFdonuts

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide
When the program is started, you see a dialog box that lets you set the magnitude of
the force feedback effects.

When your ship appears, move the joystick forward to accelerate forward and pull it
back to decelerate or move backward. Moving the joystick left or right rotates the
ship. Press the trigger button to fire. Press the second button to activate the shields.
Observe the force feedback effects as you fire, collide with objects, and bounce off
the edge of the screen.

Programming Notes
The force feedback routines are in Input.c. The program illustrates the use of
constant and periodic effects, envelopes, and gain. Note that the fire-button effect is
played in response to an ordinary input event rather than being associated with a
trigger button in the DIEFFECT structure.

See Also
Space Donuts

JoyFFeed Sample
[This is preliminary documentation and subject to change.]

in.doc – page 294

Description
This application applies raw forces to a force feedback joystick, illustrating how a
simulator-type application can use force feedback to generate forces computed by a
physics engine.

You must have a force feedback device connected to your system in order to run the
application.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\JoyFFeed

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide
When you run the application, it displays a window with a crosshair and a black spot
in it. Click the mouse anywhere within the window's client area to move the black
spot. (Note that moving the joystick handle does not do anything.) JoyFFeed exerts a
constant force on the joystick handle from the direction of the spot, in proportion to
the distance from the crosshair. You can also hold down the mouse button and move
the spot continuously.

Programming Notes
This sample program enumerates the input devices and acquires the first force-
feedback joystick that it finds. If none are detected, it displays a message and
terminates.

When the user moves the black spot, the joySetForcesXY function converts the
cursor coordinates to a force direction and magnitude. This data is used to modify
the parameters of the constant force effect.

JoystImm Sample
[This is preliminary documentation and subject to change.]

Description
The JoysImm program obtains and displays joystick data.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\JoystImm

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

in.doc – page 295

User's Guide
Observe how the displayed data changes when you move and twist the stick, rotate
the throttle wheel, and press buttons in various combinations.

Programming Notes
The application polls the joystick for immediate data in response to a timer set inside
the dialog procedure.

KeybdBuf Sample
[This is preliminary documentation and subject to change.]

Description
The KeybdBuf program obtains and displays keyboard data.

Path
Source: (SDK root)\Samples\Multimedia\DInput\src\KeybdBuf

Executable: (SDK root)\Samples\Multimedia\DInput\bin

User's Guide
Each time you press or release a key, the event is recorded on the screen. Keys are
identified by their index values (see Keyboard Device Constants).

Programming Notes
This sample illustrates how an application can use DirectInput to obtain buffered
keyboard data.

KeybdImm Sample
[This is preliminary documentation and subject to change.]

Description
The KeybdImm program obtains and displays keyboard data.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\KeybdImm

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

in.doc – page 296

User's Guide
Hold down one or more keys and the index value of each key (see Keyboard Device
Constants) is shown.

Programming Notes
This sample illustrates how an application can use DirectInput to obtain immediate
keyboard data. Approximately 30 times per second the application calls
IDirectInputDevice::GetDeviceState and displays a string containing the values of
all the keys that are down.

MouseExc Sample
[This is preliminary documentation and subject to change.]

Description
The MouseExc program demonstrates how to initialize and get immediate data from
a DirectInput device.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\MouseExc

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide
Move the mouse around and observe how the change in coordinates is displayed.
Hold down a mouse button and its number is shown. Note that the system cursor is
not present.

Programming Notes
This sample illustrates how an application can use DirectInput to obtain relative
mouse data in exclusive foreground mode. Approximately 30 times per second the
program displays the change in mouse coordinates since the last call to
IDirectInputDevice::GetDeviceState.

MouseNon Sample
[This is preliminary documentation and subject to change.]

in.doc – page 297

Description
The MouseNon program demonstrates how to initialize and get immediate data from
a DirectInput device.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\MouseNon

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide
Move the mouse around and observe how the change in coordinates is displayed.
Hold down a mouse button and its number is shown. Note that the cursor doesn't
have to be in the application window, but the application does have to be in the
foreground.

Programming Notes
This sample illustrates how an application can use DirectInput to obtain relative
mouse data in non-exclusive foreground mode. Approximately 30 times per second
the program displays the change in mouse coordinates since the last call to
IDirectInputDevice::GetDeviceState.

Scrawl Sample
[This is preliminary documentation and subject to change.]

Description
The Scrawl application demonstrates use of the mouse in exclusive mode in a
windowed application.

Path
Source: (SDK root)\Samples\Multimedia\DInput\Src\Scrawl

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide
The main mouse button is always the left button, and the secondary button is always
the right button, regardless of any settings the user may have made in Control Panel.

To scrawl, hold down the left button and move the mouse. Click the right mouse
button to invoke a pop-up menu. From the pop-up menu you can clear the client
window, set the mouse sensitivity, or close the application.

in.doc – page 298

Programming Notes
The Scrawl application demonstrates many aspects of DirectInput programming,
including the following:

· Using the mouse in exclusive mode in a windowed application.
· Releasing the mouse when Windows needs to use it for menu access.
· Reacquiring the mouse when Windows no longer needs it.
· Reading buffered device data.
· Deferring screen updates till movement on both axes has been fully processed.
· Event notifications of device activity.
· Restricting the cursor to an arbitrary region.
· Scaling raw mouse coordinates before using them.
· Using relative axis mode.

	About DirectInput
	Why Use DirectInput?
	DirectInput Architecture
	Architectural Overview of DirectInput
	Integration with Windows
	Human Interface Device

	DirectInput Essentials
	Creating DirectInput
	DirectInput Device Enumeration
	DirectInput Devices
	Device Setup
	Creating a DirectInput Device
	Device Capabilities
	Cooperative Levels
	Foreground and Background
	Exclusive and Nonexclusive

	Device Object Enumeration
	Device Data Formats
	Device Properties
	Acquiring Devices

	DirectInput Device Data
	Buffered and Immediate Data
	Time Stamps and Sequence Numbers
	Polling and Events
	Relative and Absolute Axis Coordinates
	Mouse Data
	Immediate Mouse Data
	Buffered Mouse Data
	Interpreting Mouse Axis Data
	Checking for Lost Mouse Input

	Keyboard Data
	Immediate Keyboard Data
	Buffered Keyboard Data
	Interpreting Keyboard Data
	Checking for Lost Keyboard Input

	Joystick Data
	Immediate Joystick Data
	Buffered Joystick Data
	Interpreting Joystick Axis Data
	Checking for Lost Joystick Input

	Output Data

	Force Feedback
	Basic Concepts of Force Feedback
	Effect Enumeration
	Information About a Supported Effect
	Creating an Effect
	Effect Direction
	Examples of Setting Effect Direction
	Single-Axis Effects
	Two-Axis Effects with Polar Coordinates
	Two-Axis Effects with Cartesian Coordinates

	Envelopes and Offsets
	Effect Playback
	Downloading and Unloading Effects
	Changing an Effect
	Gain
	Force Feedback State
	Effect Object Enumeration
	Constant Forces
	Ramp Forces
	Periodic Effects
	Conditions
	Custom Forces
	Device-Specific Effects

	Designing for Previous Versions of DirectInput

	DirectInput Reference
	DirectInput C/C++ Reference
	Interfaces
	Functions
	Callback Functions
	Macros
	Structures
	Device Constants
	Return Values

	DirectInput Visual Basic Reference
	Classes
	Types
	Enumerations
	Keyboard Keys
	Error Codes

	DirectInput Tutorials
	DirectInput C/C++ Tutorials
	Tutorial 1: Using the Keyboard
	Step 1: Creating the DirectInput Object
	Step 2: Creating the DirectInput Keyboard Device
	Step 3: Setting the Keyboard Data Format
	Step 4: Setting the Keyboard Behavior
	Step 5: Gaining Access to the Keyboard
	Step 6: Retrieving Data from the Keyboard
	Step 7: Closing Down the DirectInput System
	Sample Function 1: DI_Init
	Sample Function 2: DI_Term

	Tutorial 2: Using the Mouse
	Step 1: Creating the DirectInput Mouse Device
	Step 2: Setting the Mouse Data Format
	Step 3: Setting the Mouse Behavior
	Step 4: Preparing for Buffered Input from the Mouse
	Step 5: Managing Access to the Mouse
	Step 6: Retrieving Buffered Data from the Mouse

	Tutorial 3: Using the Joystick
	Step 1: Enumerating the Joysticks
	Step 2: Creating the DirectInput Joystick Device
	Step 3: Setting the Joystick Data Format
	Step 4: Setting the Joystick Behavior
	Step 5: Gaining Access to the Joystick
	Step 6: Retrieving Data from the Joystick

	Tutorial 4: Using Force Feedback
	Step 1: Enumerating Force Feedback Devices
	Step 2: Creating the DirectInput Force Feedback Device
	Step 3: Enumerating Supported Effects
	Step 4: Creating an Effect
	Step 5: Playing an Effect
	Step 6: Changing an Effect

	DirectInput Visual Basic Tutorials

	DirectInput Samples
	FFDonuts Sample
	JoyFFeed Sample
	JoystImm Sample
	KeybdBuf Sample
	KeybdImm Sample
	MouseExc Sample
	MouseNon Sample
	Scrawl Sample

