
DirectMusic
[This is preliminary documentation and subject to change.]

This documentation covers the following Microsoft® DirectMusic® application
programming interface (API) topics:

· About DirectMusic
· Why Use DirectMusic?
· DirectMusic Architecture
· DirectMusic Essentials
· DirectMusic Tutorials
· DirectMusic Reference
· DirectMusic Samples

About DirectMusic
[This is preliminary documentation and subject to change.]

DirectMusic® is the musical component of the DirectX® application programming
interface (API). Unlike the DirectSound® API, which is for the capture and playback
of digital sound samples, DirectMusic works with message-based musical data which
is converted to wave samples either in hardware or in a software synthesizer. The
default software implementation uses the Microsoft® Software Synthesizer to create
wave samples that are then streamed to DirectSound. Instrument voices are
synthesized from samples according to the downloadable sounds (DLS) standard.

As well as supporting input in Musical Instrument Digital Interface (MIDI) format,
DirectMusic can compose music at run time. This music is not algorithmically
generated but is based on elements authored by a human composer. (The Microsoft
authoring tool, DirectMusic Producer, is documented separately.) It is performed
with variations and can respond dynamically to program events.

Like other components of DirectX, DirectMusic provides an API based on the
Component Object Model (COM).

DirectMusic delivers full functionality on Windows® 95, Windows 98, and
Windows 2000.

Why Use DirectMusic?
[This is preliminary documentation and subject to change.]

in.doc – page 2

The DirectMusic API addresses fundamental requirements for delivering music on
the platform:

· Consistent playback experience. By using downloadable sounds, an application
can count on musical instruments sounding the same on all machines, and can
perform with instruments of its own design.

· Jitter-free timing. Playback of MIDI-generated music has timing accuracy
within two milliseconds.

· Extensibility. DirectMusic does not restrict vendors to a base-level feature set.

In addition, DirectMusic provides important features for easing program
development and for enriching the user's experience:

· Generic mechanism for loading and performing musical segments, regardless of
the performance technology. DirectMusic equally supports standard MIDI files,
authored music segments, and third-party technology.

· Multiple performances. More than one piece of music can be played at once,
with completely separate timing, instrument sets, and so on.

· More than 16 MIDI channels. By mapping performance channels to channel
groups, DirectMusic breaks through the 16-channel limitation and makes it
possible for any number of voices to be played simultaneously, up to the limits
of the synthesizer.

· Automated management of DLS instruments.
· Dynamic and interactive playback. In combination with DirectMusic Producer,

the DirectMusic performance engine can be used to create dynamic musical
soundtracks based on stored compositional material. The music does not assume
its final form until it is about to be played, and can respond to program events.

· Synchronization of all music playback through the use of a master clock .

DirectMusic Architecture
[This is preliminary documentation and subject to change.]

This section introduces the components of DirectMusic. The following topics are
discussed:

· Core and Performance Layers
· Overview of DirectMusic Objects and Interfaces
· Overview of DirectMusic Data Flow
· DirectMusic Messages
· Downloadable Sounds
· Microsoft Software Synthesizer

in.doc – page 3

For information about how to implement these components in your application, see
DirectMusic Essentials.

Core and Performance Layers
[This is preliminary documentation and subject to change.]

The DirectMusic core layer manages timing and ports and provides services for
managing DLS collections. It supports buffered, timestamped MIDI input and
output. By default DirectMusic itself sequences the MIDI data.

The core layer also includes the Microsoft Software Synthesizer, which uses DLS to
synthesize wave output from the sequenced MIDI data.

The DirectMusic performance layer is responsible for the higher-level aspects of
music playback, including the loading and playback of MIDI files and the
composition of music based on elements authored in DirectMusic Producer or a
similar program.

The interfaces and related API elements for the core layer are found in Dmusicc.h,
and those for the performance layer are in Dmusici.h.

Overview of DirectMusic Objects
and Interfaces

[This is preliminary documentation and subject to change.]

In DirectMusic it is helpful to make a distinction between objects and their COM
interfaces, because many objects have multiple interfaces. The object that supports
the IDirectMusicCollection interface, for example, also supports the standard COM
IPersistStream interface as well as IDirectMusicObject.

In this documentation, DirectMusic objects are referred to by the name of their
principal or unique interface, but without the initial "I"; thus the object represented
by IDirectMusicCollection is called the DirectMusicCollection object. Objects may
also be referred to by short names such as collection, performance, segment, and
track.

Interface pointers are often used as pointers to their objects so that these objects can
be accessed through the methods of other interfaces. In fact, one interface,
IDirectMusicDownloadedInstrument, has no unique methods of its own and is
used only as a parameter to the methods of other interfaces.

DirectMusic consists of many COM objects and interfaces which are related to one
another in rather complex ways. However, they may be divided into categories
according to their broad functionality, as follows:

· Core Objects and Interfaces
· Loader Objects and Interfaces

in.doc – page 4

· Instrument Objects and Interfaces
· Tool Objects and Interfaces
· Performance Objects and Interfaces
· Composition Objects and Interfaces
· Synthesizer Objects and Interfaces

Core Objects and Interfaces
[This is preliminary documentation and subject to change.]

The core objects handle the basic needs of DirectMusic: input, output, and timing.
These objects are most often managed by other objects such as
DirectMusicPerformance, and you might never need to use their interfaces directly.

DirectMusic Object
The DirectMusic object, represented by the IDirectMusic interface, is used for
creating ports and buffers, for connecting with DirectSound, and for setting up a
master clock. There should not be more than one instance of this object per
application.

Many applications never need to use the IDirectMusic interface directly. In this
respect it differs from other DirectX base interfaces. For example, IDirectSound is
the starting point for every DirectSound application, performing essential tasks such
as setting the cooperative level and creating sound buffers. In DirectMusic, most
initialization is handled by other objects such as DirectMusicPerformance, and these
objects are created independently by direct calls to CoCreateInstance.

Port
Each device that sends or receives music data is encapsulated in a DirectMusicPort
object. The methods of the IDirectMusicPort interface allow direct manipulation of
the port, but most applications do not need to use these methods, because the port is
managed by the performance. For example, you assign channels to a port through the
DirectMusicPerformance object so that data in those channels is correctly routed.

Buffer
The IDirectMusicBuffer interface represents the data currently ready to be played
by the port (or read from the port). Most applications don't deal directly with the
buffer object, but methods are available to directly manipulate its contents.

Thru
The IDirectMusicThru interface is used to set up direct transmission of data from a
capture port to another port.

in.doc – page 5

Reference Clock
Objects that implement the IReferenceClock interface represent the master clock
that synchronizes all DirectMusic activity, and the latency clock of a port.

Loader Objects and Interfaces
[This is preliminary documentation and subject to change.]

Certain types of objects, such as DirectMusicCollection and DirectMusicStyle, have
to be loaded (typically from a file) before they can be incorporated into a music
performance. Others, such as DirectMusicSegment, may be either loaded or
constructed on the fly. The interfaces introduced in this section are essential for
loading.

Loader
The DirectMusicLoader object, through its IDirectMusicLoader interface, manages
the enumeration, caching, and loading of objects.

Stream
Data being read from a file or resource is represented by a stream object. Most
applications do not have to deal directly with streams, which are created and
managed by the loader. The stream object implements the following two interfaces:

· IStream streams the data from a file or resource and passes it to the object
being loaded, which parses it by using its own implementation of
IPersistStream.

· IDirectMusicGetLoader has a single method that returns a pointer to the
DirectMusicLoader object that created the stream. It is used when a reference to
another object is found in a stream, and the object being loaded needs to call the
loader to load the referenced object.

For a closer look at the use of these interfaces in the loading process, see
DirectMusic Loader.

Object
Every object in DirectMusic that represents a file or resource supports the
IDirectMusicObject interface, which is used as a generic pointer by the loader.
When an application has obtained a pointer to this interface, the
IDirectMusicObject::QueryInterface method can be used to obtain a pointer to the
object's own unique interface, such as IDirectMusicCollection or
IDirectMusicStyle. However, you will usually obtain the interface you need from
the call to IDirectMusicLoader::GetObject.

The methods of IDirectMusicObject are used internally by the loader for
identifying objects.

in.doc – page 6

Instrument Objects and Interfaces
[This is preliminary documentation and subject to change.]

An instrument is an object that represents a basic musical timbre or other sound. For
all ports except legacy hardware MIDI ports, each instrument is associated with its
own set of downloadable sounds (DLS), which must be downloaded to the port
before the instrument can be used.

Downloadable sounds can be handled at three levels of abstraction. At the highest
level, you load a band from a file and let the band object handle the DLS
downloading for the instruments. At the next level, you directly access individual
instruments in a collection and download them to a port. At the lowest level, you
work with the DLS data itself.

The following objects and interfaces are used for managing instruments.

Collection
Instruments are stored in a DirectMusicCollection object, which represents an
instance of a DLS file. Once the DirectMusicCollection object has been loaded, the
IDirectMusicCollection interface can be used to enumerate instruments in the
collection and to obtain a pointer to an instrument that has a given MIDI patch
number.

Instrument
An instrument from a collection is represented by a pointer to the
IDirectMusicInstrument interface. This pointer can be passed to the
IDirectMusicPerformance::DownloadInstrument or
IDirectMusicPort::DownloadInstrument method to download DLS data to a port.

Once an instrument has been downloaded, it is represented by an
IDirectMusicDownloadedInstrument interface pointer. This pointer is used only to
unload the instrument by calling IDirectMusicPort::UnloadInstrument.

Applications that need to download their own DLS data for an instrument (such as
collection editing tools) use the methods of the IDirectMusicPortDownload
interface (implemented by the port object) to get that data to the synthesizer. When
this interface is used to allocate a buffer for instrument data, an
IDirectMusicDownload interface pointer is returned. The single method of this
interface can be used to obtain a pointer to the buffer itself.

Band
The DirectMusicBand object represents a set of instruments and MIDI program
changes for a musical segment. The band is created in an authoring tool and can be
loaded separately from a file, or it can be part of an authored segment.

in.doc – page 7

The IDirectMusicBand interface can be used to download and unload bands. It also
has a method for creating a secondary segment from a band. This segment can be
played by the performance in order to effect program changes.

The key differences between a collection and a band are as follows:

· A collection is a group of instruments available for use in the playback of any
segment. A band is a group of instruments that actually plays a particular
segment.

· Instruments in a collection contain DLS data defining their timbre. Instruments
in a band contain no such data but are linked to instruments in one or more
collections.

· An instrument from a collection is not inherently associated with any particular
performance channel (PChannel) of a segment. A band assigns the patch number
of an instrument to each PChannel in a segment and assigns a voice priority to
the channel.

· A collection does not contain any information about how the instruments are to
be played. A band contains settings for the volume, pan, and transposition of
each instrument.

Tool Objects and Interfaces
[This is preliminary documentation and subject to change.]

Tools are objects that intercept musical messages and process them before they are
passed on to the port. All tools (except the output tool implemented by DirectMusic)
are application-defined.

Tool
The IDirectMusicTool interface represents a single tool. The methods of this
interface are implemented by the application or DLL in order to define the tool's
functionality.

Graph
Tools are collected in a graph, represented by the IDirectMusicGraph interface,
which is implemented by both the segment and the performance object. The
interface is used for directing messages from one tool to the next as well as for
adding tools to the graph, retrieving pointers to individual tools, and shutting down
the graph.

Performance Objects and Interfaces
[This is preliminary documentation and subject to change.]

in.doc – page 8

The following objects and interfaces are used in the playback of musical data. With a
total of over 75 methods, the interfaces in this group play a major role in any
DirectMusic application.

Performance
The DirectMusicPerformance object is the overall manager of music playback.
Through the IDirectMusicPerformance interface, it adds and removes ports,
downloads instruments, attaches graphs (collections of tools), manages event
notification for multiple segments, and plays segments.

Segment
A DirectMusicSegment object represents a chunk of data, most often a piece of
music, contained in one or more tracks. Typically a segment would be either loaded
from a file or created at run time by a DirectMusicComposer object. To play the
segment, the application passes the IDirectMusicSegment interface pointer to the
IDirectMusicPerformance::PlaySegment method.

Methods of the IDirectMusicSegment interface are used to manage timing and
looping, event notification, tracks, tool graphs, and various other parameters of the
segment.

An instance of a segment that is playing is represented by another interface,
IDirectMusicSegmentState. Methods of this interface return information about the
state of playback, and a pointer to the interface is used by the performance to stop or
remove the segment instance.

Track
A chunk of timed data of a particular kind is represented by a DirectMusicTrack
object, more simply referred to as a track. Methods of the IDirectMusicTrack
interface can be used to set and retrieve data, play the data, and set notifications.
Most applications do not use this interface directly, because tracks are normally
handled through the methods of the DirectMusicSegment object that contains them.

Note
A DirectMusicTrack is not the same thing as an instrument track. A
DirectMusicTrack represents any kind of timed data, such as MIDI messages, a
chord progression, or band changes.

Composition Objects and Interfaces
[This is preliminary documentation and subject to change.]

The objects and interfaces in this category are used in the real-time composition of
music. Except for the composer itself, they represent data loaded from a file created

in.doc – page 9

in an application such as DirectMusic Producer. For a closer look at the role of each
object, see Music Composition.

Composer
Methods of the IDirectMusicComposer interface allow an application to compose
musical segments and transitions, using chordmaps, styles, and templates created by
a human author.

Style
Styles contain basic information about a piece of music, including note patterns.
Styles often form part of authored segments, where they do most of their work
behind the scenes. They can also be used to compose entirely new segments at run
time. Styles are represented by the IDirectMusicStyle interface.

Chordmap
A DirectMusicChordMap object represents a collection of chords and pathways used
by DirectMusicComposer in determining the chord progression in a piece of music.

The IDirectMusicChordMap interface is obtained for a DirectMusicChordMap
object loaded from a file. A pointer to this interface is passed to the methods of
IDirectMusicComposer so that a segment or transition can be composed at run time
using the authored chordmap. You can also change the chord pattern of an existing
segment by applying a new chordmap.

Template
Templates are a special type of DirectMusicSegment object. They are never played
directly but are used by the DirectMusicComposer in the real-time construction of
segments based on styles and chordmaps.

Synthesizer Objects and Interfaces
[This is preliminary documentation and subject to change.]

The synthesizer is responsible for converting MIDI messages to waveform data and
streaming this to the wave output device. Although DirectMusic comes with its own
software synthesizer, it allows the implementation of custom synthesizers. It also
allows output to be directed to different devices. Information on these topics is
contained in the DirectX Driver Development Kit (DDK).

Synthesizer
A synthesizer implemented by an application is represented by the
IDirectMusicSynth interface. Most applications do not use this interface, and it is
not documented in the DirectX Programmer's Reference.

in.doc – page 10

Synth Sink
The wave stream to which the synthesizer is sending data—for example,
DirectSound or Win32 waveform audio—is represented by an
IDirectMusicSynthSink interface. Most applications do not use this interface, and it
is not documented in the DirectX Programmer's Reference.

Overview of DirectMusic Data
Flow

[This is preliminary documentation and subject to change.]

Typically a DirectMusic application obtains musical data from one or more of the
following sources:

· MIDI file.
· Segment file authored in an application such as DirectMusic Producer.
· Component files authored in an application such as DirectMusic Producer and

turned into a complete composition by the DirectMusicComposer object.

Data from these sources is encapsulated in DirectMusicSegment objects. Each
segment object represents data from a single source. At any given moment in a
performance, one or more segments may be playing: a primary segment and possibly
one or more secondary segments. Source files can be mixed—for example, a
secondary segment based on a MIDI file can be played along with a primary segment
based on an authored segment file.

A segment comprises several tracks, each containing timed data of a particular kind
—for example, notes or tempo changes.

Most tracks generate messages when the segment is played by the performance, and
the performance dispatches the messages to any application-defined tools, which
have the opportunity to modify messages and pass them on, delete messages, and
send new messages. Tools are grouped in segment graphs that process only messages
from their own segments, and a performance graph that accepts messages from all
segments.

Finally, the messages are delivered to the output tool, which converts the data to
MIDI format before passing it to a port. Channel-specific MIDI messages are
directed to the appropriate channel group on the port. The port synthesizes a sound
wave that is streamed to a wave output device (normally a DirectSound buffer).

The following diagram gives an overview of how musical data gets from files to the
wave output device. For the sake of simplicity, only a single segment is shown. Note
that this segment gets its data from only one of the three possible sources shown:
either a MIDI file, an authored segment file, or component files combined by the
DirectMusicComposer object.

in.doc – page 11

Tools can
discard
messages

MIDI messages

Output Tool

Port (synthesizer)

Channel
group

Channel
group

Channel
group...

Segment

Band track Sequence
track More tracks...

MIDI Segment

Composer

TemplateStyle Chordmap

Tool

Tool

Segment
graph

(optional)

Tool

Tool

Performance
graph

(optional)

Message queue

Wave output

Messages from
other segments

For a closer look at the flow of messages through the performance, see DirectMusic
Messages.

For information on how to implement the process illustrated in the diagram, see the
DirectMusic Essentials section, in particular the topics DirectMusic Loader and
Playing Music.

For more about segment and component files, see Music Composition.

in.doc – page 12

DirectMusic Messages
[This is preliminary documentation and subject to change.]

Musical data passes through the DirectMusic performance engine in the form of
messages. Most DirectMusic applications will not have to work directly with
messages, but a basic knowledge of their structure can help you understand how
DirectMusic works.

DirectMusic works with two different kinds of messages:

· Performance messages, based on the DMUS_PMSG structure. All sequenced
data passes through the performance engine in this form. These messages
contain detailed information about timing and routing of the data.

· Standard MIDI messages. These can be read from a MIDI file or device and
either passed directly (thrued) to another device or converted to DMUS_PMSG
format before being passed to the performance. Final output to the synthesizer is
also in the form of MIDI messages.

The following topics give more information about messages and how they are
routed:

· Channels
· Message Creation and Delivery
· Performance Message Types
· MIDI Messages

Channels
[This is preliminary documentation and subject to change.]

A channel is a destination for a message that is specific to one part in the
performance. For example, a channel might receive a note-on message that causes
the instrument on that channel to make a sound, or a program change message that
assigns a different instrument to that part. (See MIDI Channel Messages.)

Under the MIDI 1.0 standard, there are 16 MIDI channels, meaning that no more
than 16 instruments can be playing at one time. In order to support this standard but
at the same time make more channels available to applications, DirectMusic creates
channel groups. Up to 65,536 channel groups can exist at one time, each containing
16 channels, for a total of over one million channels. A particular port can be
assigned any number of channel groups up to its capability to support them. Legacy
MIDI hardware ports have only a single channel group.

System exclusive messages address all 16 channels within a channel group, but not
other channel groups.

Every instrument in a DirectMusic performance has a unique performance channel,
or PChannel. The PChannel represents a particular MIDI channel in a particular

in.doc – page 13

group on a particular port. When a band is selected by a performance, the
instruments in that band are each mapped to a PChannel.

The actual number of notes that can be played simultaneously is limited by the
number of voices available on the port. (This number can be determined from the
dwVoices member of the DMUS_PORTPARAMS structure.) A voice is a set of
resources dedicated to the synthesis of a single note being played on a channel. In
the event that there are more notes playing than there are available voices, one or
more notes will have to be suppressed by the synthesizer. The choice is determined
by the priority of the voice currently playing the note, which is based in turn on the
priority of the channel. By default, channels are ranked according to their index
value, except that channel 10, the MIDI percussion channel, is ranked highest.
However, applications and synthesizers can set their own channel priorities.

For more information on channel priority, see the Remarks for
IDirectMusicPort::GetChannelPriority. See also
DMUS_CHANNEL_PRIORITY_PMSG.

Message Creation and Delivery
[This is preliminary documentation and subject to change.]

When a segment is played, most of its tracks generate messages containing
information about events that are to take place during the playback. (For more
information, see Tracks.)

A few tracks send more than one kind of message. For example, a style track sends
note messages and time signature messages. In such cases, an application can disable
certain kinds of messages in the track. For more information, see Setting and
Retrieving Track Parameters.

Applications may also place messages in the queue directly. You might do this, for
example, to change the tempo. For sample code, see
IDirectMusicPerformance::SendPMsg.

The performance engine determines when each message is to be processed in real
time (reference time). In the case of channel messages, the performance also
determines to what PChannel the message is to be directed. This information, along
with other data including the message type, its source track, and pointers to the first
graph and tool that are to receive the message, are stored in the DMUS_PMSG
members of the message structure.

Certain messages, such as tempo and time signature changes, are immediately
processed and freed by the performance. Other messages, such as notes and patch
changes, are placed in a queue, where they are processed in order of time-stamp.

Notes
There is no guarantee that messages with the same time-stamp will be processed
in any particular order.

in.doc – page 14

Tempo messages (DMUS_TEMPO_PMSG) tell the performance how to
convert music time to reference time. Time signature messages
(DMUS_TIMESIG_PMSG) are purely informational, because the time
signature is built into the segment and cannot be changed.

Messages are first sent to any tools in the segment's graph and then to tools in the
performance's graph. (The application is responsible for creating either or both of
these graphs and defining the tools. There is no default graph.)

The first tool in a graph processes the message and then, if it wishes to pass it on, has
the graph stamp the message with a pointer to the next tool. (For a closer look at this
process, see Tutorial 2: Using Tools.)

At this point the graph also flags the message with a delivery type that determines
when the message is delivered to the next tool. The flag is based on what delivery
type the tool is expecting, as follows:

· If the message is flagged as DMUS_PMSGF_TOOL_IMMEDIATE, it is to be
delivered to the next tool immediately.

· If it is flagged as DMUS_PMSGF_TOOL_QUEUE, the message is to be
delivered just before the time at which it is supposed to play, taking latency into
account (see Latency and Bumper Time).

· If the message has the DMUS_PMSGF_TOOL_ATTIME flag, it is to be
delivered at exactly the time at which it is to be processed. Notification
messages are given this flag, because there is little or no latency involved in
processing a notification.

The current tool has the opportunity to change the delivery type after the graph is
finished stamping and flagging the message.

Ultimately, unless a message has been discarded, it arrives at the DirectMusic output
tool, which converts all the data it receives into standard MIDI messages and
delivers these to the synthesizer through the port buffer.

Performance Message Types
[This is preliminary documentation and subject to change.]

Messages are stored in various structures derived from DMUS_PMSG. Because C
does not support inheritance, the members of DMUS_PMSG are included in the
declaration for each message type as the DMUS_PMSG_PART macro. These
members contain data common to all messages, including the type of the message,
time stamps, the performance channel to which the message is directed, and what
graph and tool are next in line to process the message. The other members contain
data unique to the message type.

The following message structures are defined:

DMUS_PMSG Simple message with no additional
parameters.

in.doc – page 15

DMUS_CHANNEL_PRIORITY_PM
SG

Channel priority change. See Channels.

DMUS_CURVE_PMSG Curve.
DMUS_MIDI_PMSG Any MIDI message that does not have a

unique message type—for example, a
control change.

DMUS_NOTE_PMSG Music note. (Includes duration, so MIDI
note-on and note-off messages are combined
in this type.)

DMUS_NOTIFICATION_PMSG Notification. See Notification and Event
Handling.

DMUS_PATCH_PMSG MIDI patch change.
DMUS_SYSEX_PMSG MIDI system exclusive message.
DMUS_TEMPO_PMSG Tempo change.
DMUS_TIMESIG_PMSG Time signature change.
DMUS_TRANSPOSE_PMSG Transposition.

MIDI Messages
[This is preliminary documentation and subject to change.]

This section gives an overview of standard MIDI messages and how such messages,
typically streamed from a MIDI file, are handled by DirectMusic. Most applications
will not have to deal directly with MIDI messages, because the loader and the
performance manage all the details of playback. (See Tutorial 1: Playing a MIDI
File.)

MIDI input is converted to performance message format (using structures based on
DMUS_PMSG) before being routed through tools by the performance. The output
tool converts the data back to the standard MIDI message format before passing it to
the synthesizer.

Note
There is no guarantee that MIDI messages will be processed in the same order in
which they occur in the file. DirectMusic messages are delivered in order of
timestamp, and two MIDI messages with identical timestamps might not be
delivered in the expected order. Care must be taken, in authoring MIDI content,
not to give events simultaneous timestamps when they must take place
sequentially. For example, don't place a program change at the exact same time
as a note that is supposed to use the program change.

MIDI messages consist of a status byte usually followed by one or two data bytes.
System exclusive MIDI messages are of variable length. The status byte indicates the
type of message and, in some cases, the channel that is to receive the message. When
several events of the same kind are in sequence in the file, the status byte can be

in.doc – page 16

omitted. This is called running status. Data bytes are recognizable because the high
bit is always clear, whereas in status bytes it is always set.

The timing of MIDI events being streamed from a file is controlled by a number
before each message indicating how many ticks separate this event from the last. The
actual duration of a tick depends on the time format in the file header.

MIDI messages are divided into two main categories:

· MIDI Channel Messages
· MIDI System Messages

MIDI Channel Messages
[This is preliminary documentation and subject to change.]

A channel message is addressed to a particular MIDI channel, which corresponds to
a single part in the music.

A channel message can be either a mode message or a voice message.

A mode message determines how a channel will deal with subsequent voice
messages. For example, a mode message might instruct the channel to remain silent,
ignoring all note-on messages until further notice.

Most channel messages are voice messages: they instruct the channel to begin or
stop playing a note or to modify the note in some way, or they change the instrument
by assigning a different MIDI patch number to the channel.

Voice messages are of the following types:

Voice message Purpose

Note-on Play a note.
Note-off Stop playing the note.
Control change Modify the tone with data from a pedal, lever, and so on;

also used for miscellaneous controls such as volume and
bank select.

Program (patch) change Select an instrument for the channel by assigning a patch
number.

Aftertouch Modify an individual note, or all notes on the channel,
according to the aftertouch of a key.

Pitch bend change Cause the tone to make a smooth transition in pitch.

Keep in mind that these descriptions apply to standard MIDI messages, not MIDI
data that has been converted to performance message format. For example, a pair of
MIDI messages to start and stop a note will be combined by DirectMusic into a
single DMUS_NOTE_PMSG giving the duration of the note. DirectMusic messages
also contain much additional information about the timing and routing of the
message.

in.doc – page 17

MIDI notes
The data bytes of a note-on message represent the pitch and velocity. In most cases,
a pitch value of 0 represents C below subcontra C (called C0 in MIDI notation), 12
represents subcontra C (or C1), 60 is middle C (or C5), and so on. For drum kits, the
data byte instead represents a particular drum sound. For example, as long as the
General MIDI (GM) percussion key map is being adhered to, a value of 60
represents a high bongo sound. Channel 10 is reserved for drum kits, so the
synthesizer knows that note-on messages on that channel are to be treated differently
than on other channels.

For information on how DirectMusic converts to and from MIDI notes, see Music
Values and MIDI Notes.

Program changes
Program changes and patch numbers are a key concept in MIDI playback and in
DirectMusic. A program change assigns a particular instrument (also called a
program or timbre) to a channel, so that the notes sent to that channel are played
with the appropriate sound. Instruments are identified by patch numbers. If the GM
instrument set is loaded, a program change specifying patch number 1 will always
cause the channel to play its notes as an acoustic grand piano. (Of course, the actual
sound produced at the speakers depends on the way the instrument is synthesized.)

Bank selection
Because a single data byte is used to select the patch number in a program change,
and only 7 bits in each data byte of a MIDI message are significant, a program
change can select from a maximum of 128 instruments. In order to provide a greater
choice, the MIDI specification allows for the use of up to 16,384 instrument banks,
each containing up to 128 instruments.

To select an instrument from a different bank, the MIDI sequencer must first send a
control change message called bank select. The two data bytes of this message are
referred to as the most significant byte (MSB) and least significant byte (LSB), and
they are combined to identify a bank. Once the bank has been selected, each
subsequent program change selects an instrument from that bank.

DirectMusic patch numbers
In DirectMusic, the instrument patch number is not the 7-bit MIDI patch number but
a 32-bit value that packs the MIDI patch number together with the MSB and LSB of
the bank select and a one-bit flag for a drum kit. This extended patch number is
returned by the IDirectMusicCollection::EnumInstrument,
IDirectMusicCollection::GetInstrument, and IDirectMusicInstrument::GetPatch
methods. It can be changed for an instrument by using the
IDirectMusicInstrument::SetPatch method.

The organization of DirectMusic patch values is as follows:

Bits Purpose

in.doc – page 18

0-7 MIDI patch number (bit 7 always 0)
8-15 LSB bank select (bit 15 always 0)
16-23 MSB bank select (bit 23 always 0)
24-30 Unused
31 Flag for drum kit

MIDI System Messages
[This is preliminary documentation and subject to change.]

System messages are not exclusive to any channel. They are of three kinds, as shown
in the following table.

Message type Purpose

System common Miscellaneous commands and data.
System exclusive Equipment-specific commands and data.
System real-time Synchronization of clock-based MIDI equipment.

Unlike other MIDI messages, system exclusive messages can contain any number of
data bytes. After transmitting the data, the sequencer sends a system common
message called an EOX, which signals the end of the system exclusive message. In
DirectMusic, the DMUS_SYSEX_PMSG structure contains the length of the data
and a pointer to an array of data bytes.

Downloadable Sounds
[This is preliminary documentation and subject to change.]

In the past, most computer music has been produced in one of two fundamentally
different ways, each with its advantages and disadvantages:

· Wave forms are reproduced from digital samples, typically stored in a .wav file
or, in the case of Red Book audio, on a standard CD track. Digital samples can
reproduce any sound, and the output is very similar on all sound cards.
However, they require large amounts of storage and resources for streaming.

· Instrument sounds are synthesized, usually in hardware, in response to messages,
typically from a MIDI file. MIDI files are compact and require few streaming
resources, but the output is limited to the number of instruments available in the
General MIDI set and in the synthesizer, and may sound very different on
different systems.

One way to combine the advantages of digital sampling with the compactness and
flexibility of MIDI is wavetable synthesis—the synthesis of instrument sounds from
digital samples. These samples are obtained from recordings of real instruments and
then stored on the hardware. The samples are looped and adjusted in such a way as
to produce sounds of any length at various pitches and volumes.

in.doc – page 19

Wavetable synthesis produces more realistic timbres than algorithmic FM synthesis,
but is still limited to a fixed set of instruments. Moreover, a particular instrument
may sound different on different pieces of hardware depending on the manufacturer's
implementation of that instrument.

Enter the downloadable sounds (DLS) standard, published by the MIDI
Manufacturers Association. DLS is a way of enabling wavetable synthesis to be
based on samples provided at run time rather than hardwired into the system. The
data describing an instrument is downloaded to the synthesizer, and then the
instrument can be played just like any other MIDI instrument. Because DLS data can
be distributed as part of an application, developers can be sure that their soundtracks
will be delivered uniformly on all systems. Moreover, they are not limited in their
choice of instruments.

A DLS instrument is created from one or more digital samples, typically
representing single pitches which are then modified by the synthesizer to create other
pitches. Multiple samples are used in order to make the instrument sound realistic
over a wide range of pitches. When a DLS instrument is downloaded, each sample is
assigned to a certain range of pitches, called a region. Usually there are no more than
16 regions.

In addition, samples may be given an articulation, which defines things like attack
(how quickly a note reaches full volume), decay (how quickly it falls away from full
volume), and other characteristics that make the sound more like that produced by a
real instrument.

Downloadable sounds are stored in instrument collections, from which they are
downloaded to the synthesizer.

DLS instruments are assigned patch numbers and respond to MIDI messages just like
other MIDI instruments. However, a DLS instrument does not have to belong to the
General MIDI set. In fact, it doesn't have to represent a musical instrument at all.
Any sound, even a fragment of speech or a fully composed measure of music, can be
turned into a DLS instrument.

For more information on DLS collections and how instruments are created, see the
documentation for DirectMusic Producer. For a guide to incorporating DLS in your
applications, see Using Downloadable Sounds.

Microsoft Software Synthesizer
[This is preliminary documentation and subject to change.]

The Microsoft Software Synthesizer is supplied with DirectMusic and is the default
port. The synthesizer creates a waveform based on a stream of MIDI messages, using
instrument timbres synthesized from DLS samples. By default the samples are from
the Roland GS collection, which is also part of the DirectMusic installation.

Note

in.doc – page 20

The Roland GM/GS Sound Set cannot be modified. See the Copyright Warning
for the legal restrictions.

In the current release of DirectMusic, the synthesizer is implemented in a DLL that
sends its output to the DirectSound mixer.

The Microsoft Software Synthesizer includes reverberation capabilities, which are on
by default. The Waves TrueVerb reverberation technology is licensed to Microsoft
as the SimpleVerb implementation.

DirectMusic Essentials
[This is preliminary documentation and subject to change.]

This section gives practical information on how to implement DirectMusic in
applications. For a more general overview, see DirectMusic Architecture.

The following topics are discussed:

· Building DirectMusic Projects
· Integrating DirectMusic and DirectSound
· Using Ports
· DirectMusic Loader
· DirectMusic File Format
· Using Downloadable Sounds
· Playing Music
· Music Parameters
· Capturing Music
· DirectMusic Tools
· Music Composition

Building DirectMusic Projects
[This is preliminary documentation and subject to change.]

Unlike other components of DirectX, the DirectMusic application programming
interface (API) is completely COM-based and does not contain any library functions
such as helper functions to create COM objects. As a result, there is no Dmusic.lib
file to link to during the build.

Most projects will need to include the header files Dmusicc.h and Dmusici.h, which
contain declarations for the core and performance layers respectively, and
Dmerror.h, which contains return values. Dmusicf.h has to do with file formats and
is needed only for applications such as music authoring tools that work directly with
files and do not rely solely on the loaders built into DirectMusic.

in.doc – page 21

Dmksctrl.h contains declarations for the IKsControl interface, used for property
sets. You do not need this file if you have the Ksproxy.h and Ks.h files.

DirectMusic uses the multithreading capabilities of the Windows 32-bit operating
system. Multithreading allows DirectMusic to generate, process, and synthesize
music in the background while your application is concentrating on other tasks. You
should develop your project with multithreading in mind. If nothing else, be sure to
link with the multithreaded libraries.

You also need to make sure your application has access to the GUIDs used by
DirectMusic. For more information, see Compiling DirectX Samples and Other
DirectX Applications.

Integrating DirectMusic and
DirectSound

[This is preliminary documentation and subject to change.]

Although it is possible to use DirectMusic to send wave data to any device, the
default synthesizer streams its output to DirectSound.

DirectMusic is capable of handling all the details of linking to DirectSound without
any action on your part. When it creates or links to a DirectSound object,
DirectMusic ensures that the primary buffer format matches that of the highest
format among all DirectMusic ports.

In an application that uses only music files for its soundtrack, and does not require
DirectSound for playing wave files or resources, the DirectSound object is typically
created when the DirectMusic performance is initialized, as in the following
example, where pPerf is a pointer to the IDirectMusicPerformance:

pPerf->Init(NULL, NULL, hwnd);

In this example, the first NULL specifies that the DirectMusic object is to be created
and managed internally, the second NULL specifies the same for the DirectSound
object, and hwnd is the controlling window for DirectSound.

Note
It is good practice to supply the top-level application window handle when
requesting that DirectMusic create the DirectSound object. See the Remarks for
IDirectMusicPerformance::Init and IDirectSound::SetCooperativeLevel.

More information is contained in the following topics:

· Setting the DirectSound Object
· Setting the DirectSound Buffer Object

Setting the DirectSound Object
[This is preliminary documentation and subject to change.]

in.doc – page 22

Allowing DirectMusic to create and manage the DirectSound object works for
applications that are not using DirectSound independently. However, if your
application is using DirectSound to play wave data from a source other than the
DirectMusic synthesizer, you have to ensure that the same IDirectSound interface is
used by DirectMusic. You must create the DirectSound object first, then pass the
interface pointer to DirectMusic. This can be done in the call to
IDirectMusicPerformance::Init, as in the following example, where pPerf is the
IDirectMusicPerformance and pDS is a pointer to IDirectSound:

pPerf->Init(NULL, pDS, NULL);

Note
When an IDirectSound pointer is passed to IDirectMusicPerformance::Init,
the third parameter, the window handle, is ignored. The application is
responsible for setting the controlling window by calling
IDirectSound::SetCooperativeLevel.
It is strongly recommended that you set the DSSCL_PRIORITY cooperative
level for any DirectSound object to be used with DirectMusic. If you set the
DSSCL_NORMAL cooperative level, DirectMusic cannot upgrade the primary
buffer format.

If you create the DirectMusic object by using CoCreateInstance, rather than letting
the performance do it for you, you must also explicitly link it to an existing
IDirectSound interface. This is done by using the IDirectMusic::SetDirectSound
method.

You can also use the IDirectMusicPort::SetDirectSound method to assign a
different DirectSound object to a port. You would do this when different ports were
on different audio devices, each represented by its own IDirectSound interface. The
DirectSound object for a port cannot be changed once the port has been activated.

When a port that requires DirectSound is activated, it takes the first available
IDirectSound interface pointer from the following list:

1. The IDirectSound passed to IDirectMusicPort::SetDirectSound.
2. The IDirectSound passed to IDirectMusic::SetDirectSound.
3. The IDirectSound created by DirectMusic if NULL was passed to

IDirectMusic::SetDirectSound.

When DirectSound is in emulation mode, it has exclusive use of the audio device. A
well-behaved application will release DirectSound whenever it loses the focus, in
order to allow other applications to use the device. Typically this is done in response
to a WM_ACTIVATE message.

If DirectMusic created the DirectSound object, it will automatically release the
object when all ports are deactivated (and create a new one when the first port using
DirectMusic is reactivated). However, if you created the DirectSound object
yourself, you are responsible for releasing it. This can be done by using the

in.doc – page 23

IDirectMusic::SetDirectSound or IDirectMusicPort::SetDirectSound method,
passing NULL as the pDirectSound parameter.

Setting the DirectSound Buffer Object
[This is preliminary documentation and subject to change.]

When DirectMusic is linked to DirectSound, it creates and manages a secondary
DirectSound buffer for the wave output from each port, in a format matching that of
the port. You can override the default behavior and ensure that the data is streamed
to a different buffer, by using the IDirectMusicPort::SetDirectSound method. You
can do this, for example, to have 3-D effects on the sound buffer. (See the 3DMusic
Sample.) You might even create multiple instances of the synthesizer port, each with
its own DirectSound 3-D buffer, to place different instruments at different points in
space.

The buffer you pass to IDirectMusicPort::SetDirectSound must be a secondary
streaming buffer with a matching format. You can get information about the wave
format and recommended buffer size by calling the IDirectMusicPort::GetFormat
method.

DirectMusic will not attempt to upgrade the primary buffer when you pass your own
IDirectSoundBuffer to IDirectMusicPort::SetDirectSound.

Using Ports
[This is preliminary documentation and subject to change.]

A port is a device that sends or receives musical data. It may correspond to a
hardware device, a software synthesizer, or a software filter.

Each port in a DirectMusic application is represented by an IDirectMusicPort
interface. Methods of this interface are used to retrieve information about the device,
manage the memory on the device, download and unload DLS instruments, read
incoming data, and cue playback buffers.

Every performance must have at least one port. If you wish to use a port other than
the default port, or wish to set up special parameters for the default port, you first set
up a DMUS_PORTPARAMS structure. You don't have to fill in all members, but
you do need to let DirectMusic know which members have valid information by
putting the appropriate flags in the dwValidParams member. Then you pass the
structure to the IDirectMusic::CreatePort method.

The following C++ code demonstrates how an object might be created for the default
port, setting five channel groups on the port. It is assumed that pDirectMusic is a
valid IDirectMusic pointer.

IDirectMusicPort* pPort;
DMUS_PORTPARAMS dmos;

in.doc – page 24

ZeroMemory(&dmos, sizeof(DMUS_PORTPARAMS));
dmos.dwSize = sizeof(DMUS_PORTPARAMS);
dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;
dmos.dwChannelGroups = 5;
HRESULT hr = pDirectMusic->CreatePort(GUID_NULL, &dmos,
 &pPort, NULL)

Once you have a port, you must activate it by calling IDirectMusic::Activate or
IDirectMusicPort::Activate and attach it to the performance by using the
IDirectMusicPerformance::AddPort method.

When you add a port to a performance, you must assign a block of PChannels to it
by calling the IDirectMusicPerformance::AssignPChannelBlock method. The
only time this is not necessary is when you add the default port by passing NULL to
IDirectMusicPerformance::AddPort. In that case, PChannels 0 to 15 are assigned
to the MIDI channels in the first group on the port.

You can map PChannels differently, add more PChannels, or assign PChannels to a
different port by using the IDirectMusicPerformance::AssignPChannelBlock and
IDirectMusicPerformance::AssignPChannel methods.

More information about ports is contained in the following topics:

· Default Port
· Legacy Ports
· Port Property Sets

Default Port
[This is preliminary documentation and subject to change.]

If you want your application to use the default port, you don't have to call the
IDirectMusic::CreatePort method before adding the port to the performance. You
can instead pass NULL to IDirectMusicPerformance::AddPort.

In the current version of DirectMusic, the Microsoft Software Synthesizer is the
default port. However, you should not assume that the default port has the features
you need or that it will always be the Microsoft Software Synthesizer. It is good
practice to obtain the default port by a call to IDirectMusic::GetDefaultPort, then
check its capabilities by using the IDirectMusicPort::GetCaps method. If the port
does not meet the needs of your application, you can use the
IDirectMusic::EnumPort method to find the Microsoft Software Synthesizer or
another port.

Legacy Ports
[This is preliminary documentation and subject to change.]

in.doc – page 25

Under Windows 95 and Windows 98, DirectMusic supports legacy ports—that is, it
will sequence output data to a MIDI device that uses FM or hardware wavetable
synthesis. You can recognize a legacy port by the
DMUS_PORT_WINMM_DRIVER flag in the dwType member of the
DMUS_PORTCAPS structure returned by IDirectMusic::EnumPort or
IDirectMusicPort::GetCaps.

Legacy ports have the following restrictions in DirectMusic:

· Not supported on Windows 2000.
· No support for downloadable sounds.
· Master volume cannot be changed. (This can be done for other ports by setting a

global parameter. See Setting and Retrieving Global Parameters.)
· There is only one channel group. (See Channels.)

Another respect in which legacy ports differ from others is that the application
determines whether channels on the legacy port are to be shared between ports, by
setting the fShare member of the DMUS_PORTPARAMS structure. This member
is relevant only for ports that have the DMUS_PC_SHAREABLE flag in the
dwFlags member of DMUS_PORTCAPS, as is always the case for legacy ports.

Most applications do not need to consider the presence of legacy ports, because the
Microsoft Software Synthesizer produces consistent results on all output devices
capable of playing waveform audio.

Port Property Sets
[This is preliminary documentation and subject to change.]

Through property sets, DirectMusic is able to provide unlimited support for new
features in hardware and drivers. A property set is associated with a particular port.

Hardware vendors define new capabilities as properties and publish the specification
for these properties, including GUIDs. You, the application developer, can then use
the IKsControl::KsProperty method to find out whether a property is available and
then to set and retrieve values for that property. You obtain the IKsControl interface
for a port by calling the IDirectMusicPort::QueryInterface method, passing
IID_IKsControl as the interface identifier.

A property set is represented by a GUID, and each item within the set is represented
by a zero-based index. The meaning of the indexed items for a GUID never changes.
For a list of the property sets supported by DirectMusic, see KSPROPERTY.

All property sets predefined by DirectMusic have only one item, usually at index 0.
However, the full definition of kernel streaming (KS) properties is supported, and
vendors are free to create property sets with any number of items and instances and
data of any size.

Routing of the property item request to the port varies depending on the port
implementation. No properties are supported by ports which represent DirectMusic

in.doc – page 26

emulation on top of the Win32 handle-based multimedia calls (midiOut and midiIn
functions).

The following code uses the IKsControl::KsProperty method to determine if the
port supports General MIDI in hardware:

BOOL IsGMSupported(IDirectMusicPort *pPort)
{
 HRESULT hr;
 IKsControl *pControl;
 KSPROPERTY ksp;
 DWORD dwFlags;
 ULONG cb;
 BOOL fIsSupported;

 // Query for IKsControl interface
 hr = pPort->QueryInterface(IID_IKsControl, (void**)&pControl);
 if (FAILED(hr))
 {
 // Port does not support properties, assume no GM support
 return FALSE;
 }
 // Ask about GM
 ksp.Set = GUID_DMUS_PROP_GM_Hardware;
 ksp.Id = 0;
 ksp.Flags = KSPROPERTY_TYPE_BASICSUPPORT;
 hr = pControl->KsProperty(&ksp, sizeof(ksp),
 &dwFlags, sizeof(dwFlags), &cb);
 fIsSupported = FALSE;
 if (SUCCEEDED(hr) || (cb >= sizeof(dwFlags))
 {
 // Set is supported
 fIsSupported = (BOOL)(dwFlags & KSPROPERTY_TYPE_GET);
 }
 pControl->Release();
 return fIsSupported;
}

The following sample code shows how a property can be changed. In this case, the
reverberation properties of the software synthesizer are set to those contained in a
DMUS_WAVES_REVERB_PARAMS structure.

/* Assume that m_* variables have been initialized to valid values.
 m_pPort is a pointer to IDirectMusicPort. */

DMUS_WAVES_REVERB_PARAMS Params;

in.doc – page 27

Params.fInGain = m_fReverbIn;
Params.fHighFreqRTRatio = m_fReverbHigh;
Params.fReverbMix = m_fReverbMix;
Params.fReverbTime = m_fReverbTime;

IKsControl *pControl;
if (m_pPort)
{
 // Query for IKsControl interface
 HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,
 (void**)&pControl);
 if (SUCCEEDED(hr))
 {
 KSPROPERTY ksp;
 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));
 ksp.Set = GUID_DMUS_PROP_WavesReverb;
 ksp.Id = 0;
 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,
 sizeof(ksp),
 (LPVOID)&Params,
 sizeof(Params),
 &cb);
 pControl->Release();
 }
}

The following code actually turns on the reverb effect for the port represented by
m_pPort:

DWORD dwEffects = 0;
IKsControl *pControl;
HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,
 (void**)&pControl);
if (SUCCEEDED(hr))
{
 KSPROPERTY ksp;
 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));
 dwEffects = DMUS_EFFECT_REVERB;
 ksp.Set = GUID_DMUS_PROP_Effects;
 ksp.Id = 0;

in.doc – page 28

 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,
 sizeof(ksp),
 (LPVOID)&dwEffects,
 sizeof(dwEffects),
 &cb);
 pControl->Release();
}

The final example shows how you might turn off reverb while leaving any other
effects intact:

DWORD dwEffects = 0;
IKsControl *pControl;
HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,
 (void**)&pControl);
if (SUCCEEDED(hr))
{
 KSPROPERTY ksp;
 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));
 ksp.Set = GUID_DMUS_PROP_Effects;
 ksp.Id = 0;
 ksp.Flags = KSPROPERTY_TYPE_GET;

 pControl->KsProperty(&ksp,
 sizeof(ksp),
 (LPVOID)&dwEffects,
 sizeof(dwEffects),
 &cb);

 ZeroMemory(&ksp, sizeof(ksp));
 dwEffects = dwEffects & ~DMUS_EFFECT_REVERB;
 ksp.Set = GUID_DMUS_PROP_Effects;
 ksp.Id = 0;
 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,
 sizeof(ksp),
 (LPVOID)&dwEffects,
 sizeof(dwEffects),
 &cb);

 pControl->Release();

in.doc – page 29

}

DirectMusic Loader
[This is preliminary documentation and subject to change.]

Many DirectMusic objects have to be loaded from a file or resource before they can
be incorporated into a music performance. The IDirectMusicLoader interface is
used to manage the loading of such objects, as well as for finding and enumerating
objects and caching them so that they are not loaded more than once.

An application should have only one instance of the loader in existence at any time.
It is a good idea to create a single global loader object and not free it until there is no
more loading to be done. This strategy will ensure that the finding and caching of
objects is done efficiently.

The DirectMusic implementation of IStream streams the data from the source. The
parsing of the data is handled by the various objects themselves, through their
implementations of IPersistStream. As long as you are dealing only with standard
DirectMusic data, you don't need to use these interfaces directly.

Loading of objects referenced by other objects is handled transparently. For
example, suppose a style being loaded from a DirectMusic Producer file contains a
reference to a band whose data is in another file. When the style's IPersistStream
comes across the reference, it obtains the IDirectMusicGetLoader interface from
the IStream that passed it the data stream. Using this interface, it obtains a pointer to
the DirectMusicLoader. Then it calls IDirectMusicLoader::GetObject to load the
band.

More information on using the DirectMusicLoader is contained in the following
topics:

· Setting the Loader's Search Directory
· Scanning a Directory for Objects
· Enumerating Objects
· Loading Objects
· Loading an Object from a Resource
· Getting Object Descriptors
· Caching Objects
· Setting Objects
· Custom Loading

Setting the Loader's Search Directory
[This is preliminary documentation and subject to change.]

in.doc – page 30

By default, the loader looks for objects in the current directory, unless a full path is
specified in the wszFileName member of the DMUS_OBJECTDESC structure
describing the object being sought. By using the
IDirectMusicLoader::SetSearchDirectory method, you can set a different default
path for the IDirectMusicLoader::GetObject and
IDirectMusicLoader::EnumObject methods. This default path can apply to all
objects, or only objects of a certain class.

The following sample function sets the search path for style files:

HRESULT mySetLoaderPath (
 IDirectMusicLoader *pILoader) // Previously created
{
 return pILoader->SetSearchDirectory(
 CLSID_DirectMusicStyle,
 L"c:\\mymusic\\funky",
 FALSE);
}

Having called this function, the application can now load a style by file name
without including the full path, as in the following example function:

HRESULT myLoadStyleFromPath (
 IDirectMusicStyle **ppIStyle, // Receives pointer to style
 IDirectMusicLoader *pILoader) // Loader already created
{
 HRESULT hr;
 DMUS_OBJECTDESC Desc;

 ZeroMemory(&Desc, sizeof(DMUS_OBJECTDESC);
 Desc.dwSize = sizeof(DMUS_OBJECTDESC);
 wcscpy(Desc.wszFileName, L"polka.sty"); // Short file name
 Desc.guidClass = CLSID_DirectMusicStyle; // Object class
 Desc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

 hr = pILoader->GetObject(&Desc,
 IID_IDirectMusicStyle, (void **) ppIStyle);
 return hr;
}

Scanning a Directory for Objects
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::ScanDirectory method scans the current search
directory for objects of a given class. You can further narrow down the search by
providing a subclass and a file extension other than "*".

in.doc – page 31

The method compiles a list of all matching files and uses the
IDirectMusicObject::ParseDescriptor method to extract the GUID and the name
of the object. These identifiers are retained in an internal database so that the
application can subsequently load objects by GUID or name rather than by file
name. (See Loading Objects.)

Note
It is always a good idea to call IDirectMusicLoader::ScanDirectory before
loading any objects. Even though you may be loading objects explicitly by file
name, those objects might contain references to other objects not identified by
file name, and the loader will not be able to find these referenced objects if
ScanDirectory has not been called on every directory where the objects might
be.

If you include a pointer to a string in the pwszScanFileName parameter of the
ScanDirectory method, the results of the scan will be cached in a file by that name
in order to speed up subsequent scans. When a cache file is available, the method
updates object information only for files whose timestamps or sizes have changed.

Note
In the current version of DirectMusic, ScanDirectory does not actually use the
cache file. Nonetheless you can implement a cache file now and it will speed up
performance under future versions.

For an example, see Enumerating Objects.

Enumerating Objects
[This is preliminary documentation and subject to change.]

You can use the IDirectMusicLoader::EnumObject method to iterate through all
objects of a given class, or of all classes, that have previously been listed in the
internal database through a call to IDirectMusicLoader::ScanDirectory or calls to
IDirectMusicLoader::GetObject. A description of each object found is returned in
a DMUS_OBJECTDESC structure.

Note
To be sure of finding all objects, you must call ScanDirectory first.
EnumObject works by checking the internal database of objects, not by parsing
disk files.

The following example enumerates all listed style objects in the current search
directory and displays information about each one by using the TRACE debugging
macro. The loop continues executing until there are no more objects of that class to
enumerate.

void myListStyles(
 IDirectMusicLoader *pILoader)

in.doc – page 32

{
 HRESULT hr = pILoader->SetSearchDirectory(
 CLSID_DirectMusicStyle,
 L"c:\\mymusic\\wassup",
 TRUE);
 if (SUCCEEDED(hr))
 {
 hr = pILoader->ScanDirectory(
 CLSID_DirectMusicStyle,
 L"sty",
 L"stylecache");
 if (hr == S_OK) // Only if files were found...
 {
 DWORD dwIndex;
 DMUS_OBJECTDESC Desc;
 Desc.dwSize = sizeof(DMUS_OBJECTDESC);
 for (dwIndex = 0; ;dwIndex++)
 {
 if (S_OK ==(pILoader->EnumObject(
 CLSID_DirectMusicStyle,
 dwIndex, &Desc)))
 {
 TRACE("Name: %S, Category: %S, Path: %S\n",
 Desc.wszName,
 Desc.wszCategory,
 Desc.wszFileName);
 }
 else break;
 }
 }
 }
}

Notice that the example does not use the SUCCEEDED macro to test the result of
the method call, because EnumObject returns a success code, S_FALSE, for an
invalid index number.

Loading Objects
[This is preliminary documentation and subject to change.]

To load an object, you must first obtain the IDirectMusicLoader interface, as in the
following example:

IDirectMusicLoader* m_pLoader;

CoInitialize(NULL);

in.doc – page 33

HRESULT hr = CoCreateInstance(
 CLSID_DMLoader,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicLoader,
 (void**)&m_pLoader);

You then describe the object and call the IDirectMusicLoader::GetObject method
to load it and obtain the desired interface.

The following example function loads a style from disk and returns a pointer to it in
the variable addressed by the parameter.

void myLoadStyle(
 IDirectMusicStyle **ppIStyle)
{
 IDirectMusicLoader *pILoader; // Loader interface.

/* Normally you would create the loader once and use it for the
 duration of the application. This reduces overhead and takes
 advantage of the loader's ability to cache objects. However, for
 purposes of this example, we create it dynamically and throw it
 away once the style is loaded. */

 CoCreateInstance(
 CLSID_DirectMusicLoader,NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicLoader,
 (void **) &pILoader);

 if (pILoader)
 {
 DMUS_OBJECTDESC Desc;

 // Start by initializing Desc with the file name and
 // class GUID for the style object.

 wcscpy(Desc.wszFileName,L"c:\\mymusic\\funky\\polka.sty");
 Desc.guidClass = CLSID_DirectMusicStyle;
 Desc.dwSize = sizeof (DMUS_OBJECTDESC);
 Desc.dwValidData = DMUS_OBJ_CLASS |
 DMUS_OBJ_FILENAME |
 DMUS_OBJ_FULLPATH;

 pILoader->GetObject(&Desc, IID_IDirectMusicStyle,
 (void **) ppIStyle);
 pILoader->Release();

in.doc – page 34

 }
}

This example function identifies the file by a full path name and indicates that it is
doing so by setting the DMUS_OBJ_FULLPATH flag. If you have previously set the
search directory, you can use the short name of the file without full path information.
For an example, see Setting the Loader's Search Directory.

To identify the particular file object being sought you must fill in at least one of the
wszName, guidObject, and wszFileName members of the DMUS_OBJECTDESC
structure and set the corresponding flag or flags in the dwValidData member. If you
identify the file by wszName or guidObject but not by wszFileName, you must first
call the IDirectMusicLoader::ScanDirectory method in order to make the GUIDs
and names in the current directory available. For more information, see Scanning a
Directory for Objects.

See also Loading an Object from a Resource.

Loading an Object from a Resource
[This is preliminary documentation and subject to change.]

Loading an object from a resource, or from some other location in memory, is done
in a similar fashion to loading an object from a file. (See Loading Objects.) In this
case, however, the wszName, guidObject, and wszFileName members of the
DMUS_OBJECTDESC structure are irrelevant. Instead you must obtain a pointer
to the block of memory occupied by the object, and its size, and put these in the
pbMemData and llMemLength members respectively of the
DMUS_OBJECTDESC structure. You must also set the DMUS_OBJ_MEMORY
flag in the dwFlags member.

Note that the memory cannot be released once IDirectMusicLoader::GetObject
has been called, because the loader keeps the pointer to the memory internally, to
facilitate caching data. If you want to clear it out, call
IDirectMusicLoader::SetObject with the same DMUS_OBJECTDESC descriptor,
but with NULL in pbMemData. This is not an issue with loading from a resource,
because resource memory is not freed.

The following function loads a MIDI file from a resource into a segment:

HRESULT LoadMidi(HMODULE hMod, WORD ResourceID)
{
 HRESULT hr;
 DMUS_OBJECTDESC ObjDesc;
 IDirectMusicSegment* pSegment = NULL;

 HRSRC hFound = FindResource(hMod,
 MAKEINTRESOURCE(ResourceID), RT_RCDATA);
 HGLOBAL hRes = LoadResource(hMod, hFound);

in.doc – page 35

 ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);
 ObjDesc.guidClass = CLSID_DirectMusicSegment;
 ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_MEMORY;
 ObjDesc.pbMemData = (BYTE *) LockResource(hRes);
 ObjDesc.llMemLength = SizeofResource(hMod, hFound);

 hr = m_pDXPerformance->m_pLoader->GetObject(
 &ObjDesc, IID_IDirectMusicSegment,
 (void**) &m_pSegment);

 return hr;
}

Getting Object Descriptors
[This is preliminary documentation and subject to change.]

Once you have loaded an object. you can use its IDirectMusicObject interface to
retrieve information about it in a DMUS_OBJECTDESC structure. You must first
obtain the IDirectMusicObject interface for the object.

The following example uses the IDirectMusicObject::GetDescriptor method to
obtain the name of a style:

/* It is assumed that pStyle is a valid pointer to an
 IDirectMusicStyle interface. */

if (pStyle)
{
 IDirectMusicObject *pIObject;
 DMUS_OBJECTDESC Desc;

 if (SUCCEEDED(pStyle->QueryInterface(IID_IDirectMusicObject,
 (void **) &pIObject)
 {
 if (SUCCEEDED(pIObject->GetDescriptor(&Desc))
 {
 if (Desc.dwValidData & DMUS_OBJ_NAME)
 {
 TRACE("Style name is %S\n",Desc.wszName);
 }
 }
 pIObject->Release();
 }
}

in.doc – page 36

Caching Objects
[This is preliminary documentation and subject to change.]

When an object is cached, the same interface pointer is always returned by the
IDirectMusicLoader::GetObject method.

Caching is used extensively in the file loading process to resolve links to objects. If
an object is not found in the cache, it has to be reloaded, even if it already exists. For
example, two segments could reference the same style. When the first segment
loads, it calls the loader to get the style, which in turn creates a style object, loads it
from disk, stores a pointer to the style in the cache, and returns it to the segment. If
caching is enabled, when the second segment loads it asks for the style and the
loader immediately returns it, so both segments point to the same style. If caching is
disabled, the second segment's request for the style results in a duplicate style loaded
from the file. This is very inefficient.

Another example: IDirectMusicBand counts on the loader to keep the General
MIDI DLS collection cached. Every time it comes across a GM instrument, it gets
the collection from the loader by requesting it with GUID_DefaultGMCollection. If
caching for CLSID_DirectMusicCollection is disabled, every patch change in a
MIDI file will result in a separate copy of the entire GM collection being created—
not good.

By default, caching is enabled for all object classes. You can disable caching for an
object class, or for all objects, by using the IDirectMusicLoader::EnableCache
method. This method can also be used to re-enable caching for any or all object
classes.

If you wish to clear the cache without disabling future caching, use the
IDirectMusicLoader::ClearCache method.

To cache a single object, pass it to the IDirectMusicLoader::CacheObject method.
You can remove it from the cache, ensuring that it will be loaded again on the next
call to GetObject, by using the IDirectMusicLoader::ReleaseObject method.

It is a good idea to call ReleaseObject on a cached object, particularly a segment,
before destroying the object by calling its own Release method. If you don't do this,
a copy of the object remains in the cache along with certain state information. In the
case of a segment, any instance you later create will be loaded from the cache, and
its start point and loop points will be the same as they were when the previous
instance was destroyed.

With judicious use of CacheObject, ReleaseObject, and EnableCache, you can
have the objects you don't need released, while others remain in the cache.

Setting Objects
[This is preliminary documentation and subject to change.]

in.doc – page 37

Sometimes it is desirable to tell the loader where to get an object without actually
loading that object, so that the loader will be able to retrieve it if the object is later
referenced by other objects as they are being loaded.

For example, suppose your application uses its own DLS data for the General MIDI
instrument collection. Normally, the loader finds Gm.dls at its default installation
point and loads data from that file whenever an object is loaded that references the
GM collection. In order to override that default behavior, before any of those
referencing objects are loaded you need to tell the loader to get the collection from
somewhere else. This is done by using the IDirectMusicLoader::SetObject
method.

SetObject takes as a parameter a DMUS_OBJECTDESC structure that contains
two key pieces of information:

· A pointer to the data. This can be either a file path or a pointer to a block of
memory. (See Loading Objects and Loading an Object from a Resource.)

· Something by which to identify the object when it is referenced later. This could
be a GUID or a name. In the case of Gm.dls, it is GUID_DefaultGMCollection.
Later, the call to GetObject will find the stored object by using the same name
or GUID.

The following sample code instructs the DirectMusicLoader m_pLoader to look for
the GM collection in the file myGM.dls rather than in Gm.dls:

DMUS_OBJECTDESC ObjDesc;

wcscpy(ObjDesc.wszFileName,L"myGM.dls");
ObjDesc.guidClass = CLSID_DirectMusicCollection;
ObjDesc.guidObject = GUID_DefaultGMCollection;
ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);
ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME
 | DMUS_OBJ_OBJECT;
HRESULT hr = m_pLoader->SetObject(&ObjDesc);

The following code forces the loader to look for the GM collection in a resource
identified as IDR_GMDLS in the module hMod:

DMUS_OBJECTDESC ObjDesc;

HRSRC hFound = FindResource(hMod,
 MAKEINTRESOURCE(IDR_GMDLS), RT_RCDATA);
HGLOBAL hRes = LoadResource(hMod, hFound);

ObjDesc.pbMemData = (BYTE *) LockResource(hRes);
ObjDesc.llMemLength = SizeofResource(hMod, hFound);
ObjDesc.guidClass = CLSID_DirectMusicCollection;
ObjDesc.guidObject = GUID_DefaultGMCollection;
ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);

in.doc – page 38

ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_MEMORY |
 DMUS_OBJ_OBJECT;

HRESULT hr = m_pLoader->SetObject(&ObjDesc);

Custom Loading
[This is preliminary documentation and subject to change.]

Specialized applications might create their own object types that encapsulate data
from a file or resource. It can be convenient to have the DirectMusic loader handle
the loading of such objects. This is especially true if the custom object is referenced
by other objects or contains references to other objects.

To implement a loading mechanism that takes advantage of the DirectMusic loader,
you must take the following steps:

· Register the object class so that it can be found by
IDirectMusicLoader::GetObject.

· Implement the IDirectMusicObject interface on the object, so that the loader
can get the information it needs for finding and caching it.

· Implement the IPersistStream interface on the object, with full functionality in
the IPersistStream::Load method. This is where you parse the data, which you
obtain through calls on the IStream interface passed by the DirectMusicLoader.

· In the implementation of Load, ensure that references to other objects are dealt
with by querying the IStream for the IDirectMusicGetLoader interface, then
calling IDirectMusicGetLoader::GetLoader to obtain a pointer to the
DirectMusicLoader that created the stream. Once you have this pointer, you can
call IDirectMusicLoader::GetObject to load the new object.

There are circumstances where an application may need to manage file input itself
— for example, because all objects are stored in a special compressed resource file.
The application can create its own loader by creating an object that supports the
IDirectMusicLoader interface, with the IDirectMusicLoader::GetObject method
implemented. All other methods are optional. This implementation of the loader
must also create its own stream object that has both the IStream and the
IDirectMusicGetLoader interfaces.

DirectMusic File Format
[This is preliminary documentation and subject to change.]

This section describes the format of music files created in an application such as
DirectMusic Producer and read by DirectMusic when
IDirectMusicLoader::GetObject is called. Most applications do not need to parse
these files directly. This format information is included for developers of music-

in.doc – page 39

authoring applications or DirectMusic plug-ins who want to be able to save data in a
compatible format or load data into their own objects.

DirectMusic data is stored in the resource interchange file format (RIFF). The
following topics contain information about RIFF files and how DirectMusic data is
stored:

· About RIFF
· RIFF Notation
· DirectMusic File Chunks

For a reference to data structures used in DirectMusic files, see File Structures.

About RIFF
[This is preliminary documentation and subject to change.]

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of data.
Each chunk contains the following fields:

· A four-character code (FOURCC) specifying the chunk identifier.
Conventionally, this is upper case for registered chunk types and lower-case
otherwise.

· A DWORD value specifying the size of the data member in the chunk.
· The data.

A chunk contained in another chunk is a subchunk. The only chunks allowed to
contain subchunks are those with a chunk identifier of “RIFF” or “LIST”.

The first chunk in a file must be identified as "RIFF". All other chunks in the file are
subchunks of the RIFF chunk.

RIFF chunks include an additional field in the first four bytes of the data field. This
additional field provides the form type of the chunk. The form type is a four-
character code identifying the format of the data stored in the file. For example,
DirectMusic styles have the form type "DMST".

LIST chunks also include an additional field in the first four bytes of the data field.
This additional field contains the list type of the field. The list type is a four-
character code identifying the contents of the list. For example, DirectMusic styles
have a LIST chunk with a list type of "part" that contains data pertaining to a
particular part (instrument track) in the performance.

A LIST chunk is a grouping of subchunks. Some of these subchunks may appear
multiple times, but a LIST is not an array. The terminology can be a little confusing.
You might expect the chunk labeled <part-list>, for example, to be a list of parts. In
fact, it is a list of the elements of a "part" chunk, which describes a single part.

Note

in.doc – page 40

Every four-character code used in DirectMusic files has a corresponding macro
in Dmusicf.h. For example, the FOURCC for "DMST" is returned by the macro
DMUS_FOURCC_STYLE_FORM.

For more information on RIFF files in general, see Resource Interchange File Format
Services in the Platform SDK documentation.

RIFF Notation
[This is preliminary documentation and subject to change.]

The descriptions of DirectMusic files in the following sections use a subset of the
conventional notation for RIFF files. The principal parts of this notation are shown in
the following table:

Notation Description
<element> File element labeled "element", or of type

element
[<element>] Optional file element
<element>... One or more copies of the specified

element
[<element>]... Zero or more copies of the specified

element
name, 'name', NAME, or 'NAME' FOURCC identifier of a form type, list

type, or chunk.
// Comment Comment.

Labels are used only in the notation, not in the files themselves. The label <cheh-ck>
refers to a chunk with a unique FOURCC identifier and format. Wherever a chunk
of this kind occurs in the notation, the same label is used.

The data or sub-elements associated with a label are described as in the following
example:

<cheh-ck> -> cheh(<DMUS_IO_CHORDENTRY>)

This notation shows that the chunk labeled <cheh-ck> consists of the FOURCC
identifier "cheh" followed by a DMUS_IO_CHORDENTRY structure. Of course, a
DWORD showing the size of the data must precede the data as in any RIFF chunk.
The presence of this data size element is assumed and is not shown in the notation.

The next example shows a list element, consisting of the FOURCC "LIST" followed
by the list identifier "cmap" and one or more elements labeled <choe-list>. The
<choe-list> element would be expanded elsewhere.

<cmap-list> -> LIST('cmap'
 <choe-list>...)

in.doc – page 41

DirectMusic File Chunks
[This is preliminary documentation and subject to change.]

The following sections describe the format of chunks used in DirectMusic RIFF
files:

· Common Chunks
· Band Form
· Chordmap Form
· Segment Form
· Style Form
· Tool Form
· Tool Graph Form
· Track Form

Common Chunks
[This is preliminary documentation and subject to change.]

The following chunks occur within various list chunks and forms.

GUID Chunk
<guid-ck> -> guid(<GUID>)

This is the GUID identifier of the element.

Version Chunk
<vers-ck> -> vers(<DMUS_IO_VERSION>)

This chunk contains version information for the element.

UNFO Chunk
<UNFO-list> -> LIST('UNFO'
 <unfo-text-ck>...
)

The UNFO chunk is like a standard RIFF INFO list, except that it uses Unicode
characters. INFO and UNFO lists consist of various chunks that contain null-
terminated strings.

in.doc – page 42

Reference List Chunk
The reference list chunk contains information about a reference to an object in
another file. For example, a band object might contain a reference to a DLS
collection in a separate file.

The notation for a reference list is as follows:

<DMRF-list> ->LIST('DMRF'
 <refh-ck> // Reference header
 [<guid-ck>] // Object GUID
 [<date-ck>] // File date
 [<name-ck>] // Name
 [<file-ck>] // File name
 [<catg-ck>] // Category name
 [<vers-ck>] // Version info
)

The data begins with a header that includes information about the object being
referred to:

<refh-ck> -> refh(<DMUS_IO_REFERENCE>)

All other chunks are optional. The GUID and version chunks are described
previously. The notation for the others is as follows:

<date-ck> -> date(<FILETIME>)
<name-ck> -> name(<WCHAR>...) // Null-terminated string
<file-ck> -> file(<WCHAR>...) // Null-terminated string
<catg-ck> -> catg(<WCHAR>...) // Null-terminated string

Band Form
[This is preliminary documentation and subject to change.]

The following notation shows the format of the top-level chunk, or form, of a band
file. Band forms can also be contained in other chunks.

RIFF('DMBD'
 [<guid-ck>] // GUID for band
 [<vers-ck>] // Optional version info
 [<UNFO-list>] // Name, author, copyright info, comments
 <lbil-list> // List of instruments
)

For the first three chunks, which are optional, see Common Chunks.

The data is contained in a list of lists:

<lbil-list> -> LIST('lbil'

in.doc – page 43

 <lbin-list>...
)

Each instrument is described in a list that has the following format:

<lbin-list> -> LIST('lbin'
 <bins-ck>
 [<DMRF-list>]
)

Within the instrument list, the following chunk contains a header describing the
instrument:

<bins-ck> -> bins(<DMUS_IO_INSTRUMENT>)

The instrument list may also contain <DMRF-list>, which is a reference to a DLS
file. See Common Chunks.

Chordmap Form
[This is preliminary documentation and subject to change.]

The following notation shows the organization of the top-level chunk, or form, of a
chordmap file:

RIFF('DMPR'
 <perh-ck> // Chordmap header chunk
 [<guid-ck>] // GUID chunk
 [<vers-ck>] // version chunk
 [<UNFO-list>] // UNFO list
 <chdt-ck> // chord data chunk
 <chpl-list> // chord palette
 <cmap-list> // chord graph
 <spsq-list> // signpost list
)

Each of the items with the exception of the GUID chunk, version chunk, and UNFO
list (see Common Chunks) is required.

The required chunks and their subchunks are as follows:

<perh-ck> -> perh(<DMUS_IO_CHORDMAP>)

This is the basic header information for a chordmap.

<chdt-ck> -> chdt(
 <WORD> // size of DMUS_IO_CHORDMAP_SUBCHORD
 <DMUS_IO_CHORDMAP_SUBCHORD>...
)

in.doc – page 44

The <chdt-ck> chunk contains a WORD indicating the number of bytes per
subchord followed by an array of unique subchords. The subchord identifiers
referenced in other parts of this file all correspond directly to an index into this
array.

<chpl-list> -> LIST('chpl'
 <chrd-list>...
)

This list contains the chord palette. Currently there must be exactly 24 items in this
list.

<chrd-list> -> LIST('chrd'
 <UNAM-ck> // chord name
 <sbcn-ck> // subchord indexes
)

This list contains the basic chord information. This information is simply the chord's
name and a list of identifiers for the subchords that make it up.

<UNAM-ck> -> UNAM (<WCHAR>...)

The UNAM chunk stores the name of the chord.

<sbcn-ck> -> sbcn(<WORD>...)

The "sbcn" chunk contains one or more subchord identifiers. These correspond
directly to an index into the array found in <chdt-ck>. Currently a maximum of four
chords is supported.

<cmap-list> -> LIST('cmap'
 <choe-list>...
)

The "cmap" list contains the entire chord connection graph for the chordmap. The
bulk of the data for the chordmap resides in this chunk.

<choe-list> -> LIST('choe'
 <cheh-ck> // chord entry data
 <chrd-list> // chord data; see above
 <ncsq-ck> // nextchord list
)

The "choe" list contains data for a single entry in the chord graph along with pointers
to all the chords that may occur next in the chord graph.

<cheh-ck> -> cheh(<DMUS_IO_CHORDENTRY>)

This is the chord entry header. The identifier in the structure is the identifier for the
chord connection graph, not a subchord identifier.

in.doc – page 45

<ncsq-ck> -> ncsq (
 <WORD> // size of DMUS_IO_NEXTCHORD
 <DMUS_IO_NEXTCHORD>...
)

The "ncsq" chunk contains data that connects one chord in the connection graph to
another. Each chord in the connection graph is represented by a 16-bit identifier.

<spsq-list> -> LIST('spsq’
 <spst-list>...
)

The "spsq" list contains data for each of the signposts.

<spst-list> -> LIST('spst'
 <spsh-ck>
 <chrd-list> // chord data; see above
 [<cade-list>]
)

The "spst" list contains data for a single signpost, consisting of a header, chord
information, and optional cadence chords.

<cade-list> -> LIST('cade'
 <chrd-list>...
)

The "cade" list contains the chord information for cadence chords. Currently there is
support for up to two cadence chords in this list. Any additional chords or other
information will be ignored.

<spsh-ck> -> spsh(
 <DMUS_IO_CHORDMAP_SIGNPOST>
)

Finally, the "spsh" chunk contains the signpost data.

Segment Form
[This is preliminary documentation and subject to change.]

The following notation shows the organization of the top-level chunk of a segment
file:

RIFF('DMSG'
 <segh-ck> // Segment header chunk
 [<guid-ck>] // GUID for segment
 [<vers-ck>] // Optional version info
 [<UNFO-list>] // Name, author, copyright info, comments

in.doc – page 46

 <trkl-list> // List of tracks
 [<DMTG-form>] // Optional tool graph
)

The individual chunks and their subchunks are as follows:

<segh-ck> -> segh(<DMUS_IO_SEGMENT_HEADER>)

This chunk contains the basic header information for a segment.

For the next three chunks, see Common Chunks.

Next comes the track list. Each track is encapsulated in a Track Form.

<trkl-list> -> LIST('trkl'
 <DMTK-form>...
)

Finally, the segment form may contain a Tool Graph Form.

Style Form
[This is preliminary documentation and subject to change.]

The following notation shows the organization of the top-level chunk of a style file:

RIFF('DMST'
 <styh-ck> // Style header chunk
 <guid-ck> // Unique identifier
 [<UNFO-list>] // Name, author, copyright info, comments
 [<vers-ck>] // version chunk
 <part-list>... // List of parts in the style, used by patterns
 <pttn-list>... // List of patterns in the style
 <DMBD-form>... // List of bands in the style
 [<motf-list>] // List of motifs in the style
 [<prrf-list>] // List of chordmap references in the style
)

The individual chunks and their subchunks are as follows:

<styh-ck> -> styh(<DMUS_IO_STYLE>)

This chunk contains the basic header information for a style.

For these the next three chunks, see Common Chunks.

Next comes a chunk for each musical part in the style:

<part-list> -> LIST('part'
 <prth-ck> // Part header chunk
 [<UNFO-list>]

in.doc – page 47

 [<note-ck>] // List of notes in part
 [<crve-ck>] // List of curves in part
)

The part list includes a header, an optional UNFO chunk, and a list of notes and
curves, as shown in the following notation. (For the UNFO list, see Common
Chunks.)

<prth-ck> -> prth(<DMUS_IO_STYLEPART>)

<note-ck> -> note(
 < DWORD > // size of DMUS_IO_STYLENOTE
 < DMUS_IO_STYLENOTE >...
)

<crve-ck> -> crve(
 < DWORD > // size of DMUS_IO_STYLECURVE
 < DMUS_IO_STYLECURVE >...
)

After the part-list chunk comes the pattern-list chunk:

<pttn-list> -> LIST('pttn'
 <ptnh-ck> // Pattern header chunk
 <rhtm-ck> // List of rhythms for chord matching
 [<UNFO-list>]
 [<mtfs-ck>] // Motif settings chunk
 <pref-list>... // List of part reference IDs
)

The pattern list consists of the following subchunks. (For the optional UNFO list, see
Common Chunks.)

<ptnh-ck> -> ptnh(
 < DMUS_IO_PATTERN >
)

<rhtm-ck> -> rhtm(
 < DWORD >...
)

This chunk consists of an array of DWORDs, one for each measure, giving the
rhythm pattern. For information on the arrangement of the bits, see the
dwRhythmPattern member of DMUS_RHYTHM_PARAM.

<mtfs-ck> -> mtfs(
 < DMUS_IO_MOTIFSETTINGS >
)

in.doc – page 48

<pref-list> -> LIST('pref'
 <prfc-ck> // Part reference chunk
)

The "pref" chunk in turn consists of an array of part references:

<prfc-ck> -> prfc(
 < DMUS_IO_PARTREF >
)

The last chunk in the style form is the list of chordmap references:

<prrf-list> -> LIST('prrf'
 <DMRF-list>...
)

For more information on <DMRF-list>, see Common Chunks.

Tool Form
[This is preliminary documentation and subject to change.]

The tool form contains information about tools. Tools can be embedded in a Tool
Graph Form or stored as separate files.

<DMTL-form> -> RIFF('DMTL'
 <tolh-ck>
 [<guid-ck>] // GUID for tool object instance
 [<vers-ck>] // Version info
 [<UNFO-list>] // Name, author, copyright info., comments
 [<data>] // Tool data.
)

The tool header chunk is as follows:

<tolh-ck> -> tolh(<DMUS_IO_TOOL_HEADER>)

For the next three elements, which are optional, see Common Chunks.

The <data> element consists of a chunk of the type identified in the
DMUS_IO_TOOL_HEADER. The format of this chunk depends on the definition
of the tool. It may be a list or a simple chunk.

Tool Graph Form
[This is preliminary documentation and subject to change.]

A tool graph chunk can occur either as a top-level form or as a subchunk of a
segment form.

in.doc – page 49

RIFF('DMTG'
 [<guid-ck>] // GUID for tool graph
 [<vers-ck>] // Optional version info
 [<UNFO-list>] // Name, author, copyright info, comments
 <toll-list> // List of tools
)

For the first three elements, which are optional, see Common Chunks.

The main and only required part of the tool graph chunk is the tool list:

<toll-list> -> LIST('toll'
 <DMTL-form>...
)

For more information on the <DMTL-form> chunk, see Tool Form.

Track Form
[This is preliminary documentation and subject to change.]

The track form contains information about a single track. It can be embedded in a
Segment Form or stored in its own file.

<DMTK-form> -> RIFF('DMTK'
 <trkh-ck>
 [<guid-ck>] // GUID for track object instance
 [<vers-ck>] // Version info
 [<UNFO-list>] // Name, author, copyright info, comments
 [<data>] // Track data
)

The subchunks of the form are as follows:

<trkh-ck> -> trkh(
 <DMUS_IO_TRACK_HEADER>
)

This chunk contains the basic header information for a track.

For the next three elements, which are optional, see Common Chunks.

The last element in the track form is the data for the track. The chunk type used for
the data is identified in the DMUS_IO_TRACK_HEADER structure. The
following standard track chunks are defined:

· Band Track Form
· Chord Track List
· Chordmap Track List
· Command Track Chunk

in.doc – page 50

· Mute Track Chunk
· Sequence Track List
· Signpost Track Chunk
· Sysex Track Chunk
· Tempo Track Chunk
· Time Signature Track Chunk

Band Track Form
[This is preliminary documentation and subject to change.]

The band track form can be a top-level form but is also found as the data part of a
Track Form. It is organized as follows:

RIFF('DMBT'
 [<bdth-ck>] // Band track header
 [<guid-ck>] // GUID for band track
 [<vers-ck>] // Optional version info
 [<UNFO-list>] // Name, author, copyright info, comments
 <lbdl-list> // List of band lists
)

The subchunks of the form are as follows:

<bnth-ck> -> bdth(<DMUS_IO_BAND_TRACK_HEADER>)

This optional chunk contains header information for a band track. The only data in
the structure is a flag for automatic downloading.

For the next three elements, which are optional, see Common Chunks.

The last chunk contains one or more bands:

<lbdl-list> -> LIST('lbdl'
 <lbnd-list>...
)

Each band is encapsulated in a list of the following type:

<lbnd-list> -> LIST('lbnd'
 <bdih-ck>
 <DMBD-form>
)

The band list begins with a header:

<bdih-ck> -> (<DMUS_IO_BAND_ITEM_HEADER>)

in.doc – page 51

The header is followed by a Band Form containing information about the
instruments in the band.

Chord Track List
[This is preliminary documentation and subject to change.]

The chord track list contains chord data for a Track Form. It is organized as follows:

<cord-list> -> LIST('cord'
 <crdh-ck> // Header
 <crdb-ck> // Chord body chunk
)

The subchunks are as follows:

<crdh-ck> -> crdh (<DWORD>)

The header is a DWORD containing the chord root in the upper 8 bits and the scale
in the lower 24 bits. For an explanation of what these bits represent, see
DMUS_IO_SUBCHORD.

The body of data for the chord track list consists of information about a chord
change and the component subchords:

<crdb-ck> -> crdb(
 <DWORD> // size of DMUS_IO_CHORD
 <DMUS_IO_CHORD>
 <DWORD> // number of subchords
 <DWORD> // size of DMUS_IO_SUBCHORD
 <DMUS_IO_SUBCHORD>...
)

Chordmap Track List
[This is preliminary documentation and subject to change.]

The chordmap track list contains data for a Track Form. It is organized as follows:

<pftr-list> -> LIST('pftr'
 <pfrf-list>...
)

The data consists of one or more lists containing timestamps and references to
chordmaps:

<pfrf-list> -> LIST('pfrf'
 <stmp-ck>
 <DMRF-list>
)

in.doc – page 52

The notation for the timestamp chunk is as follows:

<stmp-ck> -> stmp(<DWORD>)

For information on <DMRF-list>, see Common Chunks.

Command Track Chunk
[This is preliminary documentation and subject to change.]

The command track chunk contains data for a Track Form. It is organized as follows:

<cmnd-ck> -> cmnd(
 <DWORD> //size of DMUS_IO_COMMAND
 <DMUS_IO_COMMAND>...
)

Mute Track Chunk
[This is preliminary documentation and subject to change.]

The mute track chunk contains data for a Track Form. It is organized as follows:

<mute-ck> -> mute(
 <DWORD> //size of DMUS_IO_MUTE
 <DMUS_IO_MUTE>...
)

Sequence Track List
[This is preliminary documentation and subject to change.]

The sequence track list contains data for a Track Form. It is organized as follows:

<seqt-list> -> LIST('seqt'
 <evtl-ck>
 <curl-ckt>
)

The list contains two chunks, one for sequence items and one for curve items:

<evtl-ck> -> evtl(
 <DWORD> // Size of DMUS_IO_SEQ_ITEM
 <DMUS_IO_SEQ_ITEM>...
)

<curl-ck> -> curl(
 <DWORD> // Size of DMUS_IO_CURVE_ITEM
 <DMUS_IO_CURVE_ITEM>...
)

in.doc – page 53

Signpost Track Chunk
[This is preliminary documentation and subject to change.]

The signpost track chunk contains data for a Track Form. It is organized as follows:

<sgnp-list> -> sgnp(
 <DWORD> // Size of DMUS_IO_SIGNPOST
 <DMUS_IO_SIGNPOST>...
)

Sysex Track Chunk
[This is preliminary documentation and subject to change.]

The sysex track chunk contains data for a Track Form. It is an array of sysex items,
as shown in the following notation:

<syex-ck> -> syex(
 <DMUS_IO_SYSEX_ITEM>
 <BYTE>... // Data
)...

Tempo Track Chunk
[This is preliminary documentation and subject to change.]

The tempo track chunk contains data for a Track Form. It is organized as follows:

<tetr-ck> -> tetr(
 <DWORD> // size of DMUS_IO_TEMPO_ITEM
 <DMUS_IO_TEMPO_ITEM>...
)

Time Signature Track Chunk
[This is preliminary documentation and subject to change.]

The time signature track chunk contains data for a Track Form. It is organized as
follows:

<tims-ck> -> tims(
 <DWORD> // size of DMUS_IO_TIMESIGNATURE_ITEM
 <DMUS_IO_TIMESIGNATURE_ITEM>...
)

Using Downloadable Sounds
[This is preliminary documentation and subject to change.]

in.doc – page 54

This section covers the practical use of downloadable sounds (DLS) in DirectMusic.
For an architectural overview of DLS, see Downloadable Sounds.

Most applications do not have to deal directly with instruments or downloadable
sounds. The opening of collections and downloading of instrument data is handled
by the DirectMusicBand object. When you download a band, all the instrument data
associated with that band is downloaded as well. For more information, see Using
Bands.

For specialized DirectMusic applications that do their own DLS management, two
steps must be taken: loading the instrument collection and downloading data for
individual instruments to a port.

These steps are covered in the following sections:

· Loading a Collection
· Working with Instruments
· Playing a MIDI File with Custom Instruments

Applications that allow the editing of instruments and collections need to work with
DLS data at an even lower level. This topic is covered in the following section:

· Low-Level DLS

Loading a Collection
[This is preliminary documentation and subject to change.]

The simplest way to load a collection from a file is to use the IDirectMusicLoader
interface. (For more information, see Loading Objects.) Once you have obtained a
pointer to the IDirectMusicCollection interface, you have access to all the
instruments in the collection. At this point, though, none of them have actually been
downloaded to a port. In fact, no instrument data is loaded into memory until it is
needed.

Here's what happens behind the scenes. The collection is a COM object that supports
the IDirectMusicCollection, IDirectMusicObject, and IPersistStream interfaces.
IPersistStream is a standard COM interface providing methods for saving and
loading objects that use a simple serial stream for their storage needs.

IDirectMusicCollection does not load the entire collection when
IPersistStream::Load is called. Typically, objects supporting IPersistStream load
all of the persistent data in the stream and do not use the IStream pointer outside of
the Load method. However, supporting IPersistStream::Load in this manner in
IDirectMusicCollection would mean that the entire DLS collection would have to
be loaded into memory even if only a single instrument in the collection was to be
used. Instead, IDirectMusicCollection saves the IStream pointer and later uses it to
load only the data for instruments that will be downloaded to a DirectMusic port.
IDirectMusicCollection assumes that the data stream provided through the
IPersistStream interface is in the DLS file format.

in.doc – page 55

The following example does manually what the IDirectMusicLoader::GetObject
method does automatically: it creates a collection object and loads a stream into it:

HRESULT myLoadCollectionFromStream(
 IStream *pIStream, // Stream created from file.
 IDirectMusicCollection **ppICollection)

{
 HRESULT hr;

 hr = CoCreateInstance(CLSID_DirectMusicCollection,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicCollection,
 (void **)ppICollection);
 if (SUCCEEDED(hr))
 {
 IPersistStream* pIPersistStream;
 hr = *ppICollection->QueryInterface(
 IID_IPersistStream, (void**)&pIPersistStream);
 if (SUCCEEDED(hr))
 {
 hr = pIPersistStream->Load(pIStream);
 pIPersistStream->Release();
 }
 }
 return hr;
}

The following example uses the DirectMusicLoader to load the collection by file
name.

HRESULT myLoadCollectionByName(
 IDirectMusicLoader *pILoader,
 char *pszFileName,
 IDirectMusicCollection **ppICollection)
{
 HRESULT hr;
 DMUS_OBJECTDESC Desc; // Descriptor.

 // Start by initializing Desc with the file name and GUID
 // for the collection object.
 // The file name starts as a char string, so convert
 // to Unicode.

 mbstowcs(Desc.wszFileName,pszFileName,DMUS_MAX_FILENAME);
 Desc.dwSize = sizeof(DMUS_OBJECTDESC);

in.doc – page 56

 Desc.guidClass = CLSID_DirectMusicCollection;
 Desc.dwValidData = DMUS_OBJ_CLASS
 | DMUS_OBJ_FILENAME
 | DMUS_OBJ_FULLPATH;

 hr = pILoader->GetObject(&Desc,
 IID_IDirectMusicCollection,
 (void **) ppICollection);
 return hr;
}

To load the standard GM/GS set, pass GUID_DefaultGMCollection to the loader in
the guidObject member of the DMUS_OBJECTDESC structure. If you intend to
use the loader to access this object more than once, make sure that caching is
enabled (as it is by default) so you don't end up creating another copy of the GM
collection each time you request it.

Note
The GM/GS Sound Set cannot be altered. For more information, see the
Copyright Warning.

The following code illustrates how to load a collection identified by its GUID:

HRESULT myGetGMCollection(
 IDirectMusicLoader *pILoader,
 IDirectMusicCollection **ppICollection)
{
 HRESULT hr;
 DMUS_OBJECTDESC desc;

 desc.dwSize = sizeof(DMUS_OBJECTDESC);
 desc.guidClass = CLSID_DirectMusicCollection;
 desc.guidObject = GUID_DefaultGMCollection;
 desc.dwValidData = (DMUS_OBJ_CLASS | DMUS_OBJ_OBJECT);
 hr = pILoader->GetObject(&desc, IID_IDirectMusicCollection,
 (void **) ppICollection);
 return hr;
}

Working with Instruments
[This is preliminary documentation and subject to change.]

Once a DirectMusicCollection is created and loaded from a collection file, you can
retrieve the patch number and name of all the available instruments by using the
IDirectMusicCollection::EnumInstrument method.

in.doc – page 57

The following example enumerates all instruments in a collection and displays their
names and patch numbers.

void myListInstruments(
 IDirectMusicCollection *pCollection)

{
 HRESULT hr = S_OK;
 DWORD dwPatch;
 WCHAR wszName[MAX_PATH];
 DWORD dwIndex;
 for (dwIndex = 0; hr == S_OK; dwIndex++)
 {
 hr = pCollection->EnumInstrument(
 dwIndex, &dwPatch, wszName, MAX_PATH);
 if (hr == S_OK)
 {
 printf("Patch %lx is %S\n",dwPatch,wszName);
 }
 }
}

You can obtain a pointer to a specific instrument by passing its patch number to the
IDirectMusicCollection::GetInstrument method.

After obtaining an instrument, you can change its patch number by using the
IDirectMusicInstrument::SetPatch method.

Loading a collection and retrieving the instruments is only the first step in making
the instruments available. You next have to download them to the port.

To download an instrument to a port, you pass an IDirectMusicInstrument
interface pointer to the IDirectMusicPort::DownloadInstrument method. This
method simply makes the DLS data available on the port; it does not actually
associate the instrument with any particular performance.

Alternatively, you can download an instrument by using the
IDirectMusicPerformance::DownloadInstrument method. In addition to
downloading the DLS data, this method assigns the instrument to a particular
performance channel.

To economize on memory usage, only waves and articulation required for given
ranges of notes are downloaded. For example, for a bassoon you might specify that
only data for the note range low C to middle B was to be downloaded. Only the data
for the regions falling within that range would be downloaded.

The following function, given a collection, a patch number, a port, and a range of
notes, retrieves the instrument from the collection and downloads it. It sets up an
array of just one DMUS_NOTERANGE structure and passes this to the
IDirectMusicPort::DownloadInstrument method. Typically only a single range of

in.doc – page 58

notes will be specified, but it is possible to specify multiple ranges. If you pass
NULL instead of a pointer to an array, the data for all regions is downloaded.

HRESULT myDownload(
 IDirectMusicCollection *pCollection, // DLS collection
 IDirectMusicPort *pPort, // Destination port
 IDirectMusicDownloadedInstrument **ppDLInstrument,
 DWORD dwPatch, // Requested instrument
 DWORD dwLowNote, // Low note of range
 DWORD dwHighNote) // High note of range

{
 HRESULT hr;
 IDirectMusicInstrument* pInstrument;
 hr = pCollection->GetInstrument(dwPatch, &pInstrument);
 if (SUCCEEDED(hr))
 {
 DMUS_NOTERANGE NoteRange[1]; // Optional note range
 NoteRange[0].dwLowNote = dwLowNote;
 NoteRange[0].dwHighNote = dwHighNote;
 hr = pPort->DownloadInstrument(pInstrument,
 ppDLInstrument,
 NoteRange, // Array of ranges
 1); // Number of elements in array
 pInstrument->Release();
 }
 return hr;
}

The DownloadInstrument method returns a pointer to the
IDirectMusicDownloadedInstrument interface. This pointer has just one purpose:
to identify the instrument in a subsequent call to the
IDirectMusicPort::UnloadInstrument method, which unloads the instance of the
instrument on a particular port. (Note that the DirectMusicCollection is not bound to
any specific port. You can download different instruments to different ports, or
download a single instrument to multiple ports.)

The following function downloads an instrument and then unloads it, which
accomplishes nothing except to illustrate how the
IDirectMusicDownloadedInstrument pointer can be used:

HRESULT myFickleDownload(
 IDirectMusicInstrument* pInstrument,
 IDirectMusicPort *pPort,
 DWORD dwPatch)

{
 HRESULT hr;

in.doc – page 59

 IDirectMusicDownloadedInstrument * pDLInstrument;
 hr = pPort->DownloadInstrument(
 pInstrument, &pDLInstrument,
 NULL, 0);
 if (SUCCEEDED(hr))
 {
 pPort->UnloadInstrument(pDLInstrument);
 pDLInstrument->Release();
 }
 return hr;
}

The IDirectMusicBand::Download method automates the downloading of all
instruments in a band. You supply a pointer to a performance, and the method
downloads each instrument to the appropriate port attached to that performance.

Playing a MIDI File with Custom
Instruments

[This is preliminary documentation and subject to change.]

By default, when you play a MIDI file the instruments used are those in the Roland
GM/GS Sound Set, contained in the file Gm.dls. However, you can play a MIDI file
using instruments from any collection.

To do so, first load the collection as described under Loading a Collection, obtaining
a pointer to the IDirectMusicCollection interface. Then call
IDirectMusicSegment::SetParam on the MIDI segment to establish a connection
between the segment and the collection.

The following sample shows how the connection is made:

/* Assume that pSegment was created from a MIDI file
 and that pLoadedCollection is a valid IDirectMusicCollection
 pointer. */

HRESULT hr = pSegment->SetParam(GUID_ConnectToDLSCollection,
 0xFFFFFFFF, 0, 0,
 (void*)pLoadedCollection);

Note
When a custom collection is attached to a MIDI segment, the connection to the
GM collection is not broken. For example, suppose you load a collection
containing a single instrument that has a patch number of 12, and connect this to
the segment. MIDI channels with any patch number other than 12 will continue
to be played by the appropriate instruments in the GM collection.

in.doc – page 60

As with any other collection, instruments to be used in playing a MIDI file must be
downloaded before the segment is played, unless automatic downloading has been
enabled. (For more information on automatic downloading, see Setting and
Retrieving Global Parameters and Downloading and Unloading Bands.) If
instruments are not being downloaded automatically, you need to download them by
calling IDirectMusicSegment::SetParam, as in the following example:

/* pSegment is an IDirectMusicSegment pointer, and pPerformance
 is a valid pointer to IDirectMusicPerformance. */

pSegment->SetParam(GUID_Download, 0xFFFFFFFF, 0, 0, (void *) pPerformance);

For more information on downloading by using SetParam, see Setting and
Retrieving Track Parameters.

Low-Level DLS
[This is preliminary documentation and subject to change.]

If you are writing a DirectMusic application that edits DLS collections, you need to
be able to download instrument data to the synthesizer without encapsulating it in a
DirectMusicInstrument object. The following overview describes how to do this.

Working with DLS data requires knowledge of the DLS specification and file
structure. For detailed information on these topics, see the document entitled
Downloadable Sounds Level 1, published by the MIDI Manufacturers Association.

To download raw instrument data, you first need to get a pointer to the
IDirectMusicPortDownload interface, as show in the following example, where it
is assumed that pIPort is a valid pointer to an IDirectMusicPort interface:

IDirectMusicPortDownload **ppIDownloadPort;

HRESULT hr = pIPort->QueryInterface(IID_IDirectMusicPortDownload,
 (void **) ppIDownloadPort);

If the HRESULT is not S_OK, the port does not support DLS downloading.

Next identify the buffers that need to be prepared and downloaded. To send an
instrument to the synthesizer, you must create one instrument buffer that represents
the entire instrument definition with all the regions and articulations, and a series of
wave buffers, one for each wave the instrument references for its regions.

Each buffer must be tagged with a unique identifier. Identifiers are used to resolve
linkages between buffers, in particular the links between regions and waves. Tally
the number of buffers you need to download and call
IDirectMusicPortDownload::GetDLId to allocate a range of identifiers. For
example, if you are downloading an instrument with three waves, you will need to
download four buffers in total, so request a set of four identifiers.

in.doc – page 61

For each buffer, calculate the size needed, then call
IDirectMusicPortDownload::AllocateBuffer to allocate it. This method returns an
IDirectMusicDownload interface representing the buffer. Call
IDirectMusicDownload::GetBuffer to access the actual memory.

Note
There are two methods called GetBuffer:
IDirectMusicPortDownload::GetBuffer returns an IDirectMusicDownload
interface pointer for a buffer object whose download identifier is known.
IDirectMusicDownload::GetBuffer returns a pointer to the actual memory in
the buffer.

Now write the data into each buffer. Each buffer starts with a
DMUS_DOWNLOADINFO structure, which defines the size and functionality of
the download. This structure must be prepared as follows:

· Set the dwDLType member to either
DMUS_DOWNLOADINFO_INSTRUMENT for an instrument or
DMUS_DOWNLOADINFO_WAVE for a wave.

· Set the dwDLId member to one of the unique identifiers you obtained by using
IDirectMusicPortDownload::GetDLId.

· Set the dwNumOffsetTableEntries member to the number of entries in the
DMUS_OFFSETTABLE structure.

· Set the cbSize member to the size of the download chunk, including
DMUS_DOWNLOADINFO and DMUS_OFFSETTABLE.

The DMUS_DOWNLOADINFO structure is always followed by a
DMUS_OFFSETTABLE structure. This offset table is used to manage all links
within the data. Whenever a structure in the data references another structure, it
addresses it with an integer index instead of a pointer. For every structure within the
data that can be referenced, there is a unique index. The DMUS_OFFSETTABLE
translates this integer index into a byte offset into the data.

The actual instrument or wave data follows the DMUS_OFFSETTABLE. If the
download is an instrument, the data starts with the DMUS_INSTRUMENT
structure. Otherwise it starts with the DMUS_WAVE structure.

The instrument data that follows the DMUS_INSTRUMENT structure is organized
in the following structures:

· DMUS_ARTICPARAMS
· DMUS_ARTICULATION
· DMUS_COPYRIGHT
· DMUS_EXTENSIONCHUNK
· DMUS_INSTRUMENT
· DMUS_NOTERANGE
· DMUS_REGION

in.doc – page 62

The wave data pointed to by the DMUS_WAVE structure is organized in a
DMUS_WAVEDATA structure.

When the buffers are all ready, download them by using
IDirectMusicPortDownload::Download. Download the wave buffers first, so they
are in place and can be referenced when the instrument is downloaded.

Once the buffers have been downloaded, the synthesizer is ready to play the
instrument. The memory in the buffer is no longer accessible.

Later, when done playing the instrument, unload the buffers and release them. First
unload the instrument buffer, then all the wave buffers. To unload, call
IDirectMusicPortDownload::Unload and pass it the IDirectMusicDownload
objects. Then, release each buffer with a call to IDirectMusicDownload::Release.

To update an instrument that has already been downloaded, you cannot write over
the previously downloaded buffer. Instead, replace the instrument, but not the waves.
To do this, call IDirectMusicPortDownload::AllocateBuffer to allocate a new
IDirectMusicDownload interface with a buffer of the correct size. Be sure to
generate a new identifier for the buffer with a call to
IDirectMusicPortDownload::GetDLId. Write the new articulation information into
the buffer, then download it. Then unload the previously downloaded buffer with a
call to IDirectMusicPortDownload::Unload.

To update a wave buffer, take one extra step. Create both a new wave buffer and an
updated instrument buffer that references it. Download the new wave, then the new
instrument. Then unload the old instrument followed by the old wave.

Playing Music
[This is preliminary documentation and subject to change.]

This section introduces the basic elements of a DirectMusic performance and the key
interface methods you will need in order to get music data from source to output.

The following topics are discussed:

· Creating the Performance
· Segments
· Tracks
· Using Bands
· Timing
· Notification and Event Handling

Creating the Performance
[This is preliminary documentation and subject to change.]

in.doc – page 63

The manager of music playback is the performance object, which does most of the
work of getting music from the source to the output buffer, including adding ports,
assigning instruments to channels, downloading instrument data to the synthesizer,
playing and stopping segments, dispatching messages, and managing tools and
timing.

The following example creates a performance and obtains a pointer to the
IDirectMusicPerformance interface:

IDirectMusicPerformance* pPerf;

if (FAILED(CoCreateInstance(
 CLSID_DirectMusicPerformance,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicPerformance,
 (void**)&pPerf
)))
{
 pPerf = NULL;
}

Once the performance is created, it must be initialized. An important part of
initialization is the creation of a DirectMusic object. You can create DirectMusic by
passing CLSID_DirectMusic to CoCreateInstance, and then passing the
IDirectMusic interface pointer to IDirectMusicPerformance::Init, but it most
cases it will be more convenient to have Init create DirectMusic. You can also
choose whether or not to retrieve a pointer to the IDirectMusic interface, depending
on how much control you need over ports and the master clock. If you intend to use
only the default synthesizer and the default master clock, you probably don't need
access to the methods of IDirectMusic; in this case, you would pass NULL to Init.

The following example initializes the performance, retrieves a pointer to
IDirectMusic, and creates an IDirectSound interface initialized with the application
window handle:

IDirectMusic* pDirectMusic;

if (SUCCEEDED(pPerf->Init(&pDirectMusic,
 NULL, // Create DirectSound object
 hWnd // Application window handle
)))
{
 // Performance initialized
}

in.doc – page 64

Segments
[This is preliminary documentation and subject to change.]

The basic chunk of data in DirectMusic is called a segment. A segment is
represented by an IDirectMusicSegment interface. You can create a segment in any
of the following ways:

· Load a file or resource object that supports the IDirectMusicSegment interface.
For more information, see DirectMusic Loader.

· Get a motif from a style by using the IDirectMusicStyle::GetMotif method.
· Use methods of the IDirectMusicComposer interface to create a composition or

transition at run time. See Overview of Programming for Composition and
Using Transitions.

· Make a copy of an existing segment by using the IDirectMusicSegment::Clone
method.

· Construct a segment from existing tracks. Create a segment object by calling
CoCreateInstance and then add tracks by calling
IDirectMusicSegment::InsertTrack.

· Use the IDirectMusicBand::CreateSegment method. This creates a special
type of secondary segment that is used only for making band changes. See
Making Band Changes Programmatically.

Each segment consists of one or more tracks, each represented by an
IDirectMusicTrack interface. Tracks contain most of the data for the segment,
whether that data consists of note events, band changes, tempo changes, or other
timed events. Applications generally do not need to use this interface, because the
tracks are managed through the segment object. For more information, see Tracks.

Segments can serve different purposes. The following are the kinds of segments you
are most likely to use:

· Primary segment. A piece of music such as a MIDI file, a segment authored in
DirectMusic Producer, or a segment formed at run time by the composer object.

· Motif segment. A short piece of music to be played over the primary segment.
Motifs are part of a style object, but you can also create short secondary
segments from other sources and play them over the primary segment just like
motifs.

· Band segment. A set of instruments and instrument settings for the various
channels in the performance. The application can play a band segment to
execute changes in the band performing the music.

· Template segment. A guide to chord progressions, groove levels, and
embellishments, used in conjunction with a style and chordmap to compose
music at run time. Unlike other segments, a template segment is never played
directly by an application; instead, it is passed to the composer object to be used
in creating a musical segment.

in.doc – page 65

The playback of segments is controlled by the IDirectMusicPerformance interface.
An instance of a playing segment is represented by an IDirectMusicSegmentState
interface, which can be used to retrieve information about the current state of the
segment.

Only one primary segment can play inside a performance. When you cue a primary
segment for playback, using the IDirectMusicPerformance::PlaySegment method,
you can specify that it is to be played after the currently playing segment is finished,
or you can use it to replace the current primary segment.

Secondary segments, on the other hand, play on top of the current primary segment,
and any number of secondary segments can be playing simultaneously.

Secondary segments do not normally alter the performance of the primary segment.
For example, a secondary segment can be based on a different style without affecting
the style of the primary segment. However, a secondary segment can be designated a
control segment, in which case it takes over the task of responding to
IDirectMusicPerformance::SetParam and
IDirectMusicPerformance::GetParam calls, which normally go to tracks in the
primary segment. Thus a control segment might control the current chord or groove
level. For more information, see Tracks.

For more information on control segments, see DMUS_SEGF_FLAGS.

For more information on segment playback, see Segment Timing.

Tracks
[This is preliminary documentation and subject to change.]

Tracks are the components of a segment that contain its sequenced data, including
information about notes, underlying chords, tempo, patch and band changes, and
everything else the performance needs to know in order to play a piece of music.

Each track is represented by an IDirectMusicTrack interface. The methods of this
interface are called by the performance, and most applications will not need to use
them directly.

When an application calls IDirectMusicPerformance::PlaySegment, DirectMusic
begins calling the IDirectMusicTrack::Play method on the segment's tracks. Most
tracks respond by immediately generating timestamped messages containing data
that is valid for the part of the segment that is being played. These messages are
placed in a queue. (See Message Creation and Delivery for more information about
what happens after that.)

A few tracks do not actively generate messages in response to
IDirectMusicTrack::Play but instead do their work by responding to requests for
information that come from the performance or other tracks in the form of a
GetParam call. (See Setting and Retrieving Track Parameters.)

in.doc – page 66

The following list shows the standard track types implemented by DirectMusic, with
a brief description of each one. For a list of the methods supported by the standard
tracks, see the reference for IDirectMusicTrack.

· Band. Downloads DLS data to the performance. Sends messages of type
DMUS_PATCH_PMSG, DMUS_TRANSPOSE_PMSG,
DMUS_CHANNEL_PRIORITY_PMSG, and DMUS_MIDI_PMSG (for
volume and pan). Used in segments based on MIDI files and styles.

· Chord. Used to convert music values (as stored in patterns) to MIDI values.
Sends messages of type DMUS_NOTIFICATION_PMSG (for
GUID_NOTIFICATION_CHORD notifications).

· Chordmap. Used in template segments to compose chord tracks.
· Command. Used in template segments to compose chord tracks, and in style

segments to determine which patterns will be played. Sends messages of type
DMUS_NOTIFICATION_PMSG (for GUID_NOTIFICATION_COMMAND
notifications).

· Motif. Used to play motifs to accompany other segments. Sends messages of
type DMUS_CURVE_PMSG, DMUS_NOTE_PMSG, and
DMUS_NOTIFICATION_PMSG (for
GUID_NOTIFICATION_MEASUREANDBEAT notifications).

· Mute. Used with either style-based or MIDI-based segments. Allows PChannels
to be remapped to other PChannels or to be muted.

· Sequence. Sends sequence messages of type DMUS_NOTE_PMSG and
DMUS_MIDI_PMSG. Used in segments based on MIDI files. Also sends
messages of type DMUS_CURVE_PMSG for segments saved in the .sgt
format.

· Signpost. Used in template segments to compose chord tracks.
· Style. Fundamental track for segments based on styles. Sends messages of type

DMUS_TIMESIG_PMSG, DMUS_CURVE_PMSG, DMUS_NOTE_PMSG,
and DMUS_NOTIFICATION_PMSG (for
GUID_NOTIFICATION_MEASUREANDBEAT notifications).

· SysEx. Sends system exclusive messages of type DMUS_SYSEX_PMSG. Used
in segments based on MIDI files.

· Tempo. Sets the tempo of the performance by sending messages of type
DMUS_TEMPO_PMSG.

· Time Signature. Sends messages of type DMUS_TIMESIG_PMSG as well as
GUID_NOTIFICATION_MEASUREANDBEAT notifications. Used in
segments based on MIDI files.

Using Bands
[This is preliminary documentation and subject to change.]

in.doc – page 67

A band is a choice of instruments assigned to particular parts in a style. At
performance time, each instrument track is mapped to a PChannel, which stores the
following information:

· MIDI volume.
· MIDI pan.
· Transposition. If this value is nonzero, music notes on the channel are

automatically transposed for the instrument.
· The instrument's MIDI patch number, including MSB and LSB bank selects.
· A reference to the DLS collection from which to load the instrument.

Optionally, the referenced DLS collection is the standard General MIDI
collection.

Segments and styles always contain at least one band, called the default band. Styles
can contain additional bands. When you load a segment or style, the default band
and any other bands are automatically loaded as well. However, you still need to
download the DLS data for the instruments in any band you intend to use. You can
retrieve a pointer to the default band by using the
IDirectMusicStyle::GetDefaultBand method.

Other bands might be authored into the style and can be found and retrieved by using
the IDirectMusicStyle::EnumBand and IDirectMusicStyle::GetBand methods.
Bands can also be obtained from other style files or from band files. Once you have
obtained an IDirectMusicBand interface, you have access to that band and can
substitute it for the default band.

Loading a band from its own file is just like loading any other object in DirectMusic.
For more information, see Loading Objects.

More information about bands is contained in the following topics:

· Downloading and Unloading Bands
· Making Band Changes Programmatically
· Ensuring Timely Band Changes

Downloading and Unloading Bands
[This is preliminary documentation and subject to change.]

Before a band can be used, it must be downloaded to the performance. This step
maps the instruments to PChannels and downloads the DLS data to the port.

By default, the application is responsible for downloading any band it uses.
However, you can turn on automatic downloading of bands by setting a parameter on
the band track, or by setting a global parameter. When automatic downloading is on,
the instruments in the band are downloaded when the segment containing the band is
cued. The instruments are automatically unloaded when the segment is stopped,
unless another segment using the same instruments is cued to play immediately or is
currently playing.

in.doc – page 68

Note
Automatic downloading should be used only when the timing of segment starts
is not critical. Repeated loading and unloading of instruments takes time and can
cause serious degradation of performance in complex musical environments.
Be aware also that automatic unloading, which is part of the automatic
downloading mechanism, can lead to undesired results. For example, suppose
you play a short secondary segment that changes the instrument on a channel.
The instrument is automatically downloaded when the secondary segment starts,
replacing the existing instrument. When the secondary segment ends, the
instrument is automatically unloaded, with the result that there is now no
instrument on that channel, and the channel plays silence.

Downloading a band makes the band available to the performance but does not
actually perform any program changes. Program changes take place in response to
messages generated by the segment's band track, which is typically authored into a
segment file. For information on how to make program changes at run time, see
Making Band Changes Programmatically.

Information about how to implement downloading and unloading of bands is
contained in the following topics:

· Automatically Downloading Bands
· Manually Downloading Bands
· Unloading Bands

Automatically Downloading Bands
[This is preliminary documentation and subject to change.]

You can turn on automatic downloading of bands in one of the following ways:

· Call the IDirectMusicPerformance::SetParam method for the
GUID_PerfAutoDownload parameter. See Setting and Retrieving Global
Parameters, and the following example.

· Call the IDirectMusicSegment::SetParam or IDirectMusicTrack::SetParam
method for the GUID_Enable_Auto_Download parameter. See Setting and
Retrieving Track Parameters.

In the following example, the global parameter for the performance pPerf is set to
enable automatic downloading of bands:

BOOL fAuto = TRUE;
pPerf->SetGlobalParam(GUID_PerfAutoDownload, &fAuto, sizeof(BOOL));

Manually Downloading Bands
[This is preliminary documentation and subject to change.]

You can manually download a band in one of the following ways:

in.doc – page 69

· Obtain an IDirectMusicBand interface from a loaded object and call the
IDirectMusicBand::Download method. (See the following example.) This is
the best way to download the band if you want to unload it after any segments
using the band have been released.

· Call the IDirectMusicSegment::SetParam method for the GUID_Download
parameter to download the band in the segment's band track. You can also use
IDirectMusicPerformance::SetParam to set this parameter on the primary
segment, or IDirectMusicTrack::SetParam to set it directly on the band track.
See Setting and Retrieving Track Parameters.

There is no danger in downloading the same instrument multiple times. If an
instrument appears in one band multiple times or if it appears in multiple bands that
are all opened and downloaded at the same time, only one copy of the instrument
actually is sent down to the synthesizer.

The following function loads a band from disk and downloads it:

HRESULT myDownloadBand(
 IDirectMusicLoader *pILoader, // Loader interface
 IDirectMusicBand **ppBand, // To retrieve pointer
 IDirectMusicPerformance *pPerf, // Performance to use band
 WCHAR *pwszFile) // File to load

{
 HRESULT hr;
 DMUS_OBJECTDESC Desc; // Descriptor

 // Start by initializing Desc with the file name and GUID
 // for the band object.

 wcscpy(Desc.wszFileName,pwszFile);
 Desc.dwSize = sizeof(Desc);
 Desc.guidClass = CLSID_DirectMusicBand;
 Desc.dwValidData = DMUS_OBJ_CLASS |
 DMUS_OBJ_FILENAME | DMUS_OBJ_FULLPATH;

 hr = pILoader->GetObject(&Desc, IID_IDirectMusicBand,
 (void **) ppBand);
 if (SUCCEEDED(hr))
 {

 // Download the band via the performance.
 hr = (*ppBand)->Download(pPerf);

 }
 return hr;
}

in.doc – page 70

Unloading Bands
[This is preliminary documentation and subject to change.]

Bands take up memory, so they should be unloaded when they are no longer in use.
If you have enabled automatic downloading of bands, the band associated with a
segment are unloaded automatically when the segment ends. Otherwise you can
manually unload a band in one of the following ways:

· Call the IDirectMusicBand::Unload method.
· Call the IDirectMusicSegment::SetParam method for the GUID_Unload

parameter to unload the band in the segment's band track. You can also use
IDirectMusicPerformance::SetParam to set this parameter on the primary
segment, or IDirectMusicTrack::SetParam to set it directly on the band track.
See Setting and Retrieving Track Parameters. For an example, see Tutorial 1,
Step 6: Shutting Down DirectMusic.

Note that the IDirectMusicPerformance::CloseDown method also unloads any
remaining downloaded instruments.

Making Band Changes Programmatically
[This is preliminary documentation and subject to change.]

Most often the band track in a loaded segment will perform program changes.
However, you can also do so manually. First create a secondary segment with a call
to the IDirectMusicBand::CreateSegment method, and then play that segment by
calling IDirectMusicPerformance::PlaySegment. Typically you would use
DMUS_SEGF_MEASURE or DMUS_SEGF_GRID (see DMUS_SEGF_FLAGS)
in the dwFlags parameter to ensure that the band change takes effect on an
appropriate boundary.

The following function creates a segment from a band and plays it:

/ * It is presumed that automatic downloading is turned on, or that the application
has called pBand->Download. */

HRESULT myPlayBand(
 IDirectMusicBand *pBand, // Pointer to band object
 IDirectMusicPerformance *pPerf, // Performance to use band
 REFERENCE_TIME rfTime, // Time to play at
 DWORD dwFlags) // Performance flags

{
 IDirectMusicSegment *pSegment;
 HRESULT hr = pBand->CreateSegment(&pSegment);
 if (SUCCEEDED(hr))
 {

in.doc – page 71

 hr = pPerf->PlaySegment(pSegment,
 dwFlags | DMUS_SEGF_SECONDARY,
 rfTime,
 NULL);
 pSegment->Release();
 }
 return hr;
}

A performance can be playing instruments from more than one band at a time. For
example, suppose your application is playing a primary segment using one band, and
then plays a motif from a style that has a different band. As long as the instruments
in the first band are mapped to different PChannels than the instruments in the
second, no conflict arises. Note, though, that motif segments do not normally have
their own band tracks, so you might get silence from the motif's PChannels unless
you first create a band segment and play it. (It is possible to add a band track to a
motif segment, but creating a separate band segment is easier.)

Ensuring Timely Band Changes
[This is preliminary documentation and subject to change.]

A consideration in playing band segments is the randomness in the timing of notes
played by a style track. For instance, a note that is on measure 1 beat 1 may actually
play earlier or later than measure 1 beat 1. The band segment doesn't know anything
about this, with the result that some of the notes might play with the incorrect
instrument.

To prevent this problem, an application should cue the band segment early. Suppose,
for example, that you have a style segment pStyleSeg and a band segment pBandSeg.
You want to play both the style segment and the band segment on the next measure
boundary of the performance (pPerf). You know that the style contains notes that
could go out up to 30 ticks earlier (in music time) than the start time of the segment.
The following code ensures that the band segment is played 31 ticks before the style
segment, so all instruments are in place before any note is played:

/* First get the time of the next measure and convert to
 music time. */

REFERENCE_TIME rtResolved;
MUSIC_TIME mtResolved;

pPerf->GetResolvedTime(0, &rtResolved, DMUS_TIME_RESOLVE_MEASURE);
pPerf->ReferenceToMusicTime(rtResolved, &mtResolved);

/* Now play the band segment 31 ticks before the measure boundary. */

mtResolved -= 31;

in.doc – page 72

pPerf->PlaySegment(pBandSeg, 0, mtResolved, NULL);

/* Play the style segment on the measure boundary. */

pPerf->PlaySegment(pStyleSeg, 0, 0, DMUS_TIME_RESOLVE_MEASURE);

Note
If there is no randomness in the notes played by a segment, you don't need to
worry about the timeliness of a band segment played at the same time. By
default, all band segments start 1 tick early.

Timing
[This is preliminary documentation and subject to change.]

This section is an overview of various timing issues in DirectMusic. The following
topics are discussed:

· Master Clock
· Reference Time vs. Music Time
· Changing the Tempo
· Performance Time
· Prepare Time
· Latency and Bumper Time
· Segment Timing

Master Clock
[This is preliminary documentation and subject to change.]

To guarantee accurate timing with an acceptably low latency, DirectMusic
incorporates a master clock in kernel mode. This clock is based on a hardware timer.
DirectMusic automatically selects the system clock as the master clock, but an
application can select a different one, such as the wave-out crystal on a sound card.

The master clock is a high-resolution timer that is shared by all processes, devices,
and applications that are using DirectMusic. The clock is used to synchronize all
music playback in the system. It is a standard IReferenceClock. The
IReferenceClock::GetTime method returns the current time as a 64-bit integer
(defined as the REFERENCE_TIME type) in increments of 100 nanoseconds.

To obtain an interface to the master clock, you call the
IDirectMusic::GetMasterClock method.

You can choose a different master clock for your application, but only if there are no
other DirectMusic applications running. First you get descriptions of all devices that
can serve as the master clock, by using the IDirectMusic::EnumMasterClock

in.doc – page 73

method. Once you have obtained the GUID of the device you want to use as the
master clock, you pass this to the IDirectMusic::SetMasterClock method.

Reference Time vs. Music Time
[This is preliminary documentation and subject to change.]

Reference time is the time returned by the master clock. It is a 64-bit value defined
as type REFERENCE_TIME. Reference time is measured in units of 100
nanoseconds, more or less, so the clock ticks about 10 million times each second.
The value returned by the IReferenceClock::GetTime method is relative to an
arbitrary start time.

Music time is a 32-bit value defined as type MUSIC_TIME. It is not an absolute
measure of time but is relative to the tempo. The clock is started when the
performance is initialized, and ticks DMUS_PPQ times for each quarter-note.
(DMUS_PPQ is currently defined as 768.)

To convert between the two kinds of time in a performance, you can use the
IDirectMusicPerformance::MusicToReferenceTime and
IDirectMusicPerformance::ReferenceToMusicTime methods.

When a segment is cued to play by a call to
IDirectMusicPerformance::PlaySegment and the start time is given in reference
time, DirectMusic must convert the start time to music time. If no primary segment
is currently playing, the conversion is done immediately, based on the current tempo.
Otherwise, if another segment is playing, the start time of the cued segment is not
converted to music time until the start time has been reached.

If the tempo is changed before the segment starts playing, the actual start time can be
affected, or the segment might not start on the desired boundary. In the first case,
where the conversion to music time is done immediately, the actual start time (in
reference time) will be advanced if the tempo speeds up and delayed if the tempo is
slowed down. In the second case, where conversion is done at start time, a change in
tempo can mean that the segment does not start at correct resolution boundaries. For
example, if the segment is supposed to start on a measure boundary (as indicated in
the dwFlags parameter of PlaySegment), the actual start time (in reference time) is
calculated when the segment is cued, but if the tempo then changes, a measure
boundary might not fall at that time.

When a primary segment is passed to PlaySegment with the DMUS_SEGF_QUEUE
flag (see DMUS_SEGF_FLAGS), the i64StartTime parameter is ignored and the
segment is cued to play after any primary segments whose start times have already
been converted. If a previously cued segment is still stamped in reference time, that
segment will play at its designated time, perhaps interrupting another segment.

An example should make this clearer. Say you have three segments, each 10 seconds
in length. You cue segment A to play 5 seconds from now. Because no primary
segment is currently playing, the start time is immediately converted to music time.
At 6 seconds you cue segment B to play at 20 seconds of reference time. In this case,
because music is already playing and the tempo might change, the conversion to

in.doc – page 74

music time is not done immediately. Then you cue segment C with the
DMUS_SEGF_QUEUE flag, so that it will start immediately after segment A
finishes, at 15 seconds. At 20 seconds segment B will start playing and interrupt
segment C.

Changing the Tempo
[This is preliminary documentation and subject to change.]

The tempo of a performance dictates the conversion between the two types of time
used in DirectMusic, which in turn controls the resolution of events to musical
boundaries. (See Reference Time vs. Music Time.) The tempo track of the primary
segment usually controls the tempo, but it is also possible for an application to set
the tempo dynamically.

There are two ways to do so: by sending a message, and by setting a track parameter.

The following example sends a message to change the tempo:

/* Assume that pIDMSegment is a valid IDirectMusicSegment, and
 IDMPerformance is a valid IDirectMusicPerformance. */

// Disable tempo track in segment so that it does not reset tempo
pIDMSegment->SetParam(GUID_DisableTempo, 0xFFFF,0,0, NULL);

DMUS_TEMPO_PMSG* pTempo;

if(SUCCEEDED(pIDMPerformance->AllocPMsg(
 sizeof(DMUS_TEMPO_PMSG), (DMUS_PMSG**)&pTempo)))
{
 // Queue tempo event
 ZeroMemory(pTempo, sizeof(DMUS_TEMPO_PMSG));
 pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);
 pTempo->dblTempo = 100;
 pTempo->dwFlags = DMUS_PMSGF_REFTIME;
 pTempo->dwType = DMUS_PMSGT_TEMPO;
 pIDMPerformance->SendPMsg((DMUS_PMSG*)pTempo);
}

The following sample code shows how to change the tempo parameter. For more
information, see Setting and Retrieving Track Parameters.

DMUS_TEMPO_PARAM Tempo;
Tempo.dblTempo = 100;
pIDMSegment->SetParam(GUID_TempoParam, 0xFFFF, 0, 0, &Tempo);

Performance Time
[This is preliminary documentation and subject to change.]

in.doc – page 75

When a performance is initialized, it starts keeping an internal clock based on the
current reference time. You can retrieve the current performance time in both
reference time and music time by using the IDirectMusicPerformance::GetTime
method.

The IDirectMusicPerformance::AdjustTime method can be used to make small
changes to the performance time. Most applications will never need to do this, but it
can be useful when synchronizing to another source.

Prepare Time
[This is preliminary documentation and subject to change.]

As a segment is played, the performance makes repeated calls to
IDirectMusicTrack::Play on the segment's tracks, causing them to generate
messages for the supplied time range, which is some fraction of a second. These
messages are then placed in the queue behind those that were generated in previous
calls. By default, about a second's worth of messages are in the queue at any given
time. The size of the queue can be changed by calling the
IDirectMusicPerformance::SetPrepareTime method, and the current size can be
retrieved by using IDirectMusicPerformance::GetPrepareTime.

For an illustration, see Latency and Bumper Time.

You can think of the queue as being like a gas tank that is constantly being topped
up by calls to IDirectMusicTrack::Play. Each time the performance calls Play, it
calculates the end time for that call by adding the prepare time to the current time. If
the current time is 10,000 milliseconds (or the equivalent in REFERENCE_TIME
units) and the prepare time is the default 1000 ms, then the end time is 11,000 —
that is, all new messages that are to play up to time 11,000 must now be prepared
and placed in the queue.

Most applications don't need to change the default prepare time, and the process just
described is not visible to the application. However, it is helpful to understand the
concept of prepare time because of the DMUS_SEGF_AFTERPREPARETIME flag,
which the application can pass to IDirectMusicPerformance::PlaySegment.

Normally, if you set a start time of "now" for the segment, the performance
invalidates any messages currently in the queue. Any tracks that are still valid at this
point (for example, tracks of secondary segments that continue to play despite the
introduction of a new primary segment) then have to resend their messages, taking
into account any changes made to the musical environment by the new segment. To
avoid unnecessary processing and to ensure continuity (for example, to ensure that a
long note or non-musical DLS sound is not cut short), you can use the
DMUS_SEGF_AFTERPREPARETIME flag to specify that the segment is not to
start playing until all messages currently in the queue have been processed and
passed to the port buffer. So, for example, if messages up to time 10,000 are in the
queue, and the current time is 9,000, a segment cued to play immediately will
actually start playing just after the 10,000 ms mark.

For more information, see Segment Timing.

in.doc – page 76

Latency and Bumper Time
[This is preliminary documentation and subject to change.]

Latency is the delay between when the port receives a musical message and when it
has synthesized enough of a wave to play. The
IDirectMusicPerformance::GetLatencyTime method retrieves the current time
plus the latency for the performance as a whole. This is the largest value returned by
any of the ports' latency clocks.

The bumper is an extra amount of time allotted for code to execute between the time
that a musical event is put into the port buffer and the time that the port actually
starts to process it. By default the bumper length is 50 milliseconds. An application
can change this value by using the IDirectMusicPerformance::SetBumperLength
method and retrieve the current value by calling
IDirectMusicPerformance::GetBumperLength.

Here's an example of how latency time and bumper time are combined. Suppose an
event is supposed to play at 10,000 milliseconds. The latency of the port is known to
be 100 ms, and the bumper length is at its default value of 50 ms. The performance
therefore places the message into the port buffer at 9,850 ms.

Note that once a message has been placed in the port buffer, it no longer belongs to
the performance and cannot be stopped from playing by using the
IDirectMusicPerformance::Invalidate or IDirectMusicPerformance::Stop
methods. The first message that can be invalidated will have a time stamp equal to or
greater than the current time plus the latency and bumper time. This value can be
retrieved by using the IDirectMusicPerformance::GetQueueTime method.

The following diagram, not to scale, illustrates the relationship of the times and
durations retrieved by various methods. The current time is at the left, and the last
time for which messages have been prepared is at the right. Remember that prepare
time is only an approximation of the total timespan of messages in the queue at any
given moment.

in.doc – page 77

Tim e

ID irectMusicPerform ance::
GetTim e

ID irectMusicPerform ance::
GetLatencyTim e

ID irectMusicPerform ance::
GetQ ueueTim e

Messages being
processed by port

Messages in
port buffer

Messages in
queue & tools

ID irectMusicPerform ance::
GetBum perLength

ID irectMusicPerform ance::
GetP repareTim e

Segment Timing
[This is preliminary documentation and subject to change.]

Segments play from the beginning, unless a start point is set by a call to the
IDirectMusicSegment::SetStartPoint method. If a repeat count is set by using
IDirectMusicSegment::SetRepeats, the entire segment will repeat that number of
times, unless a loop has been defined by a call to
IDirectMusicSegment::SetLoopPoints, in which case only the part of the segment
between the loop points will repeat.

The performance time at which the segment starts playing is determined by two
parameters of IDirectMusicPerformance::PlaySegment:

· The i64StartTime parameter sets the earliest time at which the segment can start
playing. If i64StartTime is 0, this time is as soon as possible. The actual time
when the segment will start depends on the type of segment. If it is a primary or
control segment, the earliest start time is at queue (or flush) time. If it is a non-
control secondary segment, the earliest start is at latency time. For more
information on queue time and latency time, see Latency and Bumper Time.

· The dwFlags parameter determines how soon after the scheduled time the
segment should actually start playing, depending on the rhythm of the currently
playing segment. Most often you will want to wait for an appropriate moment
before introducing a new segment, a transition, or a motif. You control the delay
by setting one of the following DMUS_SEGF_FLAGS:
DMUS_SEGF_AFTERPREPARETIME

Play at the earliest start time plus the prepare time. This ensures that any
messages from the currently playing segment that have already been queued
to the port are not invalidated. This saves processing time and also ensures

in.doc – page 78

that any motifs continue to play smoothly over a transition from one primary
segment to another.

DMUS_SEGF_GRID
Play on a grid boundary. A grid is a subdivision of a beat. The time signature
(authored into the style) determines how many grids each beat is divided into.

DMUS_SEGF_BEAT
Play on a beat.

DMUS_SEGF_MEASURE
Play at the beginning of a measure.

DMUS_SEGF_DEFAULT
Use the cued segment's default boundary. You can set this value by using the
IDirectMusicSegment::SetDefaultResolution method.

If none of these flags is set, the segment will start playing at exactly the earliest start
time.

Notification and Event Handling
[This is preliminary documentation and subject to change.]

From time to time your application may need to respond to a music event; for
example, you might need to know when the end of a segment has been reached. You
get this information by asking DirectMusic to notify you when a certain type of
event has taken place.

You specify what types of music events you want to be notified of by calling the
IDirectMusicPerformance::AddNotificationType method once for each desired
type of event. The following example tells DirectMusic to set segment-related
events. The actual type of event (such as segment start or segment end) will be
derived later from the notification message.

/* It is assumed that pPerformance is a valid
 IDirectMusicPerformance pointer. */

GUID guid = GUID_NOTIFICATION_SEGMENT;
// C syntax:
pPerformance->AddNotificationType(&guid);
// C++ syntax:
pPerformance->AddNotificationType(guid);

Notifications are sent in the form of a DMUS_NOTIFICATION_PMSG message
structures. You can poll for any pending notification messages within the Windows
message loop by calling the IDirectMusicPerformance::GetNotificationPMsg
method, or else you can have DirectMusic signal an event object in a separate thread
when a message is pending. (See Using Notification Events.)

More than one message may be waiting when an event is signaled, or when you call
GetNotificationPMsg in the message loop. To be sure of catching all notifications,

in.doc – page 79

you must call GetNotificationPMsg repeatedly until it returns S_FALSE. Multiple
messages with the same time stamp are not queued in any particular order.

It is your responsibility to free any message you retrieve, by calling the
IDirectMusicPerformance::FreePMsg method.

Using Notification Events
[This is preliminary documentation and subject to change.]

If you wish to be alerted of pending DirectMusic notification messages by a
Windows event object, you must first obtain an event handle by calling the Win32
CreateEvent function. Typically you would create an auto-reset event with a call
such as this:

HANDLE g_hNotify = CreateEvent(NULL, FALSE, FALSE, NULL);

Note
It is not necessary to create an event in order to retrieve notification messages in
your application's message loop. As long as you have requested notifications by
calling the IDirectMusicPerformance::AddNotificationType method, the
performance will send DMUS_NOTIFICATION_PMSG messages which can
be retrieved by calling IDirectMusicPerformance::GetNotificationPMsg.

After creating the event, you assign the handle to the performance by passing it to
the IDirectMusicPerformance::SetNotificationHandle method. You can use the
second parameter of this method to change the default time that DirectMusic will
hold onto the event if it is not retrieved; a value of 0 in this parameter indicates that
the default time of 2 seconds is to be used.

In the following example, g_pPerf is a valid pointer to the
IDirectMusicPerformance interface:

g_pPerf->SetNotificationHandle(g_hNotify, 0);

The following sample function executes repeatedly in its own thread, checking for
signaled events and retrieving notification messages.

void WaitForEvent(LPVOID lpv)
{
 DWORD dwResult;
 DMUS_NOTIFICATION_PMSG* pPmsg;
 char szCount[4];

 while (TRUE)
 {
 dwResult = WaitForSingleObject(g_hNotify, 100);
 while (S_OK == g_pPerf->GetNotificationPMsg(&pPmsg))
 {
 // Check notification type and do something in response.

in.doc – page 80

 .
 .
 .
 g_pPerf->FreePMsg((DMUS_PMSG*)pPmsg);
 }
 }
}

This thread is executed as follows:

_beginthread(WaitForEvent, 0, NULL);

When notifications are no longer needed, the following code shuts down the thread,
removes the notification handle from the performance, and destroys the event object.

_endthread();
g_pPerf->SetNotificationHandle(0, 0);
CloseHandle(g_hNotify);

Music Parameters
[This is preliminary documentation and subject to change.]

DirectMusic lets you control many aspects of track behavior by changing parameters
on the fly, using one of the following SetParam methods:

· IDirectMusicPerformance::SetParam sets data on a specific track within the
current control segment of this performance. The control segment is normally
the primary segment, but a secondary segment can be designated as the control
segment when it is played. See DMUS_SEGF_FLAGS.

· IDirectMusicSegment::SetParam sets data on a specific track within this
segment.

· IDirectMusicTrack::SetParam sets data on this track.

In addition, the IDirectMusicPerformance::SetGlobalParam method lets you set
values that apply across the entire performance.

The equivalent GetParam and GetGlobalParam methods retrieve current values
for a track or the performance.

In order to have the music respond immediately to a changed parameter, an
application can flush messages from the queue by using the
IDirectMusicPerformance::Invalidate method. This method causes all tracks to
resend messages from the specified point forward.

More information about parameters is contained in the following topics:

· Setting and Retrieving Track Parameters

in.doc – page 81

· Setting and Retrieving Global Parameters

Setting and Retrieving Track
Parameters

[This is preliminary documentation and subject to change.]

You set and retrieve track parameters by using the SetParam and GetParam
methods of either the performance, the segment, or the track.When calling one of
these methods on the performance or segment, you can identify the track by setting
the dwGroupBits and dwIndex parameters. However, in most cases you can let
DirectMusic find the appropriate track for you. For more information, see
Identifying the Track.

In some cases you need to specify the time within the track at which the change is to
take effect, or for which the parameter is to be retrieved. To see whether this value is
used for a particular track parameter, see Track Parameter Types.

In the case of a few parameters, a call to SetParam simply turns a feature on or off,
and no data is needed. When setting other parameters, however, you also need to
supply a structure or variable containing the data. Only parameters with associated
data can be retrieved, so when using GetParam you must always supply a pointer to
an appropriate variable or structure to receive the data.

To determine whether a particular parameter is supported by a track, use the
IDirectMusicTrack::IsParamSupported method and check for an S_OK result.

More information is given in the following topics:

· Identifying the Track
· Track Parameter Types
· Disabling and Enabling Messages on a Track

Identifying the Track
[This is preliminary documentation and subject to change.]

When you set or retrieve a parameter by using IDirectMusicTrack::SetParam or
IDirectMusicTrack::GetParam, the parameter is of course associated with the
track on which the method is called. However, when you call
IDirectMusicPerformance::SetParam, IDirectMusicPerformance::GetParam,
IDirectMusicSegment::SetParam, or IDirectMusicSegment::GetParam,
DirectMusic needs to find the appropriate track.

Normally you can let DirectMusic figure out which track contains the desired
parameter. To do this, set dwGroupBits to 0xFFFFFFFF and dwIndex to 0. For
example, the following call to IDirectMusicSegment::SetParam turns off the
tempo track so that looping a segment does not reset the tempo:

pIDMSegment->SetParam(GUID_DisableTempo, 0xFFFFFFFF, 0, 0, NULL);

in.doc – page 82

There are times, however, when you need to identify a specific track. Typically this
would be the case when a segment contains multiple tracks of the same type. In
order to set or retrieve the parameter on the desired track, you need to identify it by
group and index value.

Every track belongs to one or more groups, each group being represented by a bit in
the dwGroupBits parameter of the one of the methods under discussion. (The track is
assigned to a group or groups when it is inserted in the performance. See
IDirectMusicSegment::InsertTrack. In the case of segments loaded from a file,
track groups are assigned by the author of the segment.)

A track is identified by a zero-based index value within each of the groups it belongs
to. The index value is determined by the order in which the tracks were inserted.

Suppose a segment contains the following tracks:

Track Group bits

A 0x1
B 0x2
C 0x1
D 0x3

Note that group 1 contains tracks A, C, and D, and group 2 contains tracks B and D.
Now if you call GetParam or SetParam with a value of 1 in dwGroupBits and a
value of 0 in dwIndex, the parameter is retrieved from track A, which is the first
track in group 1. If dwIndex is 1, the parameter is retrieved from track C, the second
track in the group. Track D belongs to two groups, 1 and 2, so it can be identified as
either dwGroupBits = 1 and dwIndex =2, or dwGroupBits = 2 and dwIndex = 1.

If you set more than one bit in dwGroupBits, the parameter is retrieved from the nth
track containing any of those bits, where n is the value in dwIndex.

Track Parameter Types
[This is preliminary documentation and subject to change.]

The track parameter that is being set or retrieved by one of the SetParam or
GetParam methods is identified by a GUID in the rguidType parameter of the
method. Each parameter that requires data is associated with a particular data type,
and pParam must point to a variable or structure of this type. In some cases, part of
the data structure must be initialized even when calling GetParam.

The predefined parameters are listed in the following table, which will take you to
tables with more detailed information about each parameter. In the detailed tables,
note that pParam and mtTime refer to the parameters of the various GetParam and
SetParam methods. Note also that although parameters are always associated with
particular track types, most often you will call the method on the segment or the

in.doc – page 83

performance and let DirectMusic find the appropriate track. (See Identifying the
Track.)

GUID_ChordParam GUID_EnableTimeSig
GUID_Clear_All_Bands GUID_IDirectMusicBand
GUID_CommandParam GUID_IDirectMusicChordMap
GUID_ConnectToDLSCollection GUID_IDirectMusicStyle
GUID_Disable_Auto_Download GUID_MuteParam
GUID_DisableTempo GUID_RhythmParam
GUID_DisableTimeSig GUID_StandardMIDIFile
GUID_Download GUID_TempoParam
GUID_Enable_Auto_Download GUID_TimeSignature
GUID_EnableTempo GUID_Unload

GUID_ChordParam
[This is preliminary documentation and subject to change.]

Track type Chord.
Purpose Set or retrieve a chord change.
Data Type (*pParam) DMUS_CHORD_PARAM
mtTime The time, in track time, at which to add the chord

to the track, or the time at or directly after the chord
to be retrieved from the track.

GUID_Clear_All_Bands
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Clear all bands from the track.
Data Type (*pParam) None.
mtTime Not used.

GUID_CommandParam
[This is preliminary documentation and subject to change.]

Track type Command.
Purpose Set or retrieve a groove or embellishment

command.
Data Type (*pParam) DMUS_COMMAND_PARAM.
mtTime The time, in track time, at which to add the

command to the track, or the time at or directly
after the command to be retrieved from the track.

in.doc – page 84

GUID_ConnectToDLSCollection
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Connect a band to a DLS collection. See Playing a

MIDI File with Custom Instruments.
Data Type (*pParam) IDirectMusicCollection pointer.
mtTime Not used.

GUID_Disable_Auto_Download
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Disable automatic downloading of instruments. See

Using Bands
Data Type (*pParam) None.
mtTime Not used.

GUID_DisableTempo
[This is preliminary documentation and subject to change.]

Track type Tempo.
Purpose Disable tempo messages. See Disabling and

Enabling Messages on a Track.
Data Type (*pParam) None.
mtTime Not used.

GUID_DisableTimeSig
[This is preliminary documentation and subject to change.]

Track type Time signature, style, motif.
Purpose Disable time signature messages. See Disabling and

Enabling Messages on a Track.
Data Type (*pParam) None.
mtTime Not used.

GUID_Download
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Download instrument data for the track's bands. See

in.doc – page 85

Playing a MIDI File with Custom Instruments. See
also GUID_Unload.

Data Type (*pParam) IDirectMusicPerformance pointer.
mtTime Not used.

GUID_Enable_Auto_Download
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Enable automatic downloading of instruments. See

Using Bands.
Data Type (*pParam) None.
mtTime Not used.

GUID_EnableTempo
[This is preliminary documentation and subject to change.]

Track type Tempo.
Purpose Enable tempo messages. See Disabling and

Enabling Messages on a Track.
Data Type (*pParam) None.
mtTime Not used.

GUID_EnableTimeSig
[This is preliminary documentation and subject to change.]

Track type Time signature, style, motif.
Purpose Disable time signature messages. See Disabling and

Enabling Messages on a Track.
Data Type (*pParam) None.
mtTime Not used.

GUID_IDirectMusicBand
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Set a band.
Data Type (*pParam) IDirectMusicBand
mtTime The time, in track time, at which to add the band to

the track.

in.doc – page 86

GUID_IDirectMusicChordMap
[This is preliminary documentation and subject to change.]

Track type Chordmap.
Purpose Set or retrieve the chordmap.
Data Type (*pParam) IDirectMusicChordMap pointer (SetParam) or

address of a variable to receive this pointer
(GetParam).

mtTime The time, in track time, at which to add the
chordmap to the track, or the time at or directly
after the chordmap to be retrieved from the track.

GUID_IDirectMusicStyle
[This is preliminary documentation and subject to change.]

Track type Style.
Purpose Set or retrieve the style.
Data Type (*pParam) IDirectMusicStyle pointer (SetParam) or address

of a variable to receive this pointer (GetParam).
mtTime The time, in track time, at which to add the style to

the track, or the time at or directly after the style to
be retrieved from the track.

GUID_MuteParam
[This is preliminary documentation and subject to change.]

Track type Mute.
Purpose Set or retrieve channel mapping information.
Data Type (*pParam) DMUS_MUTE_PARAM. The dwPChannel

member must be initialized before this structure is
passed to GetParam.

mtTime The time, in track time, at which to add the mute
event to the track, or the time at or directly after the
mute event to be retrieved from the track.

GUID_RhythmParam
[This is preliminary documentation and subject to change.]

Track type Chord.
Purpose Retrieve the rhythm pattern for a sequence of

chords stored in a measure in the track.
Data Type (*pParam) DMUS_RHYTHM_PARAM. The TimeSig

member must be initialized before this structure is

in.doc – page 87

passed to GetParam.
mtTime The time, in track time, at or directly after the

beginning of the measure containing the rhythm
pattern to be retrieved from the track.

GUID_StandardMIDIFile
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Ensure that a standard MIDI file (one not authored

specifically for DirectMusic) plays correctly.
Data Type (*pParam) None.
mtTime Not used.

Note
This parameter must be set for any segment based on a standard MIDI file
before any instruments are downloaded.

GUID_TempoParam
[This is preliminary documentation and subject to change.]

Track type Tempo.
Purpose Set or retrieve the tempo.
Data Type (*pParam) DMUS_TEMPO_PARAM. For SetParam, the

mtTime member of the structure is ignored. For
GetParam, the mtTime member will receive the
offset of the tempo change from the requested time,
and will always be 0 or less.

mtTime The time, in track time, at which to set the tempo,
or at or directly after the tempo change to retrieve.

GUID_TimeSignature
[This is preliminary documentation and subject to change.]

Track type Time signature, style.
Purpose Retrieve the time signature.
Data Type (*pParam) DMUS_TIMESIGNATURE. The mtTime

member will receive the offset of the time signature
change from the requested time, and will always be
0 or less.

mtTime The time, in track time, at which to set the time
signature, or at or directly after the time signature
change to retrieve.

in.doc – page 88

GUID_Unload
[This is preliminary documentation and subject to change.]

Track type Band.
Purpose Unload instrument data for the track's bands. See

also GUID_Download.
Data Type (*pParam) IDirectMusicPerformance pointer.
mtTime Not used.

Disabling and Enabling Messages on a Track
[This is preliminary documentation and subject to change.]

By setting the GUID_DisableTempo and GUID_DisableTimeSig parameters on a
track, you can disable the generation of DMUS_TEMPO_PMSG and
DMUS_TIMESIG_PMSG messages respectively. You might want to do this, for
example, when you have set the tempo dynamically and do not want the primary
segment to send tempo messages.

To re-enable messages, call one of the SetParam methods with
GUID_EnableTempo and GUID_EnableTimeSig as the rguidType parameter. You
can also set these parameters to force a segment to send tempo messages even
though it is not the control segment, or to cause a secondary segment to send time
signature messages. (For more information on control segments, see Segments and
DMUS_SEGF_FLAGS.)

For more information on how to set a parameter, see Setting and Retrieving Track
Parameters.

See also the Remarks for IDirectMusicTrack::IsParamSupported.

Setting and Retrieving Global
Parameters

[This is preliminary documentation and subject to change.]

By using the IDirectMusicPerformance::SetGlobalParam and
IDirectMusicPerformance::GetGlobalParam methods, you can set and retrieve
certain parameters that affect the entire performance rather than a single track.

The parameter to be set or retrieved is identified by a GUID in the rguidType
parameter of the method. Each parameter is associated with a particular data type,
whose size is given in the dwSize parameter. The predefined GUIDs and their data
types are shown in the following table.

Parameter type GUID (rguidType)
and Data (*pParam)

Description

in.doc – page 89

GUID_PerfAutoDownload
BOOL

This parameter controls whether instruments
are automatically downloaded when a
segment is played. By default it is off. See
Downloading and Unloading Bands.

GUID_PerfMasterTempo
float

The master tempo is a scaling factor that is
applied to the tempo by the final output tool.
By default it is 1. A value of 0.5 would halve
the tempo, and a value of 2.0 would double it.
This value can be set in the range
DMUS_MASTERTEMPO_MIN to
DMUS_MASTERTEMPO_MAX.

GUID_PerfMasterVolume
long

The master volume is an amplification or
attenuation factor, in hundredths of decibels,
applied to the default volume of the entire
performance. The range of permitted values
is determined by the port. Legacy hardware
MIDI ports do not support changing master
volume.

GUID_PerfMasterGrooveLevel
char

The master groove level is a value that is
always added to the groove level established
by the command track. The resulting value is
adjusted, if necessary, to fall within the range
1 to 100.

Applications can also use custom types of global parameters. To create a new type,
simply establish a GUID and a data type for it. When the parameter is set, the
performance allocates memory for the data, and contents of this memory can be
retrieved by a call to IDirectMusicPerformance::GetGlobalParam.

Capturing Music
[This is preliminary documentation and subject to change.]

Capturing MIDI messages from a device such as a keyboard is very easy in
DirectMusic.

Typically you would create a port for the capture device and use its
IDirectMusicPort::SetReadNotificationHandle method to cause an event to be
signaled whenever messages are available to be read. In response to the event, call
IDirectMusicPort::Read method repeatedly to place pending events into a buffer,
until S_FALSE is returned. Each time Read is called, as many events are put into
the buffer as are available, or as will fit into the buffer. If at least one event was put
into the buffer, S_OK is returned.

To retrieve events from the buffer, you call the IDirectMusicBuffer::GetNextEvent
method. Each call retrieves a single event, until no more are available, at which
point S_FALSE is returned.

in.doc – page 90

The following code fragment illustrates this process:

/* Assume that hEvent was created with CreateEvent and
 given to the capture port pPort by a call to
 SetReadNotificationHandle. Assume also that pBuffer was
 initialized by IDirectMusic::CreateMusicBuffer. */

REFERENCE_TIME rt;
DWORD dwGroup;
DWORD cb;
BYTE *pb;

DWORD dw = WaitForMultipleObjects(1, hEvent, FALSE, INFINITE);
for (;;)
{
 hr = pPort->Read(pBuffer);
 if (hr == S_FALSE)
 {
 break; // No more messages to read into buffer
 }
 pBuffer->ResetReadPtr();
 for (;;)
 {
 hr = pBuffer->GetNextEvent(&rt, &dwGroup, &cb, &pb);
 if (hr == S_OK)
 {
 // pb points to the data structure for the message and
 // you can do with it what you want.
 }
 else if (hr == S_FALSE)
 {
 break; // No more messages in buffer
 }
 } // Done with buffer
} // Done reading pending events

If you do not wish to intercept messages but simply want to send them from one port
to another, you can use the IDirectMusicThru interface.

DirectMusic Tools
[This is preliminary documentation and subject to change.]

In DirectMusic parlance, a tool is an object that intercepts messages and handles
them in some way. The tool might alter the message and then pass it on to the next

in.doc – page 91

tool, or free the message, or send a new message based on information in the old
one.

DirectMusic has an output tool that is normally the last in line to receive messages.
It is this tool that converts performance messages to standard MIDI messages and
streams them to the synthesizer. Other tools are implemented by the application or
obtained from libraries.

To implement a tool you must first create an object that supports the
IDirectMusicTool interface. The object's implementation of the IDirectMusicTool
methods will determine what messages get processed by the tool and what work is
performed on these messages.

All tools other than the output tool are normally collected in graphs, and even if your
application is using only one other tool, you should create a DirectMusicGraph to
contain it. You then add this graph to a segment or the performance. Graphs provide
a convenient mechanism for directing messages from one tool to another.

When the performance engine is playing a segment, it gives each tool in the segment
graph and then each tool in the performance graph a chance to process each
message. After a tool processes a message, it should call the
IDirectMusicGraph::StampPMsg method (obtaining the IDirectMusicGraph
pointer from the pGraph member of the DMUS_PMSG structure) to stamp the
message with a pointer to the next tool, if any, that is to receive it. Then the tool puts
the message back in the pipeline.

Tools process messages in a high-priority thread. Do not call time-consuming
functions, such as those involving graphics or file input/output, from within a tool's
IDirectMusicTool::ProcessPMsg method. If a tool needs to trigger an action, it
should do so by signaling a different thread, perhaps the application's main thread.

When implementing the methods of IDirectMusicTool, you must take care not to
create circular references to parent objects. Circular references come about when one
object creates another and the child keeps an additional reference to the parent. For
example, suppose a tool creates a new reference to the graph passed into its
IDirectMusicTool::Init method. If the tool fails to release this reference, there is a
problem when the segment attempts to release the graph. Because the tool still has a
reference to the graph, the graph is not fully released; and because the graph has a
reference to the tool, the tool cannot be released either.

For a more detailed look at how to set up a tool, see Tutorial 2: Using Tools.

Music Composition
[This is preliminary documentation and subject to change.]

This section is an introduction to the composition engine of DirectMusic. As a
software developer, you can use the engine to implement a dynamic musical
program, using previously authored elements such as styles, templates, and bands.

The following topics are discussed in this section:

in.doc – page 92

· Overview of Music Authoring
· Music Files for Composition
· Overview of Programming for Composition
· How Music Varies During Playback
· Music Values and MIDI Notes
· Using Compositional Elements

Overview of Music Authoring
[This is preliminary documentation and subject to change.]

The author of compositional music elements uses a tool such as DirectMusic
Producer to create the basic elements of each musical theme required by your
program. The following brief introduction to these elements is intended to help
software developers understand the content they are dealing with. For more
information on all of the following topics, see the documentation for DirectMusic
Producer.

· Authoring Styles
· Authoring Chordmaps
· Authoring Style-Based Segments
· Authoring MIDI-Based Segments
· Authoring Templates
· Authoring Bands

Note
In this section the human composer will be referred to as the author, in order to
avoid confusion with the composer object of DirectMusic.

Authoring Styles
[This is preliminary documentation and subject to change.]

A style is a basic definition of the music. It is a collection of patterns, along with a
time signature (meter) and a tempo (beats per minute). A style may also contain one
or more bands.

A pattern is a musical figure one or more measures long consisting of a basic
sequence of notes for each instrument, or part. These notes are not fixed but will
ultimately be mapped to particular pitches according to the current key, chord, and
play mode. Patterns also include variations.

A motif is a special type of pattern designed to be played solo over the basic score.
Typically a motif would be used in an interactive application to mark an event: for
example, the drumbeat that occurs in the DMDonuts sample whenever the ship hits
the edge of the screen.

in.doc – page 93

In DirectMusic Producer, patterns are both created by the author on a grid analogous
to a piano roll. Each part has its own row (corresponding to a PChannel) on which
notes are represented by bars of varying length (duration), thickness (velocity),
position on a vertical scale (pitch), and position on a horizontal scale (time).

The author can create many variations for each pattern. Typically he or she would do
this by copying the pattern and then making small changes to one or more parts. At
run time, variations will be chosen by the style playback mechanism. However, the
author can disable any variation for any chord—that is, specify that the variation
must never be chosen when a certain chord is being played.

The author also assigns a groove range to the pattern, specifying the groove levels at
which the pattern can be played. The pattern can also be designated as an
embellishment. Embellishments are of four types—intro, fill, break, and end—and a
pattern can be assigned to one or more of these categories. When the music is played
and a certain type of embellishment is called for, only patterns of that type are
candidates for playback.

Authoring Chordmaps
[This is preliminary documentation and subject to change.]

Much modern music, especially music in the popular, rock, folk and jazz idioms, is
based on the concept of chord progression, meaning that all the notes played within a
given span of time are associated with a certain chord, and the music moves
harmoniously from one chord to another.

The notes within a pattern authored for DirectMusic are derived from or intended to
harmonize with a single chord. At run time, however, the pattern is transposed
according to the chord progression—that is, each time the underlying chord changes,
DirectMusic modifies the pitch of the notes accordingly.

The chordmap is a roadmap of chord progressions. Within the chordmap designer,
the author chooses chords that can express the desired musical feeling or personality.
He or she then arranges these chords in a flowchart along a time line. (The time line
is conceptually circular, so it keeps looping back to the beginning as long as that
segment of music is being played.)

Certain important chords are designated as signposts. These are chords that must be
played at certain points. The music is always moving from one signpost to the next.
Between the signposts, however, the chord progression may follow various routes
from one chord to another, as mapped out by the author.

The actual route through the chord chart may be chosen at run time by the
composition engine, providing variation over and above that found in the patterns
themselves. Or it may be chosen by the authoring tool when the author is creating a
segment.

A chord in the chordmap can actually consist of several different chords, referred to
as subchords. In order to achieve polytonality by playing different inversions of the
same chord, the author can assign different parts to different subchords. Each

in.doc – page 94

subchord is valid for one or more levels (see DMUS_SUBCHORD), and these are
matched up with levels assigned to parts in the style.

Note
DirectMusic allows up to DMUS_MAXSUBCHORD subchords in a chord, and
this value is defined as 8. However, DirectMusic Producer currently allows
authors to create a maximum of 4 subchords per chord.

Authoring Style-Based Segments
[This is preliminary documentation and subject to change.]

A style-based segment is a largely prebuilt piece of music that the author constructs
from the following elements:

· Style. As explained in Authoring Styles, a style consists of general information
about the music (time signature, tempo, and so on) as well as patterns.

· Chord progression. This might be derived automatically by the authoring tool
from a chordmap (by choosing a path through the chord chart), or else entered
manually by the author.

· Series of commands for selecting appropriate patterns at set times. As explained
under Authoring Styles, a characteristic of the patterns in styles is that they may
be designated as embellishments (intro, fill, break, and end) and may also be
assigned a certain groove range by the author. The command track of the
segment might instruct the style playback engine to select an intro pattern and
play it for the first measure, then play only patterns with a groove level of 25 for
the next four measures, then play a break, and so on.

· Band. The author can assign instruments and PChannels to all the parts played
by the various patterns.

Authoring MIDI-Based Segments
[This is preliminary documentation and subject to change.]

A MIDI-based segment is created in DirectMusic Producer by importing a MIDI file.
The author can then add tempo, key, and band changes as well as loop points. Unlike
a style-based segment, a MIDI segment has no patterns and no command track.
Instead it has a sequence track that contains MIDI notes and other commands.

Authoring Templates
[This is preliminary documentation and subject to change.]

A template is a segment, but unlike a style-based segment, it is not bound to a
particular style and does not have a fixed chord progression.

Instead of a chord progression, the template has a series of signpost group markers
along a time line. Signposts, as explained in Authoring Chordmaps, are chords that

in.doc – page 95

mark the beginning and end of regions where variations in the chord progression are
possible. When the author creates a signpost, he or she assigns it to a group.

Here's what happens later, either within the authoring tool or at run time, when the
DirectMusicComposer generates a segment by combining the template with a
particular style and chordmap. Each time the engine encounters a pair of signpost
group markers along the time line in the template, it looks in the chordmap for a pair
of signpost chords that belong to that group. If it finds a pair, and if the interval
between them fits into the time available, it follows the chord progression between
those two signpost chords as defined in the chordmap. If it is unable to find a path
that works, or if there is no end signpost marker, the engine simply plays any chord
from the group of the beginning signpost group marker.

The author might use templates in order to apply similar chord progressions, groove
levels, and embellishments to different styles while composing segments. But
templates can also be combined with styles and chordmaps by the
DirectMusicComposer object at run time.

Authoring Bands
[This is preliminary documentation and subject to change.]

A band is a set of instruments, together with their performance parameters,
associated with particular parts in a piece of music. This is not the same as a DLS
collection, which represents a set of instruments that can be downloaded to the
synthesizer and thus made available to any application.

In a tool such as DirectMusic Producer, the author creates a band by assigning
instruments to PChannels. These instruments can be from any DLS collection, and
instruments from different sources can be mixed within a band. For example, a band
might have a jazz guitar from the General MIDI set in part 1, a sixties organ from
the Roland GS set in part 2, and an ethnic percussive instrument from a custom DLS
collection in part 3. Each of these instruments is also given volume, pan, and
transposition settings.

PChannels map instruments to parts. If a pattern calls for a particular note on
PChannel 1, then that note will be played by the instrument in the current band that
is assigned to PChannel 1. The sound is modified by the band's settings for the
volume, pan, and transposition of that instrument.

Bands may be saved as separate files or included in styles or segments.

Music Files for Composition
[This is preliminary documentation and subject to change.]

When programming for DirectMusic composition, you will use a variety of files
produced in a tool such as DirectMusic Producer. You load these elements into the
application as COM objects and obtain interfaces to them. (See DirectMusic
Loader.)

in.doc – page 96

The following table summarizes the types of files you will encounter. The Class
GUID is the value you put in the guidClass member of the DMUS_OBJECTDESC
structure when loading the object.

Note
Bands can be authored as part of a style, in which case they are automatically
loaded when the style is loaded. Similarly, styles and bands can be authored into
a segment, in which case you don't need separate files for those elements.
Files may also contain references to other files. If a style contains a reference to
a band, the band is automatically loaded when the style is, provided the loader
can find the band file.

Element Class GUID Interface File
Type

Band CLSID_DirectMusicBand IDirectMusicBand .bnd
DLS
Collection

CLSID_DirectMusicCollection IDirectMusicCollection .dls

ChordMap CLSID_DirectMusicChordMap IDirectMusicChordMap .cdm
Segment CLSID_DirectMusicSegment IDirectMusicSegment .sgt
Style CLSID_DirectMusicStyle IDirectMusicStyle .sty
Template CLSID_DirectMusicSegment IDirectMusicSegment .tpl

Overview of Programming for
Composition

[This is preliminary documentation and subject to change.]

As a developer of software that implements music composed at run time, you will
use previously authored objects as building blocks. In consultation with the author or
other content provider, you can choose to get the musical data in the form of small
building blocks that offer you the greatest possible flexibility and variation at run
time, or you can use larger prefabricated elements that define the form of the music
more fully.

Using the largest building blocks, you load highly structured segments (either style-
based or MIDI-based) that contain everything the performance needs to know about
the music in order to play it. All you have to do is load the segment and query for the
IDirectMusicSegment interface. You pass this interface pointer to the
IDirectMusicPerformance::PlaySegment method. The style playback engine then
selects pattern variations from the style and plays them according to a fixed chord
progression—or, in the case of a MIDI-based segment, simply plays the MIDI
sequence. Band changes will usually be contained in the segment as well.

If you want to use smaller building blocks, you obtain the following elements:

· Chordmaps, which are roadmaps of chord progressions.

in.doc – page 97

· Styles, which define a basic melody and rhythm together with variations, motifs,
and embellishments.

· Template segments, which are structural plans that control various aspects of
playback including the length of the segment, whether it loops, where groove
level changes and embellishment patterns are to be placed, and what types of
chords in the chordmap are to serve as signposts.

You then construct a segment by combining any chordmap, style, and template,
using the IDirectMusicComposer::ComposeSegmentFromTemplate method.

To have even more flexibility in music composition at run time, you can create
segments based on predefined shapes rather than templates, using the
IDirectMusicComposer::ComposeSegmentFromShape method. The shape is used
in creating the command and signpost tracks, which control the groove level of the
music, the choice of embellishment patterns, and the chord progression.

When playing segments, you can also control the band used to play the parts. Bands
are typically authored right into styles and templates, but they may be supplied as
separate files so that band changes can be made dynamically by the application. In
this case, you must create a secondary segment containing only the band, using the
IDirectMusicBand::CreateSegment method, and play this segment when it is time
to assign instruments and instrument settings to the primary segment. For more
information, see Using Bands.

How Music Varies During Playback
[This is preliminary documentation and subject to change.]

As DirectMusic plays a segment (other than a simple MIDI file or an authored
segment based on a MIDI file), changes are made to the basic harmony and rhythm
so that the performance does not sound static. Changes are partly scripted and partly
random.

· Choice of pattern. Typically a style contains multiple patterns, which are
selected in response to commands from the command track. For example, if the
command track calls for a break embellishment to be played, the style playback
engine selects a break pattern that is compatible with the current groove level.
(The author specifies which groove levels are appropriate for each pattern.) If
there is more than one suitable pattern, a random choice is made.

· Variations within a pattern. Any part within a pattern can have multiple
variations. Variations may play in an order specified by the author; otherwise
the style playback engine makes a random choice of variations on each
repetition of the pattern.

· Groove level. The current groove level of the segment determines which of the
patterns in the style can be selected for playback. The current level is set by the
command track, which is normally authored into a segment or template.
However, the progression of groove levels is composed by the engine at run

in.doc – page 98

time if the segment is created by using the
IDirectMusicComposer::ComposeSegmentFromShape method. A shape is
simply a predefined pattern of intensity, such as "rising" or "consistently low."
The current groove level of a segment can be changed programmatically by
setting a track parameter (see GUID_CommandParam), and a modifier can be
applied to all segments by setting the master groove level for the performance
(see Setting and Retrieving Global Parameters).

· Transposition. As the segment plays, the underlying chord changes according to
the progression in the chord track. The notes in the current pattern are
automatically transposed to harmonize with the new chord. The application can
change the chord progression of an existing segment by using the
IDirectMusicComposer::ChangeChordMap method.

· Variations in timing. The playback engine can introduce small random changes
in the parameters of individual notes—when they begin and when they end.

· Band. The choice of instruments and instrument settings (volume, pan, and
transposition) can be changed as the segment is playing, either by the band track
within an authored segment or dynamically by the application. The application
can change the band by creating a secondary segment with a call to
IDirectMusicBand::CreateSegment, then playing that segment.

In many cases, applications will exert control over the music by playing different
segments rather than by manipulating existing segments. For example, to have the
music reflect a change in the intensity of a game, you can simply transition to a new
segment authored for that intensity level. You can achieve a similar effect with a
single style-based segment by having the author create patterns with different groove
ranges, then changing the groove level in response to game events.

For more information on how to change the music at run time, see Music
Parameters.

Music Values and MIDI Notes
[This is preliminary documentation and subject to change.]

Notes in a pattern within a DirectMusic style are not fixed notes. Rather they are
music values that become actual notes only when they are transposed to the current
chord according to the current play mode and subchord level.

A music value is a representation of the note's intended role. For example, a music
value can say that a note is intended to be played as the second position in the chord,
up one in the scale. When that music value is applied to a particular chord, it is
converted to the appropriate MIDI note, the one in the second position in the chord,
up one in the scale. For an explanation of the data format of music values, see
DMUS_NOTE_PMSG.

The play mode determines how to interpret the note against the chord. For example,
if the mode is DMUS_PLAYMODE_NORMALCHORD, the note is interpreted
against the intervals of the chord and scale, based on the root of the chord. If the

in.doc – page 99

mode is DMUS_PLAYMODE_FIXEDTOKEY, the note is interpreted as a linear
value. For more information on the various play modes, see
DMUS_PLAYMODE_FLAGS.

The subchord level is a value in the range 0 to 31 that determines which subchords
can be used in establishing the music value. A DirectMusic chord (as represented by
a DMUS_CHORD_PARAM or DMUS_CHORD_KEY structure) actually consists
of one or more subchords, allowing for complex harmonies with multiple parallel
chord progressions. Each subchord supports one or more levels, as specified in the
dwLevels member of the DMUS_SUBCHORD structure. The author of the music
defines the supported levels for each subchord.

When a segment is played, each note is encapsulated in a DMUS_NOTE_PMSG
structure. The bMidiValue member of this structure holds the MIDI note value that
would normally be sent to the synthesizer. The message also holds the original music
value as well as the play mode and subchord level that were used in transposition. A
tool can use this information to alter the note in any way it likes. For example, a tool
could intercept a note that was transposed in a certain play mode, change the play
mode, obtain a new MIDI note by using the
IDirectMusicPerformance::MusicToMIDI method, and put the new value in the
bMidiValue member of the message before passing it on.

The MusicToMIDI method is at the heart of the style playback mechanism of
DirectMusic. It is called by the style track to convert its internal music values into
notes, using the current chord in the chord track.

If a tool wants to go the opposite way and obtain a new music value from a MIDI
note using a different chord, play mode, or subchord level, it calls the
IDirectMusicPerformance::MIDIToMusic method. The new music value can be
placed in the wMusicValue member of the note message, where it might be of use to
other application-defined tools, but of course the DirectMusic output tool will ignore
it and play the note in bMidiValue as usual.

Using Compositional Elements
[This is preliminary documentation and subject to change.]

This section is a practical guide to incorporating music components into a
DirectMusic application. It is presumed that you have a basic understanding of the
purpose of each component and how it is represented by an object. If not, you may
first want to read Composition Objects and Interfaces and Overview of Music
Authoring.

Remember that you can incorporate DirectMusic into your applications without
necessarily working with individual components such as styles, chordmaps, and
templates. If you prefer, you can work with fully authored segments or even with
MIDI files. Using individual components simply gives you greater control over the
performance at run time.

This section covers the following topics:

in.doc – page 100

· Using Authored Segments
· Using Styles
· Using Motifs
· Using Chordmaps
· Using Templates
· Using Transitions

Using Authored Segments
[This is preliminary documentation and subject to change.]

An authored segment is a file or resource that contains all the data for a piece of
music. It may be based on a MIDI file, or on a style and a chordmap. Unlike a
simple MIDI file or resource, it can contain band changes and variations.

Note
A template is an authored segment as well, but it does not represent a self-
contained piece of music. For more information, see Using Templates.

You create the segment in your application by loading the segment as an object and
obtaining the IDirectMusicSegment interface, as in the following example, where
the segment is loaded from a DirectMusic Producer file:

/* It is assumed that pLoader is a valid pointer to
 an IDirectMusicLoader interface, and that the search
 directory has been properly set. */

DMUS_OBJECTDESC ObjectDescript;
IDirectMusicSegment* pSegment;

ObjectDescript.dwSize = sizeof(DMUS_OBJECTDESC);
ObjectDescript.idClass = CLSID_DirectMusicSegment;
strcpy(ObjectDescript.wszFileName, L"Dance.sgt");
ObjectDescript.dwValidData = DMOBJ_CLASS | DMOBJ_PATH ;
pLoader->GetObject(&ObjectDescript, IID_IDirectMusicSegment,
 (void**) pSegment)))

You can now pass pSegment to the IDirectMusicPerformance::PlaySegment
method.

Using Styles
[This is preliminary documentation and subject to change.]

The DirectMusicStyle object represents a collection of musical patterns, usually
including embellishments and motifs, together with a time signature, tempo, and

in.doc – page 101

band. It defines the basic rhythm and the notes that will be played in each instrument
part.

You obtain the DirectMusicStyle object from a style or segment file. For more
information, see Loading Objects and Music Files for Composition.

A style by itself does not contain enough information to create a segment of music at
run time. For this you need two other components: a chordmap (map of chord
progressions) and a command track to set the groove level and embellishments as the
music plays. The command track can come from a template or be generated at run
time from a shape.

To create a segment with a command track based on a template, call the
IDirectMusicComposer::ComposeSegmentFromTemplate method. (See Using
Templates.)

To create a segment based on a shape, call the
IDirectMusicComposer::ComposeSegmentFromShape method. You supply
pointers to the style and the chordmap, and a variable to receive a pointer to the
created segment. You also supply a rate of harmonic motion, which controls the
frequency of chord changes, and a shape constant, which determines the progression
of groove levels and embellishments.

Using Motifs
[This is preliminary documentation and subject to change.]

A motif is a special kind of pattern in a style intended to be played on top of the
basic style pattern, typically in response to an interactive event. Although a motif
can be as complex as any other pattern, even containing variations and multiple
instrument parts, most often it is a short, simple musical figure that will sound good
against a variety of background patterns. It might also be a sound effect played by a
custom DLS instrument or instruments.

All the motifs authored into a style become available to you as soon as you have
loaded that style. To get a particular motif ready for playback, you call the
IDirectMusicStyle::GetMotif method, passing in the following parameters:

· The name of the motif. You might know this from the documentation for the
style, or you can obtain it from an index value by using the
IDirectMusicStyle::EnumMotif method.

· The number of times the motif should repeat when it is played.
· A pointer to receive the IDirectMusicSegment interface to the segment object

that will be created by the method.

The following example function obtains and plays the motif whose name is passed in
as pwszMotifName.

void PlayMotif(IDirectMusicPerformance* pPerf,
 IDirectMusicStyle* pStyle,
 WCHAR* pwszMotifName)

in.doc – page 102

{
 IDirectMusicSegment* pSeg;

 // Get the motif segment from the style, setting it to play once
 // through (no repeats). Check for S_OK specifically, because
 // GetMotif() returns S_FALSE if it doesn't find the motif.

 if (S_OK == pStyle->GetMotif(pwszMotifName, &pSeg))
 {
 /* Play the segment. DMUS_SEGF_BEAT means play on the next beat if
 there is a segment currently playing. DMUS_SEGF_SECONDARY means
 play the segment as a secondary segment, which plays on top of
 the currently playing primary segment. The 0 indicates to
 play now. The final NULL means do not return an
 IDirectMusicSegmentState* in the last parameter,
 because we don't need to track the state of playback. */

 pPerf->PlaySegment(pSeg,
 DMUS_SEGF_BEAT | DMUS_SEGF_SECONDARY,
 0,
 NULL);
 pSeg->Release();
 }
}

Note that pSeg is played as a secondary segment, because a motif is normally played
over a primary segment. You can't play a motif as a primary segment, because it
doesn't have a chord track or band track. If you do want to play a motif against
silence, you can create a primary segment from a style that has only blank patterns,
and keep that segment playing while you play the motif.

Using Chordmaps
[This is preliminary documentation and subject to change.]

A DirectMusicChordMap object represents a collection of chords that provides the
foundation of the harmonic structure and the mood of the music. A chordmap
contains several pathways with many interconnected chords, providing many
possibilities for the composition engine to choose from in determining the chord
progression in a piece of music.

For authored segments, applications don't normally need to concern themselves with
chordmaps. The chordmap is used at the authoring stage to create a fixed chord
progression. However, chordmaps can be used to compose segments at run time and
to alter the chord progression of existing segments.

You obtain the DirectMusicChordMap object from a chordmap file. For more
information, see Loading Objects and Music Files for Composition.

in.doc – page 103

If a chordmap has been authored into a style, you can retrieve a pointer to its
IDirectMusicChordMap interface by passing its name (assigned by the author) to
the IDirectMusicStyle::GetChordMap method. You can also use the
IDirectMusicStyle::EnumChordMap method to search for a particular chordmap,
or the IDirectMusicStyle::GetDefaultChordMap method to obtain a pointer to the
default chordmap for the style.

Note
DirectMusic Producer currently does not support authoring chordmaps into style
files.

You set the chordmap for a composition when you create a segment by using either
IDirectMusicComposer::ComposeSegmentFromTemplate or
IDirectMusicComposer::ComposeSegmentFromShape. For more information, see
Using Styles.

Once a segment has been created, you can change its chordmap by calling the
IDirectMusicComposer::ChangeChordMap method. This will have the effect of
changing the mood of the music without altering its basic rhythm and melody.

Every chordmap has an underlying scale consisting of 24 tones. You can determine
the tones of the scale by using the IDirectMusicChordMap::GetScale method. The
lower 24 bits of the variable pointed to by the pdwScale parameter of this method are
set or clear depending on whether the corresponding tone is part of the scale. The
upper 8 bits give the root of the scale as an integer between 0 and 23 (low C to
middle B).

Using Templates
[This is preliminary documentation and subject to change.]

A template is a special kind of segment that can be used in composing a playable
segment of music at run time. The template sets the length of the segment and any
loop points. It provides the command track, which controls changes in the groove
level and the choice of embellishment patterns. It also prescribes how the chordmap
is used in composing the segment, by specifying from which signpost group each
new chord must come.

A template is represented by a DirectMusicSegment object.

There are two ways to obtain a template:

· Obtain one from a template file. You load the file as a DirectMusicObject and
query for the IDirectMusicSegment interface. For more information, see
Loading Objects.

· Create one from a shape, using the
IDirectMusicComposer::ComposeTemplateFromShape method. You choose
the length, the overall shape, whether intro and end embellishment patterns are
to be played, and how long the ending is to be. You get back a pointer to the
IDirectMusicSegment interface.

in.doc – page 104

Once you have obtained a template segment object, you can pass it to the
IDirectMusicComposer::ComposeSegmentFromTemplate method, along with
pointers to a style and a chordmap. You also supply a rate of harmonic motion,
which sets the frequency of chord changes. The ComposeSegmentFromTemplate
method creates a segment and returns a pointer to its IDirectMusicSegment
interface at the address given in the ppSectionSeg parameter. It is this pointer that
you pass to the IDirectMusicPerformance::PlaySegment method.

Using Transitions
[This is preliminary documentation and subject to change.]

In order to avoid a sudden and perhaps discordant break when stopping one segment
and beginning another, or when bringing the music to a close, you can have the
composer create an intermediate or closing segment that will provide an appropriate
transition.

You have your choice of two methods for composing transitional segments.

· The IDirectMusicComposer::AutoTransition method, given a pointer to the
performance, creates a transition from the currently playing segment to a second
segment of your choice and then automatically cues the transitional segment and
the second segment for playback, returning an IDirectMusicSegmentState
interface for both. The transition begins playing immediately, or on the next
boundary as specified in the dwFlags parameter. Optionally the second segment
can be NULL, so that the transition is to silence.

· The IDirectMusicComposer::ComposeTransition method composes a
transition from any point in one segment to the beginning of a second segment,
or to silence, and returns an IDirectMusicSegment interface so that the
application can play the transition.

Both these methods take a chordmap, a command, and a set of flags as parameters.

· The chordmap, as usual, is used to create a chord track that defines the chord
progression in the segment.

· The command is one of the DMUS_COMMANDT_TYPES enumeration. It
determines which type of pattern—either an ordinary groove pattern or one of
the embellishments—will be called for in the command track of the transitional
segment. When the segment plays, an appropriate pattern will be selected from
the style.

· The flags are from DMUS_COMPOSEF_FLAGS and further define the
transition, principally its timing. The DMUS_COMPOSEF_MODULATE flag
can be used to cause the transition to move smoothly from one tonality to
another; it can't be used when there is no second segment, because there can be
no modulation to silence.

in.doc – page 105

Note that transitions are normally a single measure in length. There are two
exceptions: when the DMUS_COMPOSEF_LONG flag is included, and when the
command is DMUS_COMMANDT_END and the end embellishment in the style is
more than one measure long.

DirectMusic Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the application programming
interface (API) elements provided by DirectMusic® in C/C++ and Visual Basic®.
Reference material is organized by language:

· DirectMusic C/C++ Reference
· DirectMusic Visual Basic Reference

DirectMusic C/C++ Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements of DirectMusic®.
Reference material is divided into the following categories.

· Interfaces
· Messages
· Structures
· File Structures
· DLS Structures
· Enumerated Types
· Return Values

Interfaces
[This is preliminary documentation and subject to change.]

This section contains references for the following DirectMusic interfaces:

· IDirectMusic
· IDirectMusicBand
· IDirectMusicBuffer
· IDirectMusicChordMap
· IDirectMusicCollection

in.doc – page 106

· IDirectMusicComposer
· IDirectMusicDownload
· IDirectMusicDownloadedInstrument
· IDirectMusicGetLoader
· IDirectMusicGraph
· IDirectMusicInstrument
· IDirectMusicLoader
· IDirectMusicObject
· IDirectMusicPerformance
· IDirectMusicPort
· IDirectMusicPortDownload
· IDirectMusicSegment
· IDirectMusicSegmentState
· IDirectMusicStyle
· IDirectMusicThru
· IDirectMusicTool
· IDirectMusicTrack
· IKsControl
· IReferenceClock

IDirectMusic
[This is preliminary documentation and subject to change.]

The IDirectMusic interface provides methods for managing buffers, ports, and the
master clock. There should not be more than one instance of this interface per
application.

Note
There is no helper function to create this interface. Applications use the COM
CoCreateInstance function or the IDirectMusicPerformance::Init method to
create a DirectMusic object.

The methods of the IDirectMusic interface can be organized into the following
groups:

Activation Activate
Buffers CreateMusicBuffer
Linkage SetDirectSound
Ports CreatePort

EnumPort

in.doc – page 107

GetDefaultPort
Timing EnumMasterClock

GetMasterClock
SetMasterClock

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusic::Activate
[This is preliminary documentation and subject to change.]

The IDirectMusic::Activate method activates or deactivates all output ports created
from this interface.

HRESULT Activate(
 BOOL fEnable
);

fEnable
Switch to activate (TRUE) or deactivate (FALSE) all port objects created in this
instance of DirectMusic.

Return Values
If the method succeeds, the return value is S_OK.

Remarks
Applications should call IDirectMusic::Activate(FALSE) when they lose input
focus if they do not need to play music in the background. This will allow another
application that may have the input focus to have access to the ports. Once the
application has input focus again, it should call Activate(TRUE) to enable all of its
allocated ports.

in.doc – page 108

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPort::Activate

IDirectMusic::CreateMusicBuffer
[This is preliminary documentation and subject to change.]

The IDirectMusic::CreateMusicBuffer method creates a DirectMusicBuffer object
to hold music messages being sequenced to the port. Most applications do not need
to call this method directly, as buffer management is handled by the performance
when a port is added.

HRESULT CreateMusicBuffer(
 LPDMUS_BUFFERDESC pBufferDesc,
 LPDIRECTMUSICBUFFER *ppBuffer,
 LPUNKNOWN pUnkOuter
);

pBufferDesc
Address of the DMUS_BUFFERDESC structure that contains the description of
the music buffer to be created. The application must initialize the dwSize
member of this structure before passing the pointer. See Remarks.

ppBuffer
Address of a variable to receive the IDirectMusicBuffer interface pointer.

pUnkOuter
Address of the controlling object's IUnknown interface for COM aggregation.
Aggregration is not currently supported, so this value must be set to NULL.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_NOAGGREGATION
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

in.doc – page 109

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusic::CreatePort
[This is preliminary documentation and subject to change.]

The IDirectMusic::CreatePort method is used to create an object for a particular
DirectMusic port.

HRESULT CreatePort(
 REFCLSID rclsidPort,
 LPDMUS_PORTPARAMS pPortParams,
 LPDIRECTMUSICPORT *ppPort,
 LPUNKNOWN pUnkOuter
);

rclsidPort
Reference to (C++) or address of (C) the GUID that identifies the port for which
the IDirectMusicPort interface is to be created. The GUID is retrieved through
the IDirectMusic::EnumPort method. If it is GUID_NULL, then the returned
port will be the default port. For more information, see Default Port.

pPortParams
Address of a DMUS_PORTPARAMS structure containing parameters for the
port. The dwSize member of this structure must be initialized before the method
is called.

ppPort
Address of a variable to receive an IDirectMusicPort interface pointer.

pUnkOuter
Address of the controlling object's IUnknown interface for COM aggregation.
Aggregation is not currently supported, so this value must be NULL.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if a requested
parameter is not available.

If it fails, the method may return one of the following error values:

DMUS_E_DSOUND_NOT_SET
E_INVALIDARG
E_NOAGGREGATION
E_NOINTERFACE

in.doc – page 110

E_OUTOFMEMORY
E_POINTER

Remarks
By default, the port is inactive when it is created. It must be activated by a call to
IDirectMusic::Activate or IDirectMusicPort::Activate.

If not all parameters could be obtained, then the DMUS_PORTPARAMS structure
will be changed as follows to match the available parameters of the port.

On entry, the dwValidParams member of the structure indicates which members in
the structure are valid. If the flag is not set for a member of the structure, then a
default value is set for that parameter when the port is created.

On return, the flags in dwValidParams show which port parameters were set. If a
particular parameter was not requested but was set to the default, then that flag is
added to those passed in.

If the port supports a specified parameter, but the given value for the parameter is
out of range, then the parameter value in *pPortParams will be changed. In this
case, the flag in dwValidParams remains set, but S_FALSE will be returned to
indicate that the value has been changed.

The following code shows how an application can request reverb capabilities and
determine if they were obtained. (For an alternative way of checking and setting port
properties, see Port Property Sets.)

DMUS_PORTPARAMS params;

ZeroMemory(¶ms, sizeof(params));
params.dwSize = sizeof(params);
params.dwValidParams = DMUS_PORTPARAMS_EFFECTS;
params.dwEffectFlags = DMUS_EFFECT_REVERB;
HRESULT hr = pDirectMusic->CreatePort(guidPort, ¶ms,
 &port, NULL);
if (SUCCEEDED(hr))
{
 fGotReverb = TRUE;
 if (hr == S_FALSE)
 {
 if (!(params.dwValidParams & DMUS_PORTPARAMS_EFFECTS))
 {
 // Device does not support any effects
 fGotReverb = FALSE;
 }
 else if (!(params.dwEffectFlags & DMUS_EFFECT_REVERB))
 {
 // Device understands effects,

in.doc – page 111

 // but could not allocate reverb
 fGotReverb = FALSE;
 }
 }
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusic::EnumMasterClock
[This is preliminary documentation and subject to change.]

The IDirectMusic::EnumMasterClock method is used to enumerate and get the
description of the clocks that DirectMusic can use as the master clock. Each time it
is called, this method retrieves information about a single clock.

HRESULT EnumMasterClock(
 DWORD dwIndex,
 LPDMUS_CLOCKINFO lpClockInfo
);

dwIndex
Index of the clock for which the description is to be returned. This parameter
should be 0 on the first call and then incremented by 1 in each subsequent call
until S_FALSE is returned.

lpClockInfo
Address of a DMUS_CLOCKINFO structure to receive the description of the
clock. The application must initialize the dwSize member of this structure
before passing the pointer.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if there is no clock
with that index number.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_NOINTERFACE
E_POINTER

in.doc – page 112

Remarks
Applications should not rely on or store the index number of a clock. Rebooting or
adding and removing hardware could cause the index number of a clock to change.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusic::SetMasterClock, IDirectMusic::GetMasterClock

IDirectMusic::EnumPort
[This is preliminary documentation and subject to change.]

The IDirectMusic::EnumPort method is used to enumerate and get the capabilities
of the DirectMusic ports connected to the system. Each time it is called, this method
retrieves information about a single port.

HRESULT EnumPort(
 DWORD dwIndex,
 LPDMUS_PORTCAPS pPortCaps
);

dwIndex
Index of the port for which the capabilities are to be returned. This parameter
should be 0 on the first call and then incremented by 1 in each subsequent call
until S_FALSE is returned.

pPortCaps
Address of the DMUS_PORTCAPS structure to receive the capabilities of the
port. The dwSize member of this structure must be initialized before the pointer
is passed.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if there is no port
with that index value.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_NOINTERFACE
E_POINTER

in.doc – page 113

Remarks
Applications should not rely on or store the index number of a port. Rebooting or
adding or removing ports could cause the index number of a port to change.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusic::GetDefaultPort
[This is preliminary documentation and subject to change.]

The IDirectMusic::GetDefaultPort method retrieves the GUID of the default
output port. This is the port that will be created if GUID_NULL is passed to
IDirectMusic::CreatePort.

HRESULT GetDefaultPort(
 LPGUID pguidPort
);

pguidPort
Address of a variable to receive the default port GUID.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Default Port

IDirectMusic::GetMasterClock
[This is preliminary documentation and subject to change.]

in.doc – page 114

The IDirectMusic::GetMasterClock method returns the GUID and a pointer to the
IReferenceClock interface for the clock that is currently set as the DirectMusic
master clock.

HRESULT GetMasterClock(
 LPGUID pguidClock,
 IReferenceClock **ppReferenceClock
);

pguidClock
Address of a variable to receive the master clock’s GUID. The application can
pass NULL if this value is not desired.

ppReferenceClock
Address of a variable to receive the IReferenceClock interface pointer for this
clock. The application can pass NULL if this value is not desired.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_NOINTERFACE
E_POINTER

Remarks
The IReferenceClock interface pointer must be released once the application has
finished using the interface.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusic::SetMasterClock

IDirectMusic::SetDirectSound
[This is preliminary documentation and subject to change.]

The IDirectMusic::SetDirectSound method connects DirectMusic to a DirectSound
object for wave output.

in.doc – page 115

HRESULT SetDirectSound(
 LPDIRECTSOUND pDirectSound,
 HWND hWnd
);

pDirectSound
IDirectSound interface to use for output. If this parameter is NULL, the method
creates a DirectSound object and sets the DSSCL_PRIORITY cooperative level.
(See Remarks.) If this parameter contains an IDirectSound pointer, the caller is
responsible for setting the cooperative level.

hWnd
Window handle associated with the DirectSound object created by this call. If
this value is NULL, the current foreground window is set as the focus window.
See Remarks.
If pDirectSound is a valid interface, this parameter is ignored, as it is the caller's
responsibility to supply a valid window handle in the call to
IDirectSound::SetCooperativeLevel.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_DSOUND_ALREADY_SET.

Remarks
The specified DirectSound object will be the one used for rendering audio on all
ports. This default can be overridden by using the
IDirectMusicPort::SetDirectSound method.

Whenever the IDirectMusic::SetDirectSound method is called, any existing
DirectSound object is released.

When pDirectSound is NULL, a new DirectSound object is not created until a port
that uses DirectSound is activated, and the DirectSound object is automatically
released when the last port using it is deactivated.

If you created the DirectSound object yourself, you can release it by calling this
method with NULL in the pDirectSound parameter after deactivating all ports. (It is
an error to call SetDirectSound on an active port.)

You can pass NULL in the hWnd parameter in order to pass the current foreground
window handle to DirectSound. However, it is not wise to assume that the
application window will be in the foreground during initialization. In general, the
top-level application window handle should be passed to DirectMusic, DirectSound,
and DirectDraw. See the Remarks for IDirectSound::SetCooperativeLevel.

in.doc – page 116

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Integrating DirectMusic and DirectSound

IDirectMusic::SetMasterClock
[This is preliminary documentation and subject to change.]

The IDirectMusic::SetMasterClock method sets the DirectMusic master clock to a
clock identified by a GUID obtained through the IDirectMusic::EnumMasterClock
call. There is only one master clock for all DirectMusic applications.

HRESULT SetMasterClock(
 REFGUID rguidClock
);

rguidClock
Reference to (C++) or address of (C) the GUID that identifies the clock to set as
the master clock for DirectMusic. This parameter must be a GUID returned by
the IDirectMusic::EnumMasterClock method.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_PORTS_OPEN.

Remarks
If another running application is also using DirectMusic, it is not possible to change
the master clock until that application is shut down.

Most applications will not need to call SetMasterClock. It should not be called
unless there is a need to synchronize tightly with a hardware timer other than the
system clock.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

in.doc – page 117

See Also
IDirectMusic::GetMasterClock, IDirectMusic::EnumMasterClock

IDirectMusicBand
[This is preliminary documentation and subject to change.]

The IDirectMusicBand interface represents a DirectMusic band object. A band is
used to set the instrument choices and mixer settings for a set of PChannels. For an
overview, see Using Bands.

Bands can come from several places. They can be stored directly in their own files,
or embedded in a style's band list or a segment's band track.

The DirectMusicBand object also supports the IPersistStream and
IDirectMusicObject interfaces for loading its data.

The IDirectMusicBand interface has the following methods:

Segment creation CreateSegment
Instrument data Download

Unload

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDMUS_BAND type is defined as a pointer to the IDirectMusicBand
interface.

typedef IDirectMusicBand __RPC_FAR *LPDMUS_BAND;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicBand::CreateSegment
[This is preliminary documentation and subject to change.]

The IDirectMusicBand::CreateSegment method creates a DirectMusicSegment
object that can be used to perform the volume, pan, transposition, and patch change

in.doc – page 118

commands in the band dynamically using the
IDirectMusicPerformance::PlaySegment method.

HRESULT CreateSegment(
 IDirectMusicSegment** ppSegment
);

ppSegment
Address of a variable to receive a pointer to the created segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks
For an example of creating a segment from a band, see Making Band Changes
Programmatically.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicBand::Download
[This is preliminary documentation and subject to change.]

The IDirectMusicBand::Download method downloads the DLS data for
instruments in the band to a performance object. The method downloads each
instrument in the band by calling the
IDirectMusicPerformance::DownloadInstrument method. DownloadInstrument,
in turn, uses the PChannel of the instrument to find the appropriate port, and then
calls the IDirectMusicPort::DownloadInstrument method on that port.

Once a band has been downloaded, the instruments in the band may be selected,
either individually with program change MIDI messages, or all at once by playing a
band segment created through a call to the IDirectMusicBand::CreateSegment
method.

HRESULT Download(

in.doc – page 119

 IDirectMusicPerformance* pPerformance
);

pPerformance
Performance to which instruments are to be downloaded. The performance
manages the mapping of PChannels to DirectMusic ports.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER

Remarks
Because a downloaded band uses synthesizer resources, it should be unloaded when
no longer needed, by using the IDirectMusicBand::Unload method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicBand::Unload

IDirectMusicBand::Unload
[This is preliminary documentation and subject to change.]

The IDirectMusicBand::Unload method unloads the DLS data for instruments in
the band previously downloaded by IDirectMusicBand::Download.

HRESULT Unload(
 IDirectMusicPerformance* pPerformance
);

pPerformance
Performance from which to unload instruments.

in.doc – page 120

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicBand::Download, IDirectMusicPort::UnloadInstrument

IDirectMusicBuffer
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer interface represents a buffer containing timestamped data
(typically in the form of MIDI messages) to be sequenced by a port. Unlike a
segment, the buffer contains a small amount of data (typically less than 200
milliseconds) over which the application has control at event granularity.

Unless your application is doing its own sequencing, you will not need to use the
methods of this interface.

Buffer objects are completely independent of port objects until the buffer is passed to
the port by a call to the IDirectMusicPort::PlayBuffer or IDirectMusicPort::Read
method. The application is then free to reuse the buffer.

The methods of the IDirectMusicBuffer interface can be organized in the following
groups:

Data Flush
GetNextEvent
GetRawBufferPtr
PackStructured
PackUnstructured
ResetReadPtr

Parameters GetBufferFormat
GetMaxBytes
GetUsedBytes
SetUsedBytes

Time GetStartTime

in.doc – page 121

SetStartTime
TotalTime

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECTMUSICBUFFER type is defined as a pointer to the
IDirectMusicBuffer interface:

typedef IDirectMusicBuffer *LPDIRECTMUSICBUFFER;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicBuffer::Flush
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::Flush method discards all data in the buffer.

HRESULT Flush();

There are no parameters.

Return Values
The method always returns S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicBuffer::GetBufferForm
at

[This is preliminary documentation and subject to change.]

in.doc – page 122

The IDirectMusicBuffer::GetBufferFormat method retrieves the GUID
representing the buffer format.

HRESULT GetBufferFormat(
 LPGUID pGuidFormat
);

pGuidFormat
Address of a variable to receive the GUID of the buffer format.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
If the format was not specified when the buffer was created, then
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC is returned in *pGuidFormat.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusic::CreateMusicBuffer, DMUS_EVENTHEADER

IDirectMusicBuffer::GetMaxBytes
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::GetMaxBytes method retrieves the number of bytes that
can be stored in the buffer.

HRESULT GetMaxBytes(
 LPDWORD pcb
);

pcb
Address of a variable to contain the maximum number of bytes the buffer can
hold.

in.doc – page 123

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicBuffer::GetNextEvent
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::GetNextEvent method returns information about the next
message in the buffer and advances the read pointer.

HRESULT GetNextEvent(
 LPREFERENCE_TIME prt,
 LPDWORD pdwChannelGroup,
 LPDWORD pdwLength,
 LPBYTE* ppData
);

prt
Address of a variable to receive the time of the message.

pdwChannelGroup
Address of a variable to receive the channel group of the message.

pdwLength
Address of a variable to receive the length, in bytes, of the message.

ppData
Address of a variable to receive a pointer to the message data.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if there are no
messages in the buffer.

If it fails, the method may return E_POINTER.

Remarks
Any of the passed pointers can be NULL if the item is not needed.

The pointer returned in ppData is valid only for the lifetime of the buffer object.

in.doc – page 124

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::ResetReadPtr

IDirectMusicBuffer::GetRawBuffer
Ptr

[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::GetRawBufferPtr method returns a pointer to the
underlying buffer data structure.

HRESULT GetRawBufferPtr(
 LPBYTE* ppData
);

ppData
Address of a variable to receive a pointer to the buffer's data.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
This method returns a pointer to the raw data of the buffer. The format of the data
depends on the implementation. The lifetime of the data is the same as the lifetime
of the buffer object; therefore, the returned pointer should not be held after the next
call to the IDirectMusicBuffer::Release method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

in.doc – page 125

IDirectMusicBuffer::GetStartTime
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::GetStartTime method retrieves the start time of the data
in the buffer, relative to the master clock.

HRESULT GetStartTime(
 LPREFERENCE_TIME prt
);

prt
Address of a variable to receive the start time.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_BUFFER_EMPTY
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::SetStartTime, IDirectMusicBuffer::TotalTime

IDirectMusicBuffer::GetUsedBytes
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::GetUsedBytes method retrieves the number of bytes of
data in the buffer.

HRESULT GetUsedBytes(
 LPDWORD pcb
);

pcb
Address of a variable to receive the number of used bytes.

in.doc – page 126

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::SetUsedBytes

IDirectMusicBuffer::PackStructure
d

[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::PackStructured method inserts fixed-length data
(typically a MIDI channel message), along with timing and routing information, into
the buffer.

HRESULT PackStructured(
 REFERENCE_TIME rt,
 DWORD dwChannelGroup,
 DWORD dwChannelMessage
);

rt
Absolute time of the message. See Remarks.

dwChannelGroup
Channel group to which the data belongs.

dwChannelMessage
Data (MIDI message) to pack.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_INVALID_EVENT
E_OUTOFMEMORY

in.doc – page 127

Remarks
At least 32 bytes (the size of DMUS_EVENTHEADER plus dwChannelMessage)
must be free in the buffer.

The rt parameter must contain the absolute time at which the data is to be sent to the
port. To play a message "now," retrieve the time from the latency clock and use this
as rt. See IDirectMusicPort::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order in
which they were placed in the buffer.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::PackUnstructured

IDirectMusicBuffer::PackUnstructu
red

[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::PackUnstructured method inserts unstructured data
(typically a MIDI system exclusive message), along with timing and routing
information, into the buffer.

HRESULT PackUnstructured(
 REFERENCE_TIME rt,
 DWORD dwChannelGroup,
 DWORD cb,
 LPBYTE lpb
);

rt
Absolute time of the message.

dwChannelGroup
Channel group to which the message belongs.

cb
Size of the data, in bytes.

lpb
Pointer to the data.

in.doc – page 128

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER

Remarks
This method can be used to send any kind of data to the port.

At least 28 bytes (the size of DMUS_EVENTHEADER) plus the size of the data,
padded to a multiple of four bytes, must be free in the buffer. The buffer space
required can be obtained by using the macro DMUS_EVENT_SIZE(cb), where cb
is the size of the data.

The rt parameter must contain the absolute time at which the data is to be sent to the
port. To play a message "now," retrieve the time from the latency clock and use this
as rt. See IDirectMusicPort::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order in
which they were placed in the buffer.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::PackStructured

IDirectMusicBuffer::ResetReadPtr
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::ResetReadPtr method sets the read pointer to the start of
the data in the buffer.

HRESULT ResetReadPtr()

There are no parameters.

Return Values
The method always returns S_OK.

in.doc – page 129

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::GetNextEvent

IDirectMusicBuffer::SetStartTime
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::SetStartTime method sets the start time of the data in the
buffer, relative to the master clock.

HRESULT SetStartTime(
 REFERENCE_TIME rt
);

rt
New start time for the buffer.

Return Values
The method always returns S_OK.

Remarks
Events already in the buffer are timestamped relative to the start time, and will play
at the same offset from the new start time.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::GetStartTime

IDirectMusicBuffer::SetUsedBytes
[This is preliminary documentation and subject to change.]

in.doc – page 130

The IDirectMusicBuffer::SetUsedBytes method sets the number of bytes of data in
the buffer.

HRESULT SetUsedBytes(
 DWORD cb
);

cb
The number of valid data bytes in the buffer.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_BUFFER_FULL.

Remarks
This method allows an application to repack a buffer manually. Normally this should
only be done if the data format in the buffer is different from the default format
provided by DirectMusic.

The method fails if the specified number of bytes exceeds the maximum buffer size
as returned by the IDirectMusicBuffer::GetMaxBytes method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::GetUsedBytes

IDirectMusicBuffer::TotalTime
[This is preliminary documentation and subject to change.]

The IDirectMusicBuffer::TotalTime method returns the total time spanned by the
data in the buffer.

HRESULT TotalTime(
 LPREFERENCE_TIME prtTime
);

prtTime

in.doc – page 131

Address of a variable to receive the total time spanned by the buffer, in units of
100 nanoseconds.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::GetStartTime

IDirectMusicChordMap
[This is preliminary documentation and subject to change.]

The IDirectMusicChordMap interface represents a chordmap. Chordmaps provide
the composer (represented by the IDirectMusicComposer interface) with the
information it needs to compose chord progressions, which it uses to build segments
and automatic transitions. Chordmaps can also be used to change the chords in an
existing segment.

The DirectMusicChordMap object also supports the IDirectMusicObject and
IPersistStream interfaces for loading its data.

The interface has the following method:

IDirectMusicChordMap GetScale

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 132

Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicChordMap::GetScale
[This is preliminary documentation and subject to change.]

The IDirectMusicChordMap::GetScale method retrieves the scale associated with
the chordmap.

HRESULT GetScale(
 DWORD* pdwScale
);

pdwScale
Address of a variable to receive the scale value.

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

Remarks
The scale is defined by the bits in a DWORD, split into a scale pattern (lower 24
bits) and a root (upper 8 bits). For the scale pattern, the low bit (0x0001) is the
lowest note in the scale, the next higher (0x0002) is a semitone higher, and so on for
two octaves. The upper 8 bits give the root of the scale as an integer between 0 and
23 (low C to middle B).

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicCollection
[This is preliminary documentation and subject to change.]

The IDirectMusicCollection interface manages an instance of a DLS file. The
collection provides methods to access instruments and download them to the
synthesizer by means of the IDirectMusicPort interface.

The DirectMusicCollection object also supports the IDirectMusicObject and
IPersistStream interfaces for loading its data.

in.doc – page 133

For more information on how to work with collections, see Using Downloadable
Sounds.

The IDirectMusicCollection interface has the following methods:

Instruments EnumInstrument
GetInstrument

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicCollection::EnumInstr
ument

[This is preliminary documentation and subject to change.]

The IDirectMusicCollection::EnumInstrument method retrieves the patch and
name of an instrument by its index in the collection.

HRESULT EnumInstrument(
 DWORD dwIndex,
 DWORD* pdwPatch,
 LPWSTR pwszName,
 DWORD dwNameLen
);

dwIndex
Index of the instrument in the collection.

pdwPatch
Address of a variable to receive the patch number.

pwszName
Address of a buffer to receive the instrument name. Can be NULL if the name is
not wanted.

dwNameLen
Size of the instrument name buffer, in WCHARs.

in.doc – page 134

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if there is no
instrument with that index number.

If it fails, the method may return one of the following error values:

E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks
To enumerate all instruments in a collection, start with a dwIndex of 0 and increment
until EnumInstrument returns S_FALSE.

The patch number returned in pdwPatch describes the full patch address, including
the MIDI parameters for MSB and LSB bank select. For more information, see MIDI
Channel Messages.

Although the ordering of the enumeration is consistent within one instance of a DLS
collection, it has no relationship to the ordering of instruments in the file, their patch
numbers, or their names.

For an example of instrument enumeration, see Working with Instruments.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicCollection::GetInstru
ment

[This is preliminary documentation and subject to change.]

The IDirectMusicCollection::GetInstrument method retrieves an instrument from
a collection by its patch number.

HRESULT GetInstrument(
 DWORD dwPatch,
 IDirectMusicInstrument** ppInstrument
);

dwPatch
Instrument patch number.

ppInstrument

in.doc – page 135

Address of a variable to receive a pointer to the IDirectMusicInstrument
interface.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_INVALIDPATCH
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks
The patch number passed in dwPatch describes the full patch address, including the
MIDI parameters for MSB and LSB bank select. MSB is shifted left 16 bits and LSB
is shifted left 8 bits. For more information, see MIDI Channel Messages.

In addition, the high bit must be set (0x80000000) if the instrument is specifically a
drum kit, intended to be played on MIDI channel 10. Note that this a special tag for
DLS Level 1, which always puts drums on MIDI channel 10.

For an example of how this method is used, see Working with Instruments.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicComposer
[This is preliminary documentation and subject to change.]

The IDirectMusicComposer interface permits access to the composition engine. In
addition to building new segments from templates and chordmaps, the composer can
generate transitions between different segments. It can also apply a chordmap to an
existing segment, thus altering the chord progression and the mood of the music.

For an overview, see Music Composition.

The methods of the IDirectMusicComposer interface can be grouped as follows:

Changing chordmaps ChangeChordMap
Composing ordinary
segments

ComposeSegmentFromShape

in.doc – page 136

ComposeSegmentFromTemplate
Composing template
segments

ComposeTemplateFromShape

Composing transition
segments

AutoTransition

ComposeTransition

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicComposer::AutoTransi
tion

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::AutoTransition method composes a transition from
inside a performance's primary segment (or from silence) to another segment, and
then cues the transition and the second segment to play.

HRESULT AutoTransition(
 IDirectMusicPerformance* pPerformance,
 IDirectMusicSegment* pToSeg,
 WORD wCommand,
 DWORD dwFlags,
 IDirectMusicChordMap* pChordMap,
 IDirectMusicSegment** ppTransSeg,
 IDirectMusicSegmentState** ppToSegState,
 IDirectMusicSegmentState** ppTransSegState
);

pPerformance
Performance in which to do the transition.

pToSeg
Segment to which the transition should smoothly flow. See Remarks.

in.doc – page 137

wCommand
Embellishment to use when composing the transition. See
DMUS_COMMANDT_TYPES. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method will compose a segment
containing both an ending to the primary segment and an intro to pToSeg.

dwFlags
Composition options. See DMUS_COMPOSEF_FLAGS.

pChordMap
Chordmap to be used when composing the transition.

ppTransSeg
Address of a variable to receive a pointer to the created segment. This value
may be NULL, in which case the pointer is not returned.

ppToSegState
Address of a variable to receive a pointer to the segment state created by the
performance (pPerformance) for the segment following the transition (pToSeg).
See Remarks.

ppTransSegState
Address of a variable to receive a pointer to receive the segment state created by
the performance (pPerformance) for the created segment (ppTransSeg). See
Remarks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
The value in pToSeg can be NULL as long as dwFlags does not include
DMUS_COMPOSEF_MODULATE. If pToSeg is NULL or doesn't contain a style
track, intro embellishments are not valid. If the currently playing segment is NULL
or doesn't contain a style track, then fill, break, end, and groove embellishments are
not valid.

It is possible for both the currently playing segment and pToSeg to be NULL or
segments that don't contain style tracks (such as segments based on MIDI files). If
so, all embellishments are invalid and no transition occurs between the currently
playing segment and pToSeg. Both ppTransSeg and ppTransSegState will return
NULL, but the method succeeds and cues the segment represented by pToSeg.

The value in pChordMap can be NULL. If so, an attempt is made to obtain a
chordmap from a chordmap track, first from pToSeg, and then from the
performance's primary segment. If neither of these segments contains a chordmap
track, the chord occurring at the current time in the primary segment is used as the
chord in the transition.

in.doc – page 138

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicComposer::ComposeTransition, Using Transitions

IDirectMusicComposer::ChangeCh
ordMap

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::ChangeChordMap method modifies the chords and
scale pattern of an existing segment to reflect a new chordmap.

HRESULT ChangeChordMap(
 IDirectMusicSegment* pSectionSeg,
 BOOL fTrackScale,
 IDirectMusicChordMap* pChordMap
);

pSectionSeg
Segment in which to change the chordmap.

fTrackScale
If TRUE, the method transposes all the chords to be relative to the root of the
new chordmap's scale, rather than leaving their roots as they were.

pChordMap
The new chordmap for the segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
The method can be called while the segment is playing.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 139

Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicComposer::ComposeS
egmentFromShape

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::ComposeSegmentFromShape method creates an
original segment from a style and chordmap based on a predefined shape. The shape
represents the way chords and embellishments occur over time across the segment.

HRESULT ComposeSegmentFromShape(
 IDirectMusicStyle* pStyle,
 WORD wNumMeasures,
 WORD wShape,
 WORD wActivity,
 BOOL fIntro,
 BOOL fEnd,
 IDirectMusicChordMap* pChordMap,
 IDirectMusicSegment** ppSectionSeg
);

pStyle
Style from which to compose the segment.

wNumMeasures
Length, in measures, of the segment to be composed.

wShape
Shape of the segment to be composed. Possible values are of the
DMUS_SHAPET_TYPES enumerated type.

wActivity
Rate of harmonic motion. Valid values are 0 through 3. Lower values mean
more chord changes.

fIntro
TRUE if an introduction is to be composed for the segment.

fEnd
TRUE if an ending is to be composed for the segment.

pChordMap
Chordmap from which to create the segment.

ppSectionSeg
Address of a variable to receive a pointer to the created segment.

Return Values
If the method succeeds, the return value is S_OK.

in.doc – page 140

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicComposer::ComposeSegmentFromTemplate,
IDirectMusicComposer::ComposeTemplateFromShape

IDirectMusicComposer::ComposeS
egmentFromTemplate

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::ComposeSegmentFromTemplate method creates an
original segment from a style, chordmap, and template.

HRESULT ComposeSegmentFromTemplate(
 IDirectMusicStyle* pStyle,
 IDirectMusicSegment* pTempSeg,
 WORD wActivity,
 IDirectMusicChordMap* pChordMap,
 IDirectMusicSegment** ppSectionSeg
);

pStyle
Style from which to create the segment.

pTempSeg
Template from which to create the segment.

wActivity
Rate of harmonic motion. Valid values are 0 through 3. Lower values mean
more chord changes.

pChordMap
Chordmap from which to create the segment.

ppSectionSeg
Address of a variable to receive a pointer to the created segment.

Return Values
If the method succeeds, the return value is S_OK.

in.doc – page 141

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
If pStyle is non-NULL, it is used in composing the segment; if it is NULL, a style is
retrieved from the template specified in pTempSeg. Similarly, if pChordMap is non-
NULL, it is used in composing the segment; if it is NULL, a chordmap is retrieved
from the template.

If pStyle is NULL and there is no style track in the template, or pChordMap is
NULL and there is no chordmap track, the method returns E_INVALIDARG.

The length of the segment is equal to the length of the template passed in.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicComposer::ComposeSegmentFromShape,
IDirectMusicComposer::ComposeTemplateFromShape, Using Templates

IDirectMusicComposer::ComposeT
emplateFromShape

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::ComposeTemplateFromShape method creates a
new template segment based on a predefined shape.

HRESULT ComposeTemplateFromShape(
 WORD wNumMeasures,
 WORD wShape,
 BOOL fIntro,
 BOOL fEnd,
 WORD wEndLength,
 IDirectMusicSegment** ppTempSeg
);

wNumMeasures

in.doc – page 142

Length, in measures, of the segment to be composed. This value must be greater
than 0.

wShape
Shape of the segment to be composed. Possible values are of the
DMUS_SHAPET_TYPES enumerated type.

fIntro
TRUE if an introduction is to be composed for the segment.

fEnd
TRUE if an ending is to be composed for the segment.

wEndLength
Length in measures of the ending, if one is to be composed. If fEnd is TRUE,
this value must be greater than 0 and equal to or less than the number of
measures available (that is, not used in the introduction). See also Remarks.

ppTempSeg
Address of a variable to receive a pointer to the created template segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks
The value of wEndLength should not be greater than the length of the longest ending
available in any style likely to be associated with this template through the
IDirectMusicComposer::ComposeSegmentFromTemplate method. The ending
will start playing at wEndLength measures before the end of the segment, and if the
ending is less than wEndLength measures long, the music will then revert to the
regular groove.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicComposer::ComposeSegmentFromShape,
IDirectMusicComposer::ComposeSegmentFromTemplate, Using Templates

in.doc – page 143

IDirectMusicComposer::ComposeT
ransition

[This is preliminary documentation and subject to change.]

The IDirectMusicComposer::ComposeTransition method composes a transition
from a measure inside one segment to another.

HRESULT ComposeTransition(
 IDirectMusicSegment* pFromSeg,
 IDirectMusicSegment* pToSeg,
 MUSIC_TIME mtTime,
 WORD wCommand,
 DWORD dwFlags,
 IDirectMusicChordMap* pChordMap,
 IDirectMusicSegment** ppSectionSeg
);

pFromSeg
Segment from which to compose the transition.

pToSeg
Segment to which the transition should smoothly flow. Can be NULL if
dwFlags does not include DMUS_COMPOSEF_MODULATE.

mtTime
The time in pFromSeg from which to compose the transition.

wCommand
Embellishment to use when composing the transition. See
DMUS_COMMANDT_TYPES. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method will compose a segment
containing both an ending to pFromSeg and an intro to pToSeg.

dwFlags
Composition options. This parameter can contain one or more of the
DMUS_COMPOSEF_FLAGS enumerated type values.

pChordMap
Chordmap to be used when composing the transition. See Remarks.

ppSectionSeg
Address of a variable to receive a pointer to the created segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_OUTOFMEMORY

in.doc – page 144

E_POINTER

Remarks
The value in pChordMap can be NULL. If so, an attempt is made to obtain a
chordmap from a chordmap track, first from pToSeg, and then from pFromSeg. If
neither of these segments contains a chordmap track, the chord occurring at mtTime
in pFromSeg is used as the chord in the transition.

The composer looks for a tempo first in pFromSeg and then in pToSeg. If neither of
those segments contains a tempo track, the tempo for the transition segment is taken
from the style.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicComposer::AutoTransition, Using Transitions

IDirectMusicDownload
[This is preliminary documentation and subject to change.]

The IDirectMusicDownload interface represents a contiguous memory chunk, used
for downloading to a DLS synthesizer port.

The IDirectMusicDownload interface and its contained memory chunk are created
by the IDirectMusicPortDownload::AllocateBuffer method. The memory can then
be accessed by using the single method of this interface.

The interface has the following method:

IDirectMusicDownload GetBuffer

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

in.doc – page 145

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicDownload::GetBuffer
[This is preliminary documentation and subject to change.]

The IDirectMusicDownload::GetBuffer method retrieves a pointer to a buffer
containing data to be downloaded.

HRESULT GetBuffer(
 void** ppvBuffer,
 DWORD* pdwSize
);

ppvBuffer
Address of a variable to receive a pointer to the data buffer.

pdwSize
Address of a variable to receive the size of the returned buffer, in bytes.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_BUFFERNOTAVAILABLE
E_POINTER

Remarks
The method returns DMUS_E_BUFFERNOTAVAILABLE if the buffer has already
been downloaded.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

in.doc – page 146

IDirectMusicDownloadedInstr
ument

[This is preliminary documentation and subject to change.]

The IDirectMusicDownloadedInstrument interface is used to identify an
instrument that has been downloaded to the synthesizer by using the
IDirectMusicPort::DownloadInstrument or
IDirectMusicPerformance::DownloadInstrument method. The interface is then
used to unload the instrument through a call to
IDirectMusicPort::UnloadInstrument. Once the instrument has been unloaded, the
interface pointer must be released by the application.

For an example, see Working with Instruments.

The IDirectMusicDownloadedInstrument interface has no methods of its own.
Like all COM interfaces, it inherits the IUnknown interface methods. This interface
supports the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicGetLoader
[This is preliminary documentation and subject to change.]

The IDirectMusicGetLoader interface is used by an object parsing a stream when
the object needs to load another object referenced by the stream. If a stream supports
the loader, it must provide an IDirectMusicGetLoader interface.

For an example of how to obtain the IDirectMusicGetLoader interface from the
stream, see IDirectMusicGetLoader::GetLoader.

The IDirectMusicGetLoader interface has the following method:

IDirectMusicGetLoader GetLoader

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef

in.doc – page 147

QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader, DirectMusic Loader, Custom Loading

IDirectMusicGetLoader::GetLoader
[This is preliminary documentation and subject to change.]

The IDirectMusicGetLoader::GetLoader method retrieves a pointer to the loader
object that created the stream.

HRESULT GetLoader(
 IDirectMusicLoader ** ppLoader
);

ppLoader
Address of a variable to receive the IDirectMusicLoader interface pointer. The
reference count of the interface is incremented.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_NOINTERFACE.

Remarks
The following code is from a file parser that comes across a reference to an object
that needs to be accessed by the loader.

HRESULT myGetReferencedObject(
 DMUS_OBJECTDESC *pDesc, // Descriptor already prepared.
 IStream *pIStream, // Stream being parsed.
 IDirectMusicObject **ppIObject) // Object to be accessed.
{
 IDirectMusicGetLoader *pIGetLoader;
 IDirectMusicLoader *pILoader;
 ppIObject = NULL;

in.doc – page 148

 HRESULT hr = pIStream->QueryInterface(
 IID_IDirectMusicGetLoader,
 (void **) &pIGetLoader);
 if (SUCCEEDED(hr))
 {
 hr = pIGetLoader->GetLoader(&pILoader);
 if (SUCCEEDED(hr))
 {
 hr = pILoader->GetObject(pDesc, IID_DirectMusicLoader,
 (void**) ppIObject);
 pILoader->Release();
 }
 pIGetLoader->Release();
 }
 return hr;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Custom Loading

IDirectMusicGraph
[This is preliminary documentation and subject to change.]

The IDirectMusicGraph interface manages the loading and message flow of tools.

Graphs can occur in two places: performances and segments. The graph of tools in a
performance is global in nature, in that it processes messages from all segments. A
graph in a segment exists only for playback of that segment.

The IDirectMusicGraph interface has the following methods:

Routing StampPMsg
Tools GetTool

InsertTool
RemoveTool

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

in.doc – page 149

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicGraph::GetTool
[This is preliminary documentation and subject to change.]

The IDirectMusicGraph::GetTool method retrieves a tool by index.

HRESULT GetTool(
 DWORD dwIndex,
 IDirectMusicTool** ppTool
);

dwIndex
Zero-based index of the requested tool in the graph.

ppTool
Address of a variable to receive a pointer to the tool.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following values:

DMUS_E_NOT_FOUND
E_POINTER

Remarks
The application is responsible for releasing the retrieved tool.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 150

IDirectMusicGraph::InsertTool
[This is preliminary documentation and subject to change.]

The IDirectMusicGraph::InsertTool method inserts a tool in the graph.

HRESULT InsertTool(
 IDirectMusicTool * pTool,
 DWORD * pdwPChannels,
 DWORD cPChannels,
 LONG lIndex
);

pTool
Tool to insert.

pdwPChannels
Array of PChannels on which the tool accepts messages. If the tool accepts
messages on all PChannels, pass NULL.

cPChannels
Count of how many PChannels are pointed to by pdwPChannels. Ignored if
pdwPChannels is NULL.

lIndex
Position at which to place the tool. This is a zero-based index from either the
start or (if it is negative) the end of the current tool list. If lIndex is out of range,
the tool will be placed at the very beginning or end of the list. To place a tool at
the end of the list, use a number for lIndex that is larger than the number of tools
in the current tool list.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_ALREADY_EXISTS
E_OUTOFMEMORY
E_POINTER

Remarks
The reference count of the tool is incremented.

This method calls IDirectMusicTool::Init.

in.doc – page 151

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicGraph::RemoveTool
[This is preliminary documentation and subject to change.]

The IDirectMusicGraph::RemoveTool method removes a tool from the graph.

HRESULT RemoveTool(
 IDirectMusicTool * pTool
);

pTool
Tool to be removed.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_FOUND
E_POINTER

Remarks
The graph's reference to the tool object is released.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicGraph::StampPMsg
[This is preliminary documentation and subject to change.]

The IDirectMusicGraph::StampPMsg method stamps a message with a pointer to
the next tool that is to receive it. After processing a message, a tool must call
StampPMsg.

HRESULT StampPMsg(

in.doc – page 152

 DMUS_PMSG* pPMSG
);

pPMSG
Address of a structure containing the message to stamp. This structure is of a
type derived from DMUS_PMSG. For an overview of message types, see
Messages.

Return Values
If the method succeeds, the return value is S_OK or DMUS_S_LAST_TOOL. See
Remarks.

If it fails, the method may return E_POINTER.

Remarks
The value of pPMSG->pTool (see DMUS_PMSG) on entry equals the current tool.
StampPMsg uses this member to determine the current tool in order to find the next
in the graph. It will be NULL to find the first tool in the graph.

The value of pPMSG->pGraph equals the graph that contains the tool. This is
stamped inside StampPMsg along with the tool itself, and may change during the
message's traversal from the segment state to the performance, as there may be
multiple tool graphs.

The value of pPMSG->dwType equals the media type of the message, and is also
used to find the next tool. The media types supported are those returned by the
IDirectMusicTool::GetMediaTypes method.

The value of pPMSG->dwPChannel is used to determine which track the tool must
be capable of processing. Tracks are identified by unique numbers when a segment is
authored.

This method calls Release on the current pPMSG->pTool, replaces it with the next
tool in the graph, and calls AddRef on the new tool.

It also flags the message with the correct delivery type according to what type the
next tool returns in its IDirectMusicTool::GetMsgDeliveryType method. This flag
determines when the message is delivered to the next tool.

The implementations of this method in the DirectMusicSegmentState and
DirectMusicPerformance objects always return S_OK on success. The
implementation in DirectMusicGraph returns DMUS_S_LAST_TOOL if there is no
tool other than the output tool waiting to receive the message.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 153

Windows 95.
 Header: Declared in dmusici.h.

See Also
DirectMusic Tools

IDirectMusicInstrument
[This is preliminary documentation and subject to change.]

The IDirectMusicInstrument interface represents an individual instrument from a
DLS collection.

The only way to create a DirectMusicInstrument object for downloading an
instrument is to first create a DirectMusicCollection object, then call the
IDirectMusicCollection::GetInstrument method. GetInstrument creates a
DirectMusicInstrument object and returns its IDirectMusicInstrument interface
pointer.

To download the instrument, pass its interface pointer to the
IDirectMusicPort::DownloadInstrument or
IDirectMusicPerformance::DownloadInstrument method. If the method succeeds,
it returns a pointer to an IDirectMusicDownloadedInstrument interface, which is
used only to unload the instrument.

It is important to note that the methods of IDirectMusicInstrument only operate on
an instrument that has not been downloaded. Any instances of the instrument that
have been downloaded to a port are not affected by the
IDirectMusicInstrument::GetPatch and IDirectMusicInstrument::SetPatch
methods.

The interface has the following methods:

IDirectMusicInstrument GetPatch
SetPatch

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 154

Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicInstrument::GetPatch
[This is preliminary documentation and subject to change.]

The IDirectMusicInstrument::GetPatch method retrieves the patch number for the
instrument. The patch number is an address composed of the MSB and LSB bank
selects and the MIDI patch (program change) number. An optional flag bit indicates
that the instrument is a drum rather than a melodic instrument.

HRESULT GetPatch(
 DWORD* pdwPatch
);

pdwPatch
Address of a variable to receive the patch number.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
The patch number returned at pdwPatch describes the full patch address, including
the MIDI parameters for MSB and LSB bank select. In addition, the high bit is set if
the instrument is specifically a drum kit, intended to be played on MIDI channel 10.
This is a special tag for DLS Level 1, since DLS Level 1 always plays drums on
MIDI channel 10. For more information, see MIDI Channel Messages.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicInstrument::SetPatch
[This is preliminary documentation and subject to change.]

The IDirectMusicInstrument::SetPatch method sets the patch number for the
instrument. Although each instrument in a DLS collection has a predefined patch
number, the patch number can be reassigned once the
IDirectMusicCollection::GetInstrument method has been used to retrieve the

in.doc – page 155

instrument from the collection. For more information on DirectMusic patch numbers,
see IDirectMusicInstrument::GetPatch.

HRESULT SetPatch(
 DWORD dwPatch
);

dwPatch
New patch number to assign to instrument.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_INVALIDPATCH.

Remarks
The following example gets an instrument from a collection, remaps its MSB bank
select to a different bank, then downloads the instrument.

HRESULT myRemappedDownload(
 IDirectMusicCollection *pCollection,
 IDirectMusicPort *pPort,
 IDirectMusicDownloadedInstrument **ppDLInstrument,
 BYTE bMSB, // Requested MIDI MSB for patch bank select.
 DWORD dwPatch) // Requested patch.

{
 HRESULT hr;
 IDirectMusicInstrument* pInstrument;
 hr = pCollection->GetInstrument(dwPatch, &pInstrument);
 if (SUCCEEDED(hr))
 {
 dwPatch &= 0xFF00FFFF; // Clear MSB.
 dwPatch |= bMSB << 16; // Stick in new MSB value.
 pInstrument->SetPatch(dwPatch);
 hr = pPort->DownloadInstrument(pInstrument,
 ppDLInstrument,
 NULL, 0); // Download all regions
 pInstrument->Release();
 }
 return hr;
}

in.doc – page 156

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicLoader
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader interface is used for finding, enumerating, caching, and
loading objects. For an overview, see DirectMusic Loader.

The methods of the IDirectMusicLoader interface can be organized into the
following groups:

Searching EnumObject
ScanDirectory
SetSearchDirectory

Caching CacheObject
ClearCache
EnableCache

Object management GetObject
ReleaseObject
SetObject

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDMUS_LOADER type is defined as a pointer to the IDirectMusicLoader
interface.

typedef IDirectMusicLoader __RPC_FAR *LPDMUS_LOADER;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 157

IDirectMusicLoader::CacheObject
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::CacheObject method tells the loader to keep a reference
to the object. This guarantees that the object will not be loaded twice.

HRESULT CacheObject(
 IDirectMusicObject * pObject
);

pObject
The IDirectMusicObject interface of the object to cache.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if the object is
already cached.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_LOADER_OBJECTNOTFOUND

Remarks
If you have an object that will be accessed in multiple places throughout the life of
your program, letting the loader cache the object can significantly speed up
performance. For an overview, see Caching Objects.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::EnableCache, IDirectMusicLoader::ClearCache,
IDirectMusicLoader::ReleaseObject

IDirectMusicLoader::ClearCache
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::ClearCache method tells the loader to release all
references to a particular type of object.

in.doc – page 158

HRESULT ClearCache(
 REFGUID rguidClass
);

rguidClass
Address of (C) or reference to (C++) the identifier of class of objects to clear.
Optionally, GUID_DirectMusicAllTypes specifies all types.

Return Values
The method returns S_OK.

Remarks
This method clears all objects that are currently being held, but does not turn off
caching. Use the IDirectMusicLoader::EnableCache method to turn off automatic
caching.

To clear a single object from the cache, call the
IDirectMusicLoader::ReleaseObject method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::CacheObject, Caching Objects

IDirectMusicLoader::EnableCache
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::EnableCache method tells the loader to enable or
disable automatic caching of all objects it loads. By default, caching is enabled for
all classes.

HRESULT EnableCache(
 REFGUID rguidClass,
 BOOL fEnable
);

rguidClass
Address of (C) or reference to (C++) the identifier of the class of objects to
cache. Optionally, GUID_DirectMusicAllTypes specifies all types.

in.doc – page 159

fEnable
TRUE to enable caching, FALSE to clear and disable.

Return Values
The method returns S_OK if the cache state is changed, or S_FALSE if the cache is
already in the desired state.

Remarks
To clear the cache without disabling caching, call the
IDirectMusicLoader::ClearCache method.

The following example disables caching just for segment objects, so they don't stay
in memory after the application releases them. Other objects that should be shared,
like styles, chordmaps and DLS collections, continue to be cached. Note that the first
call to EnableCache would normally be unnecessary, because caching is enabled for
all objects by default.

void myPrepareLoader(IDirectMusicLoader *pILoader)

{
 pILoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);
 pILoader->EnableCache(CLSID_DirectMusicSegment, FALSE);
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::CacheObject, IDirectMusicLoader::ClearCache, Caching
Objects

IDirectMusicLoader::EnumObject
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::EnumObject method enumerates all available objects of
the requested type. Objects are available if they have been loaded or if
IDirectMusicLoader::ScanDirectory has been called on the search directory.

HRESULT EnumObject(
 REFGUID rguidClass,

in.doc – page 160

 DWORD dwIndex,
 LPDMUS_OBJECTDESC pDesc
);

rguidClass
Reference to (C++) or address of (C) the identifier for the class of objects to
view.

dwIndex
Index into list. Typically, starts with 0 and increments.

pDesc
DMUS_OBJECTDESC structure to be filled with data about the object.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if dwIndex is past the
end of the list.

Remarks
For an example of the use of this method, see Enumerating Objects.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::ScanDirectory

IDirectMusicLoader::GetObject
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::GetObject method retrieves the specified object from a
file or resource and returns the desired interface.

HRESULT GetObject(
 LPDMUS_OBJECTDESC pDESC,
 REFIID riid,
 LPVOID FAR * ppv
);

pDESC
Address of a DMUS_OBJECTDESC structure describing the object.

riid

in.doc – page 161

Unique identifier of the interface. See the IID defines in Dmusici.h. All the
standard interfaces have a defined identifier consisting of "IID_" plus the name
of the interface. For example, the identifier of IDirectMusicTrack is
IID_IDirectMusicTrack.

ppv
Address of a variable to receive a pointer to the desired interface of the object.

Return Values
If the method succeeds, the return value is S_OK or DMUS_S_PARTIALLOAD.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER
DMUS_E_LOADER_NOCLASSID
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

Remarks
A return value of DMUS_S_PARTIALLOAD may mean that the default instrument
collection file, Gm.dls, is not available.

The current version of DirectMusic does not support loading from URLs. If the
dwValidData member of the DMUS_OBJECTDESC structure contains
DMUS_OBJ_URL, the method returns
DMUS_E_LOADER_FORMATNOTSUPPORTED.

The method does not require that all valid members of the DMUS_OBJECTDESC
structure match before retrieving an object. It searches in the following order:

1. DMUS_OBJ_OBJECT
2. DMUS_OBJ_MEMORY
3. DMUS_OBJ_FILENAME and DMUS_OBJ_FULLPATH
4. DMUS_OBJ_NAME and DMUS_OBJ_CATEGORY
5. DMUS_OBJ_NAME
6. DMUS_OBJ_FILENAME

In other words, the highest priority goes to a unique GUID, followed by a resource,
followed by the full file path name, followed by internal name plus category,
followed by internal name, followed by local file name.

in.doc – page 162

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::ReleaseObject, IDirectMusicLoader::ScanDirectory,
Loading Objects

IDirectMusicLoader::ReleaseObjec
t

[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::ReleaseObject method releases the loader's reference to
the object.

HRESULT ReleaseObject(
 IDirectMusicObject * pObject
);

pObject
Object to release.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_LOADER_OBJECTNOTFOUND

Remarks
ReleaseObject is the reciprocal of IDirectMusicLoader::CacheObject.

Objects can be cached explicitly by using the CacheObject method, or
automatically by using the IDirectMusicLoader::EnableCache method.

To tell the loader to flush all objects of a particular type, call the
IDirectMusicLoader::ClearCache method.

in.doc – page 163

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::GetObject, Caching Objects

IDirectMusicLoader::ScanDirectory
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::ScanDirectory method searches a directory on disk for
all files of a requested class type and file extension. For each file found, it calls the
IDirectMusicObject::ParseDescriptor method to extract the GUID and name of
the object. This information is stored in an internal database. Once a directory has
been scanned, all files of the requested type become available for enumeration
through the IDirectMusicLoader::EnumObject method; in addition, an object can
be retrieved by using IDirectMusicLoader::GetObject even without a filename.

HRESULT ScanDirectory(
 REFGUID rguidClass,
 WCHAR* pwzFileExtension,
 WCHAR* pwzScanFileName
);

rguidClass
Address of (C) or reference to (C++) the identifier of the class of objects this
pertains to.

pwzFileExtension
File extension for type of file to look for—for example, L"sty" for style files.
Use L"*" to look in files with any or no extension.

pwzScanFileName
Optional storage file to store and retrieve cached file information. This file is
created by the first call to ScanDirectory and used by subsequent calls. Pass
NULL if a cache file is not wanted.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if no files were
found.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_FOUND

in.doc – page 164

E_FAIL
E_OUTOFMEMORY
E_POINTER
REGDB_E_CLASSNOTREG

Remarks
The IDirectMusicLoader::SetSearchDirectory method must be called first to set
the location to search.

Optionally, the scanned information can be stored in a cache file, defined by
pwzScanFileName. Once it has been so stored, subsequent calls to ScanDirectory
are much quicker, because only files that have changed are scanned (the cache file
stores the file size and date for each object, so it can identify if a file has changed).

If the file type has more than one extension, call ScanDirectory once for each file
extension.

GUID_DirectMusicAllTypes is not a valid value for rguidClass.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Scanning a Directory for Objects

IDirectMusicLoader::SetObject
[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::SetObject method tells the loader where to find an
object when it is later referenced by another object being loaded. For an overview,
see Setting Objects.

HRESULT SetObject(
 LPDMUS_OBJECTDESC pDESC
);

pDESC
Address of a DMUS_OBJECTDESC structure describing the object.

in.doc – page 165

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER
DMUS_E_LOADER_NOCLASSID
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

Remarks

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::GetObject

IDirectMusicLoader::SetSearchDir
ectory

[This is preliminary documentation and subject to change.]

The IDirectMusicLoader::SetSearchDirectory method sets a search path for
finding object files. The search path can be set for one object file type or for all files.

HRESULT SetSearchDirectory(
 REFGUID rguidClass,
 WCHAR* pwszPath,
 BOOL fClear
);

rguidClass
Address of (C) or reference to (C++) the identifier of the class of objects the call
pertains to. Optionally, GUID_DirectMusicAllTypes specifies all objects.

in.doc – page 166

pwszPath
File path for directory. Must be a valid directory and must be less than
MAX_PATH in length.

fClear
If TRUE, clears all information about objects before setting the directory. This
helps avoid accessing objects from the previous directory that may have the
same name. However, objects are not removed from the cache.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if the search
directory is already set to pwszPath.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER
DMUS_E_LOADER_BADPATH

Remarks
Once a search path is set, the loader does not need a full path every time it is given
an object to load by file name. This enables objects that reference other objects to
find them by file name without knowing the full path.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicLoader::ScanDirectory, Setting the Loader's Search Directory

IDirectMusicObject
[This is preliminary documentation and subject to change.]

All DirectMusic objects that can be loaded from a file support the
IDirectMusicObject interface in order to work with the DirectMusic loader. In
addition to providing a standard interface with which the loader can communicate,
this interface provides a generic mechanism that allows an application to query an
object for information about it, including its name, GUID, file path, and version.

The IDirectMusicObject interface must be obtained by calling another interface's
QueryInterface method. It cannot be obtained by using CoCreateInstance.

in.doc – page 167

The IDirectMusicObject interface has the following methods:

Descriptor GetDescriptor
ParseDescriptor
SetDescriptor

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDMUS_OBJECT type is defined as a pointer to the IDirectMusicObject
interface.

typedef IDirectMusicObject __RPC_FAR *LPDMUS_OBJECT;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
DirectMusic Loader, Custom Loading

IDirectMusicObject::GetDescriptor
[This is preliminary documentation and subject to change.]

The IDirectMusicObject::GetDescriptor method retrieves the object's internal
description.

The method takes a DMUS_OBJECTDESC structure and fills in everything the
object knows about itself.

HRESULT GetDescriptor(
 LPDMUS_OBJECTDESC pDesc
);

pDesc
Address of a DMUS_OBJECTDESC structure to be filled with data about the
object. Depending on the implementation of the object and how it was loaded
from a file, some or all of the standard parameters will be filled by
GetDescriptor. Check the flags in the dwValidData member to know which
other members are valid.

in.doc – page 168

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
For an example, see Getting Object Descriptors.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicObject::SetDescriptor

IDirectMusicObject::ParseDescript
or

[This is preliminary documentation and subject to change.]

Given a file stream, the IDirectMusicObject::ParseDescriptor method scans the
file for data which it can store in the DMUS_OBJECTDESC structure. All
members that are supplied are marked with the appropriate flags in dwValidData.

This method is primarily used by the loader when scanning a directory for objects,
and typically will not be used directly by an application. However, if an application
implements an object type in DirectMusic, it should support this method.

HRESULT ParseDescriptor(
 LPSTREAM pStream,
 LPDMUS_OBJECTDESC pDesc
);

pStream
Stream source for file.

pDesc
Address of a DMUS_OBJECTDESC structure to receive data about the file.

Return Values
If the method succeeds, the return value is S_OK.

in.doc – page 169

If it fails, the method may return one of the following error values:

DMUS_E_CHUNKNOTFOUND
DMUS_E_INVALID_BAND
DMUS_E_INVALIDFILE
DMUS_E_NOTADLSCOL
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicObject::SetDescriptor

IDirectMusicObject::SetDescriptor
[This is preliminary documentation and subject to change.]

The IDirectMusicObject::SetDescriptor method sets some or all members of the
object's internal description.

HRESULT SetDescriptor(
 LPDMUS_OBJECTDESC pDesc
);

pDesc
Address of a DMUS_OBJECTDESC structure to receive data about the object.
Data is copied to all members that are enabled in the dwValidData member

Return Values
If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
Members that are not copied keep their previous values. For example, an object
might already have its name and GUID stored internally. A call to its SetDescriptor

in.doc – page 170

method with a new name and file path (and DMUS_OBJ_NAME |
DMUS_OBJ_FILENAME in the dwValidData member) would replace the name,
supply a file name, and leave the GUID alone.

This method is primarily used by the loader when creating an object. However, it can
be used by an application to rename an object.

If the object is unable to set one or more members, it sets the members that it does
support, clears the flags in dwValidData that it does not support, and returns
S_FALSE.

If nothing else, an object should support DMUS_OBJ_NAME and
DMUS_OBJ_OBJECT.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicObject::ParseDescriptor, IDirectMusicObject::GetDescriptor

IDirectMusicPerformance
[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance interface is the overall manager of music playback.
It is used for adding and removing ports, mapping performance channels to ports,
playing segments, dispatching messages and routing them through tools, requesting
and receiving event notification, and setting and retrieving music parameters. It also
has several methods for getting information about timing and for converting time
and music values from one system to another.

If an application would like to have two complete sets of music playing at the same
time, it can do so by creating more than one performance. Separate performances
obey separate tempo maps and so play completely asynchronously, whereas all
segments within one performance play in lock step.

The methods of the IDirectMusicPerformance interface can be organized into the
following groups:

Channels AssignPChannel
AssignPChannelBlock
PChannelInfo

Instruments DownloadInstrument
Messages AllocPMsg

in.doc – page 171

FreePMsg
SendPMsg

MIDI conversion MIDIToMusic
MusicToMIDI

Notification AddNotificationType
GetNotificationPMsg
RemoveNotificationType
SetNotificationHandle

Parameters GetGlobalParam
GetParam
SetGlobalParam
SetParam

Ports AddPort
RemovePort

Segments GetSegmentState
IsPlaying
PlaySegment
Stop

Timing AdjustTime
GetBumperLength
GetLatencyTime
GetPrepareTime
GetQueueTime
GetResolvedTime
GetTime
MusicToReferenceTime
ReferenceToMusicTime
RhythmToTime
SetBumperLength
SetPrepareTime
TimeToRhythm

Tools GetGraph
SetGraph

Miscellaneous CloseDown
Init
Invalidate

in.doc – page 172

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicPerformance::AddNoti
ficationType

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AddNotificationType method adds a notification
type to the performance. All segments and tracks are automatically updated with the
new notification by calling their AddNotificationType methods.

HRESULT AddNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Reference to (C++) or address of (C) the identifier of the notification type to
add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications
can also define their own types for custom tracks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 173

See Also
IDirectMusicPerformance::RemoveNotificationType,
IDirectMusicSegment::AddNotificationType,
IDirectMusicTrack::AddNotificationType, Notification and Event Handling

IDirectMusicPerformance::AddPort
[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AddPort method assigns a port to the
performance.

HRESULT AddPort(
 IDirectMusicPort* pPort
);

pPort
Port to add. If NULL, the default port is added. See Remarks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_INIT
DMUS_E_CANNOT_OPEN_PORT
E_OUTOFMEMORY
E_POINTER

Remarks
If you wish to pass NULL to this method, you must first pass NULL to
IDirectMusicPerformance::Init.

When the default port is specified by passing NULL in pPort, it is assigned one
channel group, and if no PChannels have been set up for any other port, PChannels
0-15 are assigned to MIDI channels 0-15.

If pPort is not NULL, the port must be activated by a call to
IDirectMusicPort::Activate, and a block of channels must be assigned by a call to
IDirectMusicPerformance::AssignPChannelBlock.

This method creates a reference to IDirectMusicPort that is released by
IDirectMusicPerformance::RemovePort or
IDirectMusicPerformance::CloseDown.

in.doc – page 174

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::RemovePort, Default Port

IDirectMusicPerformance::AdjustTi
me

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AdjustTime method adjusts the internal
performance time forward or backward. This is mostly used to compensate for drift
when synchronizing to another source.

HRESULT AdjustTime(
 REFERENCE_TIME rtAmount
);

rtAmount
The amount of time to add or subtract. This may be a number from –10,000,000
to 10,000,000 (–1 second to +1 second).

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_INVALIDARG.

Remarks
The adjusted time is used internally by DirectMusic. It is not reflected in the time
retrieved by the IDirectMusicPerformance::GetTime method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 175

See Also
IDirectMusicPerformance::GetTime, Timing

IDirectMusicPerformance::AllocPM
sg

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AllocPMsg method allocates a performance
message.

HRESULT AllocPMsg(
 ULONG cb,
 DMUS_PMSG** ppPMSG
);

cb
Size of the message structure. For the various types, see Messages.

ppPMSG
Address of a variable to receive the pointer to the allocated message structure.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks
The memory returned is not initialized to any particular state, with the exception of
the pTool member of the DMUS_PMSG structure, which is initialized to zero.

Once the message is sent by IDirectMusicPerformance::SendPMsg, the
application no longer owns the memory and is not responsible for freeing the
message. However, a tool can free a message within its IDirectMusicTool::Flush or
IDirectMusicTool::ProcessPMsg method. Applications are also responsible for
freeing notification messages.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 176

Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::FreePMsg, IDirectMusicPerformance::SendPMsg,
DirectMusic Messages

IDirectMusicPerformance::AssignP
Channel

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AssignPChannel method assigns a single
performance channel (PChannel) to the performance and maps it to a port, group,
and MIDI channel.

HRESULT AssignPChannel(
 DWORD dwPChannel,
 IDirectMusicPort* pPort,
 DWORD dwGroup,
 DWORD dwMChannel
);

dwPChannel
PChannel to assign.

pPort
Port to which the PChannel is assigned.

dwGroup
Channel group on the port.

dwMChannel
Channel in the group. Must be in the range 0-15.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
The method returns S_FALSE if dwGroup is out of the range of the port. The
channel has been assigned, but the port cannot play this group.

in.doc – page 177

The method returns E_INVALIDARG if dwMChannel is out of range or the port
hasn't been added to the performance through a call to the
IDirectMusicPerformance::AddPort method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::AssignPChannelBlock,
IDirectMusicPerformance::PChannelInfo, Channels

IDirectMusicPerformance::AssignP
ChannelBlock

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::AssignPChannelBlock method assigns a block of
16 performance channels (PChannels) to the performance and maps them to a port
and channel group. This method must be called when a port has been added to a
performance, except when the default port has been added by passing NULL to
IDirectMusicPerformance::AddPort.

HRESULT AssignPChannelBlock(
 DWORD dwBlockNum,
 IDirectMusicPort* pPort,
 DWORD dwGroup
);

dwBlockNum
Block number, where 0 represents channels 0-15, 1 represents channels 16-31,
and so on.

pPort
Port to which the channels are assigned.

dwGroup
Channel group on the port. Must be 1 or greater.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method may return one of the following error values:

E_INVALIDARG

in.doc – page 178

E_POINTER

Remarks
The method returns S_FALSE if dwGroup is out of the range of the port. The
channels have been assigned, but the port cannot play this group.

The method returns E_INVALIDARG if the port hasn't been added to the
performance through a call to the IDirectMusicPerformance::AddPort method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::AssignPChannel,
IDirectMusicPerformance::PChannelInfo, Channels

IDirectMusicPerformance::CloseDo
wn

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::CloseDown method closes down the performance
object. An application that created the performance object and called
IDirectMusicPerformance::Init on it must call CloseDown before the performance
is released.

HRESULT CloseDown();

There are no parameters.

Return Values
The method returns S_OK.

Remarks
Failure to call CloseDown may cause memory leaks or program failures.

CloseDown handles the release of the IDirectMusic interface in the case where the
application passed NULL, or a pointer to NULL, to
IDirectMusicPerformance::Init, causing a DirectMusic object to be created by that

in.doc – page 179

call. In other cases, where the application explicitly created the DirectMusic object
and passed the pointer to Init, the application is responsible for releasing the
IDirectMusic interface.

CloseDown also releases any downloaded instruments that have not been unloaded.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::Init

IDirectMusicPerformance::Downlo
adInstrument

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::DownloadInstrument method downloads DLS
data for an instrument to a port.

HRESULT DownloadInstrument(
 IDirectMusicInstrument* pInst,
 DWORD dwPChannel,
 IDirectMusicDownloadedInstrument** ppDownInst,
 DMUS_NOTERANGE* pNoteRanges,
 DWORD dwNumNoteRanges,
 IDirectMusicPort** ppPort,
 DWORD* pdwGroup,
 DWORD* pdwMChannel
);

pInst
Instrument to download.

dwPChannel
PChannel to which the instrument is assigned.

ppDownInst
Address of a variable to receive a pointer to the downloaded instrument.

pNoteRanges
Array of DMUS_NOTERANGE structures. Each entry in the array specifies a
contiguous range of MIDI note messages to which the instrument must respond.
An instrument region will be downloaded only if at least one note in that region
is specified in the DMUS_NOTERANGE structures.

in.doc – page 180

dwNumNoteRanges
Number of DMUS_NOTERANGE structures in the array pointed to by
pNoteRanges. If this value is set to 0, the pNoteRanges parameter is ignored and
all regions and wave data for the instrument are downloaded.

ppPort
Address of a variable to receive the port to which the instrument was
downloaded.

pdwGroup
Address of a variable to receive the group to which the instrument was assigned.

pdwMChannel
Address of a variable to receive the MIDI channel to which the instrument was
assigned.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
Most applications will not need to use this method, as instrument downloading is
normally handled by bands. See Downloading Bands.

The method will return E_INVALIDARG if the PChannel isn't assigned to a port.

To prevent loss of resources, the instrument should be unloaded by using the
IDirectMusicPort::UnloadInstrument method when it is no longer needed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPort::DownloadInstrument, IDirectMusicPort::UnloadInstrument,
Working with Instruments

in.doc – page 181

IDirectMusicPerformance::FreePM
sg

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::FreePMsg method frees a message.

HRESULT FreePMsg(
 DMUS_PMSG* pPMSG
);

pPMSG
Address of a message to free. This message must have been allocated using the
IDirectMusicPerformance::AllocPMsg method.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_CANNOT_FREE
E_POINTER

Remarks
Most messages are released automatically by the performance once they have been
processed, and IDirectMusicPerformance::FreePMsg must not be called on a
message that has been sent by using IDirectMusicPerformance::SendPMsg.
However, IDirectMusicPerformance::FreePMsg can be used within
IDirectMusicTool::ProcessPMsg or IDirectMusicTool::Flush to free a message
that is no longer needed. It must also be used to free notification messages.

The method returns DMUS_E_CANNOT_FREE if pPMSG is not a message
allocated by AllocPMsg, if it is currently in the performance queue because
IDirectMusicPerformance::SendPMsg was called on it, or if it has already been
freed.

If there is a value in the pTool, pGraph, or punkUser members (see
DMUS_PMSG), each referenced object is released.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 182

See Also
IDirectMusicPerformance::AllocPMsg, DirectMusic Messages

IDirectMusicPerformance::GetBum
perLength

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetBumperLength method retrieves the amount
of time between when messages are placed in the port buffer and when they begin to
be processed by the port.. For an overview of this topic, see Timing.

HRESULT GetBumperLength(
 DWORD* pdwMilliSeconds
);

pdwMilliSeconds
The amount of preplay time.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
The default value is 50 milliseconds.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetBumperLength

IDirectMusicPerformance::GetGlob
alParam

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetGlobalParam method retrieves global values
from the performance.

in.doc – page 183

HRESULT GetGlobalParam(
 REFGUID rguidType,
 void* pParam,
 DWORD dwSize
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data.

pParam
Allocated memory to receive a copy of the data. This must be the correct size,
which is constant for each type of data, and was also passed into the
IDirectMusicPerformance::SetGlobalParam method.

dwSize
Size of the data. This is constant for each rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
If rguidType isn't in the list of global data being handled by this performance, the
method returns E_INVALIDARG. Make sure to call SetGlobalParam first.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetGlobalParam,
IDirectMusicPerformance::GetParam, Music Parameters

IDirectMusicPerformance::GetGrap
h

[This is preliminary documentation and subject to change.]

in.doc – page 184

The IDirectMusicPerformance::GetGraph method retrieves the performance's tool
graph.

HRESULT GetGraph(
 IDirectMusicGraph** ppGraph
);

ppGraph
Address of a variable to receive a pointer to the tool graph.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_FOUND
E_POINTER

Remarks
The reference count of the graph is incremented.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetGraph, IDirectMusicSegment::GetGraph,
IDirectMusicPerformance::SendPMsg

IDirectMusicPerformance::GetLate
ncyTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetLatencyTime method retrieves the current
latency time. If "now" is the time being heard from the speakers, "latency time" is
"now" plus the time required to queue and render messages into the
IDirectMusicPort. For an overview of this topic, see Timing.

HRESULT GetLatencyTime(
 REFERENCE_TIME * prtTime
);

in.doc – page 185

prtTime
Address of a variable to receive the current latency time.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_NO_MASTER_CLOCK

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicPerformance::GetNoti
ficationPMsg

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetNotificationPMsg method retrieves a pending
notification message.

HRESULT GetNotificationPMsg(
 DMUS_NOTIFICATION_PMSG** ppNotificationPMsg
);

ppNotificationPMsg
Address of a variable to receive a pointer to a
DMUS_NOTIFICATION_PMSG structure. The application retrieving this
message is responsible for calling IDirectMusicPerformance::FreePMsg on it.

Return Values
If the method succeeds, the return value is S_OK or, if there are no more notification
events to return, S_FALSE.

If it fails, the method may return E_POINTER.

Remarks
For an example, see Handling Notifications in the tutorial on Using Compositions.

in.doc – page 186

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Notification and Event Handling

IDirectMusicPerformance::GetPara
m

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetParam method retrieves data from a track
inside the control segment.

HRESULT GetParam(
 REFGUID rguidType,
 DWORD dwGroupBits,
 DWORD dwIndex,
 MUSIC_TIME mtTime,
 MUSIC_TIME* pmtNext,
 void* pParam
);

rguidType
Address of (C) or reference to (C++) the identifier of the type of data to obtain.
See Track Parameter Types.

dwGroupBits
Group the desired track is in (see Remarks). Set this value to 0xFFFFFFFF for
all groups.

dwIndex
Index of the track in the group from which to obtain the data.

mtTime
The time from which to obtain the data, in performance time.

pmtNext
Address of a variable to receive the time (relative to mtTime) until which the
data is valid. If this returns a value of 0, it means either that the data will always
be valid, or that it is unknown when it will become invalid. If this information is
not needed, pmtNext can be set to NULL. See Remarks.

pParam

in.doc – page 187

Address of an allocated structure in which the data is to be returned. The
structure must be of the appropriate kind and size for the data type identified by
rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as a control segment when it is played. For more
information on control segments, see Segments and DMUS_SEGF_FLAGS.

The data returned in *pParam can become invalid before the time returned in
*pmtNext if another control segment is cued.

Each track belongs to one or more groups, each group being represented by a bit in
dwGroupBits. For more information, see IDirectMusicSegment::InsertTrack and
Identifying the Track.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam,
IDirectMusicTrack::GetParam, IDirectMusicPerformance::SetGlobalParam,
IDirectMusicPerformance::GetTime, Music Parameters

IDirectMusicPerformance::GetPrep
areTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetPrepareTime method retrieves the amount of
time ahead that IDirectMusicTrack::Play is called before the messages will

in.doc – page 188

actually be heard through the speakers. This interval allows sufficient time for the
message to be processed by tools.

HRESULT GetPrepareTime(
 DWORD* pdwMilliSeconds
);

pdwMilliSeconds
Address of a variable to receive the amount of prepare time.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
The default value is 1000 milliseconds.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetPrepareTime, Timing

IDirectMusicPerformance::GetQue
ueTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetQueueTime method retrieves the current flush
time, which is the earliest time in the queue at which messages can be flushed.
Messages that have timestamps earlier than this time have already been sent to the
port and cannot be invalidated.

HRESULT GetQueueTime(
 REFERENCE_TIME * prtTime
);

prtTime
Address of a variable to receive the current flush time.

in.doc – page 189

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_NO_MASTER_CLOCK

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Latency and Bumper Time

IDirectMusicPerformance::GetRes
olvedTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetResolvedTime method resolves a given time
to a given boundary.

HRESULT GetResolvedTime(
 REFERENCE_TIME rtTime,
 REFERENCE_TIME* prtResolved,
 DWORD dwTimeResolveFlags
);

rtTime
Time to resolve.

prtResolved
Address of a variable to receive the resolved time.

dwTimeResolveFlags
One or more DMUS_TIME_RESOLVE_FLAGS describing the resolution
desired.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

in.doc – page 190

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Timing

IDirectMusicPerformance::GetSeg
mentState

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetSegmentState method retrieves the currently
playing primary segment state, or the primary segment state that is playing at a given
time.

HRESULT GetSegmentState(
 IDirectMusicSegmentState ** ppSegmentState,
 MUSIC_TIME mtTime
);

ppSegmentState
Address of a variable to receive a pointer to the segment state. The caller is
responsible for calling Release on this pointer.

mtTime
Time for which the segment state is to be retrieved.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_FOUND
E_POINTER

Remarks
To get the currently playing segment state, pass the time retrieved by using the
IDirectMusicPerformance::GetTime method. "Currently playing" in this context
means that it is being called into to perform messages. Because of latency, the
currently playing segment state is not necessarily the one actually being heard.

in.doc – page 191

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicPerformance::GetTim
e

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::GetTime method retrieves the current time of the
performance.

HRESULT GetTime(
 REFERENCE_TIME* prtNow,
 MUSIC_TIME* pmtNow
);

prtNow
Address of a variable to receive the current time in REFERENCE_TIME
format. Can be NULL.

pmtNow
Address of a variable to receive the current time in MUSIC_TIME format. Can
be NULL.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NO_MASTER_CLOCK
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Timing

in.doc – page 192

IDirectMusicPerformance::Init
[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::Init method associates the performance with a
DirectMusic object and a DirectSound object.

HRESULT Init(
 IDirectMusic** ppDirectMusic,
 LPDIRECTSOUND pDirectSound,
 HWND hWnd
);

ppDirectMusic
Address of a variable containing the IDirectMusic interface pointer to be
assigned to the performance, if one already exists. The reference count of the
interface is incremented. Ports passed to the
IDirectMusicPerformance::AddPort method must be created from this
DirectMusic object.
If the variable contains NULL, a DirectMusic object is created and the interface
pointer returned.
If ppDirectMusic is NULL, a DirectMusic object is created and used internally
by the performance.
See Remarks.

pDirectSound
IDirectSound interface to use by default for wave output. If this value is NULL,
DirectMusic will create a DirectSound object. Note, however, that there should
only be one DirectSound object per process. If your application uses
DirectSound separately, it should pass in that interface here, or to
IDirectMusic::SetDirectSound if the application creates the DirectMusic
object explicitly.

hWnd
Window handle to be used for the creation of DirectSound. This parameter can
be NULL, in which case the foreground window will be used. See Remarks.
This parameter is ignored if pDirectSound is not NULL, in which case the
application is responsible for setting the window handle in a call to
IDirectSound::SetCooperativeLevel.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_ALREADY_INITED
E_OUTOFMEMORY
E_POINTER

in.doc – page 193

Remarks
This method should be called only once, and must be called before the performance
can play.

There are three different ways of associating a DirectMusic object with the
performance:

1. The application creates its own DirectMusic object and gives it to the
performance by passing the address of the IDirectMusic pointer in
ppDirectMusic. In this case, the pDirectSound and hWnd parameters are
ignored, because the application is responsible for calling
IDirectMusic::SetDirectSound.

2. The application wants the performance to do the work of creating the
DirectMusic object, and wants a pointer to that object. In this case,
*ppDirectMusic is NULL on entry and contains the IDirectMusic pointer on
exit.

3. The application has no use for a DirectMusic object pointer, and just wants the
performance to initialize itself. In this case, ppDirectMusic is NULL.

The performance must be terminated by using the
IDirectMusicPerformance::CloseDown method before being released.

You can pass NULL in the hWnd parameter in order to pass the current foreground
window handle to DirectSound. However, it is not wise to assume that the
application window will be in the foreground during initialization. In general, the
top-level application window handle should be passed to DirectMusic, DirectSound,
and DirectDraw. See the Remarks for IDirectSound::SetCooperativeLevel.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Creating the Performance, Integrating DirectMusic and DirectSound

IDirectMusicPerformance::Invalida
te

[This is preliminary documentation and subject to change.]

in.doc – page 194

The IDirectMusicPerformance::Invalidate method flushes all queued messages
from the supplied time forward, and causes all tracks of all segments to resend their
data from the given time forward.

HRESULT Invalidate(
 MUSIC_TIME mtTime,
 DWORD dwFlags
);

mtTime
The time from which to invalidate, adjusted by dwFlags. Setting this value to 0
causes immediate invalidation.

dwFlags
Adjusts mtTime to align to measures, beats, or grids. This value can be 0 or one
of the following members of the DMUS_SEGF_FLAGS enumeration:
DMUS_SEGF_MEASURE
DMUS_SEGF_BEAT
DMUS_SEGF_GRID

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_NO_MASTER_CLOCK.

Remarks
If mtTime is so long ago that it is impossible to invalidate that time, the earliest
possible time will be used.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Prepare Time, Segment Timing

IDirectMusicPerformance::IsPlayin
g

[This is preliminary documentation and subject to change.]

in.doc – page 195

The IDirectMusicPerformance::IsPlaying method determines whether a particular
segment or segment state is currently playing at the speakers.

HRESULT IsPlaying(
 IDirectMusicSegment* pSegment,
 IDirectMusicSegmentState* pSegState
);

pSegment
The segment to check. If NULL, check only pSegState.

pSegState
The segment state to check. If NULL, check only pSegment.

Return Values
If the method succeeds and the requested segment or segment state is playing, the
return value is S_OK. If neither is playing, or only one was requested and it is not
playing, the return value is S_FALSE.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_NO_MASTER_CLOCK

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicPerformance::MIDITo
Music

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::MIDIToMusic method converts a MIDI note
value to a DirectMusic music value, using a supplied chord, subchord level, and play
mode.

HRESULT MIDIToMusic(
 BYTE bMIDIValue,
 DMUS_CHORD_KEY* pChord,
 BYTE bPlayMode,
 BYTE bChordLevel,
 WORD *pwMusicValue
);

in.doc – page 196

bMIDIValue
MIDI note value to convert, in the range 0 to 127.

pChord
DMUS_CHORD_KEY structure containing information about the chord and
key structure to be used in translating the note. This includes the underlying
scale. For example, if the chord is a CM7, the note is interpreted against the
chord positions for root note C, chord intervals of a major 7. The structure
carries up to eight parallel subchords, with chord intervals, root, scale, and
inversion flags for each. It also carries the overall key root.

bPlayMode
Play mode determining how the music value is derived from the chord. For a list
of values, see DMUS_PLAYMODE_FLAGS.

bChordLevel
Subchord level, defining which subchords can be used. See
DMUS_SUBCHORD.

pwMusicValue
Address of a variable to receive the music value. For information on this value,
see DMUS_NOTE_PMSG.

Return Values
If the method succeeds, the return value is one of the following. See Remarks.

S_OK
DMUS_S_DOWN_OCTAVE
DMUS_S_UP_OCTAVE

If it fails, the method may return one of the following error values:

DMUS_E_CANNOT_CONVERT
E_INVALIDARG

Remarks
If the method fails, *pwMusicValue is not changed.

If the return value is DMUS_S_UP_OCTAVE or DMUS_DOWN_OCTAVE, the
note conversion generated a note value that is less than 0 or greater than 127, so it
has been bumped up or down one or more octaves to be in the proper MIDI range of
0 through 127. This may occur when using play modes
DMUS_PLAYMODE_FIXEDTOCHORD and
DMUS_PLAYMODE_FIXEDTOKEY, both of which return MIDI values in
*pwMusicValue.

in.doc – page 197

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::MusicToMIDI, Music Values and MIDI Notes

IDirectMusicPerformance::MusicTo
MIDI

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::MusicToMIDI method converts a DirectMusic
music value to a MIDI note value.

HRESULT MusicToMIDI(
 WORD wMusicValue,
 DMUS_CHORD_KEY* pChord,
 BYTE bPlayMode,
 BYTE bChordLevel,
 BYTE *pbMIDIValue
);

wMusicValue
Music value to convert. For information on music values, see
DMUS_NOTE_PMSG.

pChord
DMUS_CHORD_KEY structure containing information about the chord and
key structure to be used in translating the note. This includes the underlying
scale. For example, if the chord is a CM7, the note is interpreted against the
chord positions for root note C, chord intervals of a major 7. The structure
carries up to eight parallel subchords, with chord intervals, root, scale, and
inversion flags for each. It also carries the overall key root.

bPlayMode
Play mode determining how the music value is related to the chord. For a list of
values, see DMUS_PLAYMODE_FLAGS.

bChordLevel
Subchord level, defining which subchords can be used. See
DMUS_SUBCHORD.

pbMIDIValue
Address of a variable to receive the MIDI value, in the range 0 to 127.

in.doc – page 198

Return Values
If the method succeeds, the return value is one of the following. See Remarks.

S_OK
DMUS_S_OVER_CHORD
DMUS_S_DOWN_OCTAVE
DMUS_S_UP_OCTAVE

If it fails, the method may return one of the following error values:

DMUS_E_CANNOT_CONVERT
E_INVALIDARG

Remarks
If the method fails or returns DMUS_S_OVER_CHORD, *pwMIDIValue is not
changed.

The method returns DMUS_S_OVER_CHORD if no note has been calculated
because the music value has the note at a position higher than the top note of the
chord. This applies only to DMUS_PLAYMODE_NORMALCHORD play mode.
The caller should not do anything with the note, which is not meant to be played
against this chord.

If the return value is DMUS_S_UP_OCTAVE or DMUS_DOWN_OCTAVE, the
note conversion generated a note value that is less than 0 or greater than 127, so it
has been bumped up or down one or more octaves to be in the proper MIDI range of
0 through 127. This may occur when using any play mode except
DMUS_PLAYMODE_FIXED.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::MIDIToMusic, Music Values and MIDI Notes

IDirectMusicPerformance::MusicTo
ReferenceTime

[This is preliminary documentation and subject to change.]

in.doc – page 199

The IDirectMusicPerformance::MusicToReferenceTime method converts time in
MUSIC_TIME format to time in REFERENCE_TIME format.

HRESULT MusicToReferenceTime(
 MUSIC_TIME mtTime,
 REFERENCE_TIME* prtTime
);

mtTime
The time in MUSIC_TIME format to convert.

prtTime
Address of a variable to receive the converted time in REFERENCE_TIME
format.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_NO_MASTER_CLOCK

Remarks
Because reference time has a greater precision than music time, a time that has been
converted from reference time to music time, and then back again, will likely not
have its original value.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::ReferenceToMusicTime , Reference Time vs. Music
Time

IDirectMusicPerformance::PChann
elInfo

[This is preliminary documentation and subject to change.]

in.doc – page 200

The IDirectMusicPerformance::PChannelInfo method retrieves the port, group,
and MIDI channel for a given performance channel (PChannel).

HRESULT PChannelInfo(
 DWORD dwPChannel,
 IDirectMusicPort** ppPort,
 DWORD* pdwGroup,
 DWORD* pdwMChannel
);

dwPChannel
The PChannel for which information is wanted.

ppPort
Address of a variable to receive an IDirectMusicPort pointer. This value can be
NULL if the pointer is not wanted. If a non-NULL pointer is returned, the
reference count is incremented, and it is the responsibility of the application to
call Release on the pointer. See also Remarks.

pdwGroup
Address of a variable to receive the group on the port. Can be NULL if this
value is not wanted.

pdwMChannel
Address of a variable to receive the MIDI channel on the group. Can be NULL
if this value is not wanted.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_POINTER

Remarks
A NULL pointer is returned in *ppPort if the port has been removed by a call to
IDirectMusicPerformance::RemovePort, but the method succeeds.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 201

See Also
IDirectMusicPerformance::AssignPChannel,
IDirectMusicPerformance::AssignPChannelBlock

IDirectMusicPerformance::PlaySeg
ment

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::PlaySegment method begins playback of a
segment.

HRESULT PlaySegment(
 IDirectMusicSegment* pSegment,
 DWORD dwFlags,
 __int64 i64StartTime,
 IDirectMusicSegmentState** ppSegmentState
);

pSegment
Address of the segment to play.

dwFlags
Flags that modify the method's behavior. See DMUS_SEGF_FLAGS.

i64StartTime
The time at which to begin playing the segment, adjusted to any resolution
boundary specified in dwFlags. The time is in music time, unless the
DMUS_SEGF_REFTIME flag is set. A value of 0 causes the segment to start
playing as soon as possible.

ppSegmentState
Address of a variable to receive the segment state for this instance of the playing
segment. This field may be NULL. If it is non-NULL, the segment state pointer
is returned, and the application must call Release on it.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER
DMUS_E_NO_MASTER_CLOCK
DMUS_E_SEGMENT_INIT_FAILED
DMUS_E_TIME_PAST

in.doc – page 202

Remarks
Segments should be greater than 250 milliseconds in length.

The boundary resolutions in dwFlags are relative to the currently playing primary
segment.

If a primary segment is scheduled to play while another primary segment is playing,
the first one will stop, unless you set the DMUS_SEGF_QUEUE flag for the second
segment, in which case it will play as soon as the first one reaches its end.

For more information on the exact start time of segments, see Segment Timing. For
information on how the start time of segments can be affected by tempo changes, see
Reference Time vs. Music Time.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Segments

IDirectMusicPerformance::Referen
ceToMusicTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::ReferenceToMusicTime method converts time in
REFERENCE_TIME format to time in MUSIC_TIME format.

HRESULT ReferenceToMusicTime(
 REFERENCE_TIME rtTime,
 MUSIC_TIME* pmtTime
);

rtTime
The time in REFERENCE_TIME format.

pmtTime
Address of a variable to receive the converted time in MUSIC_TIME format.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

in.doc – page 203

E_POINTER
DMUS_E_NO_MASTER_CLOCK

Remarks
If a master tempo has been set for the performance (see Setting and Retrieving
Global Parameters), it is taken into account when converting to music time.

Because music time is less precise than reference time, rounding off will occur.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::MusicToReferenceTime , Reference Time vs. Music
Time

IDirectMusicPerformance::Remove
NotificationType

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::RemoveNotificationType method removes a
previously added notification type from the performance. All segments and tracks
are updated by a call to their RemoveNotificationType methods.

HRESULT RemoveNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Reference to (C++) or address of (C) the identifier of the notification type to
remove. (For the defined types, see DMUS_NOTIFICATION_PMSG.) If this
value is GUID_NULL, all notifications are to be removed.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method may return E_POINTER.

in.doc – page 204

Remarks
S_FALSE is returned when rguidNotificationType isn't an active notification.

If a notification was added to a segment that has now stopped playing, the
performance cannot remove the notification type from that segment, because it no
longer has a reference to the segment.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::AddNotificationType,
IDirectMusicSegment::RemoveNotificationType,
IDirectMusicTrack::RemoveNotificationType, Notification and Event Handling

IDirectMusicPerformance::Remove
Port

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::RemovePort method removes a port from the
performance. Any PChannels that map to this port are invalidated and messages
stamped with them will not play.

HRESULT RemovePort(
 IDirectMusicPort* pPort
);

pPort
The port to remove.

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, it may return one of the following error values:

E_INVALIDARG
E_POINTER

in.doc – page 205

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::AddPort

IDirectMusicPerformance::Rhythm
ToTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::RhythmToTime method converts rhythm time to
music time.

HRESULT RhythmToTime(
 WORD wMeasure,
 BYTE bBeat,
 BYTE bGrid,
 short nOffset,
 DMUS_TIMESIGNATURE *pTimeSig,
 MUSIC_TIME *pmtTime)
);

wMeasure
Measure of the time to convert.

bBeat
Beat of the time to convert.

bGrid
Grid of the time to convert.

nOffset
Offset from the grid, in music time ticks, of the time to convert.

pTimeSig
DMUS_TIMESIGNATURE structure containing information about the time
signature.

pmtTime
Address of a variable to receive the music time.

Return Values
If the method succeeds, the return value is S_OK.

in.doc – page 206

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::TimeToRhythm

IDirectMusicPerformance::SendPM
sg

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SendPMsg method sends a performance message.
This method is called by tracks when they are played. It might also be called by a
tool in order to inject new data into a performance.

HRESULT SendPMsg(
 DMUS_PMSG* pPMSG
);

pPMSG
Address of a message allocated by IDirectMusicPerformance::AllocPMsg.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG
E_POINTER

Remarks
The dwFlags member (see DMUS_PMSG) must contain either
DMUS_PMSGF_MUSICTIME or DMUS_PMSGF_REFTIME, depending on the
time stamp in either rtTime or mtTime. Also, the dwFlags member should contain
the appropriate delivery type—DMUS_PMSGF_TOOL_QUEUE,
DMUS_PMSGF_TOOL_ATTIME, or DMUS_PMSGF_TOOL_IMMEDIATE—
depending on the type of message. If none is selected,
DMUS_PMSGF_TOOL_IMMEDIATE is used by default.

in.doc – page 207

If the time of the message is set to 0 and the dwFlags member contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

The IDirectMusicGraph::StampPMsg method should in most cases be called on
the message before SendPMsg is called. However, when sending a message directly
to the main output tool, this step can be skipped. If you want the message to pass
only through the performance graph, you obtain the IDirectMusicGraph interface
by calling IDirectMusicPerformance::QueryInterface . Otherwise obtain it by
calling IDirectMusicSegment::QueryInterface. Do not attempt to obtain the
interface by calling IDirectMusicPerformance::GetGraph or
IDirectMusicSegment::GetGraph; these methods return a pointer to the graph
object rather than to the implementation of the IDirectMusicGraph interface on the
performance or segment.

Normally the performance will free the message after it has been processed. For
more information, see the Remarks for IDirectMusicPerformance::FreePMsg.

The follow sample code shows how to allocate and send a sysex message and a
tempo message:

/* Assume that pPerformance is a valid IDirectMusicPerformance pointer
 and that mtTime is an initialized MUSIC_TIME variable. */

IDirectMusicGraph* pGraph;

// Get the graph pointer from the performance. If we wanted the
// message to go through a segment graph, we would QueryInterface a
// segment object instead.

if (SUCCEEDED(pPerformance->QueryInterface(
 IID_IDirectMusicGraph, (void**)&pGraph)))
{
 // Allocate a DMUS_SYSEX_PMSG of the appropriate size and read
 // the sysex data into it

 DMUS_SYSEX_PMSG* pSysEx;

 if (SUCCEEDED(pPerformance->AllocPMsg(
 sizeof(DMUS_SYSEX_PMSG) + m_dwSysExLength,
 (DMUS_PMSG**)&pSysEx)))
 {
 // All fields are initialized to zero from the
 // AllocPMsg method.
 // Assume m_pbSysExData is a pointer to an array
 // containing data of length m_dwSysExLength.

 memcpy(pSysEx->abData, m_pbSysExData, m_dwSysExLength);
 pSysEx->dwSize = sizeof(DMUS_SYSEX_PMSG);

in.doc – page 208

 pSysEx->dwLen = dwSysExLength;
 pSysEx->mtTime = mtTime;
 pSysEx->dwFlags = DMUS_PMSGF_MUSICTIME;
 pSysEx->dwType = DMUS_PMSGT_SYSEX;

 pGraph->StampPMsg((DMUS_PMSG*)pSysEx);
 if (FAILED(pPerformance->SendPMsg((DMUS_PMSG*)pSysEx)))
 {
 pPerformance->FreePMsg((DMUS_PMSG*)pSysEx);
 }
 }

 // Change the tempo at time mtTime to 120 bpm.

 DMUS_TEMPO_PMSG* pTempo;

 if(SUCCEEDED(pPerformance->AllocPMsg(sizeof(DMUS_TEMPO_PMSG),
 (DMUS_PMSG**)&pTempo)))
 {
 pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);
 pTempo->dblTempo = 120;
 pTempo->mtTime = mtTime;
 pTempo->dwFlags = DMUS_PMSGF_MUSICTIME;
 pTempo->dwType = DMUS_PMSGT_TEMPO;
 pGraph->StampPMsg((DMUS_PMSG*)pTempo);
 if (FAILED(pPerformance->SendPMsg((DMUS_PMSG*)pTempo)))
 {
 pPerformance->FreePMsg((DMUS_PMSG*)pTempo);
 }
 }

 pGraph->Release();
}

The next example shows a function that sends a note message associated with the
track identified by dwTrackID. Note that the virtual track ID should be 0 if the
message is not being generated from a DirectMusicTrack object.

HRESULT CreateNotePMsg(IDirectMusicPerformance* pPerformance,
 MUSIC_TIME mtTime, DWORD dwTrackID)
{

 // Allocate a Note PMessage.
 DMUS_NOTE_PMSG* pNote = NULL;
 HRESULT hr = pPerformance->AllocPMsg(sizeof(DMUS_NOTE_PMSG),
 (DMUS_PMSG**) &pNote);

in.doc – page 209

 if (FAILED(hr)) return hr;

 pNote->dwSize = sizeof(DMUS_NOTE_PMSG); // Size of a Note PMessage
 pNote->rtTime = 0; // Will be ignored
 pNote->mtTime = mtTime; // When to play the note
 pNote->dwFlags = DMUS_PMSGF_MUSICTIME; // Use the mtTime field
 pNote->dwPChannel = 5; // play on PChannel 5
 pNote->dwVirtualTrackID = dwTrackID; // Track ID from parameter

 // The following two fields should be set to NULL when a
 // message is initially sent. They will be updated in
 // IDirectMusicGraph::StampPMsg.
 pNote->pTool = NULL;
 pNote->pGraph = NULL;
 pNote->dwType = DMUS_PMSGT_NOTE;
 pNote->dwVoiceID = 0; // For DirectX 6.1, always 0
 pNote->dwGroupID = 0xFFFFFFFF; // All track groups
 pNote->punkUser = NULL; // Always NULL

 // Get the current time signature from the performance
 // to compute measure/beat info
 DMUS_TIMESIGNATURE TimeSig;
 MUSIC_TIME mtNext;
 hr = pPerformance->GetParam(GUID_TimeSignature, 0xFFFFFFFF,
 0, mtTime, &mtNext, &TimeSig);
 if (FAILED(hr)) return hr;

 // Recompute TimeSig.mtTime to have the value expected
 // by pPerformance->TimeToRhythm
 TimeSig.mtTime += mtTime;

 // Get the current chord from the performance
 // to create a note value
 DMUS_CHORD_KEY Chord;
 hr = pPerformance->GetParam(GUID_ChordParam, 0xFFFFFFFF, 0,
 mtTime, &mtNext, &Chord);
 if (FAILED(hr)) return hr;

 // Create a note with octave 5, chord tone 2 (fifth), scale
 // offset 1 (=> sixth), and no accidentals
 WORD wMusicValue = 0x5210;

 // We'll use DMUS_PLAYMODE_PEDALPOINT as our play mode
 // in pPerformance->MusicToMIDI
 BYTE bPlayModeFlags = DMUS_PLAYMODE_PEDALPOINT;

in.doc – page 210

 // Fill in the fields specific to DMUS_NOTE_PMSG
 pNote->wMusicValue = wMusicValue;
 hr = pPerformance->MusicToMIDI(
 wMusicValue,
 &Chord,
 bPlayModeFlags,
 0,
 &(pNote->bMidiValue));
 if (FAILED(hr)) return hr;

 hr = pPerformance->TimeToRhythm(
 TimeSig.mtTime,
 &TimeSig,
 &(pNote->wMeasure),
 &(pNote->bBeat),
 &(pNote->bGrid),
 &(pNote->nOffset));
 if (FAILED(hr)) return hr;

 pNote->mtDuration = DMUS_PPQ; // Quarter note duration
 pNote->bVelocity = 120; // MIDI velocity (0 - 127)
 pNote->bFlags = DMUS_NOTEF_NOTEON; // Always set to this value
 pNote->bTimeRange = 250; // Randomize start time a lot
 pNote->bDurRange = 5; // Randomize duration a little
 pNote->bVelRange = 0; // Don't randomize velocity
 pNote->bPlayModeFlags = bPlayModeFlags;
 pNote->bSubChordLevel = 0; // Note uses subchord level 0
 pNote->cTranspose = 0; // No transposition

 // Stamp the message with the performance graph
 IDirectMusicGraph* pGraph;
 hr = pPerformance->QueryInterface(IID_IDirectMusicGraph,
 (void**)&pGraph);
 if (FAILED(hr)) return hr;

 pGraph->StampPMsg((DMUS_PMSG*)pNote);
 pGraph->Release();

 // Finally, send the message.
 hr = pPerformance->SendPMsg((DMUS_PMSG*)pNote);
 if (FAILED(hr))
 {
 pPerformance->FreePMsg((DMUS_PMSG*)pNote);
 return hr;
 }

in.doc – page 211

 return S_OK;

}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTool::ProcessPMsg, Messages, DirectMusic Messages, DirectMusic
Tools

IDirectMusicPerformance::SetBum
perLength

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetBumperLength method sets the amount of
time to buffer ahead of the port's latency for messages to be sent to the port for
rendering. For an overview of this topic, see Timing.

HRESULT SetBumperLength(
 DWORD dwMilliSeconds
);

dwMilliSeconds
Amount of preplay time, in milliseconds. The default value is 50.

Return Values
The method returns S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetBumperLength,
IDirectMusicPerformance::SetPrepareTime

in.doc – page 212

IDirectMusicPerformance::SetGlob
alParam

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetGlobalParam method sets global values for the
performance.

HRESULT SetGlobalParam(
 REFGUID rguidType,
 void* pParam,
 DWORD dwSize
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data.

pParam
Pointer to the data to be copied and stored by the performance.

dwSize
Size of the data. This is constant for each rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_POINTER
E_OUTOFMEMORY

Remarks
The dwSize parameter is needed because the performance doesn't know about all
types of data. New types can be created as needed.

For the parameters defined by DirectMusic and their associated data types, see
Setting and Retrieving Global Parameters.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 213

See Also
IDirectMusicPerformance::GetGlobalParam,
IDirectMusicPerformance::SetParam, Music Parameters

IDirectMusicPerformance::SetGrap
h

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetGraph method replaces the performance's tool
graph.

HRESULT SetGraph(
 IDirectMusicGraph* pGraph
);

pGraph
Tool graph. Can be set to NULL to clear the graph from the performance.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
Any messages flowing through tools in the current tool graph are deleted.

The graph's reference count is incremented by this method, so it is safe to release the
original reference.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetGraph, IDirectMusicPerformance::GetGraph,
IDirectMusicPerformance::SendPMsg

in.doc – page 214

IDirectMusicPerformance::SetNoti
ficationHandle

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetNotificationHandle method sets the event
handle (created by the Win32® CreateEvent function) for notifications. The
application should use the Win32 WaitForSingleObject function on this handle.
When signaled, the application should call the
IDirectMusicPerformance::GetNotificationPMsg method to retrieve the
notification event.

HRESULT SetNotificationHandle(
 HANDLE hNotification,
 REFERENCE_TIME rtMinimum
);

hNotification
Event handle created by CreateEvent, or 0 to clear out an existing handle.

rtMinimum
Minimum time that the performance should hold onto old notify events before
discarding them. The value 0 means to use the default minimum time of
20,000,000 reference time units, which is 2 seconds, or the previous value if this
method has been called previously. If the application hasn't called
GetNotificationPMsg by this time, the event is discarded to free the memory.

Return Values
The method returns S_OK.

Remarks
It is the application's responsibility to call Win32 CloseHandle function on the
notification handle when it is no longer needed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Notification and Event Handling

in.doc – page 215

IDirectMusicPerformance::SetPara
m

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetParam method sets data on a track inside the
control segment.

HRESULT SetParam(
 REFGUID rguidType,
 DWORD dwGroupBits,
 DWORD dwIndex,
 MUSIC_TIME mtTime,
 void* pParam
);

rguidType
Address of (C) or reference to (C++) the identifier of the type of data to set. See
Track Parameter Types.

dwGroupBits
Group the desired track is in.

dwIndex
Index of the track in the group identified by dwGroupBits where data is to be
set.

mtTime
Time at which to set the data. Unlike IDirectMusicSegment::SetParam, this
time is in performance time. The start time of the segment is subtracted from
this time, and the result is passed to IDirectMusicSegment::SetParam.

pParam
Address of structure containing the data. This structure must be of the
appropriate kind and size for the data type identified by rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

in.doc – page 216

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as the control segment when it is played. See
DMUS_SEGF_FLAGS.

For an explanation of dwGroupBits and dwIndex, see Identifying the Track.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetParam,
IDirectMusicPerformance::SetGlobalParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::SetParam, IDirectMusicPerformance::GetTime, Music
Parameters

IDirectMusicPerformance::SetPrep
areTime

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::SetPrepareTime method sets the interval between
the time the IDirectMusicTrack::Play method is called and when the messages
should actually be heard through the speakers.

HRESULT SetPrepareTime(
 DWORD dwMilliSeconds
);

dwMilliSeconds
Amount of prepare time, in milliseconds. The default value is 1000.

Return Values
The method returns S_OK.

Remarks
For an overview, see Timing.

in.doc – page 217

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetPrepareTime,
IDirectMusicPerformance::SetBumperLength

IDirectMusicPerformance::Stop
[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::Stop method stops playback of one or more
segments.

HRESULT Stop(
 IDirectMusicSegment* pSegment,
 IDirectMusicSegmentState* pSegmentState,
 MUSIC_TIME mtTime,
 DWORD dwFlags
);

pSegment
Segment to stop playing. All segment states based on this segment are stopped at
mtTime. See Remarks.

pSegmentState
Segment state to stop playing. See Remarks.

mtTime
Time at which to stop the segment, segment state, or both. If the time is in the
past, or 0 is passed in this parameter, the requested segments and segment states
stop playing immediately.

dwFlags
Flag that indicates when the stop should occur. Boundaries are in relation to the
current primary segment. Must be one of the following values:0

Stop immediately.
DMUS_SEGF_GRID

Stop on the next grid boundary at or after mtTime.
DMUS_SEGF_MEASURE

Stop on the next measure boundary at or after mtTime.
DMUS_SEGF_BEAT

Stop on the next beat boundary at or after mtTime.
DMUS_SEGF_DEFAULT

in.doc – page 218

Stop on the default boundary, as set by the
IDirectMusicSegment::SetDefaultResolution method.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
If pSegment and pSegmentState are both NULL, all music stops and all currently
cued segments are released. If either pSegment or pSegmentState is not NULL, only
the requested segment states are removed from the performance. If both are not
NULL, and DMUS_SEGF_DEFAULT is used, the default resolution from the
pSegment is used.

If you set all parameters to NULL or 0, everything stops immediately and controller
reset messages and note-off messages are sent to all mapped PChannels.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::PlaySegment, DMUS_SEGF_FLAGS

IDirectMusicPerformance::TimeTo
Rhythm

[This is preliminary documentation and subject to change.]

The IDirectMusicPerformance::TimeToRhythm method converts music time to
rhythm time.

HRESULT TimeToRhythm(
 MUSIC_TIME mtTime,
 DMUS_TIMESIGNATURE *pTimeSig,
 WORD *pwMeasure,
 BYTE *pbBeat,
 BYTE *pbGrid,
 short *pnOffset
);

in.doc – page 219

mtTime
Time to convert.

pTimeSig
DMUS_TIMESIGNATURE structure containing information about the time
signature.

pwMeasure
Address of a variable to receive the measure where the time falls.

pbBeat
Address of a variable to receive the beat where the time falls.

pbGrid
Address of a variable to receive the grid where the time falls.

pnOffset
Address of a variable to receive the offset from the grid (in music time ticks)
where the time falls.

Return Values
If the method succeeds, the return value is S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::RhythmToTime

IDirectMusicPort
[This is preliminary documentation and subject to change.]

The IDirectMusicPort interface provides access to a DirectMusicPort object, which
represents a device that sends or receives music data. The input port of an MPU-401,
the output port of an MPU-401, the Microsoft Software Synthesizer, and an IHV-
provided filter are all ports. Note that a physical device such as an MPU-401 may
provide multiple ports. A single port, however, cannot both capture and render data.

For an overview, see Using Ports.

The methods of the IDirectMusicPort interface can be organized into the following
groups:

Buffers PlayBuffer
Read

in.doc – page 220

SetReadNotificationHandle
Channels GetChannelPriority

GetNumChannelGroups
SetChannelPriority
SetNumChannelGroups

Device management Activate
DeviceIoControl
SetDirectSound

Information GetCaps
GetFormat
GetLatencyClock
GetRunningStats

Downloadable sounds Compact
DownloadInstrument
UnloadInstrument

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The LPDIRECTMUSICPORT type is defined as a pointer to the
IDirectMusicPort interface:

typedef IDirectMusicPort *LPDIRECTMUSICPORT;

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::Activate
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::Activate method activates or deactivates the port.

HRESULT Activate(
 BOOL fActive
);

in.doc – page 221

fActive
Switch to activate (TRUE) or deactivate (FALSE) the port.

Return Values
If the method succeeds, the return value is S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusic::Activate, Using Ports

IDirectMusicPort::Compact
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::Compact method is used to instruct the port to compact
DLS/wavetable memory, thus making the largest possible contiguous chunk of
memory available for new instruments to be downloaded. This method is valid only
for an output port that supports DLS wavetable synthesis.

HRESULT Compact();

There are no parameters.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 222

Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::DeviceIoControl
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::DeviceIoControl method calls the Win32 DeviceIoControl
function on the underlying file handle implementing the port.

HRESULT DeviceIoControl(
 DWORD dwIoControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

dwIoControlCode
Control code of operation to perform.

lpInBuffer
Buffer containing input data.

nInBufferSize
Size of input buffer.

lpOutBuffer
Buffer to receive output data.

nOutBufferSize
Size of output buffer

lpBytesReturned
Address of a variable to receive output byte count.

lpOverlapped
Overlapped structure for asynchronous operation.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_NOTIMPL

in.doc – page 223

Remarks
This method is supported only on ports implemented by a Windows Driver Model
(WDM) filter graph. In the case of a WDM filter graph, the file handle used will be
the topmost pin in the graph.

DirectMusic reserves the right to refuse to perform defined kernel streaming
operations on a pin which might collide with operations it is performing on the filter
graph. User-defined operations, however, will never be blocked.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::DownloadInstru
ment

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::DownloadInstrument method is used to download an
instrument to the DLS device. Downloading an instrument is the process of handing
to the DLS device the data that makes up the instrument. This includes articulation
data and all waves needed by the instrument. To economize on wave space, only
waves and articulation required for a range are downloaded. The method returns an
IDirectMusicDownloadedInstrument interface pointer, which is later used to
unload the instrument.

HRESULT DownloadInstrument(
 IDirectMusicInstrument *pInstrument,
 IDirectMusicDownloadedInstrument
**ppDownloadedInstrument,
 DMUS_NOTERANGE *pNoteRanges,
 DWORD dwNumNoteRanges;
);

pInstrument
Pointer to the instrument from which the method extracts the data to be
downloaded.

ppDownloadedInstrument
Address of a variable to receive a pointer to the
IDirectMusicDownloadedInstrument interface.

pNoteRanges
Array of DMUS_NOTERANGE structures. Each entry in the array specifies a
contiguous range of MIDI note messages to which the instrument must respond.

in.doc – page 224

An instrument region will be downloaded only if at least one note in that region
is specified in the DMUS_NOTERANGE structures.

dwNumNoteRanges
Number of DMUS_NOTERANGE structures in the array pointed to by
pNoteRanges. If this value is set to 0, the pNoteRanges parameter is ignored and
all regions and wave data for the instrument are downloaded.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_OUTOFMEMORY
E_NOTIMPL

Remarks
To prevent memory loss, the instrument must be unloaded by calling both
IDirectMusicPort::UnloadInstrument and
IDirectMusicDownloadedInstrument::Release when it is no longer needed.

See Also
IDirectMusicPort::Compact, Working with Instruments

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::GetCaps
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetCaps method retrieves the port’s capabilities.

HRESULT GetCaps(
 LPDMUS_PORTCAPS pPortCaps
);

pPortCaps
Address of a DMUS_PORTCAPS structure to receive the capabilities of the
port. The dwSize member of this structure must be properly initialized before
the method is called.

in.doc – page 225

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_INVALIDARG

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::GetChannelPrior
ity

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetChannelPriority method is used to retrieve the priority
of a MIDI channel. For an overview, see Channels.

HRESULT GetChannelPriority(
 DWORD dwChannelGroup,
 DWORD dwChannel,
 LPDWORD pdwPriority
);

dwChannelGroup
Group the channel is in.

dwChannel
Index of the channel on the group.

pdwPriority
Address of a variable to receive the priority ranking. See Remarks.

Return Values
If the method succeeds, the return value is S_OK.

Remarks
The following values, defined in Dmusicc.h, each represent a range of priorities.
They are listed here in descending order of priority.

in.doc – page 226

DAUD_CRITICAL_VOICE_PRIORITY
DAUD_HIGH_VOICE_PRIORITY
DAUD_STANDARD_VOICE_PRIORITY
DAUD_LOW_VOICE_PRIORITY

The following values express the default ranking of the channels within a range,
according to the DLS Level 1 standard. They are listed here in descending order.
Note that channel 10, the percussion channel, has the highest priority.

DAUD_CHAN10_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN1_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN2_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN3_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN4_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN5_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN6_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN7_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN8_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN9_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN11_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN12_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN13_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN14_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN15_DEF_VOICE_PRIORITY_OFFSET
DAUD_CHAN16_DEF_VOICE_PRIORITY_OFFSET

The priority of a channel is represented by a range plus an offset. For example,
DAUD_STANDARD_VOICE_PRIORITY +
DAUD_CHAN10_DEF_VOICE_PRIORITY represents the highest priority within
the standard range.

Channels that have the same priority value have equal priority regardless of which
channel group they belong to.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPort::SetChannelPriority

in.doc – page 227

IDirectMusicPort::GetFormat
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetFormat method retrieves information about the wave
format specified in the DMUS_PORTPARAMS structure passed to
IDirectMusic::CreatePort, and the recommended size of the buffer to use for wave
output. The information can be used to create a compatible IDirectSoundBuffer for
the port.

HRESULT GetFormat(
 LPWAVEFORMATEX pWaveFormatEx,
 LPDWORD pdwWaveFormatExSize
 LPDWORD pdwBufferSize
);

pWaveFormatEx
WAVEFORMATEX structure to receive information about the format. This
value can be NULL. See Remarks.

pdwWaveFormatExSize
Address of a variable that contains, or is to receive, the size of the structure. See
Remarks.

pdwBufferSize
Address of a variable to receive the recommended size of the DirectSound
buffer.

Return Values
Return values are determined by the implementation. If successful, the method
should return S_OK. If it fails, the method may return E_POINTER.

Remarks
The WAVEFORMATEX structure can have a variable length that depends on the
details of the format. Before retrieving the format description, the application should
query the synthesizer object for the size of the format by calling this method and
specifying NULL for the pWaveFormatEx parameter. The size of the structure will
be returned in the variable pointed to by pdwWaveFormatExSize. The application
can then allocate sufficient memory and call GetFormat again to retrieve the format
description.

If pWaveFormatEx is not NULL, DirectMusic writes, at most,
pdwWaveFormatExSize bytes to the structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 228

Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPort::SetDirectSound

IDirectMusicPort::GetLatencyClock
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetLatencyClock method is used to get an
IReferenceClock interface pointer to the port’s latency clock. The latency clock
specifies the nearest time in the future at which a message can be played on time.
The latency clock is based on the DirectMusic master clock, which is set by using
the IDirectMusic::SetMasterClock method.

HRESULT GetLatencyClock(
 IReferenceClock** ppClock
);

ppClock
Address of a variable to receive the latency clock’s IReferenceClock interface
pointer.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
In accordance with COM rules, GetLatencyClock increments the reference count of
the returned interface. Therefore the application must call Release on the
IReferenceClock interface at some point.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Latency and Bumper Time

in.doc – page 229

IDirectMusicPort::GetNumChannel
Groups

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetNumChannelGroups method retrieves the number of
channel groups on the port.

HRESULT GetNumChannelGroups
 LPDWORD pdwChannelGroups
);

pdwChannelGroups
Address of a variable to receive the number of channel groups.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPort::SetNumChannelGroups, Channels

IDirectMusicPort::GetRunningStat
s

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::GetRunningStats method retrieves information about the
state of the port’s synthesizer.

HRESULT GetRunningStats(
 LPDMUS_SYNTHSTATS pStats

in.doc – page 230

);

pStats
Address of a DMUS_SYNTHSTATS structure to receive running statistics of
the synthesizer. The dwSize member of this structure must be properly
initialized before the method is called.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_INVALIDARG
E_NOTIMPL

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPort::PlayBuffer
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::PlayBuffer method is used to cue a buffer for playback by
the port.

HRESULT PlayBuffer(
 IDIRECTMUSICBUFFER* pBuffer
);

pBuffer
DirectMusicBuffer object to be added to the port’s playback queue.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_NOTIMPL

in.doc – page 231

E_OUTOFMEMORY

Remarks
The buffer is in use by the system only for the duration of this method and is free to
be reused after the method returns.

If no start time has been set by using the IDirectMusicBuffer::SetStartTime
method, the start time is the time of the earliest event in the buffer, as set by the
IDirectMusicBuffer::PackStructured or IDirectMusicBuffer::PackUnstructured
method.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer, IDirectMusic::CreateMusicBuffer

IDirectMusicPort::Read
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::Read method fills a buffer with incoming MIDI data. The
method should be called with new buffer objects until no more data is available to be
read.

HRESULT Read(
 IDirectMusicBuffer *pBuffer
);

pBuffer
Pointer to a DirectMusicBuffer object to be filled with the incoming MIDI data.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE.

If it fails, the method may return one of the following error values:

E_POINTER
E_NOTIMPL

in.doc – page 232

Remarks
When there is no more data to read, the method returns S_FALSE.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Capturing Music

IDirectMusicPort::SetChannelPrior
ity

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::SetChannelPriority method is used to set the priority of a
MIDI channel. For an overview, see Channels.

HRESULT SetChannelPriority(
 DWORD dwChannelGroup,
 DWORD dwChannel,
 DWORD dwPriority
);

dwChannelGroup
Group the channel is in. This value must be 1 or greater.

dwChannel
Index of the channel on the group.

dwPriority
The priority ranking. See Remarks for
IDirectMusicPort::GetChannelPriority.

Return Values
If the method succeeds, the return value is S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

in.doc – page 233

See Also
IDirectMusicPort::GetChannelPriority,
DMUS_CHANNEL_PRIORITY_PMSG.

IDirectMusicPort::SetDirectSound
[This is preliminary documentation and subject to change.]

The IDirectMusicPort::SetDirectSound method is used to override the default
DirectSound object or buffer, or both, to which a port's wave data is streamed. It is
also used to disconnect the port from DirectSound.

HRESULT SetDirectSound(
 LPDIRECTSOUND pDirectSound,
 LPDIRECTSOUNDBUFFER pDirectSoundBuffer
);

pDirectSound
IDirectSound interface of the DirectSound object to which the port is to be
connected, or NULL to disconnect and release the existing DirectSound object.

pDirectSoundBuffer
IDirectSoundBuffer interface to connect the port to. This value can be NULL.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_ALREADY_ACTIVATED
E_INVALIDARG

Remarks
When the port is activated, the primary DirectSound buffer will be upgraded, if
necessary, to support the sample rate and channel information for this port (specified
in the DMUS_PORTPARAMS structure passed to IDirectMusic::CreatePort).

The buffer pointed to by pDirectSoundBuffer must be a secondary streaming buffer
with a format that matches the sample rate and channel information for this port. If
this parameter is NULL, then an appropriate IDirectSoundBuffer instance will be
created internally.

Neither the IDirectSound nor the IDirectSoundBuffer may be changed once the
port has been activated.

in.doc – page 234

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPort::Activate, IDirectMusicPort::GetFormat, Integrating
DirectMusic and DirectSound

IDirectMusicPort::SetNumChannel
Groups

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::SetNumChannelGroups method changes the number of
channel groups that the application needs on the port.

HRESULT SetNumChannelGroups(
 DWORD dwChannelGroups
);

dwChannelGroups
Number of channel groups on this port that the application wants to allocate.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

in.doc – page 235

See Also
IDirectMusicPort::GetNumChannelGroups, Channels

IDirectMusicPort::SetReadNotifica
tionHandle

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::SetReadNotificationHandle method specifies an event that
is to be set when MIDI messages are available to be read with the
IDirectMusicPort::Read method. The event will be signaled whenever new data is
available. To turn off event notification, call SetReadNotificationHandle with a
NULL value for the hEvent parameter.

HRESULT SetReadNotificationHandle(
 HANDLE hEvent
);

hEvent
An event handle obtained from a call to the Win32 CreateEvent function. It is
the application's responsibility to close this handle once the port has been
released.

Return Values
The method returns S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Capturing Music

IDirectMusicPort::UnloadInstrume
nt

[This is preliminary documentation and subject to change.]

The IDirectMusicPort::UnloadInstrument method is used to unload a previously
downloaded DLS instrument.

in.doc – page 236

HRESULT UnloadInstrument(
 IDirectMusicDownloadedInstrument *pDownloadedInstrument
);

pDownloadedInstrument
Pointer to an IDirectMusicDownloadedInstrument interface, obtained when
the instrument was downloaded by calling the
IDirectMusicPort::DownloadInstrument method.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_DOWNLOADED_TO_PORT
E_POINTER
E_NOTIMPL

Remarks
This method must be called in order to free memory allocated by
IDirectMusicPort::DownloadInstrument.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Working with Instruments

IDirectMusicPortDownload
[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload interface allows an application to talk directly to a
port that supports DLS downloading, and to download memory chunks directly to
the port. The interface is used primarily by authoring applications that directly edit
DLS instruments. For an overview, see Low-Level DLS.

To obtain the IDirectMusicPortDownload interface, call the
IDirectMusicPort::QueryInterface method, passing in
IID_IDirectMusicPortDownload as the interface GUID. If the port does not support
DLS downloading, this call might fail.

in.doc – page 237

The methods of the IDirectMusicPortDownload interface can be grouped as
follows:

Buffer management AllocateBuffer
GetAppend
GetBuffer
GetDLId

Loading Download
Unload

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPortDownload::Allocat
eBuffer

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::AllocateBuffer method allocates a chunk of
memory for downloading DLS data to the port, and returns an
IDirectMusicDownload interface pointer that allows access to this buffer.

HRESULT AllocateBuffer(
 DWORD dwSize,
 IDirectMusicDownload** ppIDMDownload
);

dwSize
Requested size of buffer.

ppIDMDownload
Address of a variable to receive the IDirectMusicDownload interface pointer.

Return Values
If the method succeeds, it returns S_OK.

in.doc – page 238

If it fails, the method may return one of the following error values:

E_POINTER
E_INVALIDARG
E_OUTOFMEMORY

Remarks
Once a buffer has been allocated, the size cannot change.

The buffer is freed when the IDirectMusicDownload interface is released.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPortDownload::GetBuffer, Low-Level DLS

IDirectMusicPortDownload::Downl
oad

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::Download method downloads a wave or
instrument definition to the port. The memory must first be allocated by using the
IDirectMusicPortDownload::AllocateBuffer method.

HRESULT Download(
 IDirectMusicDownload* pIDMDownload
);

pIDMDownload
IDirectMusicDownload interface pointer for the buffer.

Return Values
Return values are determined by the implementation of the port.

If the method succeeds, it returns S_OK.

If the method fails, it may return one of the following values:

E_POINTER

in.doc – page 239

E_FAIL
DMUS_E_ALREADY_DOWNLOADED
DMUS_E_BADARTICULATION
DMUS_E_BADINSTRUMENT
DMUS_E_BADOFFSETTABLE
DMUS_E_BADWAVE
DMUS_E_BADWAVELINK
DMUS_E_BUFFERNOTSET
DMUS_E_NOARTICULATION
DMUS_E_NOTMONO
DMUS_E_NOTPCM
DMUS_E_UNKNOWNDOWNLOAD

Remarks
For more information on how to prepare the data to be downloaded, see Low-Level
DLS.

Once the memory has been downloaded, you cannot do anything more with it. To
update the download, you must create a new buffer and assign it a new download ID
obtained by using the IDirectMusicPortDownload::GetDLId method, then send it
down.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPortDownload::Unload, DMUS_DOWNLOADINFO,
DMUS_OFFSETTABLE

IDirectMusicPortDownload::GetAp
pend

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::GetAppend method retrieves the amount of
memory the port needs to be appended to the end of a download buffer. This extra
memory can be used by the port to interpolate across a loop boundary.

HRESULT GetAppend(

in.doc – page 240

 DWORD* pdwAppend
);

pdwAppend
Address of a variable to receive the number of appended samples for which
memory is required. The actual amount of memory can be calculated from the
wave format.

Return Values
Return values are determined by the port implementation.

If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_NOTIMPL

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicPortDownload::GetBu
ffer

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::GetBuffer method retrieves the
IDirectMusicDownload interface pointer of a buffer whose unique identifier is
known.

HRESULT GetBuffer(
 DWORD dwDLId,
 IDirectMusicDownload** ppIDMDownload
);

dwDLId
Download identifier of the buffer. See DMUS_DOWNLOADINFO.

ppIDMDownload
Address of a variable to receive the IDirectMusicDownload interface pointer
for the buffer.

in.doc – page 241

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
DMUS_E_INVALID_DOWNLOADID
DMUS_E_NOT_DOWNLOADED_TO_PORT

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPortDownload::GetDLId, IDirectMusicDownload::GetBuffer,
Low-Level DLS.

IDirectMusicPortDownload::GetDLI
d

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::GetDLId method obtains sequential identifiers
for one or more download buffers.

Every memory chunk downloaded to the synthesizer must have a unique identifier
placed in its DMUS_DOWNLOADINFO structure. The GetDLId method
guarantees that no two downloads have the same identifier.

HRESULT GetDLId(
 DWORD* pdwStartDLId,
 DWORD dwCount
);

pdwStartDLId
Address of a variable to receive the first identifier.

dwCount
Number of identifiers to reserve. You might plan to download a whole series of
chunks at once. Instead of calling GetDLId for each chunk, set dwCount to the
number of chunks. GetDLId returns the first ID of the set, and the additional
identifiers are automatically reserved up through *pdwStartDLId + dwCount. A
subsequent call to GetDLId will skip past the reserved values.

in.doc – page 242

Return Values
If the method succeeds, it returns S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_INVALIDARG

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicPortDownload::GetBuffer, Low-Level DLS

IDirectMusicPortDownload::Unloa
d

[This is preliminary documentation and subject to change.]

The IDirectMusicPortDownload::Unload method unloads a buffer that was
previously downloaded by using IDirectMusicPortDownload::Download.

HRESULT Unload(
 IDirectMusicDownload* pIDMDownload
);

pIDMDownload
IDirectMusicDownload interface pointer for the buffer.

Return Values
Return values are determined by the port implementation.

If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following values:

E_NOINTERFACE
DMUS_E_SYNTHNOTCONFIGURED

in.doc – page 243

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicSegment
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment interface represents a segment, a chunk of music made
up of multiple tracks. Because almost all of the information that defines a segment is
stored in the tracks, and because tracks can be just about anything, the segment itself
is a relatively simple object. There are methods to access data in tracks, even though
the segment object has no knowledge of the nature of the data.
The DirectMusicSegment object also supports the IDirectMusicObject and
IPersistStream interfaces for loading its data.

The methods of the IDirectMusicSegment interface can be grouped as follows:

Timing and looping GetDefaultResolution
GetLength
GetLoopPoints
GetRepeats
GetStartPoint
SetDefaultResolution
SetLength
SetLoopPoints
SetRepeats
SetStartPoint

Tracks GetTrack
GetTrackGroup
InsertTrack
RemoveTrack

Notification AddNotificationType
RemoveNotificationType

Parameters GetParam
SetParam

Tools GetGraph
SetGraph

Miscellaneous Clone
InitPlay

in.doc – page 244

SetPChannelsUsed

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Segments

IDirectMusicSegment::AddNotifica
tionType

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::AddNotificationType method is similar to and called
from the IDirectMusicPerformance::AddNotificationType method, giving the
segment a chance to respond to notifications. The segment calls each track's
IDirectMusicTrack::AddNotificationType method.

HRESULT AddNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Reference to (C++) or address of (C) the identifier of the notification type to
add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications
can also define their own types for custom tracks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_OUTOFMEMORY

in.doc – page 245

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Notification and Event Handling

IDirectMusicSegment::Clone
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::Clone method creates a copy of all or part of the
segment and the tracks it contains.

HRESULT Clone(
 MUSIC_TIME mtStart,
 MUSIC_TIME mtEnd,
 IDirectMusicSegment** ppSegment
);

mtStart
The start of the part to clone. If less than 0, or greater than the length of the
segment, 0 will be used.

mtEnd
The end of the part to clone. If this value is past the end of the segment, the
segment will be cloned to the end. A value of 0 or anything less than mtStart
will also clone to the end.

ppSegment
Address of a variable to receive a pointer to the created segment, if successful. It
is caller's responsibility to call Release when finished with the segment.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if some tracks failed
to clone.

If it fails, the method may return one of the following error values:

E_OUTOFMEMORY
E_POINTER

in.doc – page 246

Remarks
If an IDirectMusicGraph exists in the segment, a copy of the pointer is included in
the clone and the reference count is incremented. The start point and loop points set
by the IDirectMusicSegment::SetStartPoint and
IDirectMusicSegment::SetLoopPoints methods are set to their default values (0,
and 0 to the end of the segment respectively) inside the clone. The number of repeats
is also reset to 0. The resolution set by the
IDirectMusicSegment::SetDefaultResolution method is copied into the clone.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicSegment::GetDefault
Resolution

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetDefaultResolution method retrieves the default
resolution for synchronization.

HRESULT GetDefaultResolution(
 DWORD* pdwResolution
);

pdwResolution
Address of a variable to receive the default resolution. See
DMUS_SEGF_FLAGS.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 247

See Also
IDirectMusicSegment::SetDefaultResolution, Segment Timing

IDirectMusicSegment::GetGraph
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetGraph method retrieves the segment's tool graph.

HRESULT GetGraph(
 IDirectMusicGraph** ppGraph
);

ppGraph
Address of a variable to receive a pointer to the tool graph.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_POINTER

Remarks
If there is no graph in the segment, the method returns E_FAIL.

The reference count of the tool graph is incremented.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetGraph

IDirectMusicSegment::GetLength
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetLength method retrieves the length of the segment.

HRESULT GetLength(

in.doc – page 248

 MUSIC_TIME* pmtLength
);

pmtLength
Address of a variable to receive the segment's length in music time.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
If for some reason the segment's length was never set, *pmtLength is set to 0.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetLength

IDirectMusicSegment::GetLoopPoi
nts

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetLoopPoints method retrieves the start and end loop
points inside the segment that will repeat the number of times set by the
IDirectMusicSegment::SetRepeats method.

HRESULT GetLoopPoints(
 MUSIC_TIME* pmtStart,
 MUSIC_TIME* pmtEnd
);

pmtStart
Address of a variable to receive the start point of the loop.

pmtEnd
Address of a variable to receive the end point of the loop. A value of 0 indicates
that the entire segment will loop.

in.doc – page 249

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetLoopPoints, Segment Timing

IDirectMusicSegment::GetParam
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetParam method retrieves data from a track inside
this segment.

HRESULT GetParam(
 REFGUID rguidType,
 DWORD dwGroupBits,
 DWORD dwIndex,
 MUSIC_TIME mtTime,
 MUSIC_TIME* pmtNext,
 void* pParam
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data to obtain.
See Track Parameter Types.

dwGroupBits
Group the desired track is in. Use 0xFFFFFFFF for all groups. For more
information, see Identifying the Track.

dwIndex
Index of the track in the group identified by dwGroupBits from which to obtain
the data.

mtTime
Time from which to obtain the data.

pmtNext
Address of a variable to receive the segment time (relative to mtTime) until
which the data is valid. If this returns a value of 0, it means either that the data

in.doc – page 250

will always be valid, or that it is unknown when it will become invalid. If this
information is not needed, pmtNext can be set to NULL. See Remarks.

pParam
Address of an allocated structure in which the data is to be returned. The
structure must be of the appropriate kind and size for the data type identified by
rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks
The data can become invalid before the time returned in *pmtNext if another control
segment is cued. For more information on control segments, see Segments.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, Music Parameters

IDirectMusicSegment::GetRepeats
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetRepeats method retrieves the number of times the
looping portion of the segment is set to repeat.

HRESULT GetRepeats(
 DWORD* pdwRepeats
);

pdwRepeats
Address of a variable to receive the number of times the looping portion of the
segment is set to repeat.

in.doc – page 251

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetRepeats

IDirectMusicSegment::GetStartPoi
nt

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetStartPoint method retrieves the point where the
segment will start playing in response to the
IDirectMusicPerformance::PlaySegment method.

HRESULT GetStartPoint(
 MUSIC_TIME* pmtStart
);

pmtStart
Address of a variable to receive the time within the segment when it will start
playing.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 252

See Also
IDirectMusicSegment::SetStartPoint

IDirectMusicSegment::GetTrack
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetTrack method searches the list of tracks for the one
with the supplied type, group, and index, and retrieves a pointer to the
DirectMusicTrack object.

HRESULT GetTrack(
 REFGUID rguidType,
 DWORD dwGroupBits,
 DWORD dwIndex,
 IDirectMusicTrack** ppTrack
);

rguidType
Address of (C) or reference to (C++) the identifier of the track to find (for
example, CLSID_DirectMusicChordTrack). A value of GUID_NULL will
retrieve any track. For the track identifiers, see IDirectMusicTrack.

dwGroupBits
Track groups in which to scan for the track. A value of 0 is invalid. Each bit in
dwGroupBits corresponds to a track group. To scan all tracks regardless of
groups, set this parameter to 0xFFFFFFFF.

dwIndex
Zero-based index into the list of tracks of type rguidType and in group
dwGroupBits to return. If multiple groups are selected in dwGroupBits, this
index will indicate the nth track of type rguidType encountered in the union of
the groups selected.

ppTrack
Address of a variable to receive a pointer to the track. The variable set to NULL
if the track is not found.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_FAIL.

Remarks
To enumerate all tracks, use GUID_NULL for the rguidType and 0xFFFFFFFF for
dwGroupBits. Call GetTrack starting with 0 for dwIndex, incrementing dwIndex
until the method no longer returns a success code.

in.doc – page 253

 For more information on track groups, see Identifying the Track.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::InsertTrack

IDirectMusicSegment::GetTrackGr
oup

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::GetTrackGroup method retrieves the group bits set on
a track inside the segment.

HRESULT GetTrackGroup(
 IDirectMusicTrack* pTrack,
 DWORD* pdwGroupBits
);

pTrack
Track for which to find the group bits.

pdwGroupBits
Address of a variable to receive the groups. Each bit in *pdwGroupBits
corresponds to a track group.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 254

See Also
IDirectMusicSegment::InsertTrack, Identifying the Track

IDirectMusicSegment::InitPlay
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::InitPlay method is called by the performance when the
segment is about to be played.

HRESULT InitPlay(
 IDirectMusicSegmentState** ppSegState,
 IDirectMusicPerformance* pPerformance,
 DWORD dwFlags
);

ppSegState
Address of a variable to receive a pointer to the IDirectMusicSegmentState
interface, which is created in response to this method call and is used to hold
state data. It is returned with a reference count of 1, so a call to its Release
method will fully release it.

pPerformance
Address of the IDirectMusicPerformance interface. This is needed by the
segment and segment state in order to call methods on the performance object.

dwFlags
DMUS_SEGF_FLAGS that modify the track's behavior. See Remarks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_POINTER
E_OUTOFMEMORY

Remarks
When a segment is cued to play, it must create a state structure to store all variables
that track the state of one individual performance of the segment. The InitPlay
method is called by the performance engine when the segment is about to be played.
The segment, in turn, collects state objects for each of the tracks, by calling their
IDirectMusicTrack::InitPlay methods, and stores it all in a segment state object,
accessed by using the IDirectMusicSegmentState interface. Later, when the
segment is finished playing, the performance engine frees it by calling the Release
method.

in.doc – page 255

When the segment creates the IDirectMusicSegmentState, it should give the
segment state a copy of pPerformance.

Note that a newly created segment state starts with its seek point set to 0.

The dwFlags parameter passes the flags that were handed to the performance in the
call to IDirectMusicPerformance::PlaySegment. The track makes decisions on
how it should perform based on the DMUS_SEGF_CONTROL and
DMUS_SEGF_SECONDARY flags. For example, the tempo track automatically
plays the tempo changes only if it is part of a primary segment or a secondary
control segment (DMUS_SEGF_SECONDARY is not set, or
DMUS_SEGF_CONTROL is set).

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicSegment::InsertTrack
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::InsertTrack method inserts the supplied track into the
segment's list of tracks.

HRESULT InsertTrack(
 IDirectMusicTrack* pTrack,
 DWORD dwGroupBits
);

pTrack
The track to add to the segment.

dwGroupBits
Group or groups into which to insert the track. This value cannot be 0.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

in.doc – page 256

Remarks
Tracks are put in groups in order to link them correctly. For example, a segment
might contain two style tracks and two mute tracks. Each style track would be put in
a different group along with its associated mute track. For more information on track
groups, see Identifying the Track.

If the segment is currently playing, the new track is not included in playback,
because the segment state was not initialized with the new track.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::RemoveTrack, IDirectMusicSegment::GetTrackGroup

IDirectMusicSegment::RemoveNoti
ficationType

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::RemoveNotificationType method is similar to and
called from the IDirectMusicPerformance::RemoveNotificationType method,
allowing the segment to remove notifications. The segment calls each track's
IDirectMusicTrack::RemoveNotificationType method.

HRESULT RemoveNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Reference to (C++) or address of (C) the identifier of the notification type to
remove. (For the defined types, see DMUS_NOTIFICATION_PMSG.) Setting
this value to GUID_NULL causes all notifications to be removed.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

in.doc – page 257

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Notification and Event Handling

IDirectMusicSegment::RemoveTra
ck

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::RemoveTrack method removes a track from the
segment's track list.

HRESULT RemoveTrack(
 IDirectMusicTrack* pTrack
);

pTrack
The track to remove from the segment's track list.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if the specified track
is not in the track list.

If the method fails, the return value may be E_POINTER.

Remarks
The track is released when removed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::InsertTrack

in.doc – page 258

IDirectMusicSegment::SetDefaultR
esolution

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetDefaultResolution method sets the default
resolution for synchronization.

HRESULT SetDefaultResolution(
 DWORD dwResolution
);

dwResolution
The desired default resolution. This value can be 0 or one of the following
members of the DMUS_SEGF_FLAGS enumeration:
DMUS_SEGF_MEASURE
DMUS_SEGF_BEAT
DMUS_SEGF_GRID

Return Values
The method returns S_OK.

Remarks
This method is used primarily by secondary segments (motifs) to define whether
they are synchronized to the measure, beat, or grid resolutions.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::GetDefaultResolution, Segment Timing

IDirectMusicSegment::SetGraph
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetGraph method assigns a tool graph to the segment.

HRESULT SetGraph(
 IDirectMusicGraph* pGraph
);

in.doc – page 259

pGraph
Tool graph pointer. Can be set to NULL to clear the segment graph.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

Remarks
Any messages flowing through tools in the current tool graph are deleted.

The graph's reference count is incremented, so it is safe to release the original
reference.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetGraph, DirectMusic Tools

IDirectMusicSegment::SetLength
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetLength method sets the length, in music time, of the
segment. This method is usually called by the loader, which retrieves the segment
length from the file and passes it to the segment object.

HRESULT SetLength(
 MUSIC_TIME mtLength
);

mtLength
The desired length. Must be greater than 0.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

in.doc – page 260

E_INVALIDARG
DMUS_E_OUT_OF_RANGE

Remarks
Neglecting to set a primary segment length can cause problems when cueing other
primary segments with the DMUS_SEGF_QUEUE flag.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::GetLength

IDirectMusicSegment::SetLoopPoi
nts

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetLoopPoints method sets the start and end points
inside the segment that will repeat the number of times set by the
IDirectMusicSegment::SetRepeats method.

HRESULT SetLoopPoints(
 MUSIC_TIME mtStart,
 MUSIC_TIME mtEnd
);

mtStart
The point at which to begin the loop.

mtEnd
The point at which to end the loop. A value of 0 loops the entire segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_OUT_OF_RANGE.

in.doc – page 261

Remarks
When the segment is played, it plays from the segment start time up till mtEnd, then
loops to mtStart, plays the looped portion the number of times set by
IDirectMusicSegment::SetRepeats, then plays to the end.

The default values are set to loop the entire segment from beginning to end.

The method fails if mtStart is greater than or equal to the length of the segment, or if
mtEnd is greater than the length of the segment. If mtEnd is 0, mtStart must be 0 as
well.

This method does not affect any currently playing segment states created from this
segment.

The loop points of a cached segment persist even if the segment is released and then
reloaded. To ensure that a segment is not subsequently reloaded from the cache, call
IDirectMusicLoader::ReleaseObject on it before releasing it.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::GetLoopPoints, Segment Timing

IDirectMusicSegment::SetParam
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetParam method sets data on a track inside this
segment.

HRESULT SetParam(
 REFGUID rguidType,
 DWORD dwGroupBits,
 DWORD dwIndex,
 MUSIC_TIME mtTime,
 void* pParam
);

rguidType
Reference to (C++) or address of (C) the type of data to set. See Track
Parameter Types.

dwGroupBits

in.doc – page 262

Group the desired track is in. Use 0xFFFFFFFF for all groups. For more
information, see the Remarks for IDirectMusicPerformance::SetParam.

dwIndex
Index of the track in the group identified by dwGroupBits in which to set the
data.

mtTime
Time at which to set the data.

pParam
Address of structure containing the data, or NULL if no data is required. The
structure must be of the appropriate kind and size for the data type identified by
rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam,
IDirectMusicTrack::SetParam, Music Parameters

IDirectMusicSegment::SetPChanne
lsUsed

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetPChannelsUsed method sets the performance
channels (PChannels) this segment uses. This method is usually called by a track in
the IDirectMusicTrack::Init method, in order to inform the segment which
PChannels the track uses.

HRESULT SetPChannelsUsed(
 DWORD dwNumPChannels,

in.doc – page 263

 DWORD* paPChannels
);

dwNumPChannels
The number of PChannels to set. This must be equal to the number of members
in the array pointed to by paPChannels.

paPChannels
Points to an array of PChannels.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks
The purpose of this method is to allow the performance to know which ports are
being used by the segment, so that it can determine the actual latency rather than
providing for the worst case.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Latency and Bumper Time, Channels

IDirectMusicSegment::SetRepeats
[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetRepeats method sets the number of times the
looping portion of the segment is to repeat. By default, the entire segment is looped.

HRESULT SetRepeats(
 DWORD dwRepeats
);

in.doc – page 264

dwRepeats
The number of times the looping portion of the segment is to repeat. A value of
0 indicates a single play with no repeats.

Return Values
The method returns S_OK.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::GetRepeats, IDirectMusicSegment::SetLoopPoints,
Segment Timing

IDirectMusicSegment::SetStartPoi
nt

[This is preliminary documentation and subject to change.]

The IDirectMusicSegment::SetStartPoint method sets the point where the segment
will start playing in response to a call to the
IDirectMusicPerformance::PlaySegment method.

HRESULT SetStartPoint(
 MUSIC_TIME mtStart
);

mtStart
Point within the segment at which it is to start playing. If this value is less than 0
or greater than the length of the segment, the start point will be set to 0.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return DMUS_E_OUT_OF_RANGE.

Remarks
By default the start point is 0, meaning the segment starts from the beginning.

in.doc – page 265

The method fails if mtStart is greater than or equal to the length of the segment. If
the segment does not already have a length, IDirectMusicSegment::SetLength
must be called before this method.

The method does not affect any currently playing segment states created from this
segment.

The start point of a cached segment persists even if the segment is released and then
reloaded. To ensure that a segment is not subsequently reloaded from the cache, call
IDirectMusicLoader::ReleaseObject on it before releasing it.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::GetStartPoint,
IDirectMusicSegmentState::GetStartPoint, IDirectMusicSegment::SetLength,
IDirectMusicSegment::SetLoopPoints, Segment Timing

IDirectMusicSegmentState
[This is preliminary documentation and subject to change.]

When the IDirectMusicPerformance::PlaySegment method is called, the
performance engine generates a segment state object which tracks the state of the
playing segment. It also provides the application with a handle to the segment, in the
form of the IDirectMusicSegmentState interface, which can be used to track the
playback status of the segment, as well as to directly stop it or remove it from the
performance using methods of IDirectMusicPerformance.

Segment state objects can also be created by using CoCreateInstance, or by calling
IDirectMusicSegment::InitPlay directly, but segment states generated in this
manner aren't very useful.

The interface has the following methods:

Information GetRepeats
GetSeek
GetSegment
GetStartPoint
GetStartTime

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

in.doc – page 266

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetRe
peats

[This is preliminary documentation and subject to change.]

The IDirectMusicSegmentState::GetRepeats method returns the number of times
the looping portion of the segment was set to repeat.

HRESULT GetRepeats(
 DWORD* pdwRepeats
);

pdwRepeats
Address of a variable to receive the repeat count. A value of 0 indicates that the
segment is to play through only once, with no portion repeated.

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicSegment::SetRepeats

in.doc – page 267

IDirectMusicSegmentState::GetSe
ek

[This is preliminary documentation and subject to change.]

The IDirectMusicSegmentState::GetSeek method retrieves the current seek pointer
in the segment state. This is the value that will be passed in the mtStart parameter of
IDirectMusicTrack::Play the next time that method is called. It does not take into
account looping and repeating, so that if the entire segment state repeats to the
beginning, the seek pointer is reset to 0.

HRESULT GetSeek(
 MUSIC_TIME* pmtSeek
);

pmtSeek
Address of variable to receive the current seek pointer.

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetSe
gment

[This is preliminary documentation and subject to change.]

The IDirectMusicSegmentState::GetSegment method returns a pointer to the
segment that owns this segment state.

HRESULT GetSegment(
 IDirectMusicSegment** ppSegment
);

ppSegment
Address of a variable to receive a pointer to the IDirectMusicSegment
interface.

in.doc – page 268

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

Remarks
The pointer returned in ppSegment must be released by the application.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetSta
rtPoint

[This is preliminary documentation and subject to change.]

The IDirectMusicSegmentState::GetStartPoint method returns the offset into the
segment at which play begins or began.

HRESULT GetStartPoint(
 MUSIC_TIME * pmtStart
);

pmtStart
Address of a variable to receive the music time offset from the start of the
segment at which the segment state initially plays.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 269

See Also
IDirectMusicSegment::SetStartPoint, IDirectMusicSegmentState::GetStartTime

IDirectMusicSegmentState::GetSta
rtTime

[This is preliminary documentation and subject to change.]

The IDirectMusicSegmentState::GetStartTime method gets the performance time
at which the beginning of the segment falls, or would fall if the segment was played
from the beginning.

HRESULT GetStartTime(
 MUSIC_TIME* pmtStart
);

pmtStart
Address of a variable to receive the music time offset stored in this segment
state.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_BUFFER_EMPTY
E_POINTER

Remarks
If the segment was started from some point other than the beginning, this method
returns the time at which play started minus the offset into the segment where play
started. For example, if you played a segment at tick 5000 of the performance, and
started from tick 1000 within the segment, the start time of the segment state would
be 4000.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 270

See Also
IDirectMusicSegment::SetStartPoint, IDirectMusicSegment::GetStartPoint,
IDirectMusicSegmentState::GetStartPoint

IDirectMusicStyle
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle interface provides access to a style object. The style object
provides the performance with the information it needs to play musical patterns. For
an overview, see Using Styles.

Since styles usually include bands and motifs, the IDirectMusicStyle interface
provides methods for accessing these objects.

The DirectMusicStyle object also supports the IDirectMusicObject and
IPersistStream interfaces for loading its data.

The methods of the IDirectMusicStyle interface can be organized in the following
groups:

Enumeration EnumBand
EnumChordMap
EnumMotif

Information GetBand
GetChordMap
GetDefaultBand
GetDefaultChordMap
GetEmbellishmentLength
GetMotif
GetTempo
GetTimeSignature

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 271

IDirectMusicStyle::EnumBand
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::EnumBand method retrieves the name of the band with a
given index value.

HRESULT EnumBand(
 DWORD dwIndex,
 WCHAR * pwszName
);

dwIndex
Zero-based index into the style's band list.

pwszName
Address of a variable to receive the band name. This should be of size
MAX_PATH.

Return Values
If the method succeeds, it returns S_OK, or S_FALSE if there is no band with the
given index value, or DMUS_S_STRING_TRUNCATED if the length of the name is
greater than MAX_PATH.

If it fails, the method may return one of the following error values:

DMUS_E_TYPE_UNSUPPORTED
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicStyle::EnumChordMap
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::EnumChordMap method retrieves the name of the
chordmap with the given index value.

HRESULT EnumChordMap(
 DWORD dwIndex,
 WCHAR * pwszName
);

in.doc – page 272

dwIndex
Zero-based index of the chordmap in the style's chordmap list.

pwszName
Address of a variable to receive the chordmap name. This should of size
MAX_PATH.

Return Values
If the method succeeds, the return value is S_OK, S_FALSE if there is no chordmap
with the given index value, or DMUS_S_STRING_TRUNCATED if the length of
the name is greater than MAX_PATH.

If it fails, the method may return one of the following error values:

DMUS_E_TYPE_UNSUPPORTED
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicStyle::EnumMotif
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::EnumMotif method retrieves the name of a motif with a
given index value.

HRESULT EnumMotif(
 DWORD dwIndex,
 WCHAR * pwszName
);

dwIndex
Zero-based index into the style's motif list.

pwszName
Address of a variable to receive the motif name. This should be of size
MAX_PATH.

Return Values
If the method succeeds, the return value is S_OK, S_FALSE if there is no motif with
the given index value, or DMUS_S_STRING_TRUNCATED if the length of the
motif name is greater than MAX_PATH.

in.doc – page 273

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicStyle::GetMotif, Using Motifs

IDirectMusicStyle::GetBand
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetBand method retrieves the named band.

HRESULT GetBand(
 WCHAR* pwszName,
 IDirectMusicBand** ppBand
);

pwszName
The name of the band to be retrieved. This name is assigned by the author of the
style.

ppBand
Address of a variable to receive a pointer to the band.

Return Values
If the method succeeds, the return value is S_OK if a band is returned, or S_FALSE
if there is no band with that name.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicStyle::GetDefaultBand, Using Bands

in.doc – page 274

IDirectMusicStyle::GetChordMap
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetChordMap method retrieves a named chordmap.

HRESULT GetChordMap(
 WCHAR* pwszName,
 IDirectMusicChordMap** ppChordMap
);

pwszName
Name of the chordmap to be retrieved.

ppChordMap
Address of a variable to receive a pointer to the IDirectMusicChordMap
interface.

Return Values
If the method succeeds, the return value is S_OK if a chordmap is returned, or
S_FALSE if there is no chordmap by that name.

If ppChordMap is not a valid pointer, the method returns E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicStyle::GetDefaultChordMap, Using Chordmaps

IDirectMusicStyle::GetDefaultBand
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetDefaultBand method retrieves the style's default band.

HRESULT GetDefaultBand(
 IDirectMusicBand ** ppBand
);

ppBand
Address of a variable to receive a pointer to the default band.

in.doc – page 275

Return Values
If the method succeeds, the return value is S_OK if a band is returned, or S_FALSE
if the style does not have a default band.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicStyle::GetBand, Using Bands

IDirectMusicStyle::GetDefaultChor
dMap

[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetDefaultChordMap method retrieves the style's default
chordmap.

HRESULT GetDefaultChordMap(
 IDirectMusicChordMap** ppChordMap
);

ppChordMap
Address of a variable to receive a pointer to the IDirectMusicChordMap
interface.

Return Values
If the method succeeds, the return value is S_OK if a chordmap is returned, or
S_FALSE if the style does not have a default chordmap.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 276

See Also
IDirectMusicStyle::GetChordMap, Using Chordmaps

IDirectMusicStyle::GetEmbellishm
entLength

[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetEmbellishmentLength method finds the shortest and
longest lengths for patterns of the specified embellishment type and groove level.

HRESULT GetEmbellishmentLength(
 DWORD dwType,
 DWORD dwLevel,
 DWORD* pdwMin,
 DWORD* pdwMax
);

dwType
Embellishment type. See DMUS_COMMANDT_TYPES.

dwLevel
A groove level in the range 1 to 100. Ignored for non-groove embellishments.

pdwMin
Length of the shortest pattern of the specified type and groove level.

pdwMax
Length of the longest pattern of the specified type and groove level.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE.

If the method fails, the return value may be E_POINTER.

Remarks
If there are no patterns of the specified type and groove level, the method returns
S_FALSE.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 277

IDirectMusicStyle::GetMotif
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetMotif method creates a segment containing the named
motif.

HRESULT GetMotif(
 WCHAR* pwszName,
 IDirectMusicSegment** ppSegment
);

pwszName
Name of the motif to be retrieved.

ppSegment
Address of a variable to receive a pointer to a segment containing the named
motif.

Return Values
If the method succeeds, the return value is S_OK or S_FALSE.

If it fails, the method may return E_POINTER.

Remarks
The method searches the style's list of motifs for one whose name matches
pwszName. If one is found, a segment is created containing a motif track. The track
references the style as its associated style and the motif as its pattern.

If there is no motif with the given name, the method returns S_FALSE.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Using Motifs

IDirectMusicStyle::GetTempo
[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetTempo method retrieves the recommended tempo of
the style.

in.doc – page 278

HRESULT GetTempo(
 double* pTempo
);

pTempo
Recommended tempo of the style.

Return Values
If the method succeeds, the return value is S_OK.

If pTempo is not a valid pointer, the method returns E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicStyle::GetTimeSignat
ure

[This is preliminary documentation and subject to change.]

The IDirectMusicStyle::GetTimeSignature method retrieves the style's time
signature.

HRESULT GetTimeSignature(
 DMUS_TIMESIGNATURE* pTimeSig
);

pTimeSig
Address of a DMUS_TIMESIGNATURE structure to receive data.

Return Values
If the method succeeds, the return value is S_OK.

If the method fails, the return value may be E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 279

IDirectMusicThru
[This is preliminary documentation and subject to change.]

The IDirectMusicThru interface supports thruing of music messages from a capture
port to another port. It is obtained by calling QueryInterface on the
IDirectMusicPort interface for the capture port. For an example, see the Remarks
for IDirectMusicThru::ThruChannel.

The interface has the following method:

IDirectMusicThru ThruChannel

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
Capturing Music

IDirectMusicThru::ThruChannel
[This is preliminary documentation and subject to change.]

The IDirectMusicThru::ThruChannel method establishes or breaks a thruing
connection between a channel on a capture port and a channel on another port.

HRESULT ThruChannel(
 DWORD dwSourceChannelGroup,
 DWORD dwSourceChannel,
 DWORD dwDestinationChannelGroup,
 DWORD dwDestinationChannel,
 LPDIRECTMUSICPORT pDestinationPort
);

dwSourceChannelGroup
Channel group on the capture port. In the current version of DirectMusic, this
value will always be 1.

in.doc – page 280

dwSourceChannel
Source channel.

dwDestinationChannelGroup
Channel group on the destination port.

dwDestinationChannel
Destination channel.

pDestinationPort
IDirectMusicPort for the destination channel. Set this value to NULL in order
to break an existing thruing connection.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_NOTIMPL
E_INVALIDARG
DMUS_E_PORT_NOT_RENDER

Remarks
Thruing to the Microsoft Software Synthesizer is not recommended. Thruing is done
as soon as possible upon reception of the incoming MIDI events. Because of the
comparatively high latency of the software synthesizer (compared with a hardware
port), and the fact that it renders blocks of audio data at a time, each event is delayed
by a small, essentially random amount of time before it actually plays. This random
offset shows up as jitter in the playback of the data. Latency of other devices (such
as an MPU-401 port) is small enough that the jitter does not occur.

If an application needs to thru to the software synthesizer, it should add a small
offset to the incoming note event time stamps to compensate for the rendering
latency of the synthesizer.

The following example function obtains the IDirectMusicThru interface and
establishes a thru connection between all channels on group 1 of the capture port and
the equivalent channels on a destination port.

HRESULT SetupOneToOneThru(
 IDirectMusicPort *pCapturePort,
 IDirectMusicPort *pRenderPort)
{
 HRESULT hr;
 IDirectMusicThru *pThru;

 hr = pCapturePort->QueryInterface(IID_IDirectMusicThru,
 (void**)&pThru);

in.doc – page 281

 if (FAILED(hr))
 return hr;

 for (DWORD dwChannel = 0; dwChannel < 16; dwChannel++)
 {
 hr = pThru->ThruChannel(1, dwChannel,
 1, dwChannel, pRenderPort);
 if (FAILED(hr))
 break;
 }

 pThru->Release();
 return hr;
}

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IDirectMusicTool
[This is preliminary documentation and subject to change.]

Tools are objects that implement the IDirectMusicTool interface. They are used
inside graphs (see IDirectMusicGraph). When a message is sent using
IDirectMusicPerformance::SendPMsg, the message flows through tools inside
graphs. The tools can modify the message, make additional messages, remove
messages, and so on.

This interface is of most interest to developers who want to create their own tools.

The methods of the IDirectMusicTool interface can be organized in the following
groups:

Initialization Init
Message management Flush

GetMediaTypeArraySize
GetMediaTypes
GetMsgDeliveryType
ProcessPMsg

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

in.doc – page 282

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Overview of DirectMusic Data Flow, Message Creation and Delivery, DirectMusic
Tools

IDirectMusicTool::Flush
[This is preliminary documentation and subject to change.]

The IDirectMusicTool::Flush method is called for each message in the queue when
the performance stops. The tool can use the method to do whatever is necessary to
flush the message. For instance, the output tool uses this method to ensure that any
pending note-off messages are immediately processed.

HRESULT Flush(
 IDirectMusicPerformance* pPerf,
 DMUS_PMSG* pPMSG,
 REFERENCE_TIME rtTime
);

pPerf
Pointer to the IDirectMusicPerformance interface.

pPMSG
Pointer to the message to flush.

rtTime
Time at which to flush.

Return Values
Return values are determined by the implementation. If the method succeeds, the
return value should be one of the following:

DMUS_S_REQUEUE
DMUS_S_FREE
S_OK

in.doc – page 283

If it fails, the method may return E_POINTER.

Remarks
The message will have DMUS_PMSGF_TOOL_FLUSH set in its dwFlags member.
See DMUS_PMSG.

If the method returns DMUS_S_REQUEUE, the tool wants the message to be
requeued. This allows the tool to put a new timestamp and parameters on the
message and requeue it, or to requeue the message with a different delivery type.

If the return value is DMUS_S_FREE, the tool wants the message freed
automatically, and does not wish to requeue the message.

If S_OK is returned, the tool does not wish the message to be freed automatically.
Perhaps the tool is holding onto the message for some reason, or has freed it itself.

Care must be taken not to create a circular reference to the performance represented
by pPerf. For more information, see DirectMusic Tools.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTool::GetMediaTypeAr
raySize

[This is preliminary documentation and subject to change.]

The IDirectMusicTool::GetMediaTypeArraySize method retrieves the size of the
array that must be passed into the IDirectMusicTool::GetMediaTypes method. A
return value of 0 indicates that the tool handles all types, and it is unnecessary to call
GetMediaTypes.

HRESULT GetMediaTypeArraySize(
 DWORD* pdwNumElements
);

pdwNumElements
Address of a variable to receive the number of media types. If 0 is returned in
this field, all types are supported.

in.doc – page 284

Return Values
Return values are determined by the implementation. If successful, the method
should return S_OK. If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTool::GetMediaTypes
[This is preliminary documentation and subject to change.]

The IDirectMusicTool::GetMediaTypes method retrieves a list of the type of
messages this tool supports.

HRESULT GetMediaTypes(
 DWORD** padwMediaTypes,
 DWORD dwNumElements
);

padwMediaTypes
Address of a pointer to an array of DWORDs. The method fills this array with
the media types supported by this tool. For media types, see
DMUS_PMSGT_TYPES.

dwNumElements
Number of elements in the array padwMediaTypes. This value should be equal
to the number returned by the IDirectMusicTool::GetMediaTypeArraySize
method. If dwNumElements is less than this number, the method can't return all
of the message types that are supported. If it is greater than this number, the
extra elements in the array should be set to 0.

Return Values
Return values are determined by the implementation. If successful, the method
should return S_OK, or S_FALSE if the method couldn't fill in all values because
dwNumElements was too small. If it fails, the method may return one of the
following error values:

E_POINTER
E_INVALIDARG
E_NOTIMPL

in.doc – page 285

Remarks
If the method returns E_NOTIMPL, the tool processes all media types.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTool::GetMsgDelivery
Type

[This is preliminary documentation and subject to change.]

The IDirectMusicTool::GetMsgDeliveryType method retrieves the tool's delivery
type, which determines when messages are to be delivered to the tool.

HRESULT GetMsgDeliveryType(
 DWORD* pdwDeliveryType
);

pdwDeliveryType
Address of a variable to receive the delivery type. The returned value must be
DMUS_PMSGF_TOOL_IMMEDIATE, DMUS_PMSGF_TOOL_QUEUE, or
DMUS_PMSGF_TOOL_ATTIME. An unrecognized value in
*pdwDeliveryType will be treated as DMUS_PMSGF_TOOL_IMMEDIATE by
the graph.

Return Values
Return values are determined by the implementation. If successful, the method
should return S_OK. If it fails, the method may return E_POINTER.

Remarks
For an overview of the delivery mechanism, see Message Creation and Delivery.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 286

IDirectMusicTool::Init
[This is preliminary documentation and subject to change.]

The IDirectMusicTool::Init method is called when the tool is inserted into the
graph, giving the tool an opportunity to perform any necessary initialization.

HRESULT Init(
 IDirectMusicGraph* pGraph
);

pGraph
Pointer to the calling graph.

Return Values
Return values are determined by the implementation. If successful, the method
should return S_OK. If it fails, the method may return one of the following error
values:

E_FAIL
E_NOTIMPL

Remarks
Because a tool can be inserted into more than one graph, this method must be able to
deal gracefully with multiple calls.

Care must be taken not to create a circular reference to the graph represented by
pGraph. For more information, see DirectMusic Tools.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicGraph::InsertTool

IDirectMusicTool::ProcessPMsg
[This is preliminary documentation and subject to change.]

in.doc – page 287

The IDirectMusicTool::ProcessPMsg method performs the main task of the tool. It
is called from inside the performance's real-time thread for all messages that match
the types specified by IDirectMusicTool::GetMediaTypes.

HRESULT ProcessPMsg(
 IDirectMusicPerformance* pPerf,
 DMUS_PMSG* pPMSG
);

pPerf
Pointer to the performance.

pPMSG
Pointer to the message to process.

Return Values
Return values are determined by the implementation. If the method succeeds, the
return value should be one of the following:

DMUS_S_REQUEUE
DMUS_S_FREE
S_OK

If it fails, the method may return E_POINTER.

Remarks
If the method returns DMUS_S_REQUEUE, the tool wants the message to be
requeued. This allows the tool to put a new timestamp and parameters on the
message and requeue it, or to requeue the message with a different delivery type.

If the return value is DMUS_S_FREE, the tool wants the message freed
automatically, and does not wish to requeue the message.

If S_OK is returned, the tool does not want the message to be freed automatically.
Perhaps the tool is holding onto the message for some reason, or has freed it itself.

Tools should not perform time-consuming activities, because doing so can severely
affect overall performance. Also, care must be taken not to create a circular
reference to the performance represented by pPerf. For more information, see
DirectMusic Tools.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 288

See Also
IDirectMusicPerformance::SendPMsg, Messages, Message Creation and Delivery

IDirectMusicTrack
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack interface represents a track object. Almost everything that
has to do with the definition of a segment is stored in its tracks. The track
mechanism allows segments to be infinitely extensible, and the segment doesn't have
to have any knowledge about any of the music and audio technologies that it
employs.

If you plan to install your own music playback mechanism into DirectMusic, you
will need to create a DirectMusicTrack object to represent it. Otherwise, the methods
of this interface will typically not be called directly from the application.

Note
When implementing methods of the IDirectMusicTrack interface, you must
take care not to hold onto references to objects passed in. For example, if
IDirectMusicTrack::Init adds a reference to the IDirectMusicSegment it
receives as a parameter, you must ensure that this reference is released.

The IDirectMusicTrack interface has the following methods:

Initialization Init
Playback EndPlay

InitPlay
Play

Notification AddNotificationType
RemoveNotificationType

Parameters GetParam
IsParamSupported
SetParam

Miscellaneous Clone

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

The DirectMusicTrack object also supports the IDirectMusicObject and
IPersistStream interfaces for loading its data.

in.doc – page 289

The following table shows which methods are supported by the standard track types.
For a general description of the standard types, see Tracks.

Track IDirectMusicTrack
methods

IPersistStream
methods

Band (CLSID_DirectMusicBandTrack)
AddNotificationType No IsDirty Yes
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam No Save Yes
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType No

Chord (CLSID_DirectMusicChordTrack)
AddNotificationType Yes IsDirty Yes
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam Yes Save Yes
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType Yes

Chordmap (CLSID_DirectMusicChordMapTrack)
AddNotificationType No IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes* Load Yes
GetParam Yes Save No
Init Yes*
InitPlay Yes*
IsParamSupported Yes
Play Yes*
SetParam Yes
RemoveNotificationType No

Command (CLSID_DirectMusicCommandTrack)

in.doc – page 290

AddNotificationType Yes IsDirty Yes
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam Yes Save Yes
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType Yes

Motif (CLSID_DirectMusicMotifTrack)
AddNotificationType Yes IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load No
GetParam No Save No
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType Yes

Mute (CLSID_DirectMusicMuteTrack)
AddNotificationType No IsDirty Yes
Clone Yes GetSizeMax No
EndPlay Yes* Load Yes
GetParam Yes Save Yes
Init Yes*
InitPlay Yes*
IsParamSupported Yes
Play Yes*
SetParam Yes
RemoveNotificationType No

Sequence (CLSID_DirectMusicSeqTrack)
AddNotificationType No IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam No Save No
Init Yes

in.doc – page 291

InitPlay Yes
IsParamSupported No
Play Yes
SetParam No
RemoveNotificationType No

Signpost (CLSID_DirectMusicSignPostTrack)
AddNotificationType No IsDirty Yes
Clone Yes GetSizeMax No
EndPlay Yes* Load Yes
GetParam No Save Yes
Init Yes*
InitPlay Yes*
IsParamSupported No
Play Yes*
SetParam No
RemoveNotificationType No

Style (CLSID_DirectMusicStyleTrack)
AddNotificationType Yes IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam Yes Save No
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType Yes

SysEx (CLSID_DirectMusicSysExTrack)
AddNotificationType No IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam No Save No
Init Yes
InitPlay Yes
IsParamSupported No
Play Yes
SetParam No
RemoveNotificationType No

in.doc – page 292

Tempo (CLSID_DirectMusicTempoTrack)
AddNotificationType No IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam Yes Save No
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType No

Time Signature** (CLSID_DirectMusicTimeSigTrack)
AddNotificationType Yes IsDirty No
Clone Yes GetSizeMax No
EndPlay Yes Load Yes
GetParam Yes Save No
Init Yes
InitPlay Yes
IsParamSupported Yes
Play Yes
SetParam Yes
RemoveNotificationType Yes

Notes
* The method returns a value other than E_NOTIMPL but does not do anything
else.
** The time signature track exists in imported MIDI files and DirectMusic
Producer segments specifically created with one. In most cases the style track
implements the time signature track's functionality, so it is not necessary for a
segment that contains a style track to contain a time signature track as well.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
Tracks, Setting and Retrieving Track Parameters

in.doc – page 293

IDirectMusicTrack::AddNotification
Type

[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::AddNotificationType method enables event notification
for a track. It is similar to and called from the
IDirectMusicSegment::AddNotificationType method.

HRESULT AddNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Address of (C) or reference to (C++) the identifier of the notification type to
add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications
can also define their own types for custom tracks.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if the track does not
support the notification type.

If the track does not support notifications, the method returns E_NOTIMPL.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTrack::RemoveNotificationType, Notification and Event Handling

IDirectMusicTrack::Clone
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::Clone method makes a copy of a track.

HRESULT Clone(
 MUSIC_TIME mtStart,
 MUSIC_TIME mtEnd,
 IDirectMusicTrack** ppTrack
);

in.doc – page 294

mtStart
The start of the part to clone. It should be 0 or greater, and less than the length
of the track.

mtEnd
The end of the part to clone. It should be greater than mtStart and less than the
length of the track.

ppTrack
Address of a variable to receive a pointer to the created track, if successful.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks
It is the caller's responsibility to call Release when finished with the track.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTrack::EndPlay
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::EndPlay method is called when the object that originally
called IDirectMusicTrack::InitPlay is destroyed.

HRESULT EndPlay(
 void * pStateData
);

pStateData
Pointer to the state data returned from IDirectMusicTrack::InitPlay. This data
should be freed in the EndPlay method.

in.doc – page 295

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return E_POINTER.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTrack::GetParam
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::GetParam method retrieves data from a track.

HRESULT GetParam(
 REFGUID rguidType,
 MUSIC_TIME mtTime,
 MUSIC_TIME* pmtNext,
 void* pParam
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data to obtain.
See Track Parameter Types.

mtTime
Time, in track time, from which to obtain the data.

pmtNext
Address of a variable to receive the track time (relative to the current time) until
which the data is valid. If this returns a value of 0, it means either that the data
will always be valid, or that it is unknown when it will become invalid. If this
information is not needed, pmtNext can be set to NULL.

pParam
Address of an allocated structure in which the data is to be returned. The
structure must be of the appropriate kind and size for the data type identified by
rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_FOUND

in.doc – page 296

DMUS_E_NOT_INIT
DMUS_E_TYPE_DISABLED
DMUS_E_GET_UNSUPPORTED
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTrack::SetParam, IDirectMusicTrack::IsParamSupported,
IDirectMusicPerformance::GetParam, IDirectMusicSegment::GetParam, Music
Parameters

IDirectMusicTrack::Init
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::Init method is called by a segment when a track is added
and performs any necessary initialization.

HRESULT Init(
 IDirectMusicSegment* pSegment
);

pSegment
Pointer to the segment to which this track belongs.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks
If the track plays messages, it should call
IDirectMusicSegment::SetPChannelsUsed in the Init method.

in.doc – page 297

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTrack::InitPlay
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::InitPlay method is called when a track is ready to start
playing. It returns a pointer to state data, which is sent into
IDirectMusicTrack::Play and IDirectMusicTrack::EndPlay.

HRESULT InitPlay(
 IDirectMusicSegmentState* pSegmentState,
 IDirectMusicPerformance* pPerformance,
 void** ppStateData,
 DWORD dwVirtualTrackID,
 DWORD dwFlags
);

pSegmentState
Pointer to the calling IDirectMusicSegmentState.

pPerformance
Pointer to the calling IDirectMusicPerformance.

ppStateData
Address of a variable to receive a pointer to state information. The format and
use of the data is specific to the track. The data should be created in the InitPlay
method and freed in the IDirectMusicTrack::EndPlay method. The pointer is
passed to the IDirectMusicTrack::Play method.

dwVirtualTrackID
Virtual track ID assigned to this track instance.

dwFlags
DMUS_SEGF_FLAGS that control the track's behavior. See Remarks.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

in.doc – page 298

Remarks
It is unnecessary for the track to store the pSegmentState, pPerformance, or
dwTrackID parameters, because they are also sent into IDirectMusicTrack::Play.

The dwFlags parameter passes the flags that were handed to the performance in the
call to IDirectMusicPerformance::PlaySegment. The track makes decisions on
how it should perform based on the DMUS_SEGF_CONTROL and
DMUS_SEGF_SECONDARY flags. For example, the tempo track automatically
plays the tempo changes only if it is part of a primary segment or a secondary
control segment (DMUS_SEGF_SECONDARY is not set, or
DMUS_SEGF_CONTROL is set).

A track can return NULL in ppStateData.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTrack::IsParamSuppor
ted

[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::IsParamSupported method determines whether the track
supports a given data type in the IDirectMusicTrack::GetParam and
IDirectMusicTrack::SetParam methods.

HRESULT IsParamSupported(
 REFGUID rguidType
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data. See Track
Parameter Types.

Return Values
If the method succeeds and the type is supported, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_TYPE_DISABLED
DMUS_E_TYPE_UNSUPPORTED
E_POINTER

in.doc – page 299

E_NOTIMPL

Remarks
If a message type has been disabled by using one of the SetParam methods (see
Disabling and Enabling Messages on a Track), the
IDirectMusicTrack::IsParamSupported method returns
DMUS_E_TYPE_DISABLED when passed the corresponding parameter type (either
GUID_TempoParam or GUID_TimeSignature).

The method also returns DMUS_E_TYPE_DISABLED if passed
GUID_DisableTempo when that message type has already been disabled, or if
passed GUID_EnableTempo when that message type is currently enabled. The same
is true for GUID_DisableTimeSig and GUID_EnableTimeSig.

The method returns DMUS_E_TYPE_UNSUPPORTED when the track does not
support the message type referred to by a GUID_EnableTempo,
GUID_EnableTimeSig, GUID_DisableTempo, or GUID_DisableTimeSig parameter
type.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music
Parameters

IDirectMusicTrack::Play
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::Play method causes the track to play. It performs any
work the track must do when the segment is played, such as creating and sending
messages.

HRESULT Play(
 void* pStateData,
 MUSIC_TIME mtStart,
 MUSIC_TIME mtEnd,
 MUSIC_TIME mtOffset
 DWORD dwFlags,
 IDirectMusicPerformance* pPerf,
 IDirectMusicSegmentState* pSegSt,
 DWORD dwVirtualID

in.doc – page 300

);

pStateData
State data pointer, from the IDirectMusicTrack::InitPlay method. The format
and use of the data is specific to the track.

mtStart
Start time.

mtEnd
End time.

mtOffset
Offset to add to all messages sent to IDirectMusicPerformance::SendPMsg.

dwFlags
Flags that indicate the state of this call. See DMUS_TRACKF_FLAGS. A
value of 0 indicates that this call to Play continues playback from the previous
call.

pPerf
The performance used to allocate and send the message.

pSegSt
The segment state this track belongs to. The
IDirectMusicSegmentState::QueryInterface method can be called to obtain
an IDirectMusicGraph interface—in order to call
IDirectMusicGraph::StampPMsg, for instance.

dwVirtualID
Virtual Identifier of the track. This value must be put in the dwVirtualTrackID
member of any message (see DMUS_PMSG) that will be sent by
IDirectMusicPerformance::SendPMsg.

Return Values
If the method succeeds, the return value may be S_OK or DMUS_S_END.

If it fails, the method may return one of the following error values:

DMUS_E_NOT_INIT
E_POINTER

Remarks
If the track is empty, the method returns DMUS_S_END.

Tracks generate messages in a medium-priority thread. You can call time-consuming
functions, such as code to stream data from a file, from within a track's Play method.
However, be sure to follow the guidelines for safe multithreading.

in.doc – page 301

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

IDirectMusicTrack::RemoveNotific
ationType

[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::RemoveNotificationType method removes an event
notification from a track. It is similar to and called from the
IDirectMusicSegment::RemoveNotificationType method.

HRESULT RemoveNotificationType(
 REFGUID rguidNotificationType
);

rguidNotificationType
Address of (C) or reference to (C++) the identifier of the notification type to
remove. For the defined types, see DMUS_NOTIFICATION_PMSG.

Return Values
If the method succeeds, the return value is S_OK, or S_FALSE if the track does not
support the notification type.

If the track does not support notifications, the method returns E_NOTIMPL.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTrack::AddNotificationType, Notification and Event Handling

IDirectMusicTrack::SetParam
[This is preliminary documentation and subject to change.]

The IDirectMusicTrack::SetParam method sets data on a track.

HRESULT SetParam(

in.doc – page 302

 REFGUID rguidType,
 MUSIC_TIME mtTime,
 void* pParam
);

rguidType
Reference to (C++) or address of (C) the identifier of the type of data to set. See
Track Parameter Types.

mtTime
Time, in track time, at which to set the data.

pParam
Address of structure containing the data, or NULL if no data is required. The
structure must be of the appropriate kind and size for the data type identified by
rguidType.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method may return one of the following error values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TYPE_DISABLED
E_OUTOFMEMORY
E_POINTER

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicTrack::GetParam, IDirectMusicTrack::IsParamSupported,
IDirectMusicPerformance::SetParam, IDirectMusicSegment::SetParam, Setting
and Retrieving Track Parameters

IKsControl
[This is preliminary documentation and subject to change.]

The IKsControl interface is used to get, set, or query the support of properties,
events, and methods. This interface is part of the Windows Driver Model kernel
streaming architecture, but is also used by DirectMusic to expose properties of

in.doc – page 303

DirectMusic ports. To retrieve this interface, call the
IDirectMusicPort::QueryInterface method with IID_IKsControl in the riid
parameter.

Routing of the property item request to the port varies depending on the port
implementation. No properties are supported by ports which represent DirectMusic
emulation on top of the Win32 handle-based multimedia calls (midiOut and midiIn
functions).

Property item requests to a port which represents a pluggable software synthesizer
are answered totally in user mode. The topology of this type of port is a synthesizer
(represented by an IDirectMusicSynth interface) connected to a sink node (an
IDirectMusicSynthSink interface). The property request will be given first to the
synthesizer node, and then to the sink node if it is not recognized by the synthesizer.

The interface has the following methods. At present, only KsProperty is supported
by DirectMusic.

IKsControl KsProperty
KsEvent
KsMethod

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmksctrl.h.

See Also
Port Property Sets

IKsControl::KsProperty
[This is preliminary documentation and subject to change.]

The IKsControl::KsProperty method gets or sets the value of a property. For an
overview, see Port Property Sets.

HRESULT KsProperty(
 PKSPROPERTY pProperty,

in.doc – page 304

 ULONG ulPropertyLength,
 LPVOID pvPropertyData,
 ULONG ulDataLength,
 PULONG pulBytesReturned
);

pProperty
Pointer to a KSPROPERTY structure that gives the property set, item, and
operation to perform. If this property contains instance data, then that data
should reside in memory immediately following the structure.

ulPropertyLength
The length of the memory pointed to by pProperty, including any instance data.

pvPropertyData
For a set operation, a memory buffer containing data representing the new value
of the property. For a get operation, a memory buffer big enough to hold the
value of the property. For a basic support query, a pointer to a buffer at least the
size of a DWORD.

ulDataLength
The length of the buffer pointed to by pvPropertyData.

pulBytesReturned
On a KSPROPERTY_TYPE_GET or KSPROPERTY_TYPE_BASICSUPPORT
call, the number of bytes returned in pvPropertyData by the port.

Return Values
If the method succeeds, it returns S_OK.

If the it fails, the method may return one of the following error values:

E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY
E_POINTER
DMUS_E_UNKNOWN_PROPERTY

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmksctrl.h.

in.doc – page 305

See Also
Port Property Sets

IReferenceClock
[This is preliminary documentation and subject to change.]

The IReferenceClock interface represents a system reference clock. The
DirectMusic master clock and a port's latency clock implement this interface.

The interface has the following methods:

IReferenceClock GetTime
AdviseTime
AdvisePeriodic
Unadvise

All COM interfaces inherit the IUnknown interface methods. This interface supports
the following three methods:

IUnknown AddRef
QueryInterface
Release

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusic::GetMasterClock, IDirectMusicPort::GetLatencyClock, Timing

IReferenceClock::AdvisePeriodic
[This is preliminary documentation and subject to change.]

The IReferenceClock::AdvisePeriodic method requests an asynchronous, periodic
notification that a duration has elapsed.

HRESULT AdvisePeriodic(
 REFERENCE_TIME rtStartTime,
 REFERENCE_TIME rtPeriodTime,
 HSEMAPHORE hSemaphore,
 DWORD * pdwAdviseCookie

in.doc – page 306

);

rtStartTime
Time the notification should begin.

rtPeriodTime
Duration between notifications.

hSemaphore
Handle of a semaphore through which to advise.

pdwAdviseCookie
Address of a variable to receive the identifier of the request. This is used to
identify this call to AdvisePeriodic in the future—for example, to cancel it.

Return Values
Return values are determined by the implementation. If the method succeeds, it
returns S_OK. If it fails, it may return one of the following error values:

E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Remarks
When the time indicated by rtStartTime is reached, the semaphore whose handle is
set as hSemaphore is released. Thereafter, the semaphore will be released
repetitively with a period of rtPeriodTime.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IReferenceClock::Unadvise

IReferenceClock::AdviseTime
[This is preliminary documentation and subject to change.]

The IReferenceClock::AdviseTime method requests an asynchronous notification
that a duration has elapsed.

HRESULT AdviseTime(

in.doc – page 307

 REFERENCE_TIME rtBaseTime,
 REFERENCE_TIME rtStreamTime,
 HEVENT hEvent,
 DWORD * pdwAdviseCookie
);

rtBaseTime
Base reference time.

rtStreamTime
Stream offset time.

hEvent
Handle of an event through which to advise.

pdwAdviseCookie
Address of a variable to receive the identifier of the request. This is used to
identify this call to AdviseTime in the future—for example, to cancel it.

Return Values
Return values are determined by the implementation. If the method succeeds, it
returns S_OK. If it fails, it may return one of the following error values:

E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Remarks
When the time rtBaseTime + rtStreamTime is reached, the event whose handle is
hEvent will be set. If the time has already passed, the event will be set immediately.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IReferenceClock::Unadvise

IReferenceClock::GetTime
[This is preliminary documentation and subject to change.]

in.doc – page 308

The IReferenceClock::GetTime method retrieves the current time.

HRESULT GetTime(
 REFERENCE_TIME * pTime
);

pTime
Address of a variable to receive the current time.

Return Values
Return values are determined by the implementation. If the method succeeds, it
returns S_OK. If it fails, it may return one of the following error values:

E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

IReferenceClock::Unadvise
[This is preliminary documentation and subject to change.]

The IReferenceClock::Unadvise method cancels a request for notification.

HRESULT Unadvise(
 DWORD dwAdviseCookie
);

dwAdviseCookie
Identifier of the request that is to be canceled, as set in the
IReferenceClock::AdviseTime or IReferenceClock::AdvisePeriodic method.

Return Values
Return values are determined by the implementation. If the method succeeds, it
returns S_OK. If it fails, it may return one of the following error values:

E_FAIL
E_POINTER
E_INVALIDARG

in.doc – page 309

E_NOTIMPL

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

Messages
[This is preliminary documentation and subject to change.]

DirectMusic message structures are all based on DMUS_PMSG. Because C does not
support inheritance, the members of this structure are included in each derived
structure as the DMUS_PMSG_PART macro.

For an overview of messages, see DirectMusic Messages.

This section contains information about the following structures used to contain
message information:

· DMUS_PMSG
· DMUS_CHANNEL_PRIORITY_PMSG
· DMUS_CURVE_PMSG
· DMUS_MIDI_PMSG
· DMUS_NOTE_PMSG
· DMUS_NOTIFICATION_PMSG
· DMUS_PATCH_PMSG
· DMUS_SYSEX_PMSG
· DMUS_TEMPO_PMSG
· DMUS_TIMESIG_PMSG
· DMUS_TRANSPOSE_PMSG

See Also
IDirectMusicPerformance::AllocPMsg, IDirectMusicPerformance::SendPMsg,
IDirectMusicPerformance::FreePMsg, IDirectMusicTool::ProcessPMsg

DMUS_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_PMSG structure contains information common to all DirectMusic
messages. Because C does not support inheritance, the members of this structure are

in.doc – page 310

included in all message types (including DMUS_PMSG itself) by the inclusion of
the DMUS_PMSG_PART macro, which expands to the syntax shown here.

typedef struct DMUS_PMSG {
 DWORD dwSize;
 REFERENCE_TIME rtTime;
 MUSIC_TIME mtTime;
 DWORD dwFlags;
 DWORD dwPChannel;
 DWORD dwVirtualTrackID;
 IDirectMusicTool* pTool;
 IDirectMusicGraph* pGraph;
 DWORD dwType;
 DWORD dwVoiceID;
 DWORD dwGroupID;
 IUnknown* punkUser;
} DMUS_PMSG;

dwSize
Size of the structure, in bytes.

rtTime
Real time (in 100 nanosecond increments) at which the message is to be played,
modified by dwFlags.

mtTime
Music time at which the message is to be played, modified by dwFlags.

dwFlags
Various bits (see DMUS_PMSGF_FLAGS and
DMUS_TIME_RESOLVE_FLAGS).

dwPChannel
Performance channel (PChannel). The port, channel group, and MIDI channel
can be derived from this value by using the
IDirectMusicPerformance::PChannelInfo method.

dwVirtualTrackID
Identifier of the track.

pTool
Tool interface pointer.

pGraph
Tool graph interface pointer.

dwType
Message type (see DMUS_PMSGT_TYPES).

dwVoiceID
Reserved for future use. This value is always 0.

dwGroupID
Identifier of the track group or groups the message belongs to. (Tracks are
assigned to groups in the IDirectMusicSegment::InsertTrack method.)

in.doc – page 311

punkUser
User COM pointer. This pointer is always released when the message is freed. If
the application wishes to retain the object, it should call AddRef before the
message is freed.

Remarks
The DMUS_PMSG structure is used by itself for messages containing the following
values in the dwType member:

DMUS_PMSGT_STOP
Sending a message of this type stops the performance at the indicated time.

DMUS_PMSGT_DIRTY
When a control segment starts or ends, all tools in the segment and performance
graphs receive a message of this type, indicating that if they cache data from
GetParam calls, they must call GetParam again to refresh their data. Tools
that want to receive this message type must indicate their desire through a call to
IDirectMusicTool::GetMediaTypes. Also, note that tools in the performance
graph will receive one copy of the message for each segment in the
performance. Such tools can safely ignore the extra messages with the same
time stamp.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg

DMUS_CHANNEL_PRIORITY_P
MSG

[This is preliminary documentation and subject to change.]

The DMUS_CHANNEL_PRIORITY_PMSG message structure contains data
about a channel priority change.

typedef struct _DMUS_CHANNEL_PRIORITY_PMSG {
 DMUS_PMSG_PART
 DWORD dwChannelPriority;
} DMUS_CHANNEL_PRIORITY_PMSG;

DMUS_PMSG_PART

in.doc – page 312

Macro for common message members. See DMUS_PMSG.
dwChannelPriority

The priority of the channel. For a list of defined values, see the remarks for
IDirectMusicPort::GetChannelPriority.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPort::SetChannelPriority, IDirectMusicPerformance::SendPMsg

DMUS_CURVE_PMSG
[This is preliminary documentation and subject to change.]

DMUS_CURVE_PMSG is a message structure that represents a curve (for example,
a sequence of continuous controller events).

typedef struct DMUS_CURVE_PMSG {
 DMUS_PMSG_PART
 MUSIC_TIME mtDuration;
 MUSIC_TIME mtOriginalStart;
 MUSIC_TIME mtResetDuration;
 short nStartValue;
 short nEndValue;
 short nResetValue;
 WORD wMeasure;
 short nOffset;
 BYTE bBeat;
 BYTE bGrid;
 BYTE bType;
 BYTE bCurveShape;
 BYTE bCCData;
 BYTE bFlags;
} DMUS_CURVE_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

mtDuration
How long the curve lasts.

mtOriginalStart

in.doc – page 313

Must be set to either 0 when this message is created or to the original time of the
curve.

mtResetDuration
How long after the curve is finished until the reset value is set.

nStartValue
Curve's start value.

nEndValue
Curve's end value.

nResetValue
Curve's reset value, set after mtResetDuration or upon a flush or invalidation.

wMeasure
Measure in which this curve occurs.

nOffset
Offset from grid at which this curve occurs, in music time.

bBeat
Beat count (within measure) at which this curve occurs.

bGrid
Grid offset from beat at which this curve occurs.

bType
Type of curve. This can be one of the following values:
DMUS_CURVET_PBCURVE
DMUS_CURVET_CCCURVE
DMUS_CURVET_MATCURVE
DMUS_CURVET_PATCURVE

bCurveShape
Shape of curve. This can be one of the following values:
DMUS_CURVES_LINEAR
DMUS_CURVES_INSTANT
DMUS_CURVES_EXP
DMUS_CURVES_LOG
DMUS_CURVES_SINE

bCCData
CC number if this is a control change type.

bFlags
Set to DMUS_CURVE_RESET if the nResetValue must be set when the time is
reached or an invalidation occurs because of a transition. If 0, the curve stays
permanently at the new value. All other bits are reserved.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 314

Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg

DMUS_MIDI_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_MIDI_PMSG structure contains data for a standard MIDI message not
represented by another message type, such as a control change or pitch bend.

typedef struct DMUS_MIDI_PMSGG {
 DMUS_PMSG_PART
 BYTE bStatus;
 BYTE bByte1;
 BYTE bByte2;
 BYTE bPad[1];
} DMUS_MIDI_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

bStatus
Standard MIDI status byte.

bByte1
First byte of the MIDI message. Ignored for MIDI messages that don't require it.

bByte2
Second byte of the MIDI message. Ignored for MIDI messages that don't require
it.

bPad
Padding to word boundary.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
MIDI Messages, IDirectMusicPerformance::SendPMsg

in.doc – page 315

DMUS_NOTE_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_NOTE_PMSG structure contains data for a music note event.

typedef struct DMUS_NOTE_PMSG {
 DMUS_PMSG_PART
 MUSIC_TIME mtDuration;
 WORD wMusicValue;
 WORD wMeasure;
 short nOffset;
 BYTE bBeat;
 BYTE bGrid;
 BYTE bVelocity;
 BYTE bFlags;
 BYTE bTimeRange;
 BYTE bDurRange;
 BYTE bVelRange;
 BYTE bPlayModeFlags;
 BYTE bSubChordLevel;
 BYTE bMidiValue;
} DMUS_NOTE_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

mtDuration
Duration of the note.

wMusicValue
Description of note. In most play modes, this is a packed array of four-bit values
(nibbles), as follows:
Octave, in the range -2 to 14. The note is transposed up or down by the octave
times 12.

Chord position, in the range 0 to 15, though it should never be above 3. The first
position in the chord is 0.

Scale position, in the range 0 to 15. Typically it is just 0 through 2, but it is possible
to have a one-note chord and have everything above the chord be interpreted as a
scale position.

Accidental, in the range -8 to 7, but typically in the range -2 to 2. This represents an
offset that takes the note out of the scale.

In the fixed play modes, the music value is simply a MIDI note value in the
range 0 to 127.

wMeasure
Measure in which this note occurs.

in.doc – page 316

nOffset
Offset from grid at which this note occurs, in music time.

bBeat
Beat (in measure) at which this note occurs.

bGrid
Grid offset from beat at which this note occurs.

bVelocity
Note velocity.

bFlags
See DMUS_NOTEF_FLAGS.

bTimeRange
Range by which to randomize time.

bDurRange
Range by which to randomize duration.

bVelRange
Range to randomize velocity.

bPlayModeFlags
Play mode determining how the music value is related to the chord and
subchord. For a list of values, see DMUS_PLAYMODE_FLAGS.

bSubChordLevel
Subchord level the note uses. See DMUS_SUBCHORD.

bMidiValue
MIDI note value, converted from wMusicValue.

Remarks
When a note is to be played, the DMUS_NOTE_PMSG flows through the graph
and any tools in the graph until it reaches the final MIDI output tool. When the tool
sees that DMUS_NOTEF_NOTEON is set in the bFlags member, it sends a MIDI
note-on message to the correct port (according to the dwPChannel member of the
DMUS_PMSG part). It then clears the flag, adds mtDuration to the time stamp,
and requeues the message so that the note is turned off at the appropriate time.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg, Music Values and MIDI Notes

in.doc – page 317

DMUS_NOTIFICATION_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_NOTIFICATION_PMSG structure is a DMUS_PMSG that represents
a notification.

typedef struct DMUS_NOTIFICATION_PMSG {
 DMUS_PMSG_PART
 GUID guidNotificationType;
 DWORD dwNotificationOption;
 DWORD dwField1;
 DWORD dwField2;
} DMUS_NOTIFICATION_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

guidNotificationType
Identifier of the notification type. The following types are defined:
GUID_NOTIFICATION_CHORD

Chord change.
GUID_NOTIFICATION_COMMAND

Command event.
GUID_NOTIFICATION_MEASUREANDBEAT

Measure and beat event.
GUID_NOTIFICATION_PERFORMANCE

Performance event, further defined in dwNotificationOption.
GUID_NOTIFICATION_SEGMENT

Segment event, further defined in dwNotificationOption.
dwNotificationOption

Identifier of the notification subtype.
If the notification type is GUID_NOTIFICATION_SEGMENT, this member can
contain one of the following values:
DMUS_NOTIFICATION_SEGABORT

The segment was stopped by IDirectMusicPerformance::Stop.
DMUS_NOTIFICATION_SEGALMOSTEND

The segment has reached the end minus the prepare time.
DMUS_NOTIFICATION_SEGEND

The segment has ended.
DMUS_NOTIFICATION_SEGLOOP

The segment has looped.
DMUS_NOTIFICATION_SEGSTART

The segment has started.

in.doc – page 318

If the notification type is GUID_NOTIFICATION_COMMAND, this member
can contain one of the following values:
DMUS_NOTIFICATION_GROOVE

Groove change.
DMUS_NOTIFICATION_EMBELLISHMENT

Embellishment command (intro, fill, break, or end).

If the notification type is GUID_NOTIFICATION_PERFORMANCE, this
member can contain one of the following values:
DMUS_NOTIFICATION_MUSICSTARTED

Playback has started.
DMUS_NOTIFICATION_MUSICSTOPPED

Playback has stopped.

If the notification type is GUID_NOTIFICATION_MEASUREANDBEAT, this
member contains DMUS_NOTIFICATION_MEASUREBEAT. No other
subtypes are defined.
If the notification type is GUID_NOTIFICATION_CHORD, this member
contains DMUS_NOTIFICATION_CHORD. No other subtypes are defined.

dwField1
Extra data specific to the type of notification. For
GUID_NOTIFICATION_MEASUREANDBEAT notifications, this member
returns the beat number within the measure.

dwField2
Extra data specific to the type of notification. Reserved for future or application-
defined use.

Remarks
The punkUser member (see DMUS_PMSG) contains the IUnknown pointer of the
segment state. This is especially useful in the chord and command cases, where you
can query for the IDirectMusicSegmentState interface, call
IDirectMusicSegmentState::GetSegment to get the IDirectMusicSegment pointer,
and then call the IDirectMusicSegment::GetParam method to get the chord or
command at the time given in the notification message's mtTime member.

Applications can define their own notification message types and subtypes and use
dwField1 and dwField2 for extra data. Such custom notification messages can be
allocated and sent just like any message. Application-defined tracks can send
messages of a particular type after the GUID (guidNotificationType) has been
handed to IDirectMusicTrack::AddNotificationType.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 319

Windows 95.
 Header: Declared in dmusici.h.

See Also
Notification and Event Handling, IDirectMusicPerformance::SendPMsg

DMUS_PATCH_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_PATCH_PMSG structure contains data for a program change message.

typedef struct DMUS_PATCH_PMSG {
 DMUS_PMSG_PART
 BYTE byInstrument;
 BYTE byMSB;
 BYTE byLSB;
 BYTE byPad[1];
} DMUS_PATCH_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

byInstrument
Patch number of instrument.

byMSB
Most significant byte of bank select.

byLSB
Least significant byte of bank select.

byPad
Padding to word boundary.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
DMUS_MIDI_PMSG, IDirectMusicPerformance::SendPMsg, MIDI Messages

DMUS_SYSEX_PMSG
[This is preliminary documentation and subject to change.]

in.doc – page 320

The DMUS_SYSEX_PMSG structure is a DMUS_PMSG that represents a MIDI
system exclusive message.

typedef struct DMUS_SYSEX_PMSG {
 DMUS_PMSG_PART
 DWORD dwLen;
 BYTE abData[1];
} DMUS_SYSEX_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

dwLen
Length of the data, in bytes.

abData
Array of data.

Remarks
The data part of a system exclusive message must begin with the System Exclusive
identifier (0xF0) and end with EOX (0xF7).

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
DMUS_MIDI_PMSG, DMUS_PATCH_PMSG, MIDI Messages,
IDirectMusicPerformance::SendPMsg

DMUS_TEMPO_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_TEMPO_PMSG structure contains data for a message that controls the
performance's tempo.

typedef struct DMUS_TEMPO_PMSG {
 DMUS_PMSG_PART
 double dblTempo;
} DMUS_TEMPO_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

in.doc – page 321

dblTempo
The tempo, in the range DMUS_TEMPO_MIN to DMUS_TEMPO_MAX.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg

DMUS_TIMESIG_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_TIMESIG_PMSG structure contains data for a message that controls
the performance's time signature.

typedef struct _DMUS_TIMESIG_PMSG {
 DMUS_PMSG_PART
 BYTE bBeatsPerMeasure;
 BYTE bBeat;
 WORD wGridsPerBeat;
} DMUS_TIMESIG_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

bBeatsPerMeasure
Beats per measure (top of the time signature).

bBeat
What note receives the beat (bottom of the time signature), where 1 is a whole
note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat
Grids (subdivisions) per beat. This value determines the timing resolution for
certain music events—for example, segments cued with the
DMUS_SEGF_GRID flag (see DMUS_SEGF_FLAGS).

Remarks
Time signature messages are generated by the time signature track and the style
track. In general, a segment will contain one or the other, but not both. A segment
representing a MIDI file has a time signature track, but most segments authored with

in.doc – page 322

a tool such as DirectMusic Producer contain time signature information in the style
track.

By default, only the primary segment sends time signature messages. For
information on how to change this behavior, see Disabling and Enabling Messages
on a Track.

The time signature is used by the performance to resolve time to measure, beat, and
grid boundaries in all methods where the time can be adjusted by
DMUS_SEGF_FLAGS or DMUS_TIME_RESOLVE_FLAGS. The time
signature and style tracks also use the time signature to generate notifications on
measure and beat boundaries. See DMUS_NOTIFICATION_PMSG.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg, DMUS_TIMESIGNATURE

DMUS_TRANSPOSE_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_TRANSPOSE_PMSG structure contains data for a message that
controls a transposition.

typedef struct _DMUS_TRANSPOSE_PMSG {
 DMUS_PMSG_PART
 short nTranspose;
} DMUS_TRANSPOSE_PMSG;

DMUS_PMSG_PART
Macro for common message members. See DMUS_PMSG.

nTranspose
Number of semitones by which to transpose. This can be a negative value.

Remarks
If the transposition of a note puts it outside the standard MIDI range of 0-127, it will
not play.

in.doc – page 323

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg

Structures
[This is preliminary documentation and subject to change.]

This section contains reference information for the following run-time structures
used in DirectMusic:

· DMUS_BUFFERDESC
· DMUS_CHORD_KEY
· DMUS_CHORD_PARAM
· DMUS_CLOCKINFO
· DMUS_COMMAND_PARAM
· DMUS_EVENTHEADER
· DMUS_MUTE_PARAM
· DMUS_NOTERANGE
· DMUS_OBJECTDESC
· DMUS_PORTCAPS
· DMUS_PORTPARAMS
· DMUS_RHYTHM_PARAM
· DMUS_SUBCHORD
· DMUS_SYNTHSTATS
· DMUS_TEMPO_PARAM
· DMUS_TIMESIGNATURE
· DMUS_VERSION
· DMUS_WAVES_REVERB_PARAMS
· KSPROPERTY

Special categories of structures are contained in the following sections:

· Messages
· File Structures
· DLS Structures

in.doc – page 324

Note
The memory for all DirectX structures must be initialized to zero before use. In
addition, all structures that contain a dwSize member must set the member to
the size of the structure, in bytes, before use. The following DirectDraw
example performs these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(ddcaps));
ddcaps.dwSize = sizeof(ddcaps);

// Now the structure can be used.
.
.

DMUS_BUFFERDESC
[This is preliminary documentation and subject to change.]

The DMUS_BUFFERDESC structure is used to describe a buffer for the
IDirectMusic::CreateMusicBuffer method.

typedef struct _DMUS_BUFFERDESC {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidBufferFormat;
 DWORD cbBuffer;
} DMUS_BUFFERDESC, *LPDMUS_BUFFERDESC;

dwSize
The size of this structure, in bytes. This member must be initialized before the
structure is used.

dwFlags
No flags are defined.

guidBufferFormat
Identifier of the KS format of the buffer. The value GUID_NULL represents
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC.
If guidBufferFormat represents a KS format other than
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC, the application must verify
that the port playing back the data understands the specified format; if not, the
buffer will be ignored. To find out if the port supports a specific KS format, use
the IKsControl::KsProperty method.

cbBuffer
Minimum size of the buffer, in bytes. The amount of memory actually allocated
may be slightly higher, as the system will pad the buffer to a multiple of four
bytes. The buffer must be at least 32 bytes in order to accommodate a single

in.doc – page 325

MIDI channel message, and at least 28 bytes plus the size of the data in order to
accommodate a sysex message or other unstructured data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
DMUS_EVENTHEADER, IDirectMusicBuffer::PackStructured,
IDirectMusicBuffer::PackUnstructured

DMUS_CHORD_KEY
[This is preliminary documentation and subject to change.]

The DMUS_CHORD_KEY structure is used to describe a chord in the
IDirectMusicPerformance::MIDIToMusic and
IDirectMusicPerformance::MusicToMIDI methods.

typedef struct _DMUS_CHORDKEY {
 WCHAR wszName[16];
 WORD wMeasure;
 BYTE bBeat;
 BYTE bSubChordCount;
 DMUS_SUBCHORD SubChordList[DMUS_MAXSUBCHORD];
 DWORD dwScale;
 BYTE bKey;
} DMUS_CHORDKEY;

wszName
Name of the chord.

wMeasure
Measure the chord falls on.

bBeat
Beat the chord falls on.

bSubChordCount
Number of chords in the chord's list of subchords.

SubChordList
Array of DMUS_SUBCHORD structures, describing the components that make
up the chord.

dwScale
Scale underlying the entire chord.

in.doc – page 326

bKey
Key underlying the entire chord.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music
Parameters

DMUS_CHORD_PARAM
[This is preliminary documentation and subject to change.]

The DMUS_CHORD_PARAM structure is used as the pParam parameter in calls
to the various GetParam and SetParam methods when the track is a chord track and
rguidType is GUID_ChordParam.

typedef DMUS_CHORD_KEY DMUS_CHORD_PARAM;

See DMUS_CHORD_KEY.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music
Parameters

DMUS_CLOCKINFO
[This is preliminary documentation and subject to change.]

in.doc – page 327

The DMUS_CLOCKINFO structure reports information about a clock enumerated
by using the IDirectMusic::EnumMasterClock method.

typedef struct _DMUS_CLOCKINFO{
 DWORD dwSize;
 DMUS_CLOCKTYPE ctType;
 GUID guidClock;
 WCHAR wszDescription[DMUS_MAX_DESCRIPTION];
} DMUS_CLOCKINFO, *LPDMUS_CLOCKINFO;

dwSize
Size of the structure, in bytes This member must be initialized to
sizeof(DMUS_CLOCKINFO) before the structure is passed to a method.

ctType
Member of the DMUS_CLOCKTYPE enumeration specifying the type of
clock.

guidClock
Identifier of the clock. This value may be passed to the
IDirectMusic::SetMasterClock method in order to set the master clock for
DirectMusic.

wszDescription
Description of the clock.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_COMMAND_PARAM
[This is preliminary documentation and subject to change.]

The DMUS_COMMAND_PARAM structure is used as the pParam parameter in
calls to various GetParam and SetParam methods when the track is a command
track and the rguidType parameter is GUID_CommandParam.

typedef struct {
 BYTE bCommand;
 BYTE bGrooveLevel;
 BYTE bGrooveRange;
} DMUS_COMMAND_PARAM;

bCommand
Command type. See DMUS_COMMANDT_TYPES.

bGrooveLevel

in.doc – page 328

Command's groove level. The groove level is a value between 1 and 100.
bGrooveRange

Amount by which the groove level can be randomized. For instance, if the
groove level is 35 and the range is 4, the actual groove level could be anywhere
from 33 to 37. Not currently implemented.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_EVENTHEADER
[This is preliminary documentation and subject to change.]

The DMUS_EVENTHEADER structure precedes and describes an event in a port
buffer.

typedef struct _DMUS_EVENTHEADER {
 DWORD cbEvent;
 DWORD dwChannelGroup;
 REFERENCE_TIME rtDelta;
 DWORD dwFlags;
} DMUS_EVENTHEADER, *LPDMUS_EVENTHEADER;

cbEvent
Number of bytes in event.

dwChannelGroup
Group to which the event belongs.

rtDelta
Offset from start time of buffer.

dwFlags
Set to DMUS_EVENT_STRUCTURED if the event is parseable MIDI data.

Remarks
Pshpack4.h is included before the declaration of this structure to turn off automatic
alignment of structures, so that the data immediately follows the header. (For more

in.doc – page 329

information, see the comments in Pshpack4.h.) Poppack.h is then included to turn
alignment back on, and the entire structure (header plus event) is padded to an eight-
byte boundary.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
IDirectMusicBuffer::GetNextEvent, IDirectMusicBuffer::PackStructured,
IDirectMusicBuffer::PackUnstructured

DMUS_NOTERANGE
[This is preliminary documentation and subject to change.]

The DMUS_NOTERANGE structure specifies a range of notes that an instrument
must respond to. An array of these structures is passed to the
IDirectMusicPerformance::DownloadInstrument and
IDirectMusicPort::DownloadInstrument methods to specify what notes the
instrument should respond to and therefore what instrument regions need to be
downloaded.

typedef struct _DMUS_NOTERANGE {
 DWORD dwLowNote;
 DWORD dwHighNote;
} DMUS_NOTERANGE, *LPDMUS_NOTERANGE;

dwLowNote
The low note for this range of MIDI notes to which the instrument must respond.

dwHighNote
The high note for this range of MIDI notes to which the instrument must
respond.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

in.doc – page 330

DMUS_MUTE_PARAM
[This is preliminary documentation and subject to change.]

The DMUS_MUTE_PARAM structure is used as the pParam parameter in calls to
the various GetParam and SetParam methods when the track is a mute track and
rguidType is GUID_MuteParam.

typedef struct _DMUS_MUTE_PARAM {
 DWORD dwPChannel;
 DWORD dwPChannelMap;
 BOOL fMute;
} DMUS_MUTE_PARAM;

dwPChannel
The performance channel to mute or remap. If the structure is being passed to
GetParam, this member must be initialized.

dwPChannelMap
Channel to which dwPChannel is being mapped. This member is ignored if
fMute is TRUE.

fMute
TRUE if dwPChannel is being muted.

Remarks
If you wanted all the notes on PChannel 3 to play on PChannel 9 instead, you would
set dwPChannel to 3 and dwPChannelMap to 9 before passing the structure to one
of the SetParam methods. If you wanted to mute the notes on PChannel 8, you
would set dwPChannel to 8 and dwPChannelMap to 0xFFFFFFFF.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_OBJECTDESC
[This is preliminary documentation and subject to change.]

in.doc – page 331

The DMUS_OBJECTDESC structure is used to describe a DirectMusic object. It is
passed to the IDirectMusicLoader::GetObject method to identify the object that
the loader should retrieve from storage. Information about an object is retrieved in
this structure by the IDirectMusicLoader::EnumObject and
IDirectMusicObject::GetDescriptor methods.

typedef struct _DMUS_OBJECTDESC {
 DWORD dwSize;
 DWORD dwValidData;
 GUID guidObject;
 GUID guidClass;
 FILETIME ftDate;
 DMUS_VERSION vVersion;
 WCHAR wszName[DMUS_MAX_NAME];
 WCHAR wszCategory[DMUS_MAX_CATEGORY];
 WCHAR wszFileName[DMUS_MAX_FILENAME];
 LONGLONG llMemLength;
 PBYTE pbMemData;
} DMUS_OBJECTDESC, *LPDMUS_OBJECTDESC;

dwSize
Size of the structure, in bytes. This member must be initialized to
sizeof(DMUS_OBJECTDESC) before the structure is passed to any method.

dwValidData
Flags describing which members are valid, and giving further information about
some members. The following values are defined:
DMUS_OBJ_OBJECT

The guidObject member is valid.
DMUS_OBJ_CLASS

The guidClass member is valid.
DMUS_OBJ_NAME

The wszName member is valid.
DMUS_OBJ_CATEGORY

The wszCategory member is valid.
DMUS_OBJ_FILENAME

The wszFileName member is valid.
DMUS_OBJ_FULLPATH

The wszFileName member contains the full path. If this flag is set, the loader
assumes that wszFileName is valid even if DMUS_OBJ_FILENAME has not
been set.

DMUS_OBJ_MEMORY
The object is in memory, and llMemLength and pbMemData are valid.

DMUS_OBJ_URL
The wszFileName member contains an URL. (URLs are not currently
supported by the DirectMusic loader.)

in.doc – page 332

DMUS_OBJ_VERSION
The vVersion member is valid.

DMUS_OBJ_DATE
The ftDate member is valid.

DMUS_OBJ_LOADED
Object is currently loaded in memory.

guidObject
Unique identifier for this object.

guidClass
Unique identifier for the class of object. All the standard objects have defined
identifiers consisting of "CLSID_" plus the name of the object. For example, a
segment object is identified as CLSID_DirectMusicSegment. See the defines in
Dmusici.h.

ftDate
Last edited date of object.

vVersion
DMUS_VERSION structure containing version information.

wszName
Name of object.

wszCategory
Category for object.

wszFileName
File path. If DMUS_OBJ_FULLPATH is set, this is the full path; otherwise it is
just the file name.

llMemLength
Size of data in memory.

pbMemData
Data in memory.

Remarks
At least one of wszName, guidObject, and wszFileName must be filled with valid
data in order to retrieve the object by using the IDirectMusicLoader::GetObject
method.

The name and category strings use 16-bit characters in the WCHAR format, not 8-
bit ANSI chars. Be sure to convert as appropriate. You can use the C library routine
mbstowcs to convert from multibyte to Unicode and wcstombs to convert from
Unicode back to multibyte.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 333

Windows 95.
 Header: Declared in dmusici.h.

See Also
Enumerating Objects, Loading Objects, Getting Object Descriptors

DMUS_PORTCAPS
[This is preliminary documentation and subject to change.]

The DMUS_PORTCAPS structure receives information about a port enumerated by
a call to the IDirectMusic::EnumPort method. The structure is also used to return
information through the IDirectMusicPort::GetCaps method.

typedef struct _DMUS_PORTCAPS {
 DWORD dwSize;
 DWORD dwFlags;
 GUID guidPort;
 DWORD dwClass;
 DWORD dwType;
 DWORD dwMemorySize;
 DWORD dwMaxChannelGroups;
 DWORD dwMaxVoices;
 DWORD dwMaxAudioChannels;
 DWORD dwEffectFlags;
 WCHAR wszDescription[DMUS_MAX_DESCRIPTION];
} DMUS_PORTCAPS, *LPDMUS_PORTCAPS;

dwSize
Size of the structure, in bytes. This member must be initialized to
sizeof(DMUS_PORTCAPS) before the structure is passed to any method.

dwFlags
Flags describing various capabilities of the port. This field may contain one or
more of the following values:
DMUS_PC_DIRECTSOUND

The port supports streaming wave data to DirectSound.
DMUS_PC_DLS

The port supports DLS Level 1 sample collections.
DMUS_PC_EXTERNAL

This port connects to devices outside of the host—for example, devices
connected over an external MIDI port like the MPU-401.

DMUS_PC_GMINHARDWARE
The synthesizer has its own GM instrument set, so GM instruments do not
need to be downloaded.

DMUS_PC_GSINHARDWARE

in.doc – page 334

This port contains the Roland GS sound set in hardware.
DMUS_PC_MEMORYSIZEFIXED

Memory available for DLS instruments cannot be adjusted.
DMUS_PC_SHAREABLE

More than one port can be created that uses the same range of channel groups
on the device. Unless this bit is set, the port can only be opened in exclusive
mode. In exclusive mode, an attempt to create a port will fail unless free
channel groups are available to assign to the create request.

DMUS_PC_SOFTWARESYNTH
The port is a software synthesizer.

DMUS_PC_XGINHARDWARE
The port contains the Yamaha XG extensions in hardware.

guidPort
Identifier of the port. This value may be passed to the
IDirectMusic::CreatePort method in order to get an IDirectMusicPort
interface for the port.

dwClass
Class of this port. The following classes are defined:
DMUS_PC_INPUTCLASS

Input port.
DMUS_PC_OUTPUTCLASS

Output port.
dwType

Type of this port. The following types are defined:
DMUS_PORT_WINMM_DRIVER

Windows Multimedia driver.
DMUS_PORT_USER_MODE_SYNTH

User mode synthesizer.
DMUS_PORT_KERNEL_MODE

WDM driver.
dwMemorySize

Amount of memory available to store DLS instruments. If the port is using
system memory and the amount is therefore limited only by the available system
memory, this field will contain DMUS_PC_SYSTEMMEMORY.

dwMaxChannelGroups
Maximum number of channel groups supported by this port. A channel group is
a set of 16 MIDI channels.

dwMaxVoices
Maximum number of voices that can be allocated when this port is opened.

dwMaxAudioChannels
Maximum number of audio channels that can be rendered by the port.

dwEffectFlags
Flags indicating what audio effects are available on the port.

in.doc – page 335

The following flags are defined:
DMUS_EFFECT_NONE

No effects are supported.
DMUS_EFFECT_REVERB

The port supports reverb.
DMUS_EFFECT_CHORUS

The port supports chorus.
wszDescription

Description of the port. This may be a system-generated name, such as L"MPU-
401 Output Port [330]", or a user-specified friendly name, such as L"Port w/
External SC-55".

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

DMUS_PORTPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_PORTPARAMS structure contains parameters for the opening of a
DirectMusic port. These parameters are passed in when the
IDirectMusic::CreatePort method is called.

typedef struct _DMUS_PORTPARAMS {
 DWORD dwSize;
 DWORD dwValidParams;
 DWORD dwVoices;
 DWORD dwChannelGroups;
 DWORD dwAudioChannels;
 DWORD dwSampleRate;
 DWORD dwEffectFlags;
 DWORD fShare;
} DMUS_PORTPARAMS, *LPDMUS_PORTPARAMS;

dwSize
Size of the structure, in bytes. This member must be initialized to
sizeof(DMUS_PORTPARAMS) before the structure is passed to a method.

dwValidParams
Specifies which port parameters in this structure have been filled in. Setting the
flag for a particular parameter means that you wish to have this parameter set on
the method call, or wish to override the default value when the port is created.
The following flags have been defined:

in.doc – page 336

DMUS_PORTPARAMS_VOICES
DMUS_PORTPARAMS_CHANNELGROUPS
DMUS_PORTPARAMS_AUDIOCHANNELS
DMUS_PORTPARAMS_SAMPLERATE
DMUS_PORTPARAMS_EFFECTS
DMUS_PORTPARAMS_SHARE

dwVoices
Number of voices required on this port.

dwChannelGroups
Number of channel groups to be allocated on this port. Must be less than or
equal to the number of channel groups specified in the DMUS_PORTCAPS
structure returned by the IDirectMusic::EnumPort and
IDirectMusicPort::GetCaps methods.

dwAudioChannels
Desired number of output channels.

dwSampleRate
Desired sample rate in hertz.

dwEffectFlags
Flags indicating which special effects are desired. The following flags are
defined:
DMUS_EFFECT_NONE
DMUS_EFFECT_REVERB
DMUS_EFFECT_CHORUS

fShare
If TRUE, all ports use the channel groups assigned to this port. If FALSE, the
port is opened in exclusive mode and the use of the same channel groups by
other ports is forbidden.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

See Also
DMUS_PORTCAPS

DMUS_RHYTHM_PARAM
[This is preliminary documentation and subject to change.]

in.doc – page 337

The DMUS_RHYTHM_PARAM structure is used as the pParam parameter in calls
to the various GetParam methods when the track is a chord track and rguidType is
GUID_RhythmParam.

typedef struct {
 DMUS_TIMESIGNATURE TimeSig;
 DWORD dwRhythmPattern;
} DMUS_RHYTHM_PARAM;

TimeSig
A DMUS_TIMESIGNATURE structure containing the rhythm parameter's
time signature. This structure must be initialized before
DMUS_RHYTHM_PARAM structure is passed to GetParam.

dwRhythmPattern
A rhythm pattern for a sequence of chords. Each bit represents a beat in one or
more measures, with a 1 signifying a chord on the beat and a 0 signifying no
chord.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_SUBCHORD
[This is preliminary documentation and subject to change.]

The DMUS_SUBCHORD structure is used in the SubChordList member of a
DMUS_CHORD_PARAM structure.

typedef struct {
 DWORD dwChordPattern;
 DWORD dwScalePattern;
 DWORD dwInversionPoints;
 DWORD dwLevels;
 BYTE bChordRoot;
 BYTE bScaleRoot;
} DMUS_SUBCHORD;

in.doc – page 338

dwChordPattern
Notes in the subchord. Each of the lower 24 bits represents a semitone, starting
with the root at the least significant bit, and the bit is set if the note is in the
chord.

dwScalePattern
Notes in the scale. Each of the lower 24 bits represents a semitone, starting with
the root at the least significant bit, and the bit is set if the note is in the scale.

dwInversionPoints
Points in the scale where inversions can occur. Bits that are off signify that the
notes in the interval cannot be inverted. Thus the pattern 100001111111
indicates that inversions are allowed anywhere except between the fifth and
seventh degrees of a major scale.

dwLevels
Bitfield showing which levels are supported by this subchord. Each part in a
style is assigned a level, and this chord will be used only for parts whose levels
are contained in this member.

bChordRoot
Root of the subchord, where 0 is the bottom C in the range and 23 is the top B.

bScaleRoot
Root of the scale, where 0 is the bottom C in the range and 23 is the top B.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_SYNTHSTATS
[This is preliminary documentation and subject to change.]

The DMUS_SYNTHSTATS structure is used by the
IDirectMusicPort::GetRunningStats method to return the current running status of
a synthesizer.

typedef struct DMUS_SYNTHSTATS {
 DWORD dwSize;
 DWORD dwValidStats;
 DWORD dwVoices;
 DWORD dwTotalCPU;
 DWORD dwCPUPerVoice;
 DWORD dwLostNotes;
 DWORD dwFreeMemory;
 long lPeakVolume;
} DMUS_SYNTHSTATS, *LPDMUS_SYNTHSTATS;

in.doc – page 339

dwSize
Size of the structure, in bytes. This member must be initialized to
sizeof(DMUS_SYNTHSTATS) before the structure is passed to a method.

dwValidStats
Specifies which fields in this structure have been filled in by the synthesizer.
The following flags have been defined:
DMUS_SYNTHSTATS_VOICES
DMUS_SYNTHSTATS_TOTAL_CPU
DMUS_SYNTHSTATS_CPU_PER_VOICE
DMUS_SYNTHSTATS_FREE_MEMORY
DMUS_SYNTHSTATS_LOST_NOTES
DMUS_SYNTHSTATS_PEAK_VOLUME

dwVoices
Average number of voices playing.

dwTotalCPU
Total percentage of the CPU being consumed, multiplied by 100.

dwCPUPerVoice
Percentage of the CPU being consumed per voice, multiplied by 100.

dwLostNotes
Number of notes lost. Notes can be dropped because of voice-stealing or
because too much of the CPU is being consumed.

dwFreeMemory
Amount of memory currently available to store DLS instruments. If the
synthesizer is using system memory and the amount is therefore limited only by
the available system memory, this value is set to
DMUS_SYNTHSTATS_SYSTEMMEMORY.

lPeakVolume
Peak volume, measured in hundredths of decibels.

Remarks
All the running status parameters, with the exception of dwFreeMemory, are
refreshed every second. For example, dwLostNotes provides the total number of
notes lost over a one-second period.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

in.doc – page 340

DMUS_TEMPO_PARAM
[This is preliminary documentation and subject to change.]

The DMUS_TEMPO_PARAM structure is used as the pParam parameter in calls
to the various GetParam and SetParam methods when the track is a tempo track
and rguidType is GUID_TempoParam.

typedef struct _DMUS_TEMPO_PARAM {
 MUSIC_TIME mtTime;
 double dblTempo;
} DMUS_TEMPO_PARAM;

mtTime
Time for which the tempo was retrieved. (This member is not used in SetParam
methods, which use their mtTime parameter instead.)

dblTempo
The tempo, in the range DMUS_TEMPO_MIN to DMUS_TEMPO_MAX.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_TIMESIGNATURE
[This is preliminary documentation and subject to change.]

The DMUS_TIMESIGNATURE structure is passed to the
IDirectMusicStyle::GetTimeSignature method to retrieve information about a
style's time signature. It is also used in DMUS_RHYTHM_PARAM structure, and
in the various GetParam methods when the rguidType parameter is
GUID_TimeSignature and the track is a time signature or style track.

typedef struct _DMUS_TIMESIGNATURE {
 MUSIC_TIME mtTime;
 BYTE bBeatsPerMeasure;
 BYTE bBeat;
 WORD wGridsPerBeat;

in.doc – page 341

} DMUS_TIMESIGNATURE;

mtTime
Music time at which this time signature occurs.

bBeatsPerMeasure
Top of time signature.

bBeat
Bottom of time signature.

wGridsPerBeat
Grids (subdivisions) per beat. This value determines the timing resolution for
certain music events—for example, segments cued with the
DMUS_SEGF_GRID flag (see DMUS_SEGF_FLAGS).

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam,
IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam,
IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam,
DMUS_TIMESIG_PMSG

DMUS_VERSION
[This is preliminary documentation and subject to change.]

The DMUS_VERSION structure contains version information for an object
described in the DMUS_OBJECTDESC structure.

typedef struct _DMUS_VERSION {
 DWORD dwVersionMS;
 DWORD dwVersionLS;
} DMUS_VERSION, FAR *LPDMUS_VERSION;

dwVersionMS
Most significant DWORD of version number.

dwVersionLS
Least significant DWORD of version number.

in.doc – page 342

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_WAVES_REVERB_PARA
MS

[This is preliminary documentation and subject to change.]

The DMUS_WAVES_REVERB_PARAMS structure contains information about
reverberation effects.

typedef struct _DMUS_WAVES_REVERB_PARAMS {
 float fInGain;
 float fReverbMix;
 float fReverbTime;
 float fHighFreqRTRatio;
} DMUS_WAVES_REVERB_PARAMS;

fInGain
Input gain in dB (to avoid output overflows). The default value is 0.

fReverbMix
Reverb mix in dB. A value of 0 means 100 percent wet reverb (no direct signal).
Negative values gives less wet signal. The coefficients are calculated so that the
overall output level stays approximately constant regardless of the amount of
reverb mix. The default value is -10.0.

fReverbTime
Reverb decay time, in milliseconds. The default value is 1000.

fHighFreqRTRatio
Ratio of the high frequencies to the global reverb time. Unless very bright
reverbs are wanted, this should be set to a value of less than 1. For example, if
fReverbTime is 1000 ms and dHighFreqRTRatio is 0.1, then the decay time
for high frequencies will be 100ms. The default value is 0.001.

Remarks
The TrueVerb reverberation technology from Waves is licensed to Microsoft as the
SimpleVerb implementation for use in the Microsoft Software Synthesizer.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 343

Windows 95.
 Header: Declared in dmusicc.h.

KSPROPERTY
[This is preliminary documentation and subject to change.]

The KSPROPERTY structure is passed to the IKsControl::KsProperty method to
identify a property and operation.

KSPROPERTY is defined as a KSIDENTIFIER structure, which is declared as
follows:

typedef struct {
 union {
 struct {
 GUID Set;
 ULONG Id;
 ULONG Flags;
 };
 LONGLONG Alignment;
 };
} KSIDENTIFIER, *PKSIDENTIFIER;

Set
Identifier of the property set. The following property set GUIDs are predefined
by DirectMusic:
GUID_DMUS_PROP_DLS1

Item 0 is a Boolean indicating whether or not this port supports the
downloading of DLS samples.

GUID_DMUS_PROP_Effects
Item 0 contains DMUS_EFFECT_NONE or one or more effects flags (see the
dwEffectFlags member of DMUS_PORTCAPS). This property is used to
set or retrieve the current state of the effects.

GUID_DMUS_PROP_GM_Hardware
Item 0 is a Boolean indicating whether or not this port supports GM in
hardware.

GUID_DMUS_PROP_GS_Capable
Item 0 is a Boolean indicating whether or not this port supports the minimum
requirements for Roland GS extensions.

GUID_DMUS_PROP_GS_Hardware
Item 0 is a Boolean indicating whether or not this port supports Roland GS
extensions in hardware.

GUID_DMUS_PROP_LegacyCaps
Item 0 is the MIDIINCAPS or MIDIOUTCAPS structure that describes the
underlying Windows Multimedia device implementing this port. A

in.doc – page 344

MIDIINCAPS structure will be returned if dwClass is
DMUS_PC_INPUTCLASS in this port's capabilities structure. Otherwise a
MIDIOUTCAPS structure will be returned.

GUID_DMUS_PROP_MemorySize
Item 0 is a Boolean indicating how many bytes of sample RAM are available
on this device.

GUID_DMUS_PROP_SynthSink_DSOUND
Item 0 is a Boolean indicating whether or not this port supports DirectSound.

GUID_DMUS_PROP_SynthSink_WAVE
Item 0 is a Boolean indicating whether or not this port supports wave output
using the waveOut functions.

GUID_DMUS_PROP_Volume
Item 1 (DMUS_ITEM_Volume) is a LONG which is the signed value, in
hundredths of a dB, which will be added to the gain of all voices after all
DLS articulation has been performed. By default, when a port is added to the
performance, this property is set to the master volume. For master volume,
see Setting and Retrieving Global Parameters.

GUID_DMUS_PROP_WavesReverb
Item 0 is a DMUS_WAVES_REVERB_PARAMS structure containing
reverb parameters.

GUID_DMUS_PROP_WriteLatency
Item 0 is the write latency of the user mode synthesizer (the dwType member
of the DMUS_PORTCAPS structure is
DMUS_PORT_USER_MODE_SYNTH) that streams its output to
DirectSound. The write latency is the delay between when the synthesizer
creates a buffer of sound and when it is heard. By adjusting this value, an
application can fine-tune the synthesizer for minimum latency without sound
breakup. On some machines, in particular machines without hardware support
for DirectSound, the initial latency will be much larger than on others, so the
value should always be read first, and then adjusted with a relative value. The
write latency can have different values for each port instance. This property
must be set each time the port is activated.

GUID_DMUS_PROP_WritePeriod
Item 0 is the write period, in milliseconds, of the user mode synthesizer (the
dwType member of the DMUS_PORTCAPS structure is
DMUS_PORT_USER_MODE_SYNTH) that streams its output to
DirectSound. The write period controls how frequently the synthesizer sink
wakes up to allow the synthesizer to mix. By reducing this value, the
application can reduce the overall latency of the synthesizer. However, values
under 10 milliseconds start to increase the CPU load. The write period has
the same value for all port instances that use the standard DirectSound sink.
This property must be set each time the port is activated.

GUID_DMUS_PROP_XG_Capable
Item 0 is a Boolean indicating whether or not this port supports the minimum
requirements for Yamaha XG extensions.

in.doc – page 345

GUID_DMUS_PROP_XG_Hardware
Item 0 is a Boolean indicating whether or not this port supports Yamaha XG
extensions in hardware.

Id
Item within the property set.

Flags
One of the following flags to specify the operation:
KSPROPERTY_TYPE_GET

To retrieve the given property item's value.
KSPROPERTY_TYPE_SET

To set the given property item's value.
KSPROPERTY_TYPE_BASICSUPPORT

To determine the type of support available for the property set. The data
returned by IKsControl::KsProperty in *pvPropertyData will be a
DWORD containing one or both of KSPROPERTY_TYPE_GET and
KSPROPERTY_TYPE_SET, indicating which operations are possible.

Alignment
Not used in DirectMusic.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmksctrl.h.

See Also
Port Property Sets

File Structures
[This is preliminary documentation and subject to change.]

This section contains references to data structures used in DirectMusic files. Most
applications do not need to know about these structures, because each standard
DirectMusic object handles the loading of its own data through its IPersistStream
interface. The structures are chiefly of interest for music-authoring applications that
need to save data in a format compatible with DirectMusic.

The following structures are used in DirectMusic files:

· DMUS_IO_BAND_ITEM_HEADER
· DMUS_IO_BAND_TRACK_HEADER
· DMUS_IO_CHORD

in.doc – page 346

· DMUS_IO_CHORDENTRY
· DMUS_IO_CHORDMAP
· DMUS_IO_CHORDMAP_SIGNPOST
· DMUS_IO_CHORDMAP_SUBCHORD
· DMUS_IO_COMMAND
· DMUS_IO_CURVE_ITEM
· DMUS_IO_INSTRUMENT
· DMUS_IO_MOTIFSETTINGS
· DMUS_IO_MUTE
· DMUS_IO_NEXTCHORD
· DMUS_IO_PARTREF
· DMUS_IO_PATTERN
· DMUS_IO_REFERENCE
· DMUS_IO_SEGMENT_HEADER
· DMUS_IO_SEQ_ITEM
· DMUS_IO_SIGNPOST
· DMUS_IO_STYLE
· DMUS_IO_STYLECURVE
· DMUS_IO_STYLENOTE
· DMUS_IO_STYLEPART
· DMUS_IO_SUBCHORD
· DMUS_IO_SYSEX_ITEM
· DMUS_IO_TEMPO_ITEM
· DMUS_IO_TIMESIG
· DMUS_IO_TIMESIGNATURE_ITEM
· DMUS_IO_TOOL_HEADER
· DMUS_IO_TRACK_HEADER
· DMUS_IO_VERSION

See Also
DirectMusic File Format

DMUS_IO_BAND_ITEM_HEADE
R

[This is preliminary documentation and subject to change.]

in.doc – page 347

The DMUS_IO_BAND_ITEM_HEADER structure contains information about a
band change. It is used in the Band Track Form.

typedef struct _DMUS_IO_BAND_ITEM_HEADER {
 MUSIC_TIME lBandTime;
} DMUS_IO_BAND_ITEM_HEADER;

lBandTime
Time of the band change.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_BAND_TRACK_HEAD
ER

[This is preliminary documentation and subject to change.]

The DMUS_IO_BAND_TRACK_HEADER structure contains information about
the default behavior of a band track. It is used in the Band Track Form.

typedef struct _DMUS_IO_BAND_TRACK_HEADER {
 BOOL bAutoDownload;
} DMUS_IO_BAND_TRACK_HEADER;

bAutoDownload
Flag for automatic downloading of instruments when segment is played.

Remarks
For more information on automatic downloading, see Using Bands.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_CHORD
[This is preliminary documentation and subject to change.]

in.doc – page 348

The DMUS_IO_CHORD structure contains information about a chord change. It is
used in the Chord Track List.

typedef struct _DMUS_IO_CHORD {
 WCHAR wszName[16];
 MUSIC_TIME mtTime;
 WORD wMeasure;
 BYTE bBeat;
} DMUS_IO_CHORD;

wszName
Name of the chord.

mtTime
Time of the chord.

wMeasure
Measure the chord falls on.

bBeat
Beat the chord falls on.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_CHORDENTRY
[This is preliminary documentation and subject to change.]

The DMUS_IO_CHORDENTRY structure contains information about a chord
entry. It is used in the Chordmap Form.

typedef struct _DMUS_IO_CHORDENTRY {
 DWORD dwFlags;
 WORD wConnectionID;
} DMUS_IO_CHORDENTRY;

dwFlags
Flag indicating whether the chord is a starting chord (bit 2 set) or an ending
chord (bit 3 set) in the chord graph.

wConnectionID
Replaces run-time "pointer to this". Each chord entry is tagged with a unique
connection identifier.

in.doc – page 349

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_CHORDMAP
[This is preliminary documentation and subject to change.]

The DMUS_IO_CHORDMAP structure contains information about a chordmap. It
is used in the Chordmap Form.

typedef struct _DMUS_IO_CHORDMAP {
 WCHAR wszLoadName[20];
 DWORD dwScalePattern;
 DWORD dwFlags;
} DMUS_IO_CHORDMAP;

wszLoadName
Name of the chordmap, used in the object description when the chordmap is
being loaded.

dwScalePattern
The scale associated with the chord map. Each of the lower 24 bits represents a
semitone, starting with the root at the least significant bit, and the bit is set if the
note is in the scale.

dwFlags
Reserved for future use.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_CHORDMAP_SIGNP
OST

[This is preliminary documentation and subject to change.]

The DMUS_IO_CHORDMAP_SIGNPOST structure contains information about a
signpost chord in a chordmap. It is used in the Chordmap Form.

typedef struct _DMUS_IO_CHORDMAP_SIGNPOST {
 DWORD dwChords;

in.doc – page 350

 DWORD dwFlags;
} DMUS_IO_CHORDMAP_SIGNPOST;

dwChords
Types of signpost supported by this chord.. The values are used to match against
the same values as they appear in templates. Composing from template consists
of (among other things) looking for these values in the template and finding
actual chords in the chordmap that match these values. The following flags are
defined:
DMUS_SIGNPOSTF_A
DMUS_SIGNPOSTF_B
DMUS_SIGNPOSTF_C
DMUS_SIGNPOSTF_D
DMUS_SIGNPOSTF_E
DMUS_SIGNPOSTF_F
DMUS_SIGNPOSTF_LETTER
DMUS_SIGNPOSTF_1
DMUS_SIGNPOSTF_2
DMUS_SIGNPOSTF_3
DMUS_SIGNPOSTF_4
DMUS_SIGNPOSTF_5
DMUS_SIGNPOSTF_6
DMUS_SIGNPOSTF_7
DMUS_SIGNPOSTF_ROOT
DMUS_SIGNPOSTF_CADENCE

dwFlags
Flag defining whether this chord is to be preceded by cadence chords. Signpost
chords can have up to two cadence chords. This value can be SPOST_CADENCE1
(first cadence), SPOST_CADENCE2 (second cadence), or a combination of these
two flags.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_SIGNPOST

in.doc – page 351

DMUS_IO_CHORDMAP_SUBCH
ORD

[This is preliminary documentation and subject to change.]

The DMUS_IO_CHORDMAP_SUBCHORD structure contains information about
a subchord. It is used in the Chordmap Form.

typedef struct _DMUS_IO_CHORDMAP_SUBCHORD {
 DWORD dwChordPattern;
 DWORD dwScalePattern;
 DWORD dwInvertPattern;
 BYTE bChordRoot;
 BYTE bScaleRoot;
 WORD wCFlags;
 DWORD dwLevels;
} DMUS_IO_CHORDMAP_SUBCHORD;

dwChordPattern
Notes in the subchord. Each of the lower 24 bits represents a semitone, starting
with the root at the least significant bit, and the bit is set if the note is in the
chord.

dwScalePattern
Notes in the scale. Each of the lower 24 bits represents a semitone, starting with
the root at the least significant bit, and the bit is set if the note is in the scale.

dwInvertPattern
Points in the scale where inversions can occur. Bits that are off signify that the
notes in the interval cannot be inverted. Thus the pattern 100001111111
indicates that inversions are allowed anywhere except between the fifth and
seventh degrees of a major scale.

bChordRoot
Root of the subchord, where 0 is the bottom C in the range and 23 is the top B.

bScaleRoot
Root of the scale, where 0 is the bottom C in the range and 23 is the top B.

wCFlags
Reserved for future use.

dwLevels
Bitfield showing which levels are supported by this subchord. Each part in a
style is assigned a level, and this chord will be used only for parts whose levels
are contained in this member.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 352

Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_SUBCHORD

DMUS_IO_COMMAND
[This is preliminary documentation and subject to change.]

The DMUS_IO_COMMAND structure contains information about a command
event. It is used in the Command Track Chunk.

typedef struct _DMUS_IO_COMMAND {
 MUSIC_TIME mtTime;
 WORD wMeasure;
 BYTE bBeat;
 BYTE bCommand;
 BYTE bGrooveLevel;
 BYTE bGrooveRange;
} DMUS_IO_COMMAND;

mtTime
Time of the command.

wMeasure
Measure the command falls on.

bBeat
Beat the command falls on.

bCommand
Command type. See DMUS_COMMANDT_TYPES.

bGrooveLevel
Groove level, or 0 if command is not a groove command.

bGrooveRange
Amount by which the groove level can be randomized. For instance, if the
groove level is 35 and the range is 4, the actual groove level could be anywhere
from 33 to 37.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

in.doc – page 353

DMUS_IO_CURVE_ITEM
[This is preliminary documentation and subject to change.]

The DMUS_IO_CURVE_ITEM structure contains information about a curve event
in a track. It is used in the Sequence Track List.

typedef struct _DMUS_IO_CURVE_ITEM {
 MUSIC_TIME mtStart;
 MUSIC_TIME mtDuration;
 MUSIC_TIME mtResetDuration;
 DWORD dwPChannel;
 short nStartValue;
 short nEndValue;
 short nResetValue;
 BYTE bType;
 BYTE bCurveShape;
 BYTE bCCData;
 BYTE bFlags;
} DMUS_IO_CURVE_ITEM;

mtStart
Start time of the curve.

mtDuration
How long the curve lasts.

mtResetDuration
How long after the curve is finished until the reset value is set.

dwPChannel
Performance channel for the event.

nOffset
Offset from the grid boundary at which the curve occurs, in music time. MIDI
curves are associated with the closest grid when loaded, so this value can be
positive or negative.

nStartValue
Start value.

nEndValue
End value.

nResetValue
Reset value, set after mtResetDuration or upon a flush or invalidation.

bType
Type of curve. The following types are defined:
DMUS_CURVET_PBCURVE
DMUS_CURVET_CCCURVE
DMUS_CURVET_MATCURVE
DMUS_CURVET_PATCURVE

in.doc – page 354

bCurveShape
Shape of curve. The following shapes are defined:
DMUS_CURVES_LINEAR
DMUS_CURVES_INSTANT
DMUS_CURVES_EXP
DMUS_CURVES_LOG
DMUS_CURVES_SINE

bCCData
CC number if this is a control change type.

bFlags
Set to DMUS_CURVE_RESET if the nResetValue must be set when the time is
reached or an invalidation occurs because of a transition. If 0, the curve stays
permanently at the new value. All other bits are reserved.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_SEQ_ITEM

DMUS_IO_INSTRUMENT
[This is preliminary documentation and subject to change.]

The DMUS_IO_INSTRUMENT structure contains information about an
instrument. It is used in the Band Form.

typedef struct _DMUS_IO_INSTRUMENT {
 DWORD dwPatch;
 DWORD dwAssignPatch;
 DWORD dwNoteRanges[4];
 DWORD dwPChannel;
 DWORD dwFlags;
 BYTE bPan;
 BYTE bVolume;
 short nTranspose;
 DWORD dwChannelPriority;
} DMUS_IO_INSTRUMENT;

dwPatch
MSB, LSB, and program change to define instrument.

in.doc – page 355

dwAssignPatch
MSB, LSB, and program change to assign to instrument when downloading.

dwNoteRanges
128 bits; one for each MIDI note instrument needs to able to play.

dwPChannel
Performance channel instrument plays on.

dwFlags
Control flags. The following values are defined:
DMUS_IO_INST_ASSIGN_PATCH

dwAssignPatch is valid.
DMUS_IO_INST_BANKSELECT

dwPatch contains a valid bank select, both MSB and LSB.
DMUS_IO_INST_CHANNEL_PRIORITY

dwChannelPriority is valid.
DMUS_IO_INST_GM

Instrument is from the General MIDI collection.
DMUS_IO_INST_GS

Instrument is from the Roland GS collection.
DMUS_IO_INST_NOTERANGES

dwNoteRanges is valid.
DMUS_IO_INST_PAN

bPan is valid.
DMUS_IO_INST_PATCH

dwPatch is valid.
DMUS_IO_INST_TRANSPOSE

nTranspose is valid.
DMUS_IO_INST_USE_DEFAULT_GM_SET

The default General MIDI instrument set should be downloaded to the port
even if the port has GM in hardware. If a MIDI file with the XG or GS reset
sysex message is parsed, the bank select messages will be sent whether or not
GUID_StandardMIDIFile was commanded on the band. In other words,
GUID_StandardMIDIFile is effective only for pure GM files.

DMUS_IO_INST_VOLUME
bVolume is valid.

DMUS_IO_INST_XG
Instrument is from the Yamaha XG collection.

bPan
Pan for instrument.

bVolume
Volume for instrument.

nTranspose
Number of semitones to transpose notes.

dwChannelPriority

in.doc – page 356

Channel priority. For a list of defined values, see
IDirectMusicPort::GetChannelPriority.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_MOTIFSETTINGS
[This is preliminary documentation and subject to change.]

The DMUS_IO_MOTIFSETTINGS structure contains information about a motif.
It is used in the Style Form.

typedef struct _DMUS_IO_MOTIFSETTINGS {
 DWORD dwRepeats;
 MUSIC_TIME mtPlayStart;
 MUSIC_TIME mtLoopStart;
 MUSIC_TIME mtLoopEnd;
 DWORD dwResolution;
} DMUS_IO_MOTIFSETTINGS;

dwRepeats
Number of repetitions.

mtPlayStart
Start of playback, normally 0.

mtLoopStart
Start of looping portion, normally 0.

mtLoopEnd
End of looping portion.

dwResolution
Default resolution. See DMUS_TIME_RESOLVE_FLAGS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicSegment::SetLoopPoints

in.doc – page 357

DMUS_IO_MUTE
[This is preliminary documentation and subject to change.]

The DMUS_IO_MUTE structure contains information about a mute event on a
channel. It is used in the Mute Track Chunk.

typedef struct _DMUS_IO_MUTE {
 MUSIC_TIME mtTime;
 DWORD dwPChannel;
 DWORD dwPChannelMap;
} DMUS_IO_MUTE;

mtTime
Time of the event.

dwPChannel
Performance channel to mute or remap.

dwPChannelMap
Channel to which dwPChannel is being mapped, or 0xFFFFFFFF if
dwPChannel is to be muted.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_MUTE_PARAM

DMUS_IO_NEXTCHORD
[This is preliminary documentation and subject to change.]

The DMUS_IO_NEXTCHORD stucture contains information about the next chord
in a chord graph. It is used in the Chordmap Form.

typedef struct _DMUS_IO_NEXTCHORD {
 DWORD dwFlags;
 WORD nWeight;
 WORD wMinBeats;
 WORD wMaxBeats;
 WORD wConnectionID;
} DMUS_IO_NEXTCHORD;

in.doc – page 358

dwFlags
Reserved for future use.

nWeight
Likelihood (in the range 1-100) that this link will be followed when traversing
the chord graph.

wMinBeats
Smallest number of beats that this chord is allowed to play in a composed
segment.

wMaxBeats
Largest number of beats that this chord is allowed to play in a composed
segment.

wConnectionID
Refers to the wConnectionID member of a DMUS_IO_CHORDENTRY
structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_PARTREF
[This is preliminary documentation and subject to change.]

The DMUS_IO_PARTREF structure contains information about a part reference. It
is used in the Style Form.

typedef struct _DMUS_IO_PARTREF {
 GUID guidPartID;
 WORD wLogicalPartID;
 BYTE bVariationLockID;
 BYTE bSubChordLevel;
 BYTE bPriority;
 BYTE bRandomVariation;
} DMUS_IO_PARTREF;

guidPartID
Identifier of part.

wLogicalPartID
Identifier corresponding to a particular MIDI channel on a port.

bVariationLockID
Parts with the same value in this member always play the same variation.

bSubChordLevel
Subchord level this part wants. See Remarks.

in.doc – page 359

bPriority
Priority of the part. For information on priorities, see Channels.

bRandomVariation
When set, matching variations play in random order. When clear, matching
variations play sequentially.

Remarks
The bSubChordLevel member contains a zero-based index value. At run time, 1 is
shifted left by this value to yield a single-bit value for comparison with the
dwLevels member of a DMUS_SUBCHORD structure. Thus a part with a
bSubChordLevel of 0 would be mapped to any subchord that contained 1 in
dwLevels.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_PATTERN
[This is preliminary documentation and subject to change.]

The DMUS_IO_PATTERN structure contains information about a pattern. It is
used in the Style Form.

typedef struct _DMUS_IO_PATTERN {
 DMUS_IO_TIMESIG timeSig;
 BYTE bGrooveBottom;
 BYTE bGrooveTop;
 WORD wEmbellishment;
 WORD wNbrMeasures;
} DMUS_IO_PATTERN;

timeSig
DMUS_IO_TIMESIG structure containing a time signature to override the
style's default time signature.

bGrooveBottom
Bottom of groove range.

bGrooveTop
Top of groove range.

wEmbellishment
Type of embellishment. See DMUS_COMMANDT_TYPES.

wNbrMeasures

in.doc – page 360

Length of the pattern in measures.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_REFERENCE
[This is preliminary documentation and subject to change.]

The DMUS_IO_REFERENCE structure contains information about a reference to
another object that might be stored in another file. It is used in the reference list
chunk. See Common Chunks.

typedef struct _DMUS_IO_REFERENCE {
 GUID guidClassID;
 DWORD dwValidData;
} DMUS_IO_REFERENCE;

guidClassID
Class identifier.

dwValidData
Flags to indicate which data chunks for the reference are present. For a list of
values, see the corresponding member of DMUS_OBJECTDESC.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_SEGMENT_HEADER
[This is preliminary documentation and subject to change.]

The DMUS_IO_SEGMENT_HEADER structure contains information about a
segment. It is used in the Segment Form.

typedef struct _DMUS_IO_SEGMENT_HEADER {
 DWORD dwRepeats;
 MUSIC_TIME mtLength;
 MUSIC_TIME mtPlayStart;
 MUSIC_TIME mtLoopStart;

in.doc – page 361

 MUSIC_TIME mtLoopEnd;
 DWORD dwResolution;
} DMUS_IO_SEGMENT_HEADER;

dwRepeats
Number of repetitions.

mtLength
Length of the segment.

mtPlayStart
Start of playback, normally 0.

mtLoopStart
Start of looping portion, normally 0.

mtLoopEnd
End of looping portion.

dwResolution
Default resolution. See DMUS_TIME_RESOLVE_FLAGS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_MOTIFSETTINGS, IDirectMusicSegment::SetLoopPoints.

DMUS_IO_SEQ_ITEM
[This is preliminary documentation and subject to change.]

The DMUS_IO_SEQ_ITEM structure contains information about an item of data in
a sequence track. It is used in the Sequence Track List.

typedef struct _DMUS_IO_SEQ_ITEM {
 MUSIC_TIME mtTime;
 MUSIC_TIME mtDuration;
 DWORD dwPChannel;
 short nOffset
 BYTE bStatus;
 BYTE bByte1;
 BYTE bByte2;
} DMUS_IO_SEQ_ITEM;

mtTime

in.doc – page 362

Time of the event.
mtDuration

Duration for which the event is valid.
dwPChannel

Performance channel for the event.
nOffset

Offset from the grid boundary at which the note is played, in music time. MIDI
notes are associated with the closest grid when loaded, so this value can be
positive or negative.

bStatus
MIDI event type. Equivalent to the MIDI status byte, but without channel
information.

bByte1
First byte of the MIDI data.

bByte2
Second byte of the MIDI data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_CURVE_ITEM, MIDI Messages

DMUS_IO_SIGNPOST
[This is preliminary documentation and subject to change.]

The DMUS_IO_SIGNPOST structure contains information about a signpost in a
signpost track, in order to associate it with signpost chords in a chordmap. It is used
in the Signpost Track Chunk.

typedef struct _DMUS_IO_SIGNPOST {
 MUSIC_TIME mtTime;
 DWORD dwChords;
 WORD wMeasure;
} DMUS_IO_SIGNPOST;

mtTime
Time of the signpost.

dwChords

in.doc – page 363

Types of signpost chords allowed to be associated with this signpost. The values
are used to match against the same values as they appear in templates.
Composing from template consists of (among other things) looking for these
values in the template and finding actual chords in the chordmap that match
these values. The following flags are defined:
DMUS_SIGNPOSTF_A
DMUS_SIGNPOSTF_B
DMUS_SIGNPOSTF_C
DMUS_SIGNPOSTF_D
DMUS_SIGNPOSTF_E
DMUS_SIGNPOSTF_F
DMUS_SIGNPOSTF_LETTER
DMUS_SIGNPOSTF_1
DMUS_SIGNPOSTF_2
DMUS_SIGNPOSTF_3
DMUS_SIGNPOSTF_4
DMUS_SIGNPOSTF_5
DMUS_SIGNPOSTF_6
DMUS_SIGNPOSTF_7
DMUS_SIGNPOSTF_ROOT
DMUS_SIGNPOSTF_CADENCE

wMeasure
Measure on which the signpost falls.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_CHORDMAP_SIGNPOST

DMUS_IO_STYLE
[This is preliminary documentation and subject to change.]

The DMUS_IO_STYLE structure contains information about the time signature and
tempo of a style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLE {
 DMUS_IO_TIMESIG timeSig;
 double dblTempo;
} DMUS_IO_STYLE;

in.doc – page 364

timeSig
DMUS_IO_TIMESIG structure containing the default time signature for the
style.

dblTempo
Tempo of the style.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_STYLECURVE
[This is preliminary documentation and subject to change.]

The DMUS_IO_STYLECURVE structure contains information about a curve in a
style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLECURVE {
 MUSIC_TIME mtGridStart;
 DWORD dwVariation;
 MUSIC_TIME mtDuration;
 MUSIC_TIME mtResetDuration;
 short nTimeOffset;
 short nStartValue;
 short nEndValue;
 short nResetValue;
 BYTE bEventType;
 BYTE bCurveShape;
 BYTE bCCData;
 BYTE bFlags;
} DMUS_IO_STYLECURVE;

mtGridStart
Start time of the grid in which the curve occurs.

dwVariation
Which variations this curve belongs to. Each bit corresponds to one of 32 variations.

mtDuration
How long the curve lasts.

mtResetDuration
How long after the curve is finished until the reset value is set.

nTimeOffset
Offset from mtGridStart at which the curve occurs.

nStartValue

in.doc – page 365

Start value.
nEndValue

End value.
nResetValue

Reset value, set after mtResetDuration or upon a flush or invalidation.
bEventType

Type of curve. The following types are defined:
DMUS_CURVET_PBCURVE
DMUS_CURVET_CCCURVE
DMUS_CURVET_MATCURVE
DMUS_CURVET_PATCURVE

bCurveShape
Shape of curve. The following shapes are defined:
DMUS_CURVES_LINEAR
DMUS_CURVES_INSTANT
DMUS_CURVES_EXP
DMUS_CURVES_LOG
DMUS_CURVES_SINE

bCCData
CC number if this is a control change type.

bFlags
Set to DMUS_CURVE_RESET if the nResetValue must be set when the time is
reached or an invalidation occurs because of a transition. If 0, the curve stays
permanently at the new value. All other bits are reserved.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_CURVE_PMSG, DMUS_IO_CURVE_ITEM

DMUS_IO_STYLENOTE
[This is preliminary documentation and subject to change.]

The DMUS_IO_STYLENOTE structure contains information about a note in a
style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLENOTE {
 MUSIC_TIME mtGridStart;
 DWORD dwVariation;

in.doc – page 366

 MUSIC_TIME mtDuration;
 short nTimeOffset;
 WORD wMusicValue;
 BYTE bVelocity;
 BYTE bTimeRange;
 BYTE bDurRange;
 BYTE bVelRange;
 BYTE bInversionID;
 BYTE bPlayModeFlags;
} DMUS_IO_STYLENOTE;

mtGridStart
When the note occurs.

dwVariation
Which variations this note belongs to. Each bit corresponds to one of 32
variations.

mtDuration
How long the note lasts.

nTimeOffset
Offset from mtGridStart.

wMusicValue
Position in scale.

bVelocity
Note velocity.

bTimeRange
Range within which to randomize start time.

bDurRange
Range within which to randomize duration.

bVelRange;
Range within which to randomize velocity.

bInversionID
Identifier of inversion group to which this note belongs.

bPlayModeFlags
Flags to override the play mode of the part. For a list of values, see
DMUS_PLAYMODE_FLAGS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

in.doc – page 367

DMUS_IO_STYLEPART
[This is preliminary documentation and subject to change.]

The DMUS_IO_STYLEPART structure contains information about a musical part.
It is used in the Style Form.

typedef struct _DMUS_IO_STYLEPART {
 DMUS_IO_TIMESIG timeSig;
 DWORD dwVariationChoices[32];
 GUID guidPartID;
 WORD wNbrMeasures;
 BYTE bPlayModeFlags;
 BYTE bInvertUpper;
 BYTE bInvertLower;
} DMUS_IO_STYLEPART;

timeSig
DMUS_IO_TIMESIG structure containing a time signature to override the
style's default time signature.

dwVariationChoices
Each word corresponds to one of 32 possible variations. The flags set in each
word indicate which types of chord are supported by that variation (see
Remarks). The following flags are defined:
DMUS_VARIATIONF_MAJOR

Seven positions in the scale for major chords.
DMUS_VARIATIONF_MINOR

Seven positions in the scale for minor chords.
DMUS_VARIATIONF_OTHER

Seven positions in the scale for other chords.
DMUS_VARIATIONF_ROOT_SCALE

Handles chord roots in the scale.
DMUS_VARIATIONF_ROOT_FLAT

Handles flat chord roots (based on scale notes).
DMUS_VARIATIONF_ROOT_SHARP

Handles sharp chord roots (based on scale notes).
DMUS_VARIATIONF_TYPE_TRIAD

Handles simple chords for triads.
DMUS_VARIATIONF_TYPE_6AND7

Handles simple chords for 6 and 7.
DMUS_VARIATIONF_TYPE_COMPLEX

Handles complex chords.
DMUS_VARIATIONF_DEST_TO1

Handles transitions to 1 chord.

in.doc – page 368

DMUS_VARIATIONF_DEST_TO5
Handles transitions to 5 chord.

DMUS_VARIATIONF_MODES
DMUS_VARIATIONF_IMA25_MODE
DMUS_VARIATIONF_DMUS_MODE

One of these flags is set to indicate the mode. For DirectMusic, this value
should always be DMUS_VARIATIONF_DMUS_MODE.

guidPartID
Unique identifier of the part.

wNbrMeasures
Length of the part, in measures.

bPlayModeFlags
Flags to define the play mode. For a list of values, see
DMUS_PLAYMODE_FLAGS.

bInvertUpper
Upper limit of inversion.

bInvertLower
Lower limit of inversion.

Remarks
The flags in dwVariationChoices determine the types of chords supported by a
given variation in DirectMusic mode. The first seven flags (bits 1-7) are set if the
variation supports major chords rooted in scale positions. For example, if bits 1, 2,
and 4 are set, the variation supports major chords rooted in the tonic, second, and
fourth scale positions. The next seven flags serve the same purpose, but for minor
chords, and the following seven flags serve the same purpose for chords that are not
major or minor (for example, SUS 4 chords). Bits 22, 23, and 24 are set if the
variation supports chords rooted in the scale, chords rooted sharp of scale tones, and
chords rooted flat of scale tones, respectively. For example, to support a C# minor
chord in the scale of C major, bits 8 (for tonic minor) and 24 (for sharp) need to be
set. Bits 25, 26, an 27 handle chords that are triads, 6th or 7th chords, and chords
with extensions, respectively. Bits 28 and 29 handle chords that are followed by
tonic and dominant chords, respectively.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_SUBCHORD
[This is preliminary documentation and subject to change.]

in.doc – page 369

The DMUS_IO_SUBCHORD structure contains information about a subchord. It is
used in the Chord Track List.

typedef struct _DMUS_IO_SUBCHORD {
 DWORD dwChordPattern;
 DWORD dwScalePattern;
 DWORD dwInversionPoints;
 DWORD dwLevels;
 BYTE bChordRoot;
 BYTE bScaleRoot;
} DMUS_IO_SUBCHORD;

dwChordPattern
Notes in the subchord. Each of the lower 24 bits represents a semitone, starting
with the root at the least significant bit, and the bit is set if the note is in the
chord.

dwScalePattern
Notes in the scale. Each of the lower 24 bits represents a semitone, starting with
the root at the least significant bit, and the bit is set if the note is in the scale.

dwInversionPoints
Points in the scale where inversions can occur. Bits that are off signify that the
notes in the interval cannot be inverted. Thus the pattern 100001111111
indicates that inversions are allowed anywhere except between the fifth and
seventh degrees of a major scale.

dwLevels
Which levels are supported by this subchord. Certain instruments may be
assigned different levels (such as to play only the lower subchords of a chord),
and this value is a way of mapping subchords to those levels.

bChordRoot
Root of the subchord, where 0 is the bottom C in the range and 23 is the top B.

bScaleRoot
Root of the scale, where 0 is the bottom C in the range and 23 is the top B.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_SUBCHORD

in.doc – page 370

DMUS_IO_SYSEX_ITEM
[This is preliminary documentation and subject to change.]

The DMUS_IO_SYSEX_ITEM structure contains information about a system-
exclusive MIDI message. It is used in the Sysex Track Chunk.

typedef struct _DMUS_IO_SYSEX_ITEM {
 MUSIC_TIME mtTime;
 DWORD dwPChannel;
 DWORD dwSysExLength;
} DMUS_IO_SYSEX_ITEM;

mtTime
Time of the message.

dwPChannel
Performance channel of the event.

dwSysExLength
Length of the data, in bytes.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
MIDI System Messages

DMUS_IO_TEMPO_ITEM
[This is preliminary documentation and subject to change.]

The DMUS_IO_TEMPO_ITEM structure contains information about a tempo
change in a track. It is used in the Tempo Track Chunk.

typedef struct _DMUS_IO_TEMPO_ITEM {
 MUSIC_TIME mtTime;
 double dblTempo;
} DMUS_IO_TEMPO_ITEM;

mtTime
Time of the tempo change.

dblTempo
Tempo, in beats per minute.

in.doc – page 371

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DMUS_IO_TIMESIG
[This is preliminary documentation and subject to change.]

The DMUS_IO_TIMESIG structure contains information about the time signature
of a segment. It is used in the DMUS_IO_STYLE, DMUS_IO_VERSION, and
DMUS_IO_PATTERN structures.

typedef struct _DMUS_IO_TIMESIG {
 BYTE bBeatsPerMeasure;
 BYTE bBeat;
 WORD wGridsPerBeat;
} DMUS_IO_TIMESIG;

bBeatsPerMeasure
Beats per measure (top of time signature).

bBeat
What note receives the beat (bottom of the time signature), where 1 is a whole
note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat
Grids (subdivisions) per beat.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_TIMESIGNATURE_ITEM

DMUS_IO_TIMESIGNATURE_IT
EM

[This is preliminary documentation and subject to change.]

in.doc – page 372

The DMUS_IO_TIMESIGNATURE_ITEM structure contains information about a
time signature change. It is used in the Time Signature Track Chunk.

typedef struct _DMUS_IO_TIMESIGNATURE_ITEM {
 MUSIC_TIME mtTime;
 BYTE bBeatsPerMeasure;
 BYTE bBeat;
 WORD wGridsPerBeat;
} DMUS_IO_TIMESIGNATURE_ITEM;

mtTime
Time of the event.

bBeatsPerMeasure
Beats per measure (top of time signature).

bBeat
What note receives the beat (bottom of the time signature), where 1 is a whole
note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat
Grids (subdivisions) per beat.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
DMUS_IO_TIMESIG, DMUS_TIMESIG_PMSG

DMUS_IO_TOOL_HEADER
[This is preliminary documentation and subject to change.]

The DMUS_IO_TOOL_HEADER structure contains information about a tool. It is
used in the Tool Form.

typedef struct _DMUS_IO_TOOL_HEADER {
 GUID guidClassID;
 long lIndex;
 DWORD cPChannels;
 FOURCC ckid;
 FOURCC fccType;
 DWORD dwPChannels[1];
} DMUS_IO_TOOL_HEADER;

in.doc – page 373

guidClassID
Class identifier of tool.

lIndex
Position in graph.

cPChannels
Number of items in dwPChannels array.

ckid
Identifier of tool's data chunk. If this value is zero, it is assumed that the chunk
is of type LIST, so fccType is valid and must be nonzero.

fccType
List type. If this value is zero, ckid is valid and must be nonzero.

dwPChannels
Array of performance channels for which the tool is valid.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicGraph::InsertTool

DMUS_IO_TRACK_HEADER
[This is preliminary documentation and subject to change.]

The DMUS_IO_TRACK_HEADER structure contains information about a track. It
is used in the Track Form.

typedef struct _DMUS_IO_TRACK_HEADER {
 GUID guidClassID;
 DWORD dwPosition;
 DWORD dwGroup;
 FOURCC ckid;
 FOURCC fccType;
} DMUS_IO_TRACK_HEADER;

guidClassID
Class identifier of track.

dwPosition
Position in track list.

dwGroup

in.doc – page 374

Group bits for track.
ckid

Identifier of track's data chunk. If this value is zero, it is assumed that the chunk
is of type LIST, so fccType is valid and must be nonzero.

fccType
List type. If this value is zero, ckid is valid and must be nonzero.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

See Also
IDirectMusicSegment::GetTrackGroup, IDirectMusicSegment::InsertTrack,
Track Form

DMUS_IO_VERSION
[This is preliminary documentation and subject to change.]

The DMUS_IO_VERSION structure contains the version number of the data. It is
used in the version subchunk of various chunks. See Common Chunks.

typedef struct _DMUS_IO_VERSION {
 DWORD dwVersionMS;
 DWORD dwVersionLS;
} DMUS_IO_VERSION;

dwVersionMS
High-order 32 bits of version number.

dwVersionLS
Low-order 32 bits of version number.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicf.h.

DLS Structures
[This is preliminary documentation and subject to change.]

in.doc – page 375

This section contains reference information for structures used with downloadable
sounds. Most applications do not need to use these structures, as DirectMusic
handles the details of loading DLS collections and downloading instruments to the
synthesizer. They are of interest chiefly for DLS-editing applications.

For an overview of using DLS data, see Low-Level DLS.

For more information on DLS data formats, see the specification from the MIDI
Manufacturers Association.

The following structures are included in this section:

· DMUS_ARTICPARAMS
· DMUS_ARTICULATION
· DMUS_COPYRIGHT
· DMUS_DOWNLOADINFO
· DMUS_EXTENSIONCHUNK
· DMUS_INSTRUMENT
· DMUS_LFOPARAMS
· DMUS_MSCPARAMS
· DMUS_OFFSETTABLE
· DMUS_PEGPARAMS
· DMUS_REGION
· DMUS_VEGPARAMS
· DMUS_WAVE
· DMUS_WAVEDATA

DMUS_ARTICPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_ARTICPARAMS structure describes parameters for a DLS articulation
chunk. All parameters for articulation are stored in one chunk, which is composed of
a series of structures that define each functional area of the articulation. If an
instrument or region uses articulation, it references this chunk by index from the
DMUS_ARTICULATION chunk.

typedef struct {
 DMUS_LFOPARAMS LFO;
 DMUS_VEGPARAMS VolEG;
 DMUS_PEGPARAMS PitchEG;
 DMUS_MSCPARAMS Misc;
} DMUS_ARTICPARAMS;

LFO

in.doc – page 376

DMUS_LFOPARAMS structure containing parameters for low-frequency
oscillator.

VolEG
DMUS_VEGPARAMS structure containing parameters for volume envelope
generator.

PitchEG
DMUS_PEGPARAMS structure containing parameters for pitch envelope
generator.

Misc
DMUS_MSCPARAMS structure containing initial pan position.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_ARTICULATION
[This is preliminary documentation and subject to change.]

The DMUS_ARTICULATION structure describes a DLS instrument articulation
chunk. This chunk connects all available DLS articulation data in one list. For
example, it might have a DLS Level 1 chunk and a manufacturer's proprietary
articulation chunk. The DLS chunk is referenced by ulArt1Idx, while all additional
articulation chunks are referenced by the list that starts with ulFirstExtCkIdx.

typedef struct {
 ULONG ulArt1Idx;
 ULONG ulFirstExtCkIdx;
} DMUS_ARTICULATION;

ulArt1Idx
Index, in the DMUS_OFFSETTABLE, of the DLS articulation chunk. If 0,
there is no DLS articulation.

ulFirstExtCkIdx
Index of the first third-party extension chunk. If 0, there are no third-party
extension chunks associated with the articulation.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

in.doc – page 377

DMUS_COPYRIGHT
[This is preliminary documentation and subject to change.]

The DMUS_COPYRIGHT structure describes an optional copyright chunk in DLS
data.

typedef struct {
 ULONG cbSize;
 BYTE byCopyright[];
} DMUS_COPYRIGHT;

cbSize
Size of data.

byCopyright[]
Copyright data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_DOWNLOADINFO
[This is preliminary documentation and subject to change.]

The DMUS_DOWNLOADINFO structure is used as a header for DLS data to be
downloaded to a port. It defines the size and functionality of the download and is
always followed by a DMUS_OFFSETTABLE chunk.

typedef struct _DMUS_DOWNLOADINFO {
 DWORD dwDLType;
 DWORD dwDLId;
 DWORD dwNumOffsetTableEntries;
 DWORD cbSize;
} DMUS_DOWNLOADINFO;

dwDLType
Type of data being downloaded. The following types are defined:
DMUS_DOWNLOADINFO_INSTRUMENT

Instrument definition, starting with the DMUS_INSTRUMENT structure
DMUS_DOWNLOADINFO_WAVE

PCM wave data, starting with the DMUS_WAVE structure.
dwDLId

Unique 32-bit identifier for the object. See Remarks.

in.doc – page 378

dwNumOffsetTableEntries
Number of entries in the DMUS_OFFSETTABLE structure that follows.

cbSize
Size of this memory chunk, inlcuding the offset table.

Remarks
The identifier in dwDLId is used to connect objects together and is obtained by
using the IDirectMusicPortDownload::GetDLId method. Primarily it connects the
regions in an instrument to wave chunks. For example, suppose a wave download is
given a dwDLId of 3. Then an instrument chunk downloads with the value 3 placed
in the WaveLink.ulTableIndex member of one of its DMUS_REGION structures.
This indicates that the region is connected to the wave chunk.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

See Also
Low-Level DLS

DMUS_EXTENSIONCHUNK
[This is preliminary documentation and subject to change.]

The DMUS_EXTENSIONCHUNK structure describes a DLS extension chunk. All
extensions to the DLS file format that are unknown to DirectMusic are downloaded
in this variable-size chunk.

typedef struct {
 ULONG cbSize;
 ULONG ulNextExtCkIdx;
 FOURCC ExtCkID;
 BYTE byExtCk[];
} DMUS_EXTENSIONCHUNK;

cbSize
Size of chunk.

ulNextExtCkIdx
Index, in the DMUS_OFFSETTABLE, of the next extension chunk. If 0, there
are no more third-party extension chunks

ExtCkID
Chunk identifier.

in.doc – page 379

byExtCk[]
Data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_INSTRUMENT
[This is preliminary documentation and subject to change.]

The DMUS_INSTRUMENT structure contains an instrument definition in a DLS
download chunk.

typedef struct {
 ULONG ulPatch;
 ULONG ulFirstRegionIdx;
 ULONG ulGlobalArtIdx;
 ULONG ulFirstExtCkIdx;
 ULONG ulCopyrightIdx;
 ULONG ulFlags;
} DMUS_INSTRUMENT;

ulPatch
Patch number of instrument.

ulFirstRegionIdx
Index of first region chunk (see DMUS_REGION) within the instrument. There
should always be a region, but for compatibility with future synthesizer
architectures it is acceptable to have 0 in this member.

ulGlobalArtIdx
Index, in the DMUS_OFFSETTABLE, of the global articulation chunk (see
DMUS_ARTICULATION) for the instrument. If 0, the instrument does not
have global articulation.

ulFirstExtCkIdx
Index, in the DMUS_OFFSETTABLE, of the first extension chunk (see
DMUS_EXTENSIONCHUNK) within the instrument. This is used to add new
chunks that DirectMusic is unaware of. If 0, no third-party extension chunks
associated with the instrument.

ulCopyrightIdx
Index, in the DMUS_OFFSETTABLE, of an optional copyright chunk (see
DMUS_COPYRIGHT). If 0, no copyright information is associated with the
instrument.

ulFlags

in.doc – page 380

Additional flags for the instrument. The following flag is defined:
DMUS_INSTRUMENT_GM_INSTRUMENT

The instrument is a standard General MIDI instrument. In the case of patch
overlap, GM instruments always have lower priority than other DLS
instruments. For example, if a GM instrument is downloaded with patch 0
and a non-GM instrument is also downloaded at patch 0, the non-GM
instrument is always selected for playback.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_LFOPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_LFOPARAMS structure defines the low-frequency oscillator for a DLS
articulation chunk. It is used in the DMUS_ARTICPARAMS structure.

typedef struct {
 PCENT pcFrequency;
 TCENT tcDelay;
 GCENT gcVolumeScale;
 PCENT pcPitchScale;
 GCENT gcMWToVolume;
 PCENT pcMWToPitch;
} DMUS_LFOPARAMS;

pcFrequency
Frequency, in pitch units. See Remarks.

tcDelay
Initial delay, in time cents. See Remarks.

gcVolumeScale
Scaling of output to control tremolo, in attenuation units. See Remarks.

pcPitchScale
Scaling of LFO output to control vibrato, in pitch units. See Remarks.

gcMWToVolume
Mod wheel range for controlling tremolo, in attenuation units. See Remarks.

pcMWToPitch
Mod wheel range for controlling tremolo, in attenuation units. See Remarks.

in.doc – page 381

Remarks
The DLS Level 1 specification defines time cents, pitch cents, and attenuation as 32-
bit logarithmic values. See the specification from the MIDI Manufacturers
Association for details.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

See Also
DMUS_ARTICPARAMS

DMUS_MSCPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_MSCPARAMS structure defines the pan for a DLS articulation chunk.
It is used in the DMUS_ARTICPARAMS structure.

typedef struct {
 PERCENT ptDefaultPan;
} DMUS_MSCPARAMS;

ptDefaultPan
Default pan, ranging from -50 to 50 percent in units of 0.1 percent shifted left by
16.

Remarks
PERCENT is defined as long. For more information about pan values, see the DLS
specification from the MIDI Manufacturers Association.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

See Also
DMUS_ARTICPARAMS

in.doc – page 382

DMUS_OFFSETTABLE
[This is preliminary documentation and subject to change.]

The DMUS_OFFSETTABLE structure is used in the header of DLS instrument
data being downloaded to a port.

typedef struct _DMUS_OFFSETTABLE {
 ULONG ulOffsetTable[DMUS_DEFAULT_SIZE_OFFSETTABLE];
} DMUS_OFFSETTABLE;

ulOffsetTable
Array of indices into the data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

See Also
Low-Level DLS

DMUS_PEGPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_PEGPARAMS structure defines the pitch envelope for a DLS
articulation chunk. It is used in the DMUS_ARTICPARAMS structure.

typedef struct {
 TCENT tcAttack;
 TCENT tcDecay;
 PERCENT ptSustain;
 TCENT tcRelease;
 TCENT tcVel2Attack;
 TCENT tcKey2Decay;
 PCENT pcRange;
} DMUS_PEGPARAMS;

tcAttack
Attack time, in time cents. See Remarks.

tcDecay
Decay time, in time cents. See Remarks.

ptSustain

in.doc – page 383

Sustain, in hundredths of a percent shifted left by 16.
tcRelease

Release time, in time cents. See Remarks.
tcVel2Attack

Velocity to attack, in time cents. See Remarks.
tcKey2Decay

Key to decay, in time cents. See Remarks.
pcRange

Envelope range, in pitch units. See Remarks.

Remarks
The DLS Level 1 specification defines time cents and pitch cents as 32-bit
logarithmic values. See the specification from the MIDI Manufacturers Association
for details about the values in this structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

See Also
DMUS_ARTICPARAMS

DMUS_REGION
[This is preliminary documentation and subject to change.]

The DMUS_REGION structure defines a region for a DLS download. One or more
regions can be embedded in an instrument buffer and referenced by the instrument
header chunk, DMUS_INSTRUMENT.

typedef struct {
 RGNRANGE RangeKey;
 RGNRANGE RangeVelocity;
 USHORT fusOptions;
 USHORT usKeyGroup;
 ULONG ulRegionArtIdx;
 ULONG ulNextRegionIdx;
 ULONG ulFirstExtCkIdx;
 WAVELINK WaveLink;
 WSMPL WSMP;
 WLOOP WLOOP[1];

in.doc – page 384

} DMUS_REGION;

RangeKey
Key range for this region.

RangeVelocity
Velocity range for this region.

fusOptions
Options for the synthesis of this region. The following flag is defined:
F_RGN_OPTION_SELFNONEXCLUSIVE

If a second note-on of the same note is received by the synthesis engine, the
second note will be played as well as the first. This option is off by default,
so that the synthesis engine will force a note-off of the first note.

usKeyGroup
Key group for a drum instrument. Key group values allow multiple regions
within a drum instrument to belong to the same group. If a synthesis engine is
instructed to play a note with a key group setting and any other notes are
currently playing with this same key group, the synthesis engine should turn off
all notes with the same key group value as soon as possible. Currently key
groups 1 through 15 are legal, and 0 indicates no key group.

ulRegionArtIdx
Index, in the DMUS_OFFSETTABLE, of the global articulation chunk for the
region. If 0, the region does not have an articulation and relies on the
instrument's global articulation.

ulNextRegionIdx
Index, in the DMUS_OFFSETTABLE, of the next region in the region list. If
0, there no more regions.

ulFirstExtCkIdx
Index, in the DMUS_OFFSETTABLE, of the third-party extension chunk list.
If 0, no extension chunks are associated with the region.

WaveLink
Standard DLS structure (declared in Dls1.h) for managing a link from the region
to a wave. The ulTableIndex member of the WAVELINK structure contains
the download identifier of the associated wave buffer. (For more information,
see DMUS_DOWNLOADINFO and Low-Level DLS.)

WSMP
Standard DLS structure (declared in Dls1.h) for managing the playback of the
wave. If the cSampleLoops member is 1, the following WLOOP structure
carries the loop start and end points.

WLOOP
Standard DLS structure (declared in Dls1.h) for describing a loop.

in.doc – page 385

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_VEGPARAMS
[This is preliminary documentation and subject to change.]

The DMUS_VEGPARAMS structure defines a volume envelope for a DLS
articulation chunk.

typedef struct {
 TCENT tcAttack;
 TCENT tcDecay;
 PERCENT ptSustain;
 TCENT tcRelease;
 TCENT tcVel2Attack;
 TCENT tcKey2Decay;
} DMUS_VEGPARAMS;

tcAttack
Attack time, in time cents. See Remarks.

tcDecay
Decay time, in time cents. See Remarks.

ptSustain
Sustain, measured in hundredths of a percent and shifted left by 16.

tcRelease
Release time, in time cents. See Remarks.

tcVel2Attack
Velocity to attack, in time cents. See Remarks.

tcKey2Decay
Key to decay, in time cents. See Remarks.

Remarks
The DLS Level 1 specification defines time cents as a 32-bit logarithmic value. See
the specification from the MIDI Manufacturers Association for details about the
values in this structure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for

in.doc – page 386

Windows 95.
 Header: Declared in dmdls.h.

See Also
DMUS_ARTICPARAMS

DMUS_WAVE
[This is preliminary documentation and subject to change.]

The DMUS_WAVE structure defines a wave chunk for a DLS download.

typedef struct {
 ULONG ulFirstExtCkIdx;
 ULONG ulCopyrightIdx;
 ULONG ulWaveDataIdx;
 WAVEFORMATEX WaveformatEx;
} DMUS_WAVE;

ulFirstExtCkIdx
Index, in the DMUS_OFFSETTABLE, of third-party extension chunks. If 0, no
extension chunks are associated with the wave.

ulCopyrightIdx
Index, in the DMUS_OFFSETTABLE, of copyright chunks. If 0, no copyright
information is associated with the wave.

ulWaveDataIdx
Index, in the DMUS_OFFSETTABLE, of wave data. See
DMUS_WAVEDATA.

WaveformatEx
Wave format of the chunk.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

DMUS_WAVEDATA
[This is preliminary documentation and subject to change.]

The DMUS_WAVEDATA structure comprises a data chunk for a DLS wave
download. The nature of the wave data is defined by the WAVEFORMATEX
chunk, embedded in DMUS_WAVE.

in.doc – page 387

typedef struct {
 ULONG cbSize;
 BYTE byData[];
} DMUS_WAVEDATA;

cbSize
Size of data.

byData[]
PCM wave data.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmdls.h.

Enumerated Types
[This is preliminary documentation and subject to change.]

This section contains references for the following enumerated types:

· DMUS_CLOCKTYPE
· DMUS_COMMANDT_TYPES
· DMUS_COMPOSEF_FLAGS
· DMUS_NOTEF_FLAGS
· DMUS_PLAYMODE_FLAGS
· DMUS_PMSGF_FLAGS
· DMUS_PMSGT_TYPES
· DMUS_SEGF_FLAGS
· DMUS_SHAPET_TYPES
· DMUS_TIME_RESOLVE_FLAGS
· DMUS_TRACKF_FLAGS

DMUS_CLOCKTYPE
[This is preliminary documentation and subject to change.]

The members of the DMUS_CLOCKTYPE enumeration are used in the ctType
member of the DMUS_CLOCKINFO structure.

typedef enum {
 DMUS_CLOCK_SYSTEM = 0,

in.doc – page 388

 DMUS_CLOCK_WAVE = 1
} DMUS_CLOCKTYPE;

DMUS_CLOCK_SYSTEM
The clock is the system clock.

DMUS_CLOCK_WAVE
The clock is on a wave playback device.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusicc.h.

DMUS_COMMANDT_TYPES
[This is preliminary documentation and subject to change.]

The members of the DMUS_COMMANDT_TYPES enumeration are used in the
wCommand parameter of the IDirectMusicComposer::AutoTransition and
IDirectMusicComposer::ComposeTransition methods and in the bCommand
member of the DMUS_COMMAND_PARAM structure.

enum enumDMUS_COMMANDT_TYPES {
 DMUS_COMMANDT_GROOVE = 0,
 DMUS_COMMANDT_FILL = 1,
 DMUS_COMMANDT_INTRO = 2,
 DMUS_COMMANDT_BREAK = 3,
 DMUS_COMMANDT_END = 4,
 DMUS_COMMANDT_ENDANDINTRO = 5
} DMUS_COMMANDT_TYPES;

DMUS_COMMANDT_GROOVE
The command is a groove command.

DMUS_COMMANDT_FILL
The command is a fill.

DMUS_COMMANDT_INTRO
The command is an intro.

DMUS_COMMANDT_BREAK
The command is a break.

DMUS_COMMANDT_END
The command is an ending.

DMUS_COMMANDT_ENDANDINTRO
The command is an ending and an intro.

in.doc – page 389

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_COMPOSEF_FLAGS
[This is preliminary documentation and subject to change.]

The DMUS_COMPOSEF_FLAGS are used in the dwFlags parameter of the
IDirectMusicComposer::ComposeTransition and
IDirectMusicComposer::AutoTransition methods.

typedef enum enumDMUS_COMPOSEF_FLAGS {
 DMUS_COMPOSEF_NONE = 0,
 DMUS_COMPOSEF_ALIGN = 0x1,
 DMUS_COMPOSEF_OVERLAP = 0x2,
 DMUS_COMPOSEF_IMMEDIATE = 0x4,
 DMUS_COMPOSEF_GRID = 0x8,
 DMUS_COMPOSEF_BEAT = 0x10,
 DMUS_COMPOSEF_MEASURE = 0x20,
 DMUS_COMPOSEF_AFTERPREPARETIME = 0x40,
 DMUS_COMPOSEF_MODULATE = 0x1000,
 DMUS_COMPOSEF_LONG = 0x2000
} DMUS_COMPOSEF_FLAGS;

DMUS_COMPOSEF_NONE
No flags. By default, the transition starts on a measure boundary.

DMUS_COMPOSEF_ALIGN
Align transition to the time signature of the currently playing segment.

DMUS_COMPOSEF_OVERLAP
Overlap the transition into pToSeg. This flag is not implemented.

DMUS_COMPOSEF_IMMEDIATE
AutoTransition only. Start transition on music or reference time boundary.

DMUS_COMPOSEF_GRID
AutoTransition only. Start transition on grid boundary.

DMUS_COMPOSEF_BEAT
AutoTransition only. Start transition on beat boundary.

DMUS_COMPOSEF_MEASURE
AutoTransition only. Start transition on measure boundary.

DMUS_COMPOSEF_AFTERPREPARETIME
AutoTransition only. Use the DMUS_SEGF_AFTERPREPARETIME flag
when cueing the transition.

DMUS_COMPOSEF_MODULATE

in.doc – page 390

Compose a transition that modulates smoothly from pFromSeg to pToSeg, using
the chord of pToSeg.

DMUS_COMPOSEF_LONG
Composes a long transition. If this flag is not set, the length of the transition is at
most one measure, unless the wCommand parameter of ComposeTransition or
AutoTransition specifies an ending and the style contains an ending of greater
than one measure. If this flag is set, the length of the transition increases by one
measure.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
DMUS_SEGF_FLAGS

DMUS_NOTEF_FLAGS
[This is preliminary documentation and subject to change.]

The DMUS_NOTEF_FLAGS are used in the bFlags member of the
DMUS_NOTE_PMSG structure.

typedef enum enumDMUS_NOTEF_FLAGS {
 DMUS_NOTEF_NOTEON = 1,
} DMUS_NOTEF_FLAGS;

DMUS_NOTEF_NOTEON
Set if this is a MIDI note-on, clear if it is a MIDI note-off. When a
DMUS_NOTE_PMSG is first sent by the
IDirectMusicPerformance::SendPMsg method, this flag should be set.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_PLAYMODE_FLAGS
[This is preliminary documentation and subject to change.]

in.doc – page 391

The DMUS_PLAYMODE_FLAGS are used in various structures for the basic play
modes. The play mode determines how a music value is transposed to a MIDI note.

typedef enum enumDMUS_PLAYMODE_FLAGS {
 DMUS_PLAYMODE_KEY_ROOT = 1,
 DMUS_PLAYMODE_CHORD_ROOT = 2,
 DMUS_PLAYMODE_SCALE_INTERVALS = 4,
 DMUS_PLAYMODE_CHORD_INTERVALS = 8,
 DMUS_PLAYMODE_NONE = 16,
} DMUS_PLAYMODE_FLAGS;

DMUS_PLAYMODE_KEY_ROOT
Transpose on top of the key root.

DMUS_PLAYMODE_CHORD_ROOT
Transpose on top of the chord root.

DMUS_PLAYMODE_SCALE_INTERVALS
Use scale intervals from scale pattern.

DMUS_PLAYMODE_CHORD_INTERVALS
Use chord intervals from chord pattern.

DMUS_PLAYMODE_NONE
No mode. Indicates the parent part's mode should be used.

Remarks
The following defined values represent combinations of play mode flags:

DMUS_PLAYMODE_ALWAYSPLAY
Combination of DMUS_PLAYMODE_SCALE_INTERVALS,
DMUS_PLAYMODE_CHORD_INTERVALS, and
DMUS_PLAYMODE_CHORD_ROOT. If it is desirable to play a note that is
above the top of the chord, this mode finds a position for the note by using
intervals from the scale. Essentially, this mode is a combination of the normal
and melodic playback modes, where a failure in normal causes a second try in
melodic mode.

DMUS_PLAYMODE_FIXED
Interpret the music value as a MIDI value. This is defined as 0 and signifies the
absence of other flags. This flag is used for drums, sound effects, and sequenced
notes that should not be transposed by the chord or scale.

DMUS_PLAYMODE_FIXEDTOCHORD
Same as DMUS_PLAYMODE_CHORD_ROOT. The music value is a fixed
MIDI value, but it is transposed on top of the chord root.

DMUS_PLAYMODE_FIXEDTOKEY
Same as DMUS_PLAYMODE_KEY_ROOT. The music value is a fixed MIDI
value, but it is transposed on top of the key root.

DMUS_PLAYMODE_MELODIC

in.doc – page 392

Combination of DMUS_PLAYMODE_CHORD_ROOT and
DMUS_PLAYMODE_SCALE_INTERVALS. The chord root is used but the
notes only track the intervals in the scale. The key root and chord intervals are
completely ignored. This is useful for melodic lines that play relative to the
chord root.

DMUS_PLAYMODE_NORMALCHORD
Combination of DMUS_PLAYMODE_CHORD_ROOT and
DMUS_PLAYMODE_CHORD_INTERVALS. This is the prevalent playback
mode. The notes track the intervals in the chord, which is based on the chord
root. If there is a scale component to the music value, the additional intervals are
pulled from the scale and added. If the chord does not have an interval to match
the chord component of the music value, the note is silent.

DMUS_PLAYMODE_PEDALPOINT
Combination of DMUS_PLAYMODE_KEY_ROOT and
DMUS_PLAYMODE_SCALE_INTERVALS. The key root is used and the
notes only track the intervals in the scale. The chord root and intervals are
completely ignored. This is useful for melodic lines that play relative to the key
root.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::MIDIToMusic,
IDirectMusicPerformance::MusicToMIDI, DMUS_NOTE_PMSG,
DMUS_IO_STYLENOTE, DMUS_IO_STYLEPART, Music Values and MIDI
Notes

DMUS_PMSGF_FLAGS
[This is preliminary documentation and subject to change.]

The members of the DMUS_PMSGF_FLAGS enumeration are used in the dwFlags
member of the DMUS_PMSG structure.

enum enumDMUS_PMSGF_FLAGS {
 DMUS_PMSGF_REFTIME = 1,
 DMUS_PMSGF_MUSICTIME = 2,
 DMUS_PMSGF_TOOL_IMMEDIATE = 4,
 DMUS_PMSGF_TOOL_QUEUE = 8,
 DMUS_PMSGF_TOOL_ATTIME = 16,
 DMUS_PMSGF_TOOL_FLUSH = 32

in.doc – page 393

} DMUS_PMSGF_FLAGS;

DMUS_PMSGF_REFTIME
rtTime is valid.

DMUS_PMSGF_MUSICTIME
mtTime is valid.

DMUS_PMSGF_TOOL_IMMEDIATE
Message should be processed immediately, regardless of its timestamp.

DMUS_PMSGF_TOOL_QUEUE
Message should be processed just before its timestamp, allowing for port
latency.

DMUS_PMSGF_TOOL_ATTIME
Message should be processed at the time stamp.

DMUS_PMSGF_TOOL_FLUSH
Message is being flushed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::SendPMsg,
IDirectMusicTool::GetMsgDeliveryType

DMUS_PMSGT_TYPES
[This is preliminary documentation and subject to change.]

The members of the DMUS_PMSGT_TYPES enumeration are used in the dwType
member of the DMUS_PMSG structure to identify the type of message.

typedef enum enumDMUS_PMSGT_TYPES {
 DMUS_PMSGT_MIDI = 0,
 DMUS_PMSGT_NOTE = 1,
 DMUS_PMSGT_SYSEX = 2,
 DMUS_PMSGT_NOTIFICATION = 3,
 DMUS_PMSGT_TEMPO = 4,
 DMUS_PMSGT_CURVE = 5,
 DMUS_PMSGT_TIMESIG = 6,
 DMUS_PMSGT_PATCH = 7,
 DMUS_PMSGT_TRANSPOSE = 8,
 DMUS_PMSGT_CHANNEL_PRIORITY = 9,

in.doc – page 394

 DMUS_PMSGT_STOP = 10,
 DMUS_PMSGT_DIRTY = 11,
 DMUS_PMSGT_USER = 255
} DMUS_PMSGT_TYPES;

DMUS_PMSGT_MIDI
MIDI channel message. See DMUS_MIDI_PMSG.

DMUS_PMSGT_NOTE
Music note. See DMUS_NOTE_PMSG.

DMUS_PMSGT_SYSEX
MIDI system exclusive message. See DMUS_SYSEX_PMSG.

DMUS_PMSGT_NOTIFICATION
Notification message. See DMUS_NOTIFICATION_PMSG.

DMUS_PMSGT_TEMPO
Tempo message. See DMUS_TEMPO_PMSG.

DMUS_PMSGT_CURVE
Control change / pitch bend curve. See DMUS_CURVE_PMSG.

DMUS_PMSGT_TIMESIG
Time signature. See DMUS_TIMESIG_PMSG.

DMUS_PMSGT_PATCH
Patch change. See DMUS_PATCH_PMSG.

DMUS_PMSGT_TRANSPOSE
Transposition. See DMUS_TRANSPOSE_PMSG.

DMUS_PMSGT_CHANNEL_PRIORITY
Channel priority change. See DMUS_CHANNEL_PRIORITY_PMSG.

DMUS_PMSGT_STOP
Stop message. See DMUS_PMSG.

DMUS_PMSGT_DIRTY
A control segment has started or ended. See DMUS_PMSG.

DMUS_PMSGT_USER
User-defined message.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_SEGF_FLAGS
[This is preliminary documentation and subject to change.]

in.doc – page 395

The members of the DMUS_SEGF_FLAGS enumeration are passed to various
methods of IDirectMusicPerformance in order to control the timing and other
aspects of actions on a segment.

typedef enum enumDMUS_SEGF_FLAGS {
 DMUS_SEGF_REFTIME = 64,
 DMUS_SEGF_SECONDARY = 128,
 DMUS_SEGF_QUEUE = 256,
 DMUS_SEGF_CONTROL = 512
 DMUS_SEGF_AFTERPREPARETIME = 1<<10,
 DMUS_SEGF_GRID = 1<<11,
 DMUS_SEGF_BEAT = 1<<12,
 DMUS_SEGF_MEASURE = 1<<13,
 DMUS_SEGF_DEFAULT = 1<<14,
 DMUS_SEGF_NOINVALIDATE = 1<<15,
} DMUS_SEGF_FLAGS;

DMUS_SEGF_REFTIME
Time parameter is in reference time.

DMUS_SEGF_SECONDARY
Secondary segment.

DMUS_SEGF_QUEUE
Put at the end of the primary segment queue (primary segment only).

DMUS_SEGF_CONTROL
Play as a control segment (secondary segments only). See Remarks.

DMUS_SEGF_AFTERPREPARETIME
Play after the prepare time. See IDirectMusicPerformance::GetPrepareTime.

DMUS_SEGF_GRID
Play on grid boundary.

DMUS_SEGF_BEAT
Play on beat boundary.

DMUS_SEGF_MEASURE
Play on measure boundary.

DMUS_SEGF_DEFAULT
Use segment's default boundary.

DMUS_SEGF_NOINVALIDATE
Setting this flag in IDirectMusicPerformance::PlaySegment for a primary or
control segment will cause the new segment not to cause an invalidation.
Without this flag, an invalidation will occur, cutting off and resetting any
currently playing curve or note. This flag should be combined with
DMUS_SEGF_AFTERPREPARETIME so that there is no danger of notes in the
new segment playing over top of notes played by the old segment.

in.doc – page 396

Remarks
Normally the primary segment is the control segment. The
DMUS_SEGF_CONTROL flag can be used to make a secondary segment the
control segment. There should be only one control segment at a time. (It is possible
to create multiple control segments, but there is no guarantee of which one will
actually be used by DirectMusic as the control segment.) When a track calls
GetParam on a another track, it does so on the control segment. Also, by default
only the control segment sends tempo messages.

If the DMUS_SEGF_CONTROL flag is set, DMUS_SEGF_SECONDARY is
assumed.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

See Also
IDirectMusicPerformance::Invalidate,
IDirectMusicPerformance::PlaySegment, IDirectMusicPerformance::Stop,
IDirectMusicSegment::GetDefaultResolution,
IDirectMusicSegment::SetDefaultResolution,
DMUS_TIME_RESOLVE_FLAGS

DMUS_SHAPET_TYPES
[This is preliminary documentation and subject to change.]

The members of the DMUS_SHAPET_TYPES enumeration are used in the wShape
parameter of the IDirectMusicComposer::ComposeSegmentFromShape and
IDirectMusicComposer::ComposeTemplateFromShape methods to specify the
desired pattern of the groove level.

typedef enum enumDMUS_SHAPET_TYPES {
 DMUS_SHAPET_FALLING = 0,
 DMUS_SHAPET_LEVEL = 1,
 DMUS_SHAPET_LOOPABLE = 2,
 DMUS_SHAPET_LOUD = 3,
 DMUS_SHAPET_QUIET = 4,
 DMUS_SHAPET_PEAKING = 5,
 DMUS_SHAPET_RANDOM = 6,
 DMUS_SHAPET_RISING = 7,
 DMUS_SHAPET_SONG = 8
} DMUS_SHAPET_TYPES;

in.doc – page 397

DMUS_SHAPET_FALLING
The groove level falls.

DMUS_SHAPET_LEVEL
The groove level remains even.

DMUS_SHAPET_LOOPABLE
The segment is arranged to loop back to the beginning.

DMUS_SHAPET_LOUD
The groove level is high.

DMUS_SHAPET_QUIET
The groove level is low.

DMUS_SHAPET_PEAKING
The groove level rises to a peak, then falls.

DMUS_SHAPET_RANDOM
The groove level is random.

DMUS_SHAPET_RISING
The groove level rises.

DMUS_SHAPET_SONG
The segment is in a song form. Several phrases of 6 to 8 bars are composed and put
together to give a verse-chorus effect, with variations in groove level.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_TIME_RESOLVE_FLAGS
[This is preliminary documentation and subject to change.]

The member of the DMUS_TIME_RESOLVE_FLAGS enumeration are used in
the dwFlags member of the DMUS_PMSG structure and in the
dwTimeResolveFlags parameter of the
IDirectMusicPerformance::GetResolvedTime method.

typedef enum enumDMUS_TIME_RESOLVE_FLAGS {
 DMUS_TIME_RESOLVE_AFTERPREPARETIME = 1<<10,
 DMUS_TIME_RESOLVE_GRID = 1<<11,
 DMUS_TIME_RESOLVE_BEAT = 1<<12,
 DMUS_TIME_RESOLVE_MEASURE = 1<<13
} DMUS_TIME_RESOLVE_FLAGS;

DMUS_TIME_RESOLVE_AFTERPREPARETIME

in.doc – page 398

Resolve to a time after the prepare time.
DMUS_TIME_RESOLVE_GRID

Resolve to a time on a grid boundary.
DMUS_TIME_RESOLVE_BEAT

Resolve to a time on a beat boundary.
DMUS_TIME_RESOLVE_MEASURE

Resolve to a time on a measure boundary.

Remarks
These flags can be used interchangeably with the corresponding
DMUS_SEGF_FLAGS.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

DMUS_TRACKF_FLAGS
[This is preliminary documentation and subject to change.]

The DMUS_TRACKF_FLAGS values are used in the dwFlags parameter of the
IDirectMusicTrack::Play method.

typedef enum enumDMUS_TRACKF_FLAGS {
 DMUS_TRACKF_SEEK = 1,
 DMUS_TRACKF_LOOP = 2,
 DMUS_TRACKF_START = 4,
 DMUS_TRACKF_FLUSH = 8,
 DMUS_TRACKF_DIRTY = 16
} DMUS_TRACKF_FLAGS;

DMUS_TRACKF_SEEK
IDirectMusicTrack::Play was called in response to seeking, meaning that the
mtStart parameter is not necessarily the same as the previous call's mtEnd.

DMUS_TRACKF_LOOP
Play was called in response to a loop.

DMUS_TRACKF_START
This is the first call to IDirectMusicTrack::Play. DMUS_TRACKF_SEEK
may also be set if the track is not playing from the beginning.

DMUS_TRACKF_FLUSH

in.doc – page 399

Play was called in response to a flush or invalidation that requires the track to
replay something it played previously. In this case, DMUS_TRACKF_SEEK
will be set as well.

DMUS_TRACKF_DIRTY
A control segment has begun or ended. Tracks that normally wait till mtNext to
call IDirectMusicTrack::GetParam should make the call right away instead of
waiting, because their data may now be invalid. For more information on setting
control segments, see DMUS_SEGF_FLAGS.

Remarks
When Play is called in response to a repeat, DMUS_TRACKF_LOOP and
DMUS_TRACKF_SEEK are set.

Tracks must support seeking in order to support invalidation.

QuickInfo
 Windows NT/2000: Requires Windows 2000.
 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dmusici.h.

Return Values
[This is preliminary documentation and subject to change.]

The following table lists the values typically returned by DirectMusic interface
methods. For a list of the error codes each method can return, see the individual
method descriptions. Note that these lists are not necessarily comprehensive.

DMUS_E_ALL_TOOLS_FAILED
The graph object was unable to load all tools from the IStream object data,
perhaps because of errors in the stream, or because the tools are incorrectly
registered on the client.

DMUS_E_ALL_TRACKS_FAILED
The segment object was unable to load all tracks from the IStream object data,
perhaps because of errors in the stream, or because the tracks are incorrectly
registered on the client.

DMUS_E_ALREADY_ACTIVATED
The port has been activated and the parameter cannot be changed.

DMUS_E_ALREADY_DOWNLOADED
Buffer has already been downloaded.

DMUS_E_ALREADY_EXISTS
The tool is already contained in the graph. You must create a new instance.

DMUS_E_ALREADY_INITED
The object has already been initialized.

in.doc – page 400

DMUS_E_ALREADY_LOADED
DLS collection is already open.

DMUS_E_ALREADY_SENT
The message has already been sent.

DMUS_E_ALREADYCLOSED
The port is not open.

DMUS_E_ALREADYOPEN
Port was already opened.

DMUS_E_BADARTICULATION
Invalid articulation chunk in DLS collection.

DMUS_E_BADINSTRUMENT
Invalid instrument chunk in DLS collection.

DMUS_E_BADOFFSETTABLE
Offset table has errors.

DMUS_E_BADWAVE
Corrupt wave header.

DMUS_E_BADWAVELINK
Wavelink chunk in DLS collection points to invalid wave.

DMUS_E_BUFFER_EMPTY
There is no data in the buffer.

DMUS_E_BUFFER_FULL
The specified number of bytes exceeds the maximum buffer size.

DMUS_E_BUFFERNOTAVAILABLE
The buffer is not available for download.

DMUS_E_BUFFERNOTSET
No buffer was prepared for the data.

DMUS_E_CANNOT_CONVERT
The requested conversion between music and MIDI values could not happen.
This usually occurs when the provided DMUS_CHORD_KEY structure has an
invalid chord or scale pattern.

DMUS_E_CANNOT_FREE
The message could not be freed, either because it was not allocated or has
already been freed.

DMUS_E_CANNOT_OPEN_PORT
The default system port could not be opened.

DMUS_E_CANNOTREAD
Error occurred when trying to read from the IStream object.

DMUS_E_CANNOTSEEK
The IStream object does not support Seek.

DMUS_E_CANNOTWRITE
The IStream object does not support Write.

DMUS_E_CHUNKNOTFOUND
A chunk with the specified header could not be found.

in.doc – page 401

DMUS_E_DESCEND_CHUNK_FAIL
Attempt to descend into a chunk failed.

DMUS_E_DEVICE_IN_USE
Device is already in use (possibly by a non-DirectMusic client) and cannot be
opened again.

DMUS_E_DMUSIC_RELEASED
Operation cannot be performed because the final instance of the DirectMusic
object was released. Ports cannot be used after final release of the DirectMusic
object.

DMUS_E_DRIVER_FAILED
An unexpected error was returned from a device driver, indicating possible
failure of the driver or hardware.

DMUS_E_DSOUND_ALREADY_SET
A DirectSound object has already been set.

DMUS_E_DSOUND_NOT_SET
Port could not be created because no DirectSound object has been specified.

DMUS_E_GET_UNSUPPORTED
Getting the parameter is not supported.

DMUS_E_INSUFFICIENTBUFFER
Buffer is not large enough for requested operation.

DMUS_E_INVALID_BAND
File does not contain a valid band.

DMUS_E_INVALID_DOWNLOADID
Invalid download identifier was used in the process of creating a download
buffer.

DMUS_E_INVALID_EVENT
The event either is not a valid MIDI message or makes use of running status,
and cannot be packed into the buffer.

DMUS_E_INVALID_TOOL_HDR
The IStream object's data contains an invalid tool header and therefore cannot
be read by the graph object.

DMUS_E_INVALID_TRACK_HDR
The IStream object's data contains an invalid track header and therefore cannot
be read by the segment object.

DMUS_E_INVALIDBUFFER
Invalid DirectSound buffer was handed to port.

DMUS_E_INVALIDFILE
Not a valid file.

DMUS_E_INVALIDOFFSET
Wave chunks in DLS collection file are at incorrect offsets.

DMUS_E_INVALIDPATCH
No instrument in the collection matches the patch number.

DMUS_E_INVALIDPOS

in.doc – page 402

Error reading wave data from DLS collection. Indicates bad file.
DMUS_E_LOADER_BADPATH

The file path is invalid.
DMUS_E_LOADER_FAILEDCREATE

Object could not be found or created.
DMUS_E_LOADER_FAILEDOPEN

File open failed because the file doesn't exist or is locked.
DMUS_E_LOADER_FORMATNOTSUPPORTED

The object cannot be loaded because the data format is not supported.
DMUS_E_LOADER_NOCLASSID

No class ID was supplied in DMUS_OBJECTDESC.
DMUS_E_LOADER_NOFILENAME

No filename was supplied in DMUS_OBJECTDESC.
DMUS_E_LOADER_OBJECTNOTFOUND

The object was not found.
DMUS_E_NO_MASTER_CLOCK

There is no master clock in the performance. Make sure to call the
IDirectMusicPerformance::Init method.

DMUS_E_NOARTICULATION
Articulation missing from instrument in DLS collection.

DMUS_E_NOSYNTHSINK
No sink is connected to the synthesizer.

DMUS_E_NOT_DOWNLOADED_TO_PORT
The object cannot be unloaded because it is not present on the port.

DMUS_E_NOT_FOUND
The requested item is not contained by the object.

DMUS_E_NOT_INIT
A required object is not initialized or failed to initialize.

DMUS_E_NOTADLSCOL
The object being loaded is not a valid DLS collection.

DMUS_E_NOTMONO
Wave chunk has more than one interleaved channel. DLS format requires mono.

DMUS_E_NOTPCM
Wave data is not in PCM format.

DMUS_E_OUT_OF_RANGE
The requested time is outside the range of the segment.

DMUS_E_PORT_NOT_CAPTURE
Not a capture port.

DMUS_E_PORT_NOT_RENDER
Not an output port.

DMUS_E_PORTS_OPEN

in.doc – page 403

The requested operation cannot be performed while there are instantiated ports
in any process in the system.

DMUS_E_SEGMENT_INIT_FAILED
Segment initialization failed, likely because of a critical memory situation.

DMUS_E_SET_UNSUPPORTED
Setting the parameter is not supported.

DMUS_E_SYNTHACTIVE
The synthesizer has been activated and the parameter cannot be changed.

DMUS_E_SYNTHINACTIVE
The synthesizer has not been activated and cannot process data.

DMUS_E_SYNTHNOTCONFIGURED
The synthesizer is not properly configured or opened.

DMUS_E_TIME_PAST
The time requested is in the past.

DMUS_E_TOOL_HDR_NOT_FIRST_CK
The IStream object's data does not have a tool header as the first chunk, and
therefore cannot be read by the graph object.

DMUS_E_TRACK_HDR_NOT_FIRST_CK
The IStream object's data does not have a track header as the first chunk, and
therefore cannot be read by the segment object.

DMUS_E_TRACK_NOT_FOUND
There is no track of the requested type.

DMUS_E_TYPE_DISABLED
Track parameter is unavailable because it has been disabled.

DMUS_E_TYPE_UNSUPPORTED
Parameter is unsupported on this track.

DMUS_E_UNKNOWNDOWNLOAD
Synthesizer does not support this type of download.

DMUS_E_UNKNOWN_PROPERTY
The property set or item is not implemented by this port.

DMUS_E_UNSUPPORTED_STREAM
The IStream object does not contain data supported by the loading object.

DMUS_E_WAVEFORMATNOTSUPPORTED
Invalid buffer format was handed to the synthesizer sink.

DMUS_S_DOWN_OCTAVE
The note has been lowered by one or more octaves to fit within the range of
MIDI values.

DMUS_S_END
The operation succeeded and reached the end of the data.

DMUS_S_FREE
The allocated memory should be freed.

DMUS_S_LAST_TOOL
There are no more tools in the graph.

in.doc – page 404

DMUS_S_OVER_CHORD
No MIDI values has been calculated, because the music value has the note at a
position higher than the top note of the chord.

DMUS_S_PARTIALLOAD
The object could only load partially. This can happen if some components are
not registered properly, such as embedded tracks and tools.

DMUS_S_REQUEUE
The message should be passed to the next tool.

DMUS_S_STRING_TRUNCATED
The method succeeded but the returned string had to be truncated.

DMUS_S_UP_OCTAVE
The note has been raised by one or more octaves to fit within the range of MIDI
values.

E_FAIL
The method did not succeed.

E_INVALIDARG
Invalid argument. Often this error results from failing to initialize the dwSize
member of a structure before passing it to the method.

E_NOAGGREGATION
Aggregation is not supported. The LPUNKNOWN parameter should be set to
NULL.

E_NOINTERFACE
No object interface is available.

E_NOTIMPL
The method is not implemented. This value may be returned if a driver does not
support a feature necessary for the operation.

E_OUTOFMEMORY
Insufficient memory to complete task.

E_POINTER
An invalid pointer (usually NULL) was passed as a parameter.

REGDB_E_CLASSNOTREG
Object class is not registered.

S_FALSE
The method succeeded, but there was nothing to do.

S_OK
The operation was completed successfully.

in.doc – page 405

DirectMusic Visual Basic
Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements of DirectMusic for
Visual Basic. Reference material is divided into the following categories:

· Classes
· Types
· Enumerations
· Error Codes

Classes
[This is preliminary documentation and subject to change.]

This section contains references for methods of the following DirectMusic classes:

· DirectMusicBand
· DirectMusicChordMap
· DirectMusicCollection
· DirectMusicComposer
· DirectMusicLoader
· DirectMusicPerformance
· DirectMusicSegment
· DirectMusicSegmentState
· DirectMusicStyle

DirectMusicBand
[This is preliminary documentation and subject to change.]

An object of the DirectMusicBand class represents a band, which is used to set the
instrument choices and mixer settings for a set of performance channels.

Bands can be stored directly in their own files or embedded in a style. The
DirectMusicBand object is obtained by using the DirectMusicLoader.LoadBand,
DirectMusicLoader.LoadBandFromResource,
DirectMusicStyle.GetDefaultBand, or DirectMusicStyle.GetBand method.

The DirectMusicBand class has the following methods:

Segment creation CreateSegment

IDH__dx_DirectMusicBand_dmusic_vb

in.doc – page 406

Instrument data Download
Unload

DirectMusicBand.CreateSegment
[This is preliminary documentation and subject to change.]

The DirectMusicBand.CreateSegment method creates a DirectMusicSegment
object that can be used to perform the volume, pan, transposition, and patch change
commands in the band dynamically using the
DirectMusicPerformance.PlaySegment method.

object.CreateSegment() As DirectMusicSegment

object
Object expression that resolves to a DirectMusicBand object.

Return Values
If it succeeds, the method returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_OUTOFMEMORY
E_POINTER

DirectMusicBand.Download
[This is preliminary documentation and subject to change.]

The DirectMusicBandDirectDownload method downloads the DLS data for
instruments in the band to a performance object. Once a band has been downloaded,
the instruments in the band may be selected, either individually with program change
MIDI messages, or all at once by playing a band segment created through a call to
the DirectMusicBand.CreateSegment method.

object.Download(performance As DirectMusicPerformance)

object
Object expression that resolves to a DirectMusicBand object.

IDH__dx_DirectMusicBand.CreateSegment_dmusic_vb
IDH__dx_DirectMusicBand.Download_dmusic_vb

in.doc – page 407

performance
Performance in which the band is to perform. The performance manages the
mapping of channels to DirectMusic ports.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_OUTOFMEMORY
E_POINTER

Remarks
Because a downloaded band uses synthesizer resources, it should be unloaded when
no longer needed, by using the DirectMusicBand.Unload method.

DirectMusicBand.Unload
[This is preliminary documentation and subject to change.]

The DirectMusicBand.Unload method unloads the DLS data for instruments in the
band previously downloaded by DirectMusicBand.Download.

object.Unload(performance As DirectMusicPerformance)

object
Object expression that resolves to a DirectMusicBand object.

performance
Performance from which to unload instruments.

Error Codes
If the method fails, an error is raised and Err.Number may be E_POINTER.

DirectMusicChordMap
[This is preliminary documentation and subject to change.]

An object of the DirectMusicChordMap class represents a chordmap. Chordmaps
provide the composer (represented by the DirectMusicComposer object) with the
information it needs to compose chord progressions, which it uses to build segments
and automatic transitions. A chordmap can also be applied to an existing segment in
order to change the chords.

IDH__dx_DirectMusicBand.Unload_dmusic_vb
IDH__dx_DirectMusicChordMap_dmusic_vb

in.doc – page 408

The class has no public methods. An instance of it is obtained by using the
DirectMusicStyle.GetChordMap or DirectMusicPerformance.GetChordmap
method.

See Also
DirectMusicComposer.AutoTransition,
DirectMusicComposer.ChangeChordMap,
DirectMusicComposer.ComposeSegmentFromShape,
DirectMusicComposer.ComposeSegmentFromTemplate,
DirectMusicComposer.ComposeTransition,
DirectMusicPerformance.GetChordmap, DirectMusicStyle.GetChordmap,
DirectMusicStyle.GetDefaultChordMap

DirectMusicCollection
[This is preliminary documentation and subject to change.]

An object of the DirectMusicCollection class manages an instance of a DLS file.

The class has no public methods. An instance of it is obtained by using the
DirectMusicLoader.LoadCollection or
DirectMusicLoader.LoadCollectionFromResource method, and is associated with
a segment by a call to DirectMusicSegment.ConnectToCollection.

DirectMusicComposer
[This is preliminary documentation and subject to change.]

Applications use the methods of the DirectMusicComposer class to compose
segments and transitions from compositional elements, and to change the chordmap
of an existing segment.

A DirectMusicComposer object is obtained by using the
DirectX7.DirectMusicComposerCreate method..

The methods of the DirectMusicComposer class can be organized into the
following groups.

Changing chordmaps ChangeChordMap
Composing ordinary segments ComposeSegmentFromShape

ComposeSegmentFromTemplate
Composing template segments ComposeTemplateFromShape
Composing transition segments AutoTransition

IDH__dx_DirectMusicCollection_dmusic_vb
IDH__dx_DirectMusicComposer_dmusic_vb

in.doc – page 409

ComposeTransition

DirectMusicComposer.AutoTransiti
on

[This is preliminary documentation and subject to change.]

The DirectMusicComposer.AutoTransition method composes a transition from
inside a performance's primary segment (or from silence) to another segment, and
then cues the transition and the second segment to play.

object.AutoTransition(_
 performance As DirectMusicPerformance, _
 toSeg As DirectMusicSegment, _
 lCommand As Long, _
 lFlags As Long, _
 chordmap As DirectMusicChordMap) _
 As DirectMusicSegment

object
Object expression that resolves to a DirectMusicComposer object.

performance
Performance in which to do the transition.

toSeg
Segment to which the transition should smoothly flow. See Remarks.

lCommand
Embellishment to use when composing the transition. See
CONST_DMUS_COMMANDT_TYPES. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method will compose a segment
containing both an ending to the primary segment and an intro to toSeg.

lFlags
Composition options. See CONST_DMUS_COMPOSEF_FLAGS.

chordmap
Chordmap to be used when composing the transition.

Return Values
If the method succeeds, a DirectMusicSegment object is returned, unless no style is
available for the composition of the transitional segment. See Remarks.

Error Codes
If the method fails, an error is raised and Err.Number may be set to E_POINTER.

IDH__dx_DirectMusicComposer.AutoTransition_dmusic_vb

in.doc – page 410

Remarks
The value in toSeg can be 0 as long as lFlags does not include
DMUS_COMPOSEF_MODULATE. If toSeg is 0 or doesn't contain a style track,
intro embellishments are not valid. If there is no currently playing segment or it
doesn't contain a style track, then fill, break, end, and groove embellishments are not
valid.

It is possible for both the currently playing segment and toSeg to be 0 or segments
that don't contain style tracks (such as segments based on MIDI files). If so, all
embellishments are invalid and no transition occurs between the currently playing
segment and toSeg. The method returns Nothing, but it succeeds and cues the
segment represented by toSeg.

The value in chordmap can be 0. If so, an attempt is made to obtain a chordmap
from a chordmap track, first from toSeg, and then from the performance's primary
segment. If neither of these segments contains a chordmap track, the chord occurring
at the current time in the primary segment is used as the chord in the transition.

DirectMusicComposer.ChangeChor
dMap

[This is preliminary documentation and subject to change.]

The DirectMusicComposer.ChangeChordMap method modifies the chords and
scale pattern of an existing segment to reflect a new chordmap.

object.ChangeChordMap(segment As DirectMusicSegment, _
 trackScale As Boolean, _
 chordmap As DirectMusicChordMap)

object
Object expression that resolves to a DirectMusicComposer object.

segment
Segment in which to change the chordmap.

TrackScale
If True, the method transposes all the chords to be relative to the root of the new
chordmap's scale, rather than leaving their roots as they were.

chordmap
New chordmap for the segment.

Error Codes
If the method fails, an error is raised and Err.Number may be set to E_POINTER.

IDH__dx_DirectMusicComposer.ChangeChordMap_dmusic_vb

in.doc – page 411

Remarks
The method can be called while the segment is playing.

DirectMusicComposer.ComposeSe
gmentFromShape

[This is preliminary documentation and subject to change.]

The DirectMusicComposer.ComposeSegmentFromShape method creates an
original segment from a style and chordmap based on a predefined shape. The shape
represents the way chords and embellishments occur over time across the segment.

object.ComposeSegmentFromShape(style As DirectMusicStyle,
_
 numberOfMeasures As Integer, _
 shape As Integer, _
 activity As Integer, _
 bIntro As Boolean, _
 bEnd As Boolean, _
 chordmap As DirectMusicChordMap) As
DirectMusicSegment

object
Object expression that resolves to a DirectMusicComposer object.

style
Style from which to compose the segment.

numberOfMeasures
Length, in measures, of the segment to be composed.

shape
Shape of the segment to be composed, based on changes in the groove level.
Possible values are of the CONST_DMUS_SHAPET_TYPES enumeration.

activity
Rate of harmonic motion. Valid values are 0 through 3. Lower values mean
more chord changes.

bIntro
True if an introduction is to be composed for the segment, False otherwise.

bEnd
True if an ending is to be composed for the segment, False otherwise.

chordmap
Chordmap from which to create the segment.

IDH__dx_DirectMusicComposer.ComposeSegmentFromShape_dmusic_vb

in.doc – page 412

Return Values
If the method succeeds, the return value is a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set E_POINTER.

See Also
DirectMusicComposer.ComposeSegmentFromTemplate,
DirectMusicComposer.ComposeTemplateFromShape

DirectMusicComposer.ComposeSe
gmentFromTemplate

[This is preliminary documentation and subject to change.]

The DirectMusicComposer.ComposeSegmentFromTemplate method creates an
original segment from a style, chordmap, and template.

object.ComposeSegmentFromTemplate(_
 style As DirectMusicStyle, _
 templateSeg As DirectMusicSegment, _
 activity As Integer, _
 chordmap As DirectMusicChordMap)
 As DirectMusicSegment

object
Object expression that resolves to a DirectMusicComposer object.

style
DirectMusicStyle object from which to create the segment.

templateSeg
DirectMusicSegment object representing the template from which to create the
segment.

activity
Rate of harmonic motion. Valid values are 0 through 3. Lower values mean
more chord changes.

chordmap
DirectMusicChordmap object representing the chordmap from which to create
the segment.

IDH__dx_DirectMusicComposer.ComposeSegmentFromTemplate_dmusic_vb

in.doc – page 413

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_INVALIDARG
E_POINTER

Remarks
If style is not 0, it is used in composing the segment; if it is 0, a style is retrieved
from the template specified in templateSeg. Similarly, if chordmap is not 0, it is used
in composing the segment; if it is 0, a chordmap is retrieved from the template.

If style is 0 and there is no style track in the template, or chordmap is 0 and there is
no chordmap track, the method returns E_INVALIDARG.

The length of the segment is equal to the length of the template passed in.

See Also
DirectMusicComposer.ComposeSegmentFromShape,
DirectMusicComposer.ComposeTemplateFromShape

DirectMusicComposer.ComposeTe
mplateFromShape

[This is preliminary documentation and subject to change.]

The DirectMusicComposer.ComposeTemplateFromShape method creates a new
template segment based on a predefined shape.

object.ComposeTemplateFromShape(numMeasures As Integer,
_
 shape As Integer, _
 bIntro As Boolean, _
 bEnd As Boolean, _
 endLength As Integer) As DirectMusicSegment

object
Object expression that resolves to a DirectMusicComposer object.

numMeasures

IDH__dx_DirectMusicComposer.ComposeTemplateFromShape_dmusic_vb

in.doc – page 414

Length, in measures, of the segment to be composed. This value must be greater
than 0.

shape
Shape of the segment to be composed, based on groove levels. Possible values
are of the CONST_DMUS_SHAPET_TYPES enumeration.

bIntro
True if an introduction is to be composed for the segment, False otherwise.

bEnd
True if an ending is to be composed for the segment, False otherwise.

endLength
Length in measures of the ending, if one is to be composed. If bEnd is True, this
value must be greater than 0 and equal to or less than the number of measures
available (that is, not used in the introduction). See also Remarks.

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_INVALIDARG
E_OUTOFMEMORY

Remarks
The value of endLength should not be greater than the length of the longest ending
available in any style likely to be associated with this template through the
DirectMusicComposer.ComposeSegmentFromTemplate method. The ending will
start playing at endLength measures before the end of the segment, and if the ending
is less than endLength measures long, the music will then revert to the regular
groove.

See Also
DirectMusicComposer.ComposeSegmentFromShape,
DirectMusicComposer.ComposeSegmentFromTemplate

DirectMusicComposer.ComposeTra
nsition

[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicComposer.ComposeTransition_dmusic_vb

in.doc – page 415

The DirectMusicComposer.ComposeTransition method composes a transition
from a measure inside one segment to another.

object.ComposeTransition(fromSeg As DirectMusicSegment, _
 toSeg As DirectMusicSegment, _
 mtTime As Long, _
 lCommand As Long, _
 lFlags As Long, _
 chordmap As DirectMusicChordMap) _
 As DirectMusicSegment

object
Object expression that resolves to a DirectMusicComposer object.

fromSeg
DirectMusicSegment object representing the segment from which to compose
the transition.

toSeg
Segment to which the transition should smoothly flow. Can be 0 if lFlags does
not include DMUS_COMPOSEF_MODULATE.

mtTime
The time in fromSeg from which to compose the transition.

lCommand
Embellishment to use when composing the transition. See
CONST_DMUS_COMMANDT_TYPES. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method will compose a segment
containing both an ending to fromSeg and an intro to toSeg.

lFlags
Composition options. This parameter can contain one or more of the
CONST_DMUS_COMPOSEF_FLAGS enumeration.

chordmap
DirectMusicChordmap object representing the chordmap to be used when
composing the transition. See Remarks.

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

in.doc – page 416

Remarks
The value in chordmap can be 0. If so, an attempt is made to obtain a chordmap
from a chordmap track, first from toSeg, and then from fromSeg. If neither of these
segments contains a chordmap track, the chord occurring at mtTime in fromSeg is
used as the chord in the transition.

The composer looks for a tempo first in fromSeg and then in toSeg. If neither of
those segments contains a tempo track, the tempo for the transition segment is taken
from the style.

See Also
DirectMusicComposer.AutoTransition

DirectMusicLoader
[This is preliminary documentation and subject to change.]

The DirectMusicLoader object is used for finding and loading objects that represent
musical and instrument data.

The object is obtained by using the DirectX7.DirectMusicLoaderCreate method.

Note that objects referred to by other objects are loaded automatically. For example,
a style may contain references to bands and collections in other files, and these will
be loaded, if possible, when the DirectMusicLoader.LoadStyle method is called.

The methods of DirectMusicLoader can be organized into the following groups:

Loading LoadBand
LoadBandFromResource
LoadCollection
LoadCollectionFromResource
LoadSegment
LoadSegmentFromResource
LoadStyle
LoadStyleFromResource

Searching SetSearchDirectory

DirectMusicLoader.LoadBand
[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadBand method loads a band from a file.

IDH__dx_DirectMusicLoader_dmusic_vb
IDH__dx_DirectMusicLoader.LoadBand_dmusic_vb

in.doc – page 417

object.LoadBand(filename As String) As DirectMusicBand

object
Object expression that resolves to a DirectMusicLoader object.

filename
Name of the band file.

Return Values
If the method succeeds, it returns a DirectMusicBand object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadBandFromResource

DirectMusicLoader.LoadBandFrom
Resource

[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadBandFromResource method loads a band from a
resource.

object.LoadBandFromResource(moduleName As String, _
 resourceName As String) As DirectMusicBand

object
Object expression that resolves to a DirectMusicLoader object.

moduleName
Name of the module containing the resource.

IDH__dx_DirectMusicLoader.LoadBandFromResource_dmusic_vb

in.doc – page 418

resourceName
Resource identifier.

Return Values
If the method succeeds, it returns a DirectMusicBand object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadBand

DirectMusicLoader.LoadCollection
[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadCollection method loads a DLS collection from a
file.

object.LoadCollection(filename As String) _
 As DirectMusicCollection

object
Object expression that resolves to a DirectMusicLoader object.

filename
Name of the file containing the DLS collection.

Return Values
If the method succeeds, it returns a DirectMusicCollection object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

IDH__dx_DirectMusicLoader.LoadCollection_dmusic_vb

in.doc – page 419

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadCollectionFromResource

DirectMusicLoader.LoadCollection
FromResource

[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadCollectionFromResource method loads a DLS
collection from a resource.

object.LoadCollectionFromResource(moduleName As String, _
 resourceName As String) As DirectMusicCollection

object
Object expression that resolves to a DirectMusicLoader object.

moduleName
Name of the module containing the resource.

resourceName
Identifier of the resource containing the collection.

Return Values
If the method succeeds, it returns a DirectMusicCollection object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN

IDH__dx_DirectMusicLoader.LoadCollectionFromResource_dmusic_vb

in.doc – page 420

DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadCollection

DirectMusicLoader.LoadSegment
[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadSegment method loads a segment from a file.

object.LoadSegment(filename As String) As
DirectMusicSegment

object
Object expression that resolves to a DirectMusicLoader object.

filename
Name of the file containing the resource.

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadSegmentFromResource

IDH__dx_DirectMusicLoader.LoadSegment_dmusic_vb

in.doc – page 421

DirectMusicLoader.LoadSegmentF
romResource

[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadSegmentFromResource method loads a segment
from a resource.

object.LoadSegmentFromResource(moduleName As String, _
 resourceName As String) As DirectMusicSegment

object
Object expression that resolves to a DirectMusicLoader object.

moduleName
Name of the module containing the resource.

resourceName
Identifier of the resource containing the segment.

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadSegment

DirectMusicLoader.LoadStyle
[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicLoader.LoadSegmentFromResource_dmusic_vb
IDH__dx_DirectMusicLoader.LoadStyle_dmusic_vb

in.doc – page 422

The DirectMusicLoader.LoadStyle method loads a style object from a file.

object.LoadStyle(filename As String) As DirectMusicStyle

object
Object expression that resolves to a DirectMusicLoader object.

filename
Name of the file containing the style object.

Return Values
If the method succeeds, it returns a DirectMusicStyle object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadStyleFromResource

DirectMusicLoader.LoadStyleFrom
Resource

[This is preliminary documentation and subject to change.]

The DirectMusicLoader.LoadStyleFromResource method loads a style object
from a resource.

object.LoadStyleFromResource(moduleName As String, _
 resourceName As String) As DirectMusicStyle

object
Object expression that resolves to a DirectMusicLoader object.

moduleName

IDH__dx_DirectMusicLoader.LoadStyleFromResource_dmusic_vb

in.doc – page 423

Name of the module containing the resource.
resourceName

Identifier of the resource containing the style object.

Return Values
If the method succeeds, it returns a DirectMusicStyle object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FORMATNOTSUPPORTED
REGDB_E_CLASSNOTREG

See Also
DirectMusicLoader.LoadStyle

DirectMusicLoader.SetSearchDirec
tory

[This is preliminary documentation and subject to change.]

The DirectMusicLoader.SetSearchDirectory method sets the directory that will be
searched by the DirectMusicLoader.LoadCollection,
DirectMusicLoader.LoadSegment, and DirectMusicLoader.LoadStyle methods
when a fully qualified path is not supplied.

object.SetSearchDirectory(dir As String)

object
Object expression that resolves to a DirectMusicLoader object.

dir
Directory to search.

IDH__dx_DirectMusicLoader.SetSearchDirectory_dmusic_vb

in.doc – page 424

Error Codes
If the method succeeds, the error number is 0, or 1 if the search directory is already
set to dir.

If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_OUTOFMEMORY
DMUS_E_LOADER_BADPATH

Remarks
Once a search path is set, the loader does not need a full path every time it is given
an object to load by file name. This enables objects that reference other objects to
find them by file name without knowing the full path.

DirectMusicPerformance
[This is preliminary documentation and subject to change.]

An object of the DirectMusicPerformance class is the overall manager of music
playback. It adds and removes ports, maps performance channels to ports, plays
segments, dispatches messages, requests and receives event notifications, and sets
and retrieves music parameters. It also has several methods for getting information
about timing and for converting time and music values from one system to another.

If an application would like to have two complete sets of music playing at the same
time, it can do so by creating more than one performance object. Separate
performances obey separate tempo maps and so play completely asynchronously,
whereas all segments within one performance play in lock step.

The DirectMusicPerformance object is obtained by using the
DirectX7.DirectMusicPerformanceCreate method.

The methods of the DirectMusicPerformance class can be organized into the
following groups:

Messages SendCurvePMSG
SendMIDIPMSG
SendNotePMSG
SendPatchPMSG
SendTempoPMSG
SendTimeSigPMSG
SendTransposePMSG

IDH__dx_DirectMusicPerformance_dmusic_vb

in.doc – page 425

Notification AddNotificationType
GetNotificationPMSG
RemoveNotificationType
SetNotificationHandle

Parameters GetChordmap
GetCommand
GetGrooveLevel
GetMasterAutoDownload
GetMasterGrooveLevel
GetMasterTempo
GetMasterVolume
GetStyle
GetTempo
GetTimeSig
GMReset
SetMasterAutoDownload
SetMasterGrooveLevel
SetMasterTempo
SetMasterVolume

Ports GetPortCaps
GetPortCount
GetPortName
SetPort

Segments GetSegmentState
IsPlaying
PlaySegment
Stop

Timing AdjustTime
ClockToMusicTime
GetBumperLength
GetClockTime
GetLatencyTime
GetMusicTime
GetPrepareTime
GetQueueTime
GetResolvedTime
MusicToClockTime
SetBumperLength

in.doc – page 426

SetPrepareTime
Miscellaneous CloseDown

Init
Invalidate

DirectMusicPerformance.AddNotifi
cationType

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.AddNotificationType method causes the
performance to generate notification messages whenever events of the requested type
occur.

object.AddNotificationType(_
 type As CONST_DMUS_NOTIFICATION_TYPE)

object
Object expression that resolves to a DirectMusicPerformance object.

type
Type of event for which notification messages are to be sent. For possible
values, see CONST_DMUS_NOTIFICATIONTYPE.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
E_OUTOFMEMORY.

See Also
DirectMusicPerformance.RemoveNotificationType

DirectMusicPerformance.AdjustTi
me

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.AdjustTime method adjusts the internal
performance time forward or backward. This is mostly used to compensate for drift
when synchronizing to another source.

object.AdjustTime(rtAmount As Long)

IDH__dx_DirectMusicPerformance.AddNotificationType_dmusic_vb
IDH__dx_DirectMusicPerformance.AdjustTime_dmusic_vb

in.doc – page 427

object
Object expression that resolves to a DirectMusicPerformance object.

rtAmount
Amount of time, in reference time units, to add or subtract. This can be a
number in the range –10,000,000 to 10,000,000 (–1 second to +1 second).

Error Codes
If the method fails, an error is raised and Err.Number may be set to
E_INVALIDARG.

Remarks
The adjusted time is used internally by DirectMusic. It is not reflected in the time
retrieved by the DirectMusicPerformance.GetClockTime method.

DirectMusicPerformance.ClockToM
usicTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.ClockToMusicTime method converts clock time to
music time. Clock time is an absolute time in reference time units. Music time is
relative to the tempo of the performance.

object.ClockToMusicTime(rtTime As Long) As Long

object
Object expression that resolves to a DirectMusicPerformance object.

rtTime
Time to convert, in reference time units.

Return Values
If the method succeeds, it returns the equivalent music time.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

Remarks
If a master tempo has been set for the performance, it is taken into account when
converting to music time.

IDH__dx_DirectMusicPerformance.ClockToMusicTime_dmusic_vb

in.doc – page 428

Because music time is less precise than reference time, rounding off will occur.

See Also
DirectMusicPerformance.MusicToClockTime

DirectMusicPerformance.CloseDo
wn

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.CloseDown method closes down the performance.
An application that created the performance object and called
DirectMusicPerformance.Init on it must call CloseDown before the performance
object is released.

object.CloseDown()

object
Object expression that resolves to a DirectMusicPerformance object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
Failure to call CloseDown may cause memory leaks or program failures.

CloseDown releases any downloaded instruments that have not been unloaded.

DirectMusicPerformance.GetBump
erLength

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetBumperLength method retrieves the amount of
time between when messages are placed in the port buffer and when they begin to be
processed by the port.

object.GetBumperLength() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

IDH__dx_DirectMusicPerformance.CloseDown_dmusic_vb
IDH__dx_DirectMusicPerformance.GetBumperLength_dmusic_vb

in.doc – page 429

Return Values
The method returns the bumper length in milliseconds.

Error Codes
If the method fails, an error is raised and Err.Number may be set to E_POINTER.

Remarks
The default value is 50 milliseconds.

See Also
DirectMusicPerformance.SetBumperLength

DirectMusicPerformance.GetChord
map

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetChordmap method retrieves the chordmap from
the performance's control segment.

object.GetChordMap(mtTime As Long, _
 mtUntil As Long) As DirectMusicChordMap

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which the chordmap is to be retrieved, in music time.

mtUntil
Variable to receive the music time (relative to mtTime) until which the
chordmap is valid. If this returns a value of 0, it means either that the chordmap
will always be valid, or that it is unknown when it will become invalid. See
Remarks.

Return Values
If successful, the method returns a DirectMusicChordmap object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

IDH__dx_DirectMusicPerformance.GetChordmap_dmusic_vb

in.doc – page 430

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as a control segment when it is played. The object
returned by the method can become invalid before the time returned in mtUntil if
another control segment is cued.

See Also
CONST_DMUS_SEGF_FLAGS

DirectMusicPerformance.GetClock
Time

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetClockTime method retrieves the current time of
the performance.

object.GetClockTime() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
The method returns the time, in clock time units.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

See Also
DirectMusicPerformance.GetMusicTime

IDH__dx_DirectMusicPerformance.GetClockTime_dmusic_vb

in.doc – page 431

DirectMusicPerformance.GetCom
mand

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetCommand method retrieves a command from
the performance's control segment. The command indicates what type of pattern is
being played at the specified time.

object.GetCommand(mtTime As Long, mtUntil As Long) As Byte

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which the command is to be retrieved, in music time.

mtUntil
Variable to receive the music time (relative to mtTime) until which the
command is valid. If this returns a value of 0, it means either that the command
will always be valid, or that it is unknown when it will become invalid. See
Remarks.

Return Values
If successful, the method returns a command type. See
CONST_DMUS_COMMANDT_TYPES.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following error codes:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as a control segment when it is played. The object
returned by the method can become invalid before the time returned in mtUntil if
another control segment is cued.

See Also
CONST_DMUS_SEGF_FLAGS

IDH__dx_DirectMusicPerformance.GetCommand_dmusic_vb

in.doc – page 432

DirectMusicPerformance.GetGroov
eLevel

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetGrooveLevel method retrieves the groove level
from the performance's control segment. The groove level determines which patterns
can be played at the specified time.

object.GetGrooveLevel(mtTime As Long, _
 mtUntil As Long) As Byte

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which the groove level is to be retrieved, in music time.

mtUntil
Variable to receive the music time (relative to mtTime) until which the groove
level is valid. If this returns a value of 0, it means either that the groove level
will always be valid, or that it is unknown when it will become invalid. See
Remarks.

Return Values
If successful, the method returns a value in the range 1-100.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following error codes:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as a control segment when it is played. The object
returned by the method can become invalid before the time returned in mtUntil if
another control segment is cued.

See Also
CONST_DMUS_SEGF_FLAGS

IDH__dx_DirectMusicPerformance.GetGrooveLevel_dmusic_vb

in.doc – page 433

DirectMusicPerformance.GetLaten
cyTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetLatencyTime method retrieves the current
latency time. Latency time is the time at which messages are sent to the port to be
rendered.

object.GetLatencyTime() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
If it succeeds, the method returns the latency time, in reference time units.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK

DirectMusicPerformance.GetMaste
rAutoDownload

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetMasterAutoDownload method retrieves the
current setting for automatic downloading of instruments.

object.GetMasterAutoDownload() As Boolean

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
The method returns True if autodownloading is on, and False otherwise.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectMusicPerformance.GetLatencyTime_dmusic_vb
IDH__dx_DirectMusicPerformance.GetMasterAutoDownload_dmusic_vb

in.doc – page 434

See Also
DirectMusicPerformance.SetMasterAutoDownload,
DirectMusicSegment.SetAutoDownloadEnable

DirectMusicPerformance.GetMaste
rGrooveLevel

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetMasterGrooveLevel method retrieves the
current master groove level, which is a value added to all groove levels in the
performance. The resulting value is adjusted, if necessary, to fall within the range 1
to 100.

object.GetMasterGrooveLevel() As Integer

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
The method returns the master groove level.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicPerformance.SetMasterGrooveLevel

DirectMusicPerformance.GetMaste
rTempo

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetMasterTempo method retrieves the current
master tempo.

object.GetMasterTempo() As Single

object
Object expression that resolves to a DirectMusicPerformance object.

IDH__dx_DirectMusicPerformance.GetMasterGrooveLevel_dmusic_vb
IDH__dx_DirectMusicPerformance.GetMasterTempo_dmusic_vb

in.doc – page 435

Return Values
The method returns a value in the range 0.25 to 2.0.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The master tempo is a scaling factor that is applied to the tempo by the final output
tool. By default it is 1. A value of 0.5 would halve the tempo, and a value of 2.0
would double it.

See Also
DirectMusicPerformance.SetMasterTempo

DirectMusicPerformance.GetMaste
rVolume

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetMasterVolume method retrieves the current
master volume.

object.GetMasterVolume() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
The method returns the current master volume, in hundredths of a decibel.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The master volume is an amplification or attenuation factor applied to the default
volume of the entire performance. The range of permitted values is determined by
the port.

IDH__dx_DirectMusicPerformance.GetMasterVolume_dmusic_vb

in.doc – page 436

See Also
DirectMusicPerformance.SetMasterVolume

DirectMusicPerformance.GetMusic
Time

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetMusicTime method returns the current time of
the performance, in music time.

object.GetMusicTime() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
The method returns the current time, in music time units.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

See Also
DirectMusicPerformance.GetClockTime

DirectMusicPerformance.GetNotifi
cationPMsg

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetNotificationPMsg method retrieves a pending
notification message.

object.GetNotificationPMSG(_
 message As DMUS_NOTIFICATION_PMSG) As Boolean

object
Object expression that resolves to a DirectMusicPerformance object.

message
DMUS_NOTIFICATION_PMSG type to receive the message.

IDH__dx_DirectMusicPerformance.GetMusicTime_dmusic_vb
IDH__dx_DirectMusicPerformance.GetNotificationPMsg_dmusic_vb

in.doc – page 437

Return Values
The method returns True if a message was received, and False if there was no
message pending.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectMusicPerformance.GetPortC
aps

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetPortCaps method retrieves information about
the capabilities of a port.

object.GetPortCaps(index As Long, caps As DMUS_PORTCAPS)

object
Object expression that resolves to a DirectMusicPerformance object.

caps
DMUS_PORTCAPS type to receive information about the port.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
E_INVALIDARG.

DirectMusicPerformance.GetPortC
ount

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetPortCount method returns the number of
DirectMusic ports available on the system.

object.GetPortCount() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

IDH__dx_DirectMusicPerformance.GetPortCaps_dmusic_vb
IDH__dx_DirectMusicPerformance.GetPortCount_dmusic_vb

in.doc – page 438

Return Values
The method returns the number of available ports.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectMusicPerformance.GetPortN
ame

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetPortName returns the name of a port.

object.GetPortName(index As Long) As String

object
Object expression that resolves to a DirectMusicPerformance object.

index
Index of the port. Must be in the range 1 to the value returned by
DirectMusicPerformance.GetPortCount.

Return Values
If it succeeds, the method returns the name of the port — for example, "Microsoft
Synthesizer."

Error Codes
If the method fails, an error is raised and Err.Number may be set to
E_INVALIDARG.

DirectMusicPerformance.GetPrepa
reTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetPrepareTime method retrieves the approximate
interval between the time when messages are prepared and when they are finally
processed and heard.

object.GetPrepareTime() As Long

object

IDH__dx_DirectMusicPerformance.GetPortName_dmusic_vb
IDH__dx_DirectMusicPerformance.GetPrepareTime_dmusic_vb

in.doc – page 439

Object expression that resolves to a DirectMusicPerformance object.

Return Values
If it succeeds, the method returns the prepare time in milliseconds.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The default value is 1000 milliseconds.

See Also
DirectMusicPerformance.SetPrepareTime

DirectMusicPerformance.GetQueu
eTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetQueueTime method retrieves the current queue
(or flush) time. Messages that have timestamps earlier than this time have already
been queued to the port and cannot be invalidated.

object.GetQueueTime() As Long

object
Object expression that resolves to a DirectMusicPerformance object.

Return Values
If it succeeds, the method returns the queue time, in reference time units.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

IDH__dx_DirectMusicPerformance.GetQueueTime_dmusic_vb

in.doc – page 440

Remarks
Queue time is equal to the value returned by
DirectMusicPerformance.GetLatencyTime plus the value returned by
DirectMusicPerformance.GetBumperLength.

When a segment is stopped immediately, all messages that have been sent but not
queued to the port buffer are flushed. If you want to resume playing the segment
again at the last point heard, you have to set the new start point to the offset of queue
time within the segment when the segment was stopped.

See Also
DirectMusicPerformance.Invalidate

DirectMusicPerformance.GetResol
vedTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetResolvedTime method adjusts a given time to a
given boundary.

object.GetResolvedTime(rtTime As Long, _
 flags As Long) As Long

object
Object expression that resolves to a DirectMusicPerformance object.

rtTime
Time to resolve, in reference time units.

flags
One or more of the following CONST_DMUS_SEGF_FLAGS describing the
resolution desired:
DMUS_SEGF_AFTERPREPARETIME

Resolve to a time after the prepare time.
DMUS_SEGF_GRID

Resolve to a time on a Error! Bookmark not defined. boundary.
DMUS_SEGF_BEAT

Resolve to a time on a beat boundary.
DMUS_SEGF_MEASURE

Resolve to a time on a measure boundary.

Return Values
If the method succeeds, it returns the resolved time.

IDH__dx_DirectMusicPerformance.GetResolvedTime_dmusic_vb

in.doc – page 441

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectMusicPerformance.GetSegm
entState

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetSegmentState method retrieves the
DirectMusicSegmentState object representing the primary segment playing at a
given time.

object. GetSegmentState(mtTime As Long) _
 As DirectMusicSegmentState

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which the segment state is to be retrieved, in music time.

Return Values
If the method succeeds, it returns a DirectMusicSegmentState object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NOT_FOUND.

Remarks
To get the currently playing segment state, pass the time retrieved by the
DirectMusicPerformance.GetMusicTime method. "Currently playing" in this
context means that it is being called into to perform messages. Because of latency,
the currently playing segment state is not necessarily the one actually being heard.

DirectMusicPerformance.GetStyle
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetStyle method retrieves the style underlying the
control segment at a given time.

object.GetStyle(mtTime As Long, mtUntil As Long) _

IDH__dx_DirectMusicPerformance.GetSegmentState_dmusic_vb
IDH__dx_DirectMusicPerformance.GetStyle_dmusic_vb

in.doc – page 442

 As DirectMusicStyle

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which the style is to be retrieved, in music time.

mtUntil
Variable to receive the music time (relative to mtTime) until which the style is
valid. If this returns a value of 0, it means either that the style will always be
valid, or that it is unknown when it will become invalid. See Remarks.

Return Values
If successful, the method returns a DirectMusicStyle object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

Remarks
Normally the primary segment is the control segment. However, a secondary
segment can be designated as a control segment when it is played. The object
returned by the method can become invalid before the time returned in mtUntil if
another control segment is cued.

DirectMusicPerformance.GetTemp
o

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetTempo method retrieves the tempo at a given
time.

object.GetTempo(mtTime As Long, mtUntil As Long) As Double

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime

IDH__dx_DirectMusicPerformance.GetTempo_dmusic_vb

in.doc – page 443

Time for which to retrieve the tempo, in music time. The last tempo change
before or at this time is used to determine the tempo.

mtUntil
Variable to receive the music time (relative to mtTime) until which the tempo is
valid. If this returns a value of 0, it means either that the tempo will always be
valid, or that it is unknown when it will become invalid.

Return Values
If successful, the method returns the tempo, in beats per minute. This value is in the
range DMUS_TEMPO_MIN to DMUS_TEMPO_MAX (see CONST_DMUS).

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

DirectMusicPerformance.GetTimeS
ig

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GetTimeSig method retrieves the time signature at a
given time.

object.GetTimeSig(mtTime As Long, _
 mtUntil As Long, _
 timeSig As DMUS_TIMESIGNATURE)

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
Time for which to retrieve the time signature, in music time. The last time
signature change before or at this time is used to determine the time signature.

mtUntil
Variable to receive the music time (relative to mtTime) until which the time
signature is valid. If this returns a value of 0, it means either that the time
signature will always be valid, or that it is unknown when it will become
invalid. See Remarks.

timeSig

IDH__dx_DirectMusicPerformance.GetTimeSig_dmusic_vb

in.doc – page 444

DMUS_TIMESIGNATURE type to receive information about the time
signature. The The mtTime member will receive the offset of the last time
signature change from the requested time, and will always be 0 or less.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

DirectMusicPerformance.GMReset
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.GMReset method sends a General MIDI reset
message.

object.GMReset()

object
Object expression that resolves to a DirectMusicPerformance object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectMusicPerformance.Init
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.Init method initializes the performance and
associates it with a DirectSound object. This method should be called only once,
before any other methods are called on the performance.

object.Init(DirectSound As DirectSound, hwnd As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

DirectSound
Existing DirectSound object, or Nothing if you want DirectMusic to create the
object.

hwnd

IDH__dx_DirectMusicPerformance.GMReset_dmusic_vb
IDH__dx_DirectMusicPerformance.Init_dmusic_vb

in.doc – page 445

Window handle to be used for the creation of DirectSound. This parameter can
be 0, in which case the foreground window will be used. See Remarks.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_ALREADY_INITED
E_OUTOFMEMORY
E_POINTER

Remarks
There should only be one DirectSound object per process. If your application uses a
DirectSound object for playing waves, it must pass in that object here.

The hwnd parameter is significant only if DirectSound is Nothing. If a DirectSound
object is created separately by the application and passed to this method, the
application is responsible for setting the window handle in a call to
DirectSound.SetCooperativeLevel.

It is not recommended that 0 be passed as hwnd, as there is no guarantee that the
application window will be in the foreground when the method is called. In general,
the top-level application window handle should be passed to
DirectMusicPerformance.Init, DirectSound.SetCooperativeLevel, and
DirectDraw4.SetCooperativeLevel.

The performance must be terminated by using the
DirectMusicPerformance.CloseDown method before being released.

DirectMusicPerformance.Invalidat
e

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.Invalidate method flushes all queued messages
whose timestamps are later than the supplied time, and causes all tracks of all
segments to resend their data from the given time forward.

object.Invalidate(mtTime As Long, flags As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime

IDH__dx_DirectMusicPerformance.Invalidate_dmusic_vb

in.doc – page 446

The time from which to invalidate, adjusted by flags. Setting this value to 0
causes immediate invalidation.

flags
Adjusts mtTime to align to measures, beats, or grids. This value can be 0 or one
of the following members of CONST_DMUS_SEGF_FLAGS:
DMUS_SEGF_MEASURE
DMUS_SEGF_BEAT
DMUS_SEGF_GRID

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

Remarks
If mtTime is so long ago that it is impossible to invalidate that time, the earliest
possible time will be used.

See Also
DirectMusicPerformance.GetQueueTime

DirectMusicPerformance.IsPlaying
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.IsPlaying method determines whether a particular
segment or segment state is currently playing at the speakers.

object.IsPlaying(segment As DirectMusicSegment, _
 segmentState As DirectMusicSegmentState) As Boolean

object
Object expression that resolves to a DirectMusicPerformance object.

segment
The DirectMusicSegment to check. If Nothing, check only segmentState.

segmentState
The DirectMusicSegmentState state to check. If Nothing, check only segment.

Return Values
If the method succeeds and the requested segment or segment state is playing, the
return value is True. If neither is playing, or only one was requested and it is not
playing, the return value is False.

IDH__dx_DirectMusicPerformance.IsPlaying_dmusic_vb

in.doc – page 447

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_POINTER
DMUS_E_NO_MASTER_CLOCK

DirectMusicPerformance.MusicToC
lockTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.MusicToReferenceTime method converts time in
music time format to time in reference time format.

object.MusicToClockTime(mtTime As Long) As Long

object
Object expression that resolves to a DirectMusicPerformance object.

mtTime
The time in music time format to convert.

Return Values
If the method succeeds, it returns the time in reference time units.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_NO_MASTER_CLOCK.

Remarks
Because reference time has a greater precision than music time, a time that has been
converted from reference time to music time, and then back again, will likely not
have its original value.

See Also
DirectMusicPerformance.ClockToMusicTime

IDH__dx_DirectMusicPerformance.MusicToClockTime_dmusic_vb

in.doc – page 448

DirectMusicPerformance.PlaySeg
ment

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.PlaySegment method begins playback of a segment.

object.PlaySegment(segment As DirectMusicSegment, _
 lFlags As Long, _
 startTime As Long) As DirectMusicSegmentState

object
Object expression that resolves to a DirectMusicPerformance object.

segment
DirectMusicSegment to play.

lFlags
Flags that modify the method's behavior. See CONST_DMUS_SEGF_FLAGS.

startTime
Time at which to begin playing the segment, adjusted to any resolution
boundary specified in lFlags. The time is in music time, unless the
DMUS_SEGF_REFTIME flag is set. A value of 0 causes the segment to start
playing as soon as possible.

Return Values
If the method succeeds, it returns a DirectMusicSegmentState object representing
the playing segment.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_OUTOFMEMORY
E_POINTER
DMUS_E_NO_MASTER_CLOCK
DMUS_E_SEGMENT_INIT_FAILED
DMUS_E_TIME_PAST

Remarks
Segments should be greater than 250 milliseconds in length.

IDH__dx_DirectMusicPerformance.PlaySegment_dmusic_vb

in.doc – page 449

The boundary resolutions in lFlags are relative to the currently playing primary
segment.

If a primary segment is scheduled to play while another primary segment is playing,
the first one will stop, unless you set the DMUS_SEGF_QUEUE flag for the second
segment, in which case it will play as soon as the first one reaches its end.

See Also
DirectMusicPerformance.IsPlaying

DirectMusicPerformance.RemoveN
otificationType

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.RemoveNotificationType method removes a
previously added notification type from the performance, so that notification
messages of that type are no longer sent.

object.RemoveNotificationType(_
 type As CONST_DMUS_NOTIFICATION_TYPE)

object
Object expression that resolves to a DirectMusicPerformance object.

type
Type of event for which notification messages are no longer to be sent. For
possible values, see CONST_DMUS_NOTIFICATIONTYPE.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicPerformance.AddNotificationType

DirectMusicPerformance.SendCurv
ePMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendCurvePMSG method sends a performance
message containing information about a MIDI curve.

IDH__dx_DirectMusicPerformance.RemoveNotificationType_dmusic_vb
IDH__dx_DirectMusicPerformance.SendCurvePMSG_dmusic_vb

in.doc – page 450

object.SendCurvePMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _
 msg As DMUS_CURVE_PMSG)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message.

msg
DMUS_CURVE_PMSG type containing information about the curve.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendMIDI
PMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendCurvePMSG method sends a performance
message containing information about a MIDI channel message not covered by other
methods.

object.SendMIDIPMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _

IDH__dx_DirectMusicPerformance.SendMIDIPMSG_dmusic_vb

in.doc – page 451

 status As Byte, _
 byte1 As Byte, _
 byte2 As Byte)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message.

status
Standard MIDI status byte.

byte1
First data byte. Ignored for MIDI messages that don't require it.

byte2
Second data byte. Ignored for MIDI messages that don't require it.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendNot
ePMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendNotePMSG method sends a performance
message containing information about a note.

IDH__dx_DirectMusicPerformance.SendNotePMSG_dmusic_vb

in.doc – page 452

object.SendNotePMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _
 msg As DMUS_NOTE_PMSG)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message.

msg
DMUS_NOTE_PMSG type containing information about the note.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendPatc
hPMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendPatchPMSG method sends a performance
message containing information about a MIDI patch change.

object.SendPatchPMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _
 instrument As Byte, _

IDH__dx_DirectMusicPerformance.SendPatchPMSG_dmusic_vb

in.doc – page 453

 byte1 As Byte, _
 byte2 As Byte)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message.

instrument
Patch number to assign to the channel.

byte1
Most significant byte of Error! Bookmark not defined..

byte2
Least significant byte of Error! Bookmark not defined..

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendTem
poPMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendTempoPMSG method sends a performance
message containing information about a tempo change.

object.SendTempoPMSG(lTime As Long, _

IDH__dx_DirectMusicPerformance.SendTempoPMSG_dmusic_vb

in.doc – page 454

 flags As Long, _
 channel As Long, _
 tempo As Double)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message. Set to 0.

tempo
New tempo, in beats per minute.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendTim
eSigPMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendCurvePMSG method sends a performance
message containing information about a MIDI curve.

object.SendTimeSigPMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _
 timeSig As DMUS_TIMESIGNATURE)

object

IDH__dx_DirectMusicPerformance.SendTimeSigPMSG_dmusic_vb

in.doc – page 455

Object expression that resolves to a DirectMusicPerformance object.
lTime

Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message. Set to 0.

timeSig
DMUS_TIMESIGNATURE type containing information about the time
signature.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SendTran
sposePMSG

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SendTransposePMSG method sends a performance
message causing a transposition to begin taking place.

object.SendTransposePMSG(lTime As Long, _
 flags As Long, _
 channel As Long, _
 transpose As Integer)

object
Object expression that resolves to a DirectMusicPerformance object.

lTime
Time at which the message is to play. This is in music time unless
DMUS_PMSGF_REFTIME is in flags.

IDH__dx_DirectMusicPerformance.SendTransposePMSG_dmusic_vb

in.doc – page 456

flags
Flags modifying how and when the message is processed. See
CONST_DMUS_PMSGF_FLAGS.

channel
Performance channel that is the destination for the message. Set to 0.

transpose
Number of semitones by which to transpose notes. This can be a negative value.
If the transposition of a note puts it outside the standard MIDI range of 0-127, it
will not play.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG

Remarks
If the time of the message is set to 0 and the flags parameter contains
DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out now.

DirectMusicPerformance.SetBump
erLength

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetBumperLength method sets the amount of time
between when messages are placed in the port buffer and when they begin to be
processed by the port.

object.SetBumperLength(lMilliSeconds As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

lMilliseconds
The desired bumper length in milliseconds. The default value is 50.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectMusicPerformance.SetBumperLength_dmusic_vb

in.doc – page 457

See Also
DirectMusicPerformance.GetBumperLength,
DirectMusicPerformance.SetPrepareTime

DirectMusicPerformance.SetMaste
rAutoDownload

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetMasterAutoDownload method turns automatic
downloading of instruments on or off.

object.SetMasterAutoDownload(b As Boolean)

object
Object expression that resolves to a DirectMusicPerformance object.

b
True to turn autodownloading on, False to turn it off.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_OUTOFMEMORY

See Also
DirectMusicPerformance.GetMasterAutoDownload,
DirectMusicSegment.SetAutoDownloadEnable

DirectMusicPerformance.SetMaste
rGrooveLevel

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetMasterGrooveLevel method sets a value that
will be added to all groove levels in the performance.

object.SetMasterGrooveLevel(level As Integer)

object

IDH__dx_DirectMusicPerformance.SetMasterAutoDownload_dmusic_vb
IDH__dx_DirectMusicPerformance.SetMasterGrooveLevel_dmusic_vb

in.doc – page 458

Object expression that resolves to a DirectMusicPerformance object.
level

Value to add to the groove level, in the range -99 to 99.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_OUTOFMEMORY

See Also
DirectMusicPerformance.GetMasterGrooveLevel

DirectMusicPerformance.SetMaste
rTempo

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetMasterTempo method sets a scaling factor that
is applied to the tempo.

object.SetMasterTempo(tempo As Single)

object
Object expression that resolves to a DirectMusicPerformance object.

tempo
The desired master tempo, in the range 0.25 to 2.0.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_OUTOFMEMORY

Remarks
By default, the master tempo is 1. A value of 0.5 would halve the tempo, and a value
of 2.0 would double it.

IDH__dx_DirectMusicPerformance.SetMasterTempo_dmusic_vb

in.doc – page 459

See Also
DirectMusicPerformance.GetMasterTempo

DirectMusicPerformance.SetMaste
rVolume

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetMasterVolume method adjusts the master
volume of the performance.

object.SetMasterVolume(vol As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

vol
Master volume adjustment, in hundredths of a decibel.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

E_FAIL
E_OUTOFMEMORY

Remarks
The master volume is an amplification or attenuation factor applied to the default
volume of the entire performance. The range of permitted values is determined by
the port.

See Also
DirectMusicPerformance.GetMasterVolume

DirectMusicPerformance.SetNotifi
cationHandle

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetNotificationHandle method sets the event handle
for notifications. When signaled, the application should call the

IDH__dx_DirectMusicPerformance.SetMasterVolume_dmusic_vb
IDH__dx_DirectMusicPerformance.SetNotificationHandle_dmusic_vb

in.doc – page 460

DirectMusicPerformance.GetNotificationPMsg method to retrieve the notification
event.

object.SetNotificationHandle(hnd As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

hnd
Event handle, or 0 to clear an existing handle.

See Also
DirectXEvent

DirectMusicPerformance.SetPort
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetPort method sets the active port for the
performance. This method must be called after the performance is initialized and
before any instruments are downloaded or any segment is played.

object.SetPort(index As Long, numGroups As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

index
Index of the port. Must be in the range 1 to the value returned by
DirectMusicPerformance.GetPortCount, or -1 for the default port. The
default port is the Microsoft Software Synthesizer.

numGroups
Number of channel groups on the port. Must be less than or equal to the number
of channel groups reported in the lMaxChannelGroups member of the
DMUS_PORTCAPS type returned by the
DirectMusicPerformance.GetPortCaps method.

Remarks
Each channel group consists of 16 channels. You must allocate enough channel
groups to accommodate all performance channels in the segments you intend to play.
For MIDI files, one channel group is sufficient. The Microsoft Software Synthesizer
supports up to 1000 channel groups.

IDH__dx_DirectMusicPerformance.SetPort_dmusic_vb

in.doc – page 461

DirectMusicPerformance.SetPrepa
reTime

[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.SetPrepareTime method sets the approximate
interval between the time when messages are prepared and when they are finally
processed and heard.

object.SetPrepareTime(lMilliSeconds As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

lMilliseconds
Prepare time, in milliseconds. The default value is 1000.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicPerformance.GetPrepareTime,
DirectMusicPerformance.SetBumperLength

DirectMusicPerformance.Stop
[This is preliminary documentation and subject to change.]

The DirectMusicPerformance.Stop method stops playback of one or more
segments.

object.Stop(segment As DirectMusicSegment, _
 segmentState As DirectMusicSegmentState, _
 mtTime As Long, _
 lFlags As Long)

object
Object expression that resolves to a DirectMusicPerformance object.

segment
DirectMusicSegment to stop playing. All segment states based on this segment
are stopped at mtTime. See Remarks.

segmentState

IDH__dx_DirectMusicPerformance.SetPrepareTime_dmusic_vb
IDH__dx_DirectMusicPerformance.Stop_dmusic_vb

in.doc – page 462

DirectMusicSegmentState object representing the instance of the segment to
stop playing. See Remarks.

mtTime
Music time at which to stop the segment, segment state, or both. If the time is in
the past, or if this value is 0, the requested segments and segment states stop
playing immediately.

lFlags
Flag that indicates when the stop should occur. Boundaries are in relation to the
current primary segment. Must be one of the following values:
0

Stop immediately.
DMUS_SEGF_GRID

Stop on the next grid boundary at or after mtTime.
DMUS_SEGF_MEASURE

Stop on the next measure boundary at or after mtTime.
DMUS_SEGF_BEAT

Stop on the next beat boundary at or after mtTime.

Error Codes
If the method fails, an error is raised and Err.Number may be set to E_POINTER.

Remarks
If segment and segmentState are both Nothing, all music stops and all currently cued
segments are released. If either segment or segmentState is not Nothing, only the
requested segment states are removed from the performance.

If you set all parameters to Nothing or 0, everything stops immediately and
controller reset messages and note-off messages are sent to all mapped performance
channels.

See Also
DirectMusicPerformance.PlaySegment, CONST_DMUS_SEGF_FLAGS

DirectMusicSegment
[This is preliminary documentation and subject to change.]

An object of the DirectMusicSegment class represents a single piece of music or a
template.
Segments are usually loaded by calling DirectMusicLoader.LoadSegment and
DirectMusicLoader.LoadSegmentFromResource. They can also be composed

IDH__dx_DirectMusicSegment_dmusic_vb

in.doc – page 463

from musical elements by using methods of the DirectMusicComposer object, or
created from existing segments by using the DirectMusicSegment.Clone method.

The methods of the DirectMusicSegment object can be grouped as follows:

Timing and looping GetLength
GetLoopPointStart
GetLoopPointEnd
GetRepeats
GetStartPoint
SetLength
SetLoopPoints
SetRepeats
SetStartPoint

Duplication Clone
Instruments ConnectToCollection

Download
Unload

Parameters SetAutoDownloadEnable
SetStandardMidiFile
SetTempoEnable
SetTimeSigEnable

DirectMusicSegment.Clone
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.Clone method creates a copy of all or part of the
segment.

object.Clone(mtStart As Long, _
 mtEnd As Long) As DirectMusicSegment

object
Object expression that resolves to a DirectMusicSegment object.

mtStart
The start of the part to clone, in music time. If less than 0, or greater than the
length of the segment, 0 will be used.

mtEnd
The end of the part to clone, in music time. If this value is past the end of the
segment, the segment will be cloned to the end. A value of 0 or anything less
than mtStart will also clone to the end.

IDH__dx_DirectMusicSegment.Clone_dmusic_vb

in.doc – page 464

Return Values
If the method succeeds, it returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
E_OUTOFMEMORY.

Remarks
The start point and loop points set by the DirectMusicSegment.SetStartPoint and
DirectMusicSegment.SetLoopPoints methods are set to their default values (0, and
0 to the end of the segment respectively) inside the clone. The number of repeats is
also reset to 0.

DirectMusicSegment.ConnectToCo
llection

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.ConnectToCollection method associates a segment with
a DLS instrument collection. This is the collection that will be downloaded when the
DirectMusicSegment.Download method is called.

object.ConnectToCollection(c As DirectMusicCollection)

object
Object expression that resolves to a DirectMusicSegment object.

c
DirectMusicCollection object representing instruments to be used in playing
the segment.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

IDH__dx_DirectMusicSegment.ConnectToCollection_dmusic_vb

in.doc – page 465

Remarks
By default, the General MIDI collection in the file Gm.dls is used. This method
needs to be called only if the segment is to be played with custom instruments.

DirectMusicSegment.Download
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.Download method downloads the collection associated
with the segment, so that the port can play the instruments.

object.Download(performance As DirectMusicPerformance)

object
Object expression that resolves to a DirectMusicSegment object.

performance
DirectMusicPerformance object to whose port the instruments are being
downloaded.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.ConnectToCollection, DirectMusicSegment.Unload,
DirectMusicSegment.SetAutoDownloadEnable

DirectMusicSegment.GetLength
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.GetLength method retrieves the length of the segment.

object. GetLength() As Long

object
Object expression that resolves to a DirectMusicSegment object.

Return Values
The method returns the length of the segment, in music time.

IDH__dx_DirectMusicSegment.Download_dmusic_vb
IDH__dx_DirectMusicSegment.GetLength_dmusic_vb

in.doc – page 466

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
If for some reason the segment's length was never set, the method returns 0.

See Also
DirectMusicSegment.SetLength

DirectMusicSegment.GetLoopPoint
End

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.GetLoopPointEnd method retrieves the point in the
segment where a repeating section is to end.

object.GetLoopPointEnd() As Long

object
Object expression that resolves to a DirectMusicSegment object.

Return Values
The method returns the end point of the loop, in music time. If this value is 0, the
entire segment will loop.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The section will not actually repeat unless the number of repetitions has been set to 1
or more by using the DirectMusicSegment.SetRepeats method. By default, the
entire segment repeats.

See Also
DirectMusicSegment.GetLoopPointStart, DirectMusicSegment.SetLoopPoints,
DirectMusicSegment.GetRepeats

IDH__dx_DirectMusicSegment.GetLoopPointEnd_dmusic_vb

in.doc – page 467

DirectMusicSegment.GetLoopPoint
Start

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.GetLoopPointStart method retrieves the point in the
segment where a repeating section is to start.

object.GetLoopPointStart() As Long

object
Object expression that resolves to a DirectMusicSegment object.

Return Values
The method returns the start point of the loop, in music time.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The section will not actually repeat unless the number of repetitions has been set to 1
or more by using the DirectMusicSegment.SetRepeats method. By default, the
entire segment repeats.

See Also
DirectMusicSegment.GetLoopPointEnd, DirectMusicSegment.SetLoopPoints,
DirectMusicSegment.GetRepeats

DirectMusicSegment.GetRepeats
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.GetRepeats method retrieves the number of times the
looping portion of a segment is set to repeat.

object.GetRepeats() As Long

object
Object expression that resolves to a DirectMusicSegment object.

IDH__dx_DirectMusicSegment.GetLoopPointStart_dmusic_vb
IDH__dx_DirectMusicSegment.GetRepeats_dmusic_vb

in.doc – page 468

Return Values
The method returns the number of times the looping portion will repeat.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.SetRepeats, DirectMusicSegment.SetLoopPoints,
DirectMusicSegment.GetLoopPointStart,
DirectMusicSegment.GetLoopPointEnd, DirectMusicSegmentState.GetRepeats

DirectMusicSegment.GetStartPoin
t

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.GetStartPoint method retrieves the point where the
segment will start playing in response to the
DirectMusicPerformance.PlaySegment method.

object.GetStartPoint() As Long

object
Object expression that resolves to a DirectMusicSegment object.

Return Values
The method returns the start point of the segment, in music time.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.SetStartPoint

DirectMusicSegment.SetAutoDow
nloadEnable

[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicSegment.GetStartPoint_dmusic_vb
IDH__dx_DirectMusicSegment.SetAutoDownloadEnable_dmusic_vb

in.doc – page 469

The DirectMusicSegment.SetAutoDownloadEnable method enables or disables
automatic downloading and unloading of instruments in the collection associated
with the segment.

object.SetAutoDownloadEnable(b As Boolean)

object
Object expression that resolves to a DirectMusicSegment object.

b
True to enable autodownloading, or False to disable it.

Remarks
Automatic downloading is disabled by default. When it is enabled, instruments are
automatically downloaded when the segment is played, and unloaded when it is
stopped.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

See Also
DirectMusicSegment.Download

DirectMusicSegment.SetLength
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetLength method sets the length of the segment.

object.SetLength(mtLength As Long)

object
Object expression that resolves to a DirectMusicSegment object.

mtLength
The desired length, in music time. Must be greater than 0.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_OUT_OF_RANGE.

IDH__dx_DirectMusicSegment.SetLength_dmusic_vb

in.doc – page 470

Remarks
In most cases applications don't need to set the length, which is automatically set
when the segment is loaded. However, this method can be used to shorten a segment.

See Also
DirectMusicSegment.GetLength

DirectMusicSegment.SetLoopPoint
s

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetLoopPoints method sets the start and end points
inside the segment that will repeat the number of times set by the
DirectMusicSegment.SetRepeats method.

object.SetLoopPoints(mtStart As Long, mtEnd As Long)

object
Object expression that resolves to a DirectMusicSegment object.

mtStart
The point at which to begin the loop, in music time.

mtEnd
The point at which to end the loop, in music time. A value of 0 loops the entire
segment.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_OUT_OF_RANGE.

Remarks
When the segment is played, it plays from the segment start time up till mtEnd, then
loops to mtStart, plays the looped portion the number of times set by
DirectMusicSegment.SetRepeats, then plays to the end.

The default values are set to loop the entire segment from beginning to end.

The method fails if mtStart is greater than or equal to the length of the segment, or if
mtEnd is greater than the length of the segment. If mtEnd is 0, mtStart must be 0 as
well.

This method does not affect any currently playing segment states created from this
segment.

IDH__dx_DirectMusicSegment.SetLoopPoints_dmusic_vb

in.doc – page 471

A segment that is reused might be loaded from an internal cache, in which case it
will have the same loop points it had the last time these values were set. It is a good
idea to reset the loop points to 0 before releasing or resetting the object.

See Also
DirectMusicSegment.GetLoopPointStart,
DirectMusicSegment.GetLoopPointEnd, DirectMusicSegment.SetRepeats

DirectMusicSegment.SetRepeats
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetRepeats method sets the number of times the looping
portion of the segment is to repeat.

object.SetRepeats(lRepeats As Long)

object
Object expression that resolves to a DirectMusicSegment object.

lRepeats
Number of repetitions.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.GetRepeats, DirectMusicSegment.SetLoopPoints

DirectMusicSegment.SetStandard
MidiFile

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetStandardMidiFile method advises DirectMusic that
the segment is based on a standard MIDI file, not one authored specifically for
DirectMusic. Calling this method ensures that certain events are handled properly
when the segment is played.

object.SetStandardMidiFile()

object
Object expression that resolves to a DirectMusicSegment object.

IDH__dx_DirectMusicSegment.SetRepeats_dmusic_vb
IDH__dx_DirectMusicSegment.SetStandardMidiFile_dmusic_vb

in.doc – page 472

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
The method should be called before instruments are downloaded.

DirectMusicSegment.SetStartPoin
t

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetStartPoint method sets the point where the segment
will start playing in response to a call to the
DirectMusicPerformance.PlaySegment method.

object.SetStartPoint(mtStart As Long)

object
Object expression that resolves to a DirectMusicSegment object.

mtStart
Point within the segment at which it is to start playing, in music time. If this
value is less than 0 or greater than the length of the segment, the start point will
be set to 0.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_OUT_OF_RANGE.

Remarks
By default the start point is 0, meaning the segment starts from the beginning.

The call fails if mtStart is greater than or equal to the length of the segment.

The method does not affect any currently playing segment states created from this
segment.

A segment that is reused might be loaded from an internal cache, in which case it
will have the same start point it had the last time this value was set. It is a good idea
to set the start point to 0 before the object is released or reset.

IDH__dx_DirectMusicSegment.SetStartPoint_dmusic_vb

in.doc – page 473

See Also
DirectMusicSegment.GetStartPoint, DirectMusicSegmentState.GetStartPoint,
DirectMusicSegment.SetLoopPoints

DirectMusicSegment.SetTempoEn
able

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetTempoEnable method enables or disables tempo
messages for the segment.

object.SetTempoEnable(b As Boolean)

object
Object expression that resolves to a DirectMusicSegment object.

b
True to enable tempo messages, or False to disable them.

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

DirectMusicSegment.SetTimeSigE
nable

[This is preliminary documentation and subject to change.]

The DirectMusicSegment.SetTimeSigEnable method enables or disables time
signature messages for the segment.

object.SetTempoEnable(b As Boolean)

object
Object expression that resolves to a DirectMusicSegment object.

b
True to enable time signature messages, or False to disable them.

IDH__dx_DirectMusicSegment.SetTempoEnable_dmusic_vb
IDH__dx_DirectMusicSegment.SetTimeSigEnable_dmusic_vb

in.doc – page 474

Error Codes
If the method fails, an error is raised and Err.Number may be set to one of the
following values:

DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND

DirectMusicSegment.Unload
[This is preliminary documentation and subject to change.]

The DirectMusicSegment.Unload method unloads instruments that were
downloaded to the port by the DirectMusicSegment.Download method.

object.Unload(performance As DirectMusicPerformance)

object
Object expression that resolves to a DirectMusicSegment object.

performance
DirectMusicPerformance object from whose port the instruments are being
unloaded.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.SetAutoDownloadEnable

DirectMusicSegmentState
[This is preliminary documentation and subject to change.]

The DirectMusicSegmentState class ris used to get information about a segment
instance. When the DirectMusicPerformance.PlaySegment method is called, it
creates a DirectMusicSegmentState object which represents that instance of the
segment and enables the application to retrieve information about it. The object can
also be passed to methods of DirectMusicPerformance in order to determine
whether a segment instance is still playing, or to stop it.

The interface has the following methods:

Information GetRepeats

IDH__dx_DirectMusicSegment.Unload_dmusic_vb
IDH__dx_DirectMusicSegmentState_dmusic_vb

in.doc – page 475

GetSeek
GetSegment
GetStartPoint
GetStartTime

See Also
DirectMusicPerformance.GetSegmentState,
DirectMusicPerformance.IsPlaying, DirectMusicPerformance.Stop

DirectMusicSegmentState.GetRep
eats

[This is preliminary documentation and subject to change.]

The DirectMusicSegmentState.GetRepeats method returns the number of times the
looping portion of the segment was set to repeat.

object.GetRepeats() As Long

object
Object expression that resolves to a DirectMusicSegmentState object.

Return Values
The method returns the repeat count. A value of 0 indicates that the segment is
to play through only once, with no portion repeated.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.SetRepeats

DirectMusicSegmentState.GetSee
k

[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicSegmentState.GetRepeats_dmusic_vb
IDH__dx_DirectMusicSegmentState.GetSeek_dmusic_vb

in.doc – page 476

The DirectMusicSegmentState.GetSeek method retrieves the current seek pointer
in the segment state. This is immediately after the last point in the segment for which
messages have been generated.

object.GetSeek() As Long

object
Object expression that resolves to a DirectMusicSegmentState object.

Return Values
The method returns the current seek pointer, in music time.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Remarks
When a segment is stopped, messages that have been sent but not yet queued to the
port buffer are flushed. Therefore if you stop a segment and then restart it at the last
seek pointer, some notes will be lost.

DirectMusicSegmentState.GetSeg
ment

[This is preliminary documentation and subject to change.]

The DirectMusicSegmentState.GetSegment method returns an object representing
the segment that owns this segment state.

object.GetSegment() As DirectMusicSegment

object
Object expression that resolves to a DirectMusicSegmentState object.

Return Values
The method returns a DirectMusicSegment object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

IDH__dx_DirectMusicSegmentState.GetSegment_dmusic_vb

in.doc – page 477

DirectMusicSegmentState.GetStar
tPoint

[This is preliminary documentation and subject to change.]

The DirectMusicSegmentState.GetStartPoint method returns the offset into the
segment at which play began or will begin.

object.GetStartPoint() As Long

object
Object expression that resolves to a DirectMusicSegmentState object.

Return Values
The method returns the start point for this segment state, in music time. Note that
this might not be same value as is returned by DirectMusicSegment.GetStartPoint,
if the start point of the segment has been changed since this segment state was
created. Different instances of a playing segment can have different start points.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicSegment.SetStartPoint, DirectMusicSegmentState.GetStartTime

DirectMusicSegmentState.GetStar
tTime

[This is preliminary documentation and subject to change.]

The DirectMusicSegmentState.GetStartTime method gets the performance time at
which the beginning of the segment falls, or would fall if the segment was played
from the beginning.

object.GetStartTime() As Long

object
Object expression that resolves to a DirectMusicSegmentState object.

IDH__dx_DirectMusicSegmentState.GetStartPoint_dmusic_vb
IDH__dx_DirectMusicSegmentState.GetStartTime_dmusic_vb

in.doc – page 478

Return Values
The method returns the start time, in music time, of this instance of the segment.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_BUFFER_EMPTY.

Remarks
If the segment was started from some point other than the beginning, this method
returns the time at which play started minus the offset into the segment where play
started (the start point). For example, if you played a segment at tick 5000 of the
performance, and the segment start point was 1000, the start time of the segment
state would be 4000.

See Also
DirectMusicSegment.SetStartPoint, DirectMusicSegment.GetStartPoint,
DirectMusicSegmentState.GetStartPoint

DirectMusicStyle
[This is preliminary documentation and subject to change.]

An object of the DirectMusicStyle class provides the performance with the
information it needs to play musical patterns. Styles usually include bands and
motifs, and may include chordmaps, so the DirectMusicStyle object also provides
methods for accessing these objects.

The object is generally obtained by using the DirectMusicLoader.LoadStyle or
DirectMusicLoader.LoadStyleFromResource method. It can also be obtained from
the performance by using the DirectMusicPerformance.GetStyle method, provided
the current control segment is based on a style.

The methods of the DirectMusicStyle interface can be organized in the following
groups:

Bands GetBand
GetBandCount
GetBandName
GetDefaultBand

Chordmaps GetChordmap
GetChordmapCount

IDH__dx_DirectMusicStyle_dmusic_vb

in.doc – page 479

GetChordmapName
GetDefaultChordMap

Motifs GetMotif
GetMotifCount
GetMotifName

Time GetTempo
GetTimeSignature

DirectMusicStyle.GetBand
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetBand method gets a band object by name.

object.GetBand(name As String) As DirectMusicBand

object
Object expression that resolves to a DirectMusicStyle object.

name
Name assigned to the band by the author of the style.

Return Values
The method returns a DirectMusicBand object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicStyle.GetBandName, DirectMusicStyle.GetDefaultBand

DirectMusicStyle.GetBandCount
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetBandCount method gets the number of bands available
in the style.

object.GetBandCount() As Long

object
Object expression that resolves to a DirectMusicStyle object.

IDH__dx_DirectMusicStyle.GetBand_dmusic_vb
IDH__dx_DirectMusicStyle.GetBandCount_dmusic_vb

in.doc – page 480

Return Values
The method returns the number of bands in the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

See Also
DirectMusicStyle.GetBand, DirectMusicStyle.GetBandName

DirectMusicStyle.GetBandName
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetBandName method gets the name of a band in the style.

object.GetBandName(index As Long) As String

object
Object expression that resolves to a DirectMusicStyle object.

index
Index of the band in the style, in the range 1 to
DirectMusicStyle.GetBandCount.

Return Values
The method returns the name assigned to the band by the author of the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

See Also
DirectMusicStyle.GetBand

DirectMusicStyle.GetChordmap
[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicStyle.GetBandName_dmusic_vb
IDH__dx_DirectMusicStyle.GetChordmap_dmusic_vb

in.doc – page 481

The DirectMusicStyle.GetChordmap method gets a chordmap object by name.

object.GetChordmap(name As String) As
DirectMusicChordmap

object
Object expression that resolves to a DirectMusicStyle object.

name
Name assigned to the chordmap by the author of the style.

Return Values
The method returns a DirectMusicChordmap object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicStyle.GetChordmapCount, DirectMusicStyle.GetChordmapName

DirectMusicStyle.GetChordmapCo
unt

[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetChordmapCount method gets the number of chordmaps
available in the style.

object.GetChordmapCount() As Long

object
Object expression that resolves to a DirectMusicStyle object.

Return Values
The method returns the number of chordmaps in the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

IDH__dx_DirectMusicStyle.GetChordmapCount_dmusic_vb

in.doc – page 482

DirectMusicStyle.GetChordmapNa
me

[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetChordmapName method gets the name of a chordmap in
the style.

object.GetChordmapName(index As Long) As String

object
Object expression that resolves to a DirectMusicStyle object.

index
Index of the chordmap in the style, in the range 1 to
DirectMusicStyle.GetChordmapCount.

Return Values
The method returns the name assigned to the chordmap by the author of the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

See Also
DirectMusicStyle.GetChordmap

DirectMusicStyle.GetDefaultBand
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetDefaultBand method gets the default band for the style .

object.GetDefaultBand() As DirectMusicBand

object
Object expression that resolves to a DirectMusicStyle object.

name
Name assigned to the band by the author of the style.

Return Values

IDH__dx_DirectMusicStyle.GetChordmapName_dmusic_vb
IDH__dx_DirectMusicStyle.GetDefaultBand_dmusic_vb

in.doc – page 483

The method returns a DirectMusicBand object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicStyle.GetBand

DirectMusicStyle.GetDefaultChord
Map

[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetDefaultChordMap method retrieves the style's default
chordmap.

object.GetDefaultChordmap() As DirectMusicChordmap

object
Object expression that resolves to a DirectMusicStyle object.

Return Values
The method returns a DirectMusicChordmap object.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicStyle.GetChordmap

DirectMusicStyle.GetMotif
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetMotif method creates a segment containing the named
motif.

object.GetMotif(name As String) As DirectMusicSegment

object

IDH__dx_DirectMusicStyle.GetDefaultChordMap_dmusic_vb
IDH__dx_DirectMusicStyle.GetMotif_dmusic_vb

in.doc – page 484

Object expression that resolves to a DirectMusicStyle object.
name

Name assigned to the motif by the author of the style

Return Values
The method returns a DirectMusicSegment object representing the motif.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

See Also
DirectMusicStyle.GetMotifCount, DirectMusicStyle.GetMotifName

DirectMusicStyle.GetMotifCount
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetMotifCount method gets the number of motifs available
in the style.

object.GetMotifCount() As Long

object
Object expression that resolves to a DirectMusicStyle object.

Return Values
The method returns the number of motifs in the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

DirectMusicStyle.GetMotifName
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetMotifName method gets the name of a motif in the style.

object.GetMotifName(index As Long) As String

IDH__dx_DirectMusicStyle.GetMotifCount_dmusic_vb
IDH__dx_DirectMusicStyle.GetMotifName_dmusic_vb

in.doc – page 485

object
Object expression that resolves to a DirectMusicStyle object.

index
Index of the motif in the style, in the range 1 to
DirectMusicStyle.GetMotifCount.

Return Values
The method returns the name assigned to the motif by the author of the style.

Error Codes
If the method fails, an error is raised and Err.Number may be set to
DMUS_E_TYPE_UNSUPPORTED

See Also
DirectMusicStyle.GetMotif

DirectMusicStyle.GetTempo
[This is preliminary documentation and subject to change.]

The DirectMusicStyle.GetTempo method retrieves the recommended tempo of the
style.

object.GetTempo() As Double

object
Object expression that resolves to a DirectMusicStyle object.

Return Values
The method returns the recommended tempo, in beats per minute.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

DirectMusicStyle.GetTimeSignatur
e

[This is preliminary documentation and subject to change.]

IDH__dx_DirectMusicStyle.GetTempo_dmusic_vb
IDH__dx_DirectMusicStyle.GetTimeSignature_dmusic_vb

in.doc – page 486

The DirectMusicStyle.GetTimeSignature method retrieves the style's time
signature.

object.GetTimeSignature(pTimeSig As DMUS_TIMESIGNATURE)

object
Object expression that resolves to a DirectMusicStyle object.

pTimeSig
DMUS_TIMESIGNATURE type to receive information about the time
signature.

Error Codes
If the method fails, an error is raised and Err.Number will be set.

Types
[This is preliminary documentation and subject to change.]

This section contains information on the following types used in DirectMusic for
Visual Basic:

· DMUS_CURVE_PMSG
· DMUS_NOTE_PMSG
· DMUS_NOTIFICATION_PMSG
· DMUS_PORTCAPS
· DMUS_TIMESIGNATURE

DMUS_CURVE_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_CURVE_PMSG type contains information about a MIDI curve
message.

Type DMUS_CURVE_PMSG
 beat As Byte
 ccData As Byte
 curveShape As Byte
 endValue As Integer
 flags As Byte
 grid As Byte
 measure As Integer
 mtDuration As Long
 mtOriginalStart As Long

IDH__dx_DMUS_CURVE_PMSG_dmusic_vb

in.doc – page 487

 mtResetDuration As Long
 offset As Integer
 resetValue As Integer
 startValue As Integer
 type As Byte
End Type

beat
Beat count (within measure) at which this curve occurs.

ccData
CC number if this is a control change type.

curveShape
Shape of curve. This can be one of the values from the
CONST_DMUS_CURVES enumeration.

endValue
Curve's end value.

flags
Set to DMUS_CURVE_RESET if the resetValue must be set when the time is
reached or an invalidation occurs because of a transition. If 0, the curve stays
permanently at the new value.

grid
Grid offset from beat at which this curve occurs.

measure
Measure in which this curve occurs.

mtDuration
How long the curve lasts.

mtOriginalStart
Original start time, in music time. Must be set to either 0 when this message is
created or to the original time of the curve.

mtResetDuration
How long after the curve is finished until the reset value is set, in music time.

offset
Offset from grid at which this curve occurs, in music time.

resetValue
Curve's reset value, set after mtResetDuration or upon a flush or invalidation.

startValue
Curve's start value.

type
Type of curve. This can be one of the values from the
CONST_DMUS_CURVET enumeration.

in.doc – page 488

See Also
DirectMusicPerformance.SendCurvePMSG

DMUS_NOTE_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_NOTE_PMSG type contains data for a music note event.

Type DMUS_NOTE_PMSG
 beat as Byte
 durRange As Byte
 flags As Byte
 grid As Byte
 measure As Integer
 midiValue As Byte
 mtDuration As Long
 musicValue As Integer
 offset As Integer
 playModeFlags As Byte
 subChordLevel As Byte
 timeRange As Byte
 velocity As Byte
 velRange As Byte
End Type

beat
Beat count (within measure) at which this note occurs.

durRange
Range to randomize duration.

flags
Set to DMUS_NOTEF_NOTEON. See Remarks.

grid
Grid offset from beat at which this note occurs.

measure
Measure in which this note occurs.

midiValue
MIDI note value, converted from musicValue.

mtDuration
Duration of the note.

musicValue
Description of note. In most play modes, this is a packed array of four-bit values
(nibbles), as follows:

IDH__dx_DMUS_NOTE_PMSG_dmusic_vb

in.doc – page 489

Octave, in the range -2 to 14. The note is transposed up or down by the octave
times 12.
Chord position, in the range 0 to 15, though it should never be above 3. The first
position in the chord is 0.
Scale position, in the range 0 to 15. Typically it is just 0 through 2, but it is
possible to have a one-note chord and have everything above the chord be
interpreted as a scale position.
Accidental, in the range -8 to 7, but typically in the range -2 to 2. This
represents an offset that takes the note out of the scale.
In the fixed play modes, the music value is simply a MIDI note value in the
range 0 to 127.

offset
Offset from grid at which this note occurs, in music time.

playModeFlags
Play mode determining how the music value is related to the chord and
subchord. For a list of values, see CONST_DMUS_PLAYMODE_FLAGS.

subChordLevel
Subchord level the note uses.

timeRange
Range by which to randomize time.

velocity
Note velocity.

velRange
Range by which to randomize velocity.

Remarks
The application is not responsible for sending note-off messages. When the
DirectMusic output tool receives a DMUS_NOTE_PMSG and sees that
DMUS_NOTEF_NOTEON is set in the flags member, it clears the flag, adds
mtDuration to the time stamp, and requeues the message so that the note is turned
off at the appropriate time.

See Also
DirectMusicPerformance.SendNotePMSG

DMUS_NOTIFICATION_PMSG
[This is preliminary documentation and subject to change.]

The DMUS_NOTIFICATION_PMSG type contains information about a
notification message sent by the performance.

IDH__dx_DMUS_NOTIFICATION_PMSG_dmusic_vb

in.doc – page 490

Type DMUS_NOTIFICATION_PMSG
 ctTime As Long
 lField1 As Long
 lField2 As Long
 lFlags As Long
 lNotificationOption As Long
 lNotificationType As Long
 mtTime As Long
End Type

ctTime
Time stamp of the message, in clock time.

lField1
Extra data specific to the type of notification. For
NOTIFY_ON_MEASUREANDBEAT notifications, this member returns the
beat number within the measure.

lField2
Extra data specific to the type of notification. Reserved for future or application-
defined use.

lFlags
Flags. Set to 0.

lNotificationOption
Identifier of the notification subtype, from the
CONST_DMUS_NOTIFICATION_SUBTYPE enumeration.
If the notification type is DMUS_NOTIFY_ON_SEGMENT, this member can
contain one of the following values:
DMUS_NOTIFICATION_SEGABORT

The segment was stopped by DirectMusicPerformance.Stop.
DMUS_NOTIFICATION_SEGALMOSTEND

The segment has reached the end minus the prepare time.
DMUS_NOTIFICATION_SEGEND

The segment has ended.
DMUS_NOTIFICATION_SEGLOOP

The segment has looped.
DMUS_NOTIFICATION_SEGSTART

The segment has started.
If the notification type is DMUS_NOTIFY_ON_COMMAND, this member can
contain one of the following values:
DMUS_NOTIFICATION_GROOVE

Groove change.
DMUS_NOTIFICATION_EMBELLISHMENT

Embellishment command (intro, fill, break, or end).

in.doc – page 491

If the notification type is DMUS_NOTIFY_ON_PERFORMANCE, this member
can contain one of the following values:
DMUS_NOTIFICATION_MUSICSTARTED

Playback has started.
DMUS_NOTIFICATION_MUSICSTOPPED

Playback has stopped.
If the notification type is DMUS_NOTIFY_ON_MEASUREANDBEAT, this
member contains DMUS_NOTIFICATION_MEASUREBEAT. No other
subtypes are defined.
If the notification type is DMUS_NOTIFY_ON_CHORD, this member contains
DMUS_NOTIFICATION_CHORD. No other subtypes are defined.

lNotificationType
Identifier of the notification type, from the
CONST_DMUS_NOTIFICATIONTYPE enumeration.

mtTime
Time stamp of the message, in music time.

See Also
DirectMusicPerformance.AddNotificationType,
DirectMusicPerformance.GetNotificationPMSG

DMUS_PORTCAPS
[This is preliminary documentation and subject to change.]

The DMUS_PORTCAPS type returns information about the capabilities of a port. It
is passed to the DirectMusicPerformance.GetPortCaps method.

Type DMUS_PORTCAPS
 lClass as Long
 lEffectFlags As Long
 lFlags As Long
 lMaxAudioChannels As Long
 lMaxChannelGroups As Long
 lMaxVoices As Long
 lMemorySize As Long
 lType As Long
End Type

lClass
Class of this port. One of the members of the CONST_DMUS_PC_CLASS
enumeration.

lEffectFlags

IDH__dx_DMUS_PORTCAPS_dmusic_vb

in.doc – page 492

Flags indicating what audio effects are available on the port.
lFlags

Flags describing various capabilities of the port. See
CONST_DMUS_PC_FLAGS.

lMaxAudioChannels
Maximum number of audio channels that can be rendered by the port.

lMaxChannelGroups
Maximum number of channel groups supported by this port. A channel group is
a set of 16 MIDI channels.

lMaxVoices
Maximum number of voices that can be allocated when this port is opened.

lMemorySize
Amount of memory available to store DLS instruments. If the port is using
system memory and the amount is therefore limited only by the available system
memory, this field will contain DMUS_PC_SYSTEMMEMORY.

lType
Type of this port. See CONST_DMUS_PORT_TYPE.

DMUS_TIMESIGNATURE
[This is preliminary documentation and subject to change.]

The DMUS_TIMESIGNATURE type contains information about a time signature.
It is passed to the DirectMusicPerformance.GetTimeSig and
DirectMusicStyle.GetTimeSignature methods, and is also used in messages sent by
the DirectMusicPerformance.SendTimeSigPMSG method.

Type DMUS_TIMESIGNATURE
 beat As Byte
 beatsPerMeasure As Byte
 gridsPerBeat As Integer
 mtTime As Long
End Type

beat
Bottom of time signature.

beatsPerMeasure
Top of time signature.

gridPerBeat
Grids (subdivisions) per beat. This value determines the timing resolution for
certain music events—for example, segments cued with the
DMUS_SEGF_GRID flag (see CONST_DMUS_SEGF_FLAGS.).

mtTime
Music time at which this time signature occurs.

IDH__dx_DMUS_TIMESIGNATURE_dmusic_vb

in.doc – page 493

Enumerations
[This is preliminary documentation and subject to change.]

DirectMusic for Visual Basic uses enumerations to group constants in order to take
advantage of the statement completion feature of the Microsoft Visual Studio
development environment.

This section contains reference information for the following enumerations:

· CONST_DMUS
· CONST_DMUS_COMMANDT_TYPES
· CONST_DMUS_COMPOSEF_FLAGS
· CONST_DMUS_CURVE_FLAGS
· CONST_DMUS_CURVES
· CONST_DMUS_CURVET
· CONST_DMUS_NOTEF_FLAGS
· CONST_DMUS_NOTIFICATION_SUBTYPE
· CONST_DMUS_NOTIFICATIONTYPE
· CONST_DMUS_PC_CLASS
· CONST_DMUS_PC_FLAGS
· CONST_DMUS_PLAYMODE_FLAGS
· CONST_DMUS_PMSGF_FLAGS
· CONST_DMUS_PORT_TYPE
· CONST_DMUS_SEGF_FLAGS
· CONST_DMUS_SHAPET_TYPES
· CONST_DMUSERR

CONST_DMUS
[This is preliminary documentation and subject to change.]

The CONST_DMUS enumeration contains miscellaneous constants used in
DirectMusic.

Enum CONST_DMUS
 DMUS_MAXSUBCHORD = 8
 DMUS_TEMPO_MAX = 350 (&H15E)
 DMUS_TEMPO_MIN = 10
End Enum

DMUS_MAXSUBCHORD
Maximum number of subchords allowed in a chord.

in.doc – page 494

DMUS_TEMPO_MAX
Maximum tempo, in beats per minute.

DMUS_TEMPO_MIN
Minimum tempo, in beats per minute.

CONST_DMUS_COMMANDT_TY
PES

[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_COMMANDT_TYPES enumeration
represent commands that establish musical patterns. They are used in the lCommand
parameter of the DirectMusicComposer.AutoTransition and
DirectMusicComposer.ComposeTransition methods and are returned by the
DirectMusicPerformance.GetCommand method.

Type CONST_DMUS_COMMANDT_TYPES
 DMUS_COMMANDT_BREAK = 3
 DMUS_COMMANDT_END = 4
 DMUS_COMMANDT_ENDANDINTRO = 5
 DMUS_COMMANDT_FILL = 1
 DMUS_COMMANDT_GROOVE = 0
 DMUS_COMMANDT_INTRO = 2
End Enum

DMUS_COMMANDT_GROOVE
The command is a groove command.

DMUS_COMMANDT_FILL
The command is a fill.

DMUS_COMMANDT_INTRO
The command is an intro.

DMUS_COMMANDT_BREAK
The command is a break.

DMUS_COMMANDT_END
The command is an ending.

DMUS_COMMANDT_ENDANDINTRO
The command is an ending and an intro.

IDH__dx_CONST_DMUS_COMMANDT_TYPES_dmusic_vb

in.doc – page 495

CONST_DMUS_COMPOSEF_FL
AGS

[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_COMPOSEF_FLAGS enumeration are used
in the lFlags parameter of the DirectMusicComposer.AutoTransition and
DirectMusicComposer.ComposeTransition methods.

Enum CONST_DMUS_COMPOSEF_FLAGS
 DMUS_COMPOSEF_AFTERPREPARETIME = 64 (&H40)
 DMUS_COMPOSEF_ALIGN = 1
 DMUS_COMPOSEF_BEAT = 16 (&H10)
 DMUS_COMPOSEF_GRID = 8
 DMUS_COMPOSEF_IMMEDIATE = 4
 DMUS_COMPOSEF_LONG = 8192 (&H2000)
 DMUS_COMPOSEF_MEASURE = 32 (&H20)
 DMUS_COMPOSEF_MODULATE = 4096 (&H1000)
 DMUS_COMPOSEF_NONE = 0
 DMUS_COMPOSEF_OVERLAP = 2
End Enum

DMUS_COMPOSEF_AFTERPREPARETIME
AutoTransition only. Use the DMUS_SEGF_AFTERPREPARETIME flag (see
CONST_DMUS_SEGF_FLAGS) when cueing the transition.

DMUS_COMPOSEF_ALIGN
Align transition to the time signature of the currently playing segment.

DMUS_COMPOSEF_BEAT
AutoTransition only. Start transition on beat boundary.

DMUS_COMPOSEF_GRID
AutoTransition only. Start transition on grid boundary.

DMUS_COMPOSEF_IMMEDIATE
AutoTransition only. Start transition on music or reference time boundary.

DMUS_COMPOSEF_MEASURE
AutoTransition only. Start transition on measure boundary.

DMUS_COMPOSEF_LONG
Composes a long transition. If this flag is not set, the length of the transition is at
most one measure, unless the lCommand parameter of ComposeTransition or
AutoTransition specifies an ending and the style contains an ending of greater
than one measure. If this flag is set, the length of the transition increases by one
measure.

DMUS_COMPOSEF_MODULATE

IDH__dx_CONST_DMUS_COMPOSEF_FLAGS_dmusic_vb

in.doc – page 496

Compose a transition that modulates smoothly from fromSeg to toSeg, using the
chord of toSeg.

DMUS_COMPOSEF_NONE
No flags. By default, the transition starts on a measure boundary.

DMUS_COMPOSEF_OVERLAP
Overlap the transition into toSeg. This flag is not implemented.

CONST_DMUS_CURVE_FLAGS
[This is preliminary documentation and subject to change.]

The CONST_DMUS_CURVE_FLAGS enumeration contains a single constant
used in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVE_FLAGS
 DMUS_CURVE_RESET = 1
End Enum

DMUS_CURVE_RESET
The reset value must be set when the time is reached or an invalidation occurs
because of a transition.

CONST_DMUS_CURVES
[This is preliminary documentation and subject to change.]

Members of the CONST_DMUS_CURVES enumeration are used to define the
shape of a curve in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVES
 DMUS_CURVES_EXP = 2
 DMUS_CURVES_INSTANT = 1
 DMUS_CURVES_LINEAR = 0
 DMUS_CURVES_LOG = 3
 DMUS_CURVES_SINE = 4
End Enum

DMUS_CURVES_EXP
Exponential curve shape.

DMUS_CURVES_INSTANT
Instant curve shape (beginning and end of curve happen at essentially the same
time).

DMUS_CURVES_LINEAR
Linear curve shape.

DMUS_CURVES_LOG
Logarithmic curve shape.

in.doc – page 497

DMUS_CURVES_SINE
Sine curve shape.

CONST_DMUS_CURVET
[This is preliminary documentation and subject to change.]

Members of the CONST_DMUS_CURVET enumeration are used to describe the
type of curve in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVET
 DMUS_CURVET_CCCURVE = 4
 DMUS_CURVET_MATCURVE = 5
 DMUS_CURVET_PATCURVE = 6
 DMUS_CURVET_PBCURVE = 3
End Enum

DMUS_CURVET_CCCURVE
Continuous controller curve (MIDI Control Change channel voice message;
status byte &HBn, where n is the channel number).

DMUS_CURVET_MATCURVE
Monophonic aftertouch curve (MIDI Channel Pressure channel voice message;
status byte &HDn).

DMUS_CURVET_PATCURVE
Polyphonic aftertouch curve (MIDI Poly Key Pressure channel voice message,
status byte &HDn).

DMUS_CURVET_PBCURVE
Pitchbend curve (MIDI Pitch Bend channel voice message; status byte &HEn).

CONST_DMUS_NOTEF_FLAGS
[This is preliminary documentation and subject to change.]

The CONST_DMUS_NOTEF_FLAGS enumeration contains a single constant used
in note messages.

Enum CONST_DMUS_NOTEF_FLAGS
 DMUS_NOTEF_NOTEON = 1
End Enum

DMUS_NOTEF_NOTEON
See the Remarks for DMUS_NOTE_PMSG.

in.doc – page 498

CONST_DMUS_NOTIFICATION_
SUBTYPE

[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_NOTIFICATION_SUBTYPE enumeration
provide information about the musical events reported in notification messages.

Enum CONST_DMUS_NOTIFICATION_SUBTYPE
 DMUS_NOTIFICATION_CHORD = 0
 DMUS_NOTIFICATION_EMBELLISHMENT = 1
 DMUS_NOTIFICATION_GROOVE = 0
 DMUS_NOTIFICATION_MEASUREBEAT = 0
 DMUS_NOTIFICATION_MUSICSTARTED = 0
 DMUS_NOTIFICATION_MUSICSTOPPED = 1
 DMUS_NOTIFICATION_SEGABORT = 4
 DMUS_NOTIFICATION_SEGALMOSTEND = 2
 DMUS_NOTIFICATION_SEGEND = 1
 DMUS_NOTIFICATION_SEGLOOP = 3
 DMUS_NOTIFICATION_SEGSTART = 0
End Enum

For an explanation of the values, see DMUS_NOTIFICATION_PMSG.

CONST_DMUS_NOTIFICATION
TYPE

[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_NOTIFICATIONTYPE enumeration
identify a notification type. They are passed to the
DirectMusicPerformance.AddNotificationType and
DirectMusicPerformance.RemoveNotificationType methods, and identify the
notification type in messages retrieved by
DirectMusicPerformance.GetNotificationPMSG.

Enum CONST_DMUS_NOTIFICATIONTYPE
 NOTIFY_ON_CHORD = 1
 NOTIFY_ON_COMMAND = 2
 NOTIFY_ON_MEASUREANDBEAT = 3
 NOTIFY_ON_PERFORMANCE = 4
 NOTIFY_ON_SEGMENT = 5
End Enum

IDH__dx_CONST_DMUS_NOTIFICATION_SUBTYPE_dmusic_vb
IDH__dx_CONST_DMUS_NOTIFICATIONTYPE_dmusic_vb

in.doc – page 499

NOTIFY_ON_CHORD
Chord change.

NOTIFY_ON_COMMAND
Command event.

NOTIFY_ON_MEASUREANDBEAT
Measure and beat event.

NOTIFY_ON_PERFORMANCE
Performance event, further defined in dwNotificationOption.

NOTIFY_ON_SEGMENT
Segment event, further defined in dwNotificationOption.

See Also
DMUS_NOTIFICATION_PMSG

CONST_DMUS_PC_CLASS
[This is preliminary documentation and subject to change.]

Members of the CONST_DMUS_PC_CLASS enumeration are used in the
DMUS_PORTCAPS type to specify the class of the port.

Enum CONST_DMUS_PC_CLASS
 DMUS_PC_INPUTCLASS = 0
 DMUS_PC_OUTPUTCLASS = 1
End Enum

DMUS_PC_INPUTCLASS
Input port.

DMUS_PC_OUTPUTCLASS
Output port.

CONST_DMUS_PC_FLAGS
[This is preliminary documentation and subject to change.]

Members of the CONST_DMUS_PC_FLAGS enumeration are used in the
DMUS_PORTCAPS type to describe miscellaneous capabilities of the port.

Enum CONST_DMUS_PC_FLAGS
 DMUS_PC_DIRECTSOUND = 128 (&H80)
 DMUS_PC_DLS = 1
 DMUS_PC_EXTERNAL = 2
 DMUS_PC_GMINHARDWARE = 16 (&H10)
 DMUS_PC_GSINHARDWARE = 32 (&H20)

in.doc – page 500

 DMUS_PC_MEMORYSIZEFIXED = 8
 DMUS_PC_SHAREABLE = 256 (&H100)
 DMUS_PC_SOFTWARESYNTH = 4
 DMUS_PC_SYSTEMMEMORY = 2147483647 (&H7FFFFFFF)
 DMUS_PC_XGINHARDWARE = 64 (&H40)
End Enum

DMUS_PC_DIRECTSOUND
The port supports streaming wave data to DirectSound.

DMUS_PC_DLS
The port supports DLS Level 1 sample collections.

DMUS_PC_EXTERNAL
This port connects to devices outside of the host—for example, devices
connected over an external MIDI port like the MPU-401.

DMUS_PC_GMINHARDWARE
The synthesizer has its own GM instrument set, so GM instruments do not need
to be downloaded.

DMUS_PC_GSINHARDWARE
This port contains the Roland GS sound set in hardware.

DMUS_PC_MEMORYSIZEFIXED
Memory available for DLS instruments cannot be adjusted.

DMUS_PC_SHAREABLE
More than one port can be created that uses the same range of channel groups on
the device. Unless this bit is set, the port can only be opened in exclusive mode.
In exclusive mode, an attempt to create a port will fail unless free channel
groups are available to assign to the create request.

DMUS_PC_SOFTWARESYNTH
The port is a software synthesizer.

DMUS_PC_SYSTEMMEMORY.
The port is using system memory and the amount is therefore limited only by
the available system memory. Note: this constant is used in
DMUS_PORTCAPS.lMemorysize, not lFlags.

DMUS_PC_XGINHARDWARE
The port contains the Yamaha XG extensions in hardware.

CONST_DMUS_PLAYMODE_FL
AGS

[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_PLAYMODE_FLAGS enumeration are used
to set the play mode in a DMUS_NOTE_PMSG message type. The play mode

IDH__dx_CONST_DMUS_PLAYMODE_FLAGS_dmusic_vb

in.doc – page 501

determines how the note is transposed to the current chord before it is converted to a
MIDI note.

Enum CONST_DMUS_PLAYMODE_FLAGS
 DMUS_PLAYMODE_ALWAYSPLAY = 14
 DMUS_PLAYMODE_CHORD_INTERVALS = 8
 DMUS_PLAYMODE_CHORD_ROOT = 2
 DMUS_PLAYMODE_FIXED = 0
 DMUS_PLAYMODE_FIXEDTOCHORD = 2
 DMUS_PLAYMODE_FIXEDTOKEY = 1
 DMUS_PLAYMODE_FIXEDTOSCALE = 1
 DMUS_PLAYMODE_KEY_ROOT = 1
 DMUS_PLAYMODE_MELODIC = 6
 DMUS_PLAYMODE_NONE = 16 (&H10)
 DMUS_PLAYMODE_NORMALCHORD = 10
 DMUS_PLAYMODE_PEDALPOINT = 5
 DMUS_PLAYMODE_PURPLEIZED = 14
 DMUS_PLAYMODE_SCALE_INTERVALS = 4
 DMUS_PLAYMODE_SCALE_ROOT = 1
End Enum

The following members are the basic flags:

DMUS_PLAYMODE_CHORD_INTERVALS
Use chord intervals from chord pattern.

DMUS_PLAYMODE_CHORD_ROOT
Transpose on top of the chord root.

DMUS_PLAYMODE_KEY_ROOT
Transpose on top of the key root.

DMUS_PLAYMODE_NONE
No mode. Indicates the parent part's mode should be used.

DMUS_PLAYMODE_SCALE_INTERVALS
Use scale intervals from scale pattern.

The following members represent combinations of the basic flags:

DMUS_PLAYMODE_ALWAYSPLAY
Combination of DMUS_PLAYMODE_SCALE_INTERVALS,
DMUS_PLAYMODE_CHORD_INTERVALS, and
DMUS_PLAYMODE_CHORD_ROOT. If it is desirable to play a note that is
above the top of the chord, this mode finds a position for the note by using
intervals from the scale. Essentially, this mode is a combination of the normal
and melodic playback modes, where a failure in normal causes a second try in
melodic mode.

DMUS_PLAYMODE_FIXED

in.doc – page 502

Interpret the music value as a MIDI value. This is defined as 0 and signifies the
absence of other flags. This flag is used for drums, sound effects, and sequenced
notes that should not be transposed by the chord or scale.

DMUS_PLAYMODE_FIXEDTOCHORD
Same as DMUS_PLAYMODE_CHORD_ROOT. The music value is a fixed
MIDI value, but it is transposed on top of the chord root.

DMUS_PLAYMODE_FIXEDTOKEY
Same as DMUS_PLAYMODE_KEY_ROOT. The music value is a fixed MIDI
value, but it is transposed on top of the key root.

DMUS_PLAYMODE_MELODIC
Combination of DMUS_PLAYMODE_CHORD_ROOT and
DMUS_PLAYMODE_SCALE_INTERVALS. The chord root is used but the
notes only track the intervals in the scale. The key root and chord intervals are
completely ignored. This is useful for melodic lines that play relative to the
chord root.

DMUS_PLAYMODE_NORMALCHORD
Combination of DMUS_PLAYMODE_CHORD_ROOT and
DMUS_PLAYMODE_CHORD_INTERVALS. This is the prevalent playback
mode. The notes track the intervals in the chord, which is based on the chord
root. If there is a scale component to the music value, the additional intervals are
pulled from the scale and added. If the chord does not have an interval to match
the chord component of the music value, the note is silent.

DMUS_PLAYMODE_PEDALPOINT
Combination of DMUS_PLAYMODE_KEY_ROOT and
DMUS_PLAYMODE_SCALE_INTERVALS. The key root is used and the
notes only track the intervals in the scale. The chord root and intervals are
completely ignored. This is useful for melodic lines that play relative to the key
root.

The following members are obsolete:

DMUS_PLAYMODE_PURPLEIZED
DMUS_PLAYMODE_SCALE_ROOT
DMUS_PLAYMODE_FIXEDTOSCALE

CONST_DMUS_PMSGF_FLAGS
[This is preliminary documentation and subject to change.]
The members of the CONST_DMUS_PMSGF_FLAGS enumeration are used in
the various message-sending methods of DirectMusicPerformance to specify when
a message should be delivered to tools.

Enum CONST_DMUS_PMSGF_FLAGS
 DMUS_PMSGF_MUSICTIME = 2
 DMUS_PMSGF_REFTIME = 1

IDH__dx_CONST_DMUS_PMSGF_FLAGS_dmusic_vb

in.doc – page 503

 DMUS_PMSGF_TOOL_ATTIME = 16 (&H10)
 DMUS_PMSGF_TOOL_FLUSH = 32 (&H20)
 DMUS_PMSGF_TOOL_IMMEDIATE = 4
 DMUS_PMSGF_TOOL_QUEUE = 8
End Enum

DMUS_PMSGF_REFTIME
The timestamp is in reference time.

DMUS_PMSGF_MUSICTIME
The timestamp is in music time.

DMUS_PMSGF_TOOL_IMMEDIATE
Message should be processed immediately, regardless of its timestamp.

DMUS_PMSGF_TOOL_QUEUE
Message should be processed just before its timestamp, allowing for port
latency.

DMUS_PMSGF_TOOL_ATTIME
Message should be processed at the time stamp.

DMUS_PMSGF_TOOL_FLUSH
Message is being flushed.

CONST_DMUS_PORT_TYPE
[This is preliminary documentation and subject to change.]

The CONST_DMUS_PORT_TYPE enumeration is used in the
DMUS_PORTCAPS type to specify the driver model of the port.

Enum CONST_DMUS_PORT_TYPE
 DMUS_PORT_KERNEL_MODE = 2
 DMUS_PORT_USER_MODE_SYNTH = 1
 DMUS_PORT_WINMM_DRIVER = 0
End Enum

DMUS_PORT_WINMM_DRIVER
Windows Multimedia driver.

DMUS_PORT_USER_MODE_SYNTH
User mode synthesizer.

DMUS_PORT_KERNEL_MODE
WDM driver.

CONST_DMUS_SEGF_FLAGS
[This is preliminary documentation and subject to change.]

IDH__dx_CONST_DMUS_SEGF_FLAGS_dmusic_vb

in.doc – page 504

The members of the CONST_DMUS_SEGF_FLAGS enumeration are used in
various methods of the DirectMusicPerformance object to control the timing and
other aspects of actions on a segment.

Enum CONST_DMUS_SEGF_FLAGS
 DMUS_SEGF_AFTERPREPARETIME = 1024 (&H400)
 DMUS_SEGF_BEAT = 4096 (&H1000)
 DMUS_SEGF_CONTROL = 512 (&H200)
 DMUS_SEGF_DEFAULT = 16384 (&H4000)
 DMUS_SEGF_GRID = 2048 (&H800)
 DMUS_SEGF_MEASURE = 8192 (&H2000)
 DMUS_SEGF_NOINVALIDATE = 32768 (&H8000)
 DMUS_SEGF_QUEUE = 256 (&H100)
 DMUS_SEGF_REFTIME = 64 (&H40)
 DMUS_SEGF_SECONDARY = 128 (&H80)
End Enum

DMUS_SEGF_AFTERPREPARETIME
Play after the prepare time. (See DirectMusicPerformance.GetPrepareTime.)

DMUS_SEGF_BEAT
Play on beat boundary.

DMUS_SEGF_CONTROL
Play as a control segment (secondary segments only). See Remarks.

DMUS_SEGF_DEFAULT
Use segment's default boundary.

DMUS_SEGF_GRID
Play on grid boundary.

DMUS_SEGF_MEASURE
Play on measure boundary.

DMUS_SEGF_NOINVALIDATE
Setting this flag in DirectMusicPerformance.PlaySegment for a primary or
control segment will cause the new segment not to cause an invalidation.
Without this flag, an invalidation will occur, cutting off and resetting any
currently playing curve or note. This flag should be combined with
DMUS_SEGF_AFTERPREPARETIME so that there is no danger of notes in the
new segment playing over top of notes played by the old segment.

DMUS_SEGF_QUEUE
Put at the end of the primary segment queue (primary segment only).

DMUS_SEGF_REFTIME
Time parameter is in reference time.

DMUS_SEGF_SECONDARY
Secondary segment.

in.doc – page 505

Remarks
Normally the primary segment is the control segment. The
DMUS_SEGF_CONTROL flag can be used to make a secondary segment the
control segment. There should be only one control segment at a time. (It is possible
to create multiple control segments, but there is no guarantee of which one will
actually be used by DirectMusic as the control segment.) By default only the control
segment sends tempo messages.

If the DMUS_SEGF_CONTROL flag is set, DMUS_SEGF_SECONDARY is
assumed.

See Also
DirectMusicPerformance.GetResolvedTime,
DirectMusicPerformance.Invalidate, DirectMusicPerformance.PlaySegment,
DirectMusicPerformance.Stop

CONST_DMUS_SHAPET_TYPES
[This is preliminary documentation and subject to change.]

The members of the CONST_DMUS_SHAPET_TYPES enumeration are used in
the wShape parameter of the DirectMusicComposer.ComposeSegmentFromShape
and DirectMusicComposer.ComposeTemplateFromShape methods to specify the
desired pattern of the groove level.

Enum CONST_DMUS_SHAPET_TYPES
 DMUS_SHAPET_FALLING = 0
 DMUS_SHAPET_LEVEL = 1
 DMUS_SHAPET_LOOPABLE = 2
 DMUS_SHAPET_LOUD = 3
 DMUS_SHAPET_PEAKING = 5
 DMUS_SHAPET_QUIET = 4
 DMUS_SHAPET_RANDOM = 6
 DMUS_SHAPET_RISING = 7
 DMUS_SHAPET_SONG = 8
End Enum

DMUS_SHAPET_FALLING
The groove level falls.

DMUS_SHAPET_LEVEL
The groove level remains even.

DMUS_SHAPET_LOOPABLE
The segment is arranged to loop back to the beginning.

DMUS_SHAPET_LOUD

IDH__dx_CONST_DMUS_SHAPET_TYPES_dmusic_vb

in.doc – page 506

The groove level is high.
DMUS_SHAPET_PEAKING

The groove level rises to a peak, then falls.
DMUS_SHAPET_QUIET

The groove level is low.
DMUS_SHAPET_RANDOM

The groove level is random.
DMUS_SHAPET_RISING

The groove level rises.
DMUS_SHAPET_SONG

The segment is in a song form. Several phrases of 6 to 8 bars are composed and
put together to give a verse-chorus effect, with variations in groove level.

CONST_DMUSERR
[This is preliminary documentation and subject to change.]

The CONST_DMUSERR enumeration represents DirectMusic error codes.

Error Codes
[This is preliminary documentation and subject to change.]

This section provides a brief explanation of the various error codes that can be
returned by DirectMusic methods. For a list of the specific codes each method can
return, see the individual method descriptions. Note that these lists are not
necessarily comprehensive.

DMUS_E_ALL_TRACKS_FAILED
The segment object was unable to load all tracks from the IStream object data,
perhaps because of errors in the stream, or because the tracks are incorrectly
registered on the client.

DMUS_E_ALREADY_ACTIVATED
The port has been activated and the parameter cannot be changed.

DMUS_E_ALREADY_DOWNLOADED
Buffer has already been downloaded.

DMUS_E_ALREADY_EXISTS
The tool is already contained in the graph. You must create a new instance.

DMUS_E_ALREADY_INITED
The object has already been initialized.

DMUS_E_ALREADY_LOADED
DLS collection is already open.

DMUS_E_ALREADY_SENT
The message has already been sent.

DMUS_E_ALREADYCLOSED

in.doc – page 507

The port is not open.
DMUS_E_ALREADYOPEN

Port was already opened.
DMUS_E_BADARTICULATION

Invalid articulation chunk in DLS collection.
DMUS_E_BADINSTRUMENT

Invalid instrument chunk in DLS collection.
DMUS_E_BADOFFSETTABLE

Offset table has errors.
DMUS_E_BADWAVE

Corrupt wave header.
DMUS_E_BADWAVELINK

Wavelink chunk in DLS collection points to invalid wave.
DMUS_E_BUFFER_EMPTY

There is no data in the buffer.
DMUS_E_BUFFER_FULL

The specified number of bytes exceeds the maximum buffer size.
DMUS_E_BUFFERNOTAVAILABLE

The buffer is not available for download.
DMUS_E_BUFFERNOTSET

No buffer was prepared for the data.
DMUS_E_CANNOT_OPEN_PORT

The default system port could not be opened.
DMUS_E_DEVICE_IN_USE

Device is already in use (possibly by a non-DirectMusic client) and cannot be
opened again.

DMUS_E_DMUSIC_RELEASED
Operation cannot be performed because the final instance of the DirectMusic
object was released. Ports cannot be used after final release of the DirectMusic
object.

DMUS_E_DRIVER_FAILED
An unexpected error was returned from a device driver, indicating possible
failure of the driver or hardware.

DMUS_E_DSOUND_ALREADY_SET
A DirectSound object has already been set.

DMUS_E_DSOUND_NOT_SET
Port could not be created because no DirectSound object has been specified.

DMUS_E_GET_UNSUPPORTED
Getting the parameter is not supported.

DMUS_E_INSUFFICIENTBUFFER
Buffer is not large enough for requested operation.

DMUS_E_INVALID_BAND
File does not contain a valid band.

in.doc – page 508

DMUS_E_INVALID_DOWNLOADID
Invalid download identifier was used in the process of creating a download
buffer.

DMUS_E_INVALID_EVENT
The event either is not a valid MIDI message or makes use of running status,
and cannot be packed into the buffer.

DMUS_E_INVALIDBUFFER
Invalid DirectSound buffer was handed to port.

DMUS_E_INVALIDFILE
Not a valid file.

DMUS_E_INVALIDPATCH
No instrument in the collection matches the patch number.

DMUS_E_INVALIDPOS
Error reading wave data from DLS collection. Indicates bad file.

DMUS_E_LOADER_BADPATH
The file path is invalid.

DMUS_E_LOADER_FAILEDCREATE
Object could not be found or created.

DMUS_E_LOADER_FAILEDOPEN
File open failed because the file doesn't exist or is locked.

DMUS_E_LOADER_FORMATNOTSUPPORTED
The object cannot be loaded because the data format is not supported.

DMUS_E_LOADER_OBJECTNOTFOUND
The object was not found.

DMUS_E_NO_MASTER_CLOCK
There is no master clock in the performance. Make sure to call the
DirectMusicPerformance.Init method.

DMUS_E_NOT_DOWNLOADED_TO_PORT
The object cannot be unloaded because it is not present on the port.

DMUS_E_NOT_FOUND
The requested item is not contained by the object.

DMUS_E_NOT_INIT
A required object is not initialized or failed to initialize.

DMUS_E_NOTADLSCOL
The object being loaded is not a valid DLS collection.

DMUS_E_OUT_OF_RANGE
The requested time is outside the range of the segment.

DMUS_E_PORT_NOT_RENDER
Not an output port.

DMUS_E_PORTS_OPEN
The requested operation cannot be performed while there are instantiated ports
in any process in the system.

DMUS_E_SEGMENT_INIT_FAILED

in.doc – page 509

Segment initialization failed, likely because of a critical memory situation.
DMUS_E_SET_UNSUPPORTED

Setting the parameter is not supported.
DMUS_E_TIME_PAST

The time requested is in the past.
DMUS_E_TRACK_NOT_FOUND

There is no track of the requested type.
DMUS_E_TYPE_DISABLED

Parameter is unavailable because it has been disabled.
DMUS_E_TYPE_UNSUPPORTED

Parameter is unsupported on this track.
DMUS_E_UNKNOWN_PROPERTY

The property set or item is not implemented by this port.
E_FAIL

The method did not succeed.
E_INVALIDARG

Invalid argument.
E_NOTIMPL

The method is not implemented. This value may be returned if a driver does not
support a feature necessary for the operation.

E_OUTOFMEMORY
Insufficient memory to complete task.

E_POINTER
An invalid pointer was passed as a parameter.

REGDB_E_CLASSNOTREG
Object class is not registered.

S_FALSE
The method succeeded, but there was nothing to do.

S_OK
The operation was completed successfully.

DirectMusic Tutorials
[This is preliminary documentation and subject to change.]

This section contains tutorials providing step-by-step instructions for implementing
basic Microsoft® DirectMusic® functionality.

· DirectMusic C/C++ Tutorials
· DirectMusic Visual Basic Tutorials

in.doc – page 510

DirectMusic C/C++ Tutorials
[This is preliminary documentation and subject to change.]

This section contains the following tutorials showing how to implement DirectMusic
in a C or C++ application:

· Tutorial 1: Playing a MIDI File
· Tutorial 2: Using Tools
· Tutorial 3: Using Compositions

Tutorial 1: Playing a MIDI File
[This is preliminary documentation and subject to change.]

This tutorial is a guide to setting up the simplest possible DirectMusic application,
one that simply plays a primary segment. In this example the segment represents a
MIDI file, but the process of loading and playing the data would be exactly the same
if the source were a segment authored in a tool such as DirectMusic Producer.

The tutorial is broken down into the following steps:

· Step 1: Initializing COM
· Step 2: Creating the Performance
· Step 3: Creating the Loader
· Step 4: Loading the MIDI File
· Step 5: Playing the MIDI File
· Step 6: Shutting Down DirectMusic

Step 1: Initializing COM
[This is preliminary documentation and subject to change.]

Before making any calls to DirectMusic, you have to initialize COM as follows:

if (FAILED(CoInitialize(NULL)))
{
 // Terminate the application.
} // Else full speed ahead!

Step 2: Creating the Performance
[This is preliminary documentation and subject to change.]

The central object of any DirectMusic application is the performance, which
manages the playback of segments. It is created by using the COM
CoCreateInstance function, as in the following sample function:

in.doc – page 511

IDirectMusicPerformance* CreatePerformance(void)
{
 IDirectMusicPerformance* pPerf;

 if (FAILED(CoCreateInstance(
 CLSID_DirectMusicPerformance,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicPerformance,
 (void**)&pPerf
)))
 {
 pPerf = NULL;
 }
 return pPerf;
}

You can use this function to initialize a global performance pointer that will be used
in later steps:

IDirectMusicPerformance* g_pPerf = CreatePerformance();
if (g_pPerf == NULL)
{
 // Failure -- performance not created
}

Once the performance has been created, you need to initialize it by calling the
IDirectMusicPerformance::Init method. The method creates a DirectMusic object
to manage the default port. Because you don't need to access the IDirectMusic
methods directly, you don't need to retrieve a pointer to it, so you pass NULL as the
first parameter to Init. You also pass NULL as the IDirectSound pointer and as the
window handle, so that DirectMusic will create a DirectSound object and pass the
current focus window to it when setting the cooperative level.

if (FAILED(g_pPerf->Init(NULL, NULL, NULL)))
{
 // Failure -- performance not initialized
};

Now you need to add a port to the performance. Calling the
IDirectMusicPerformance::AddPort method with a NULL parameter
automatically adds the default port (normally the Microsoft Software Synthesizer)
with one channel group, and assigns PChannels 0-15 to the group's MIDI channels.

if (FAILED(pPerf->AddPort(NULL)))
{
 // Failure -- port not initialized
}

in.doc – page 512

Step 3: Creating the Loader
[This is preliminary documentation and subject to change.]

In order to load any object from disk, you first need to create the DirectMusicLoader
object. This is done just as for any other COM object, as shown in the following
sample function:

IDirectMusicLoader* CreateLoader(void)
{
 IDirectMusicLoader* pLoader;

 if (FAILED(CoCreateInstance(
 CLSID_DirectMusicLoader,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicLoader,
 (void**)&pLoader
)))
 {
 pLoader = NULL;
 }
 return pLoader;
}

You'll use this function to initialize a global variable:

IDirectMusicLoader* g_pLoader = CreateLoader();
if (g_pLoader == NULL)
{
 // Failure -- loader not created
}

Step 4: Loading the MIDI File
[This is preliminary documentation and subject to change.]

In this step you will implement a function, LoadMIDISegment, that takes a pointer
to the IDirectMusicLoader created in the last step and uses it to create a segment
object encapsulating the data from a MIDI file.

IDirectMusicSegment* LoadMIDISegment(IDirectMusicLoader* pLoader,
 WCHAR wszMidiFileName)
{
 DMUS_OBJECTDESC ObjDesc;
 IDirectMusicSegment* pSegment = NULL;

in.doc – page 513

Let's assume that all the MIDI files you want to play are in the current working
directory. You need to let the loader know this, by setting the search directory. (If
the search directory is not being changed elsewhere, in order to load objects from
other directories, this actually has to be done only once, not each time you load a
file.)

 char szDir[_MAX_PATH];
 WCHAR wszDir[_MAX_PATH];

 if(_getcwd(szDir, _MAX_PATH) == NULL)
 {
 return NULL;
 }

/*
Convert from multibyte format to Unicode using the following macro:
#define MULTI_TO_WIDE(x,y) MultiByteToWideChar(CP_ACP, \
 MB_PRECOMPOSED, y, -1, x, _MAX_PATH);
*/

 MULTI_TO_WIDE(wszDir, szDir);
 HRESULT hr = pLoader->SetSearchDirectory(GUID_DirectMusicAllTypes,
 wszDir, FALSE);
 if (FAILED(hr))
 {
 return NULL;
 }

You then describe the object to be loaded, in a DMUS_OBJECTDESC structure:

 ObjDesc.guidClass = CLSID_DirectMusicSegment;
 ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);
 wcscpy(ObjDesc.wszFileName, wszMidiFileName);
 ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

Now load the object and query it for the IDirectMusicSegment interface. This is
done in a single call to IDirectMusicLoader::GetObject. Note that loading the
object also initializes the tracks and does everything else necessary to get the MIDI
data ready for playback.

 pLoader->GetObject(&ObjDesc,
 IID_IDirectMusicSegment, (void**) &pSegment);

To ensure that the segment plays as a standard MIDI file, you now need to set a
parameter on the band track. Use the IDirectMusicSegment::SetParam method and
let DirectMusic find the track, by passing -1 (or 0xFFFFFFFF) in the dwGroupBits
method parameter.

in.doc – page 514

 g_pMIDISeg->SetParam(GUID_StandardMIDIFile,
 -1, 0, 0, (void*)g_pPerf);

This step is necessary because DirectMusic handles program changes and bank
selects differently for standard MIDI files than it does for MIDI content authored
specifically for DirectMusic. The GUID_StandardMIDIFile parameter must be set
before the instruments are downloaded.

The next step is to download the instruments. This is necessary even for playing a
simple MIDI file, because the default software synthesizer needs the DLS data for
the General MIDI instrument set. If you skip this step, the MIDI file will play
silently. Again, you call SetParam on the segment, this time specifying the
GUID_Download parameter:

 g_pMIDISeg->SetParam(GUID_Download, -1, 0, 0, (void*)g_pPerf);

Note that there's no harm in requesting the download even though this might already
have been done in a previous call to the LoadMIDISegment function. A redundant
request is simply ignored. Eventually you have to unload the instruments, but that
can wait until you're ready to shut down DirectMusic.

The function now returns a pointer to the segment, which is ready to be played.

 return pSegment;

} // End of LoadSegment()

Before loading a new segment, clean up any existing one. Then pass a file name to
the LoadMIDISegment function.

if (g_pMIDIseg)
{
 g_pMIDIseg->Release();
 g_pMIDIseg = NULL;
}

if (g_pLoader)
{
 IDirectMusicSegment* g_pMIDIseg = LoadMIDISegment(g_pLoader,
 L"tune.mid");
}

Step 5: Playing the MIDI File
[This is preliminary documentation and subject to change.]

Now that all of the preparatory work has been done, playing the music is simplicity
itself.

IDirectMusicSegmentState* g_pSegState;

in.doc – page 515

if (g_pMIdiSEG)
{
 g_pPerf->PlaySegment(g_pMIDISeg, 0, 0, &g_pSegState);
}

The call to IDirectMusicPerformance::PlaySegment takes the following
parameters:

· The segment you created in the previous step.
· A set of timing flags and a start time (not needed here because you simply want

the segment to play as soon as possible).
· The address of a pointer to a segment state object. You can use the returned

pointer in order to retrieve information about the segment. This parameter can
be NULL if you won't be needing the segment state.

If you want the file to be played more than once, before calling PlaySegment you
must call the IDirectMusicSegment::SetRepeats method.

If you want to stop the music before it has played to the end or finished its repeats,
you do so by using the IDirectMusicPerformance::Stop method. The simplest way
to use this method is simply to request that all music currently playing or cued to
play be stopped immediately:

g_pPerf->Stop(NULL, NULL, 0, 0)

Alternatively, you can supply a pointer to the current segment or segment state in
order to stop playback of just one segment, or one instance of that segment.

Step 6: Shutting Down DirectMusic
[This is preliminary documentation and subject to change.]

Before exiting, the program must unload the instruments, release all the objects that
have been created, and dereference COM (remember, every call to CoInitialize must
have a matching call to CoUninitialize).

The following function performs the necessary cleanup:

HRESULT FreeDirectMusic()
{
 // If there is any music playing, stop it. This is
 // not really necessary, because the music will stop when
 // the instruments are unloaded or the performance is
 // closed down.
 g_pPerf->Stop(NULL, NULL, 0, 0);

 // Unload instruments – this will cause silence.
 // CloseDown unloads all instruments, so this call is also not
 // strictly necessary.

in.doc – page 516

 g_pMIDISeg->SetParam(GUID_Unload, -1, 0, 0, (void*)g_pPerf);

 // Release the segment.
 g_pMIDISeg->Release();

 // CloseDown and Release the performance object.
 g_pPerf->CloseDown();
 g_pPerf->Release();

 // Release the loader object.
 g_pLoader->Release();

 // Release COM.
 CoUninitialize();

 return S_OK;
}

Tutorial 2: Using Tools
[This is preliminary documentation and subject to change.]

This tutorial shows how a tool might be implemented as a C++ class and used in a
DirectMusic application. The CEchoTool class enables an application to add one or
more echoes to every music note in a performance.

The sample code is based on the EchoTool sample application included with the
DirectX Programmer's Reference.

The tutorial is broken down into the following steps:

· Step 1: Declaring the Tool Class
· Step 2: Defining the IUnknown Methods
· Step 3: Specifying Message Types
· Step 4: Defining the ProcessPMsg Method
· Step 5: Defining the Class Methods
· Step 6: Adding the Tool to the Performance

Step 1: Declaring the Tool Class
[This is preliminary documentation and subject to change.]

The first step in creating a tool for DirectMusic in C++ is to declare a class derived
from IDirectMusicTool.

Here is the declaration for the sample CEchoTool class:

class CEchoTool : public IDirectMusicTool

in.doc – page 517

{
public:
 CEchoTool();
 ~CEchoTool();

public:
// IUnknown
 virtual STDMETHODIMP QueryInterface(const IID &iid, void **ppv);
 virtual STDMETHODIMP_(ULONG) AddRef();
 virtual STDMETHODIMP_(ULONG) Release();

// IDirectMusicTool
 HRESULT STDMETHODCALLTYPE Init(
 IDirectMusicGraph* pGraph);
 HRESULT STDMETHODCALLTYPE GetMsgDeliveryType(
 DWORD* pdwDeliveryType);
 HRESULT STDMETHODCALLTYPE GetMediaTypeArraySize(
 DWORD* pdwNumElements);
 HRESULT STDMETHODCALLTYPE GetMediaTypes(
 DWORD** padwMediaTypes,
 DWORD dwNumElements);
 HRESULT STDMETHODCALLTYPE ProcessPMsg(
 IDirectMusicPerformance* pPerf,
 DMUS_PMSG* pDMUS_PMSG);
 HRESULT STDMETHODCALLTYPE Flush(
 IDirectMusicPerformance* pPerf,
 DMUS_PMSG* pDMUS_PMSG,
 REFERENCE_TIME rtTime);
private:
 long m_cRef; // Reference counter
 DWORD m_dwEchoNum; // Number of echoes to generate
 MUSIC_TIME m_mtDelay; // Delay time between echoes
 CRITICAL_SECTION m_CrSec; // To make SetEchoNum()
 // and SetDelay() thread-safe
public:
// Public class methods
 void SetEchoNum(DWORD);
 void SetDelay(MUSIC_TIME);
};

Step 2: Defining the IUnknown Methods
[This is preliminary documentation and subject to change.]

The inherited IUnknown methods of the sample CEchoTool class are implemented
as follows:

in.doc – page 518

STDMETHODIMP CEchoTool::QueryInterface(const IID &iid, void **ppv)
{
 if (iid == IID_IUnknown || iid == IID_IDirectMusicTool)
 {
 ppv = static_cast<IDirectMusicTool>(this);
 } else
 {
 *ppv = NULL;
 return E_NOINTERFACE;
 }

 reinterpret_cast<IUnknown*>(this)->AddRef();
 return S_OK;
}

STDMETHODIMP_(ULONG) CEchoTool::AddRef()
{
 return InterlockedIncrement(&m_cRef);
}

STDMETHODIMP_(ULONG) CEchoTool::Release()
{
 if(0 == InterlockedDecrement(&m_cRef))
 {
 delete this;
 return 0;
 }
 return m_cRef;
}

Step 3: Specifying Message Types
[This is preliminary documentation and subject to change.]

The CEchoTool class needs to define all the IDirectMusicTool methods. But
because it does not need to perform any work in Init or Flush, it simply returns
E_NOTIMPL from those methods.

The following methods are used to specify what messages will get passed to the tool
for processing:

· GetMsgDeliveryType specifies when messages should be passed to the tool—
as soon as they are available, at the exact time they are stamped for, or just in
time to be processed and put in the port buffer. These three "delivery types" are
represented respectively by the DMUS_PMSGF_TOOL_IMMEDIATE,
DMUS_PMSGF_TOOL_ATTIME, and DMUS_PMSGF_TOOL_QUEUE flags
in the dwFlags member of the DMUS_PMSG structure.

in.doc – page 519

· GetMediaTypes establishes what type of messages should be passed to the tool,
based on the content of the message. CEchoTool processes only music notes and
patch changes, so it will accept MIDI short messages, music note messages, and
DirectMusic patch messages. These messages are identified by flags of the
DMUS_PMSGT_TYPES enumerated type in the DMUS_PMSG message
structure.

· GetMediaTypeArraySize returns the number of elements in the media type
array.

CEchoTool implements these methods in the following sample code:

HRESULT STDMETHODCALLTYPE CEchoTool::GetMsgDeliveryType(
 DWORD* pdwDeliveryType)
{
 // This tool wants messages immediately.
 // This is the default, so returning E_NOTIMPL
 // would work. The other method is to specifically
 // set *pdwDeliveryType to the delivery type,
// DMUS_PMSGF_TOOL_IMMEDIATE, DMUS_PMSGF_TOOL_QUEUE,
// or DMUS_PMSGF_TOOL_ATTIME.

 *pdwDeliveryType = DMUS_PMSGF_TOOL_IMMEDIATE;
 return S_OK;
}

HRESULT STDMETHODCALLTYPE CEchoTool::GetMediaTypeArraySize(
 DWORD* pdwNumElements)
{
 *pdwNumElements = 3;
 return S_OK;
}

HRESULT STDMETHODCALLTYPE CEchoTool::GetMediaTypes(
 DWORD** padwMediaTypes,
 DWORD dwNumElements)
{
 if (dwNumElements == 3)
 {
 (*padwMediaTypes)[0] = DMUS_PMSGT_NOTE;
 (*padwMediaTypes)[1] = DMUS_PMSGT_MIDI;
 (*padwMediaTypes)[2] = DMUS_PMSGT_PATCH;
 return S_OK;
 }
 else
 {
 // This should never happen.

in.doc – page 520

 return E_FAIL;
 }
}

Step 4: Defining the ProcessPMsg Method
[This is preliminary documentation and subject to change.]

The actual work of the tool is performed in the method derived from
IDirectMusicTool::ProcessPMsg. This method will be called for every message of
the type listed in the array returned by IDirectMusicTool::GetMediaTypes.

The CEchoTool::ProcessPMsg method first performs some initialization of local
variables:

HRESULT STDMETHODCALLTYPE CEchoTool::ProcessPMsg(
 IDirectMusicPerformance* pPerf,
 DMUS_PMSG* pMsg)
{
 DMUS_NOTE_PMSG* pNote;
 DWORD dwCount;
 DWORD dwEchoNum;
 MUSIC_TIME mtDelay;

 // SetEchoNum() and SetDelay() use these member variables,
 // so use a critical section to make them thread-safe.
 EnterCriticalSection(&m_CrSec);
 dwEchoNum = m_dwEchoNum;
 mtDelay = m_mtDelay;
 LeaveCriticalSection(&m_CrSec);

Next the method calls the IDirectMusicGraph::StampPMsg method on the
message. If there is another tool to which this message must be directed after we're
finished with it here, StampPMsg succeeds. (Note that DirectMusic provides a final
output tool, so StampPMsg should succeed even if there are no other application-
specific tools to which the message must be routed.) If it fails, our method returns
S_FREE so that the message will automatically be discarded.

 if ((NULL == pMsg->pGraph) ||
 FAILED(pMsg->pGraph->StampPMsg(pMsg)))
 {
 return DMUS_S_FREE;
 }

Now it's time for CEchoTool to perform its work on the message. Remember, it is
set up to receive messages only of type DMUS_PMSGT_NOTE,
DMUS_PMSGT_MIDI; or DMUS_PMSGT_PATCH. (These types are part of the
DMUS_PMSGT_TYPES enumeration.)

in.doc – page 521

For each successive echo to be created, the tool does the following:

· Creates a new message by calling the IDirectMusicPerformance::AllocPMsg
method.

· Copies the DMUS_PMSG structure for the original message into the new one
and updates some members for COM management.

· Assigns the new message to a different performance channel.
· In the case of a music note, progressively reduces the volume of each echo.
· Adds the delay time to the time at which the message is to be played.
· Puts the new message in the pipeline by calling the

IDirectMusicPerformance::SendPMsg method. Note that because
IDirectMusicGraph::StampPMsg is not called on the message, it will not be
routed to any tools other than the default final output tool.

Here's the sample code that deals with MIDI notes:

 if(pPMsg->dwType == DMUS_PMSGT_MIDI)
 {
 // copy MIDI messages into the echo channels.
 for(dwCount = 1; dwCount <= dwEchoNum; dwCount++)
 {
 DMUS_MIDI_PMSG* pMidi;
 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_MIDI_PMSG),
 (DMUS_PMSG**)&pMidi)))
 {
 // Copy the original message into this message.
 memcpy(pMidi, pPMsg, sizeof(DMUS_MIDI_PMSG));

 // Addref or clear out any fields that contain
 // or may contain pointers to objects.
 if(pMidi->pTool) pMidi->pTool->AddRef();
 if(pMidi->pGraph) pMidi->pGraph->AddRef();
 pMidi->punkUser = NULL;

 // Set the PChannel so the message goes to the
 // next higher group.
 pMidi->dwPChannel = pMidi->dwPChannel +
 (16*dwCount);

 // Add to the time of the echoed message.
 pMidi->mtTime += (dwCount * mtDelay);

 // Set the message so only MUSIC_TIME is valid.
 // REFERENCE_TIME will be recomputed inside
 // SendPMsg().
 pMidi->dwFlags = DMUS_PMSGF_MUSICTIME;

in.doc – page 522

 // Send the message
 pPerf->SendPMsg((DMUS_PMSG*)pMidi);
 }
 }
 }

Patch changes are also copied and sent to all possible echo channels, even those not
currently being used, so that if echoes are added later they will be played by the
correct instruments. Note that in the sample Echotool application, MAX_ECHOES is
defined in Echotool.h.

 else if(pPMsg->dwType == DMUS_PMSGT_PATCH)
 {
 for(dwCount = 1; dwCount <= MAX_ECHOES; dwCount++)
 {
 DMUS_PATCH_PMSG* pPatch;
 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_PATCH_PMSG),
 (DMUS_PMSG**)&pPatch)))
 {
 // Copy the original message into this message,
 memcpy(pPatch, pPMsg, sizeof(DMUS_PATCH_PMSG));

 // Addref or clear out any fields that contain
 // or may contain pointers to objects
 if(pPatch->pTool) pPatch->pTool->AddRef();
 if(pPatch->pGraph) pPatch->pGraph->AddRef();
 pPatch->punkUser = NULL;

 // Set the PChannel so the message goes to the
 // next higher group.
 pPatch->dwPChannel = pPatch->dwPChannel +
 (16*dwCount);

 // Add to the time of the echoed message.
 pPatch->mtTime += (dwCount * mtDelay);

 // Set the message so only MUSIC_TIME is valid.
 // REFERENCE_TIME will be recomputed inside
 // SendPMsg()
 pPatch->dwFlags = DMUS_PMSGF_MUSICTIME;

 // Send the message.
 pPerf->SendPMsg((DMUS_PMSG*)pPatch);
 }
 }

in.doc – page 523

 }

The method deals with music notes much as it did with MIDI notes, but taking the
additional step of reducing the volume:

 else if(pPMsg->dwType == DMUS_PMSGT_NOTE)
 {
 // Create a variable to track the next note's velocity
 BYTE bVelocity;
 pNote = (DMUS_NOTE_PMSG*)pPMsg;
 bVelocity = pNote->bVelocity;

 for(dwCount = 1; dwCount <= dwEchoNum; dwCount++)
 {
 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG),
 (DMUS_PMSG**)&pNote)))
 {
 // Copy the original note into this message.
 memcpy(pNote, pPMsg, sizeof(DMUS_NOTE_PMSG));

 // Addref or clear out any fields that contain
 // or may contain pointers to objects.
 if(pNote->pTool) pNote->pTool->AddRef();
 if(pNote->pGraph) pNote->pGraph->AddRef();
 pNote->punkUser = NULL;

 // Add to the time of the echoed note.
 pNote->mtTime += (dwCount * mtDelay);

 // Reduce the volume of the echoed note.
 bVelocity = (BYTE) (bVelocity -
 ((bVelocity * (dwCount * 15))/100));
 pNote->bVelocity = bVelocity;

 // Set the note so only MUSIC_TIME is valid.
 // REFERENCE_TIME will be recomputed inside
 // SendPMsg().
 pNote->dwFlags = DMUS_PMSGF_MUSICTIME;
 pNote->dwPChannel = pNote->dwPChannel +
 (16*dwCount);

 // Send the message.
 pPerf->SendPMsg((DMUS_PMSG*)pNote);
 }
 }
 }

in.doc – page 524

Finally, the ProcessPMsg method returns DMUS_S_REQUEUE so the original
message will be put back in the pipeline.

 return DMUS_S_REQUEUE;
} // End CEchoTool::ProcessPMsg()

Step 5: Defining the Class Methods
[This is preliminary documentation and subject to change.]

Besides its inherited IUnknown and IDirectMusicTool methods, the sample
CEchoTool class has a constructor and destructor as well as two public methods for
setting the parameters of the echo. The definition of these methods is somewhat
peripheral to this tutorial, but is included here for completeness.

CEchoTool::CEchoTool()
{
 m_cRef = 1; // So one Release() will free this
 m_dwEchoNum = 3; // Default to 3 echoes per note
 m_mtDelay = DMUSPPQ / 2; // Default to 8th-note echoes
 InitializeCriticalSection(&m_CrSec);
}

CEchoTool::~CEchoTool()
{
 DeleteCriticalSection(&m_CrSec);
}

void CEchoTool::SetEchoNum(DWORD dwEchoNum)
{
 // ProcessPMsg() uses m_dwEchoNum, so use a critical
 // section to make it thread-safe.
 if(dwEchoNum <= MAX_ECHOES)
 {
 EnterCriticalSection(&m_CrSec);
 m_dwEchoNum = dwEchoNum;
 LeaveCriticalSection(&m_CrSec);
 }
}

void CEchoTool::SetDelay(MUSIC_TIME mtDelay)
{
 // ProcessPMsg() uses m_mtDelay, so use a critical
 // section to make it thread-safe.
 EnterCriticalSection(&m_CrSec);
 m_mtDelay = mtDelay;

in.doc – page 525

 LeaveCriticalSection(&m_CrSec);
}

Step 6: Adding the Tool to the Performance
[This is preliminary documentation and subject to change.]

Once it has defined the CEchoTool class, the application can create a tool object,
insert it into a graph, and add it to the performance so that it will intercept
appropriate messages in the pipeline.

The following code creates an instance of the CEchoTool class, initializes the
number of echoes to be produced by the tool, creates a graph to contain the tool, and
adds the graph to the performance. (In the Echotool sample application, some of this
work is done in a helper function, AddTool. The code has been modified here to
make it easier to follow.)

/* It is assumed that pPerf is a valid pointer to the
 IDirectMusicPerformance interface of a performance object. */

CEchoTool *pEchoTool;
IDirectMusicGraph* pGraph;

pEchoTool = new CEchoTool;
if (pEchoTool)
{
 pEchoTool->SetEchoNum(0);

 // Create an IDirectMusicGraph object to hold the tool.
 if (SUCCEEDED(CoCreateInstance(
 CLSID_DirectMusicGraph,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicGraph,
 (void**)&pGraph)))
 {
 // Add the tool to the graph.
 if (SUCCEEDED(pGraph->InsertTool(
 (IDirectMusicTool*)pCEchoTool,
 NULL, // Apply to all PChannels
 0, // How many PChannels otherwise
 0))) // Index of tool in graph
 {
 // Add the graph to the performance. This increments the
 // reference count, so the original graph can then be
 // released.
 pPerf->SetGraph(pGraph);

in.doc – page 526

 }
 pGraph->Release();
 }
}

Note that setting the graph on the performance ensures that messages from all
segments will have the opportunity to be processed by its tools. Alternatively, you
could use the IDirectMusicSegment::SetGraph method to apply tools only to a
particular segment.

Tutorial 3: Using Compositions
[This is preliminary documentation and subject to change.]

This tutorial shows how to set up a music performance that is based on elements
authored in DirectMusic Producer, and how to have the music performed
interactively—that is, in such as way that it responds to program events.

The code samples are based on the DMDonuts sample in the DirectX Programmer's
Reference. Because DMDonuts is a large and complex application, only the main
points will be covered here. For the complete DirectMusic implementation, see the
Donuts.cpp source file and its included headers, where all the relevant code is
delimited by DMUSIC BEGIN and DMUSIC END comments.

The tutorial is broken down into the following steps:

· Step 1: Defines and Globals
· Step 2: Initializing the Performance
· Step 3: Loading the Music Elements
· Step 4: Setting Up Notifications
· Step 5: Creating Primary Segments
· Step 6: Playing a Primary Segment
· Step 7: Transitioning to Another Primary Segment
· Step 8: Playing a Motif
· Step 9: Handling Notifications
· Step 10: Shutting Down DirectMusic

Step 1: Defines and Globals
[This is preliminary documentation and subject to change.]

The following defines and global variables are declared at the beginning of
Donuts.cpp. They are given here for you to refer to as you work through the tutorial.

BOOL bMusicEnabled = TRUE;

// Various constants

in.doc – page 527

const GUID guidZero = {0};
#define MOTIF_BOUNCE 0
#define MOTIF_DEATH 1
#define MOTIF_SHIELD 2
#define MOTIF_BLOWUP 4
#define MOTIF_BLOWUPLITE 3
#define NUM_MOTIFS 5
#define NUM_STYLES 2
#define SEGMENT_1 0
#define SEGMENT_2 1
#define SEGMENT_TRANS_1 2
#define SEGMENT_TRANS_2 3
#define NUM_SEGMENTS 4
#define NUM_CHORDMAP 4
#define BLOWUPS_PER_BEAT 2
#define MEASURE_LENGTH DMUS_PPQ * 4
// parts/quarter * quarters/measure (assumes 4/4)

// Global interfaces
IDirectMusicStyle* gapStyle[NUM_STYLES];
IDirectMusicChordMap* gapChordMap[NUM_STYLES] [NUM_CHORDMAP];
IDirectMusicSegment* gapMotif[NUM_STYLES] [NUM_MOTIFS];
IDirectMusicSegment* gapSegment[NUM_SEGMENTS] =
 {NULL, NULL, NULL, NULL};
IDirectMusicComposer * gpComposer = NULL;
IDirectMusicPerformance* gpPerformance = NULL;
IDirectMusic* gpDirectMusic = NULL;
IDirectMusicLoader* gpLoader = NULL;
IDirectMusicSegment* gpIntroTemplate = NULL;
IDirectMusicSegment* gpGameTemplate = NULL;
IDirectMusicSegment* gapShieldSegment[NUM_STYLES] = {NULL, NULL};
IDirectMusicSegment* gapDefaultSegment[NUM_STYLES] =
 {NULL, NULL};
IDirectMusicBand* gapShieldBand[NUM_STYLES] = {NULL, NULL};
IDirectMusicBand* gapDefaultBand[NUM_STYLES] = {NULL, NULL};

// Global variables
BOOL bAnyHits = FALSE;
int gnCurrentStyle = 0;
int gnCurrentChordMap = 0;
int gnLastStyle = 0;
int gnLastChordMap = 0;

BOOL gbShieldsOn = FALSE;
static int snLastTempo;
static int snSubLevel;

in.doc – page 528

static int snMaxBlowUps = BLOWUPS_PER_BEAT;

Step 2: Initializing the Performance
[This is preliminary documentation and subject to change.]

The DirectMusic performance is set up in the InitializeGame function in Donuts.cpp.

First the application queries the registry to obtain the search path for the DirectX
sample music files, by calling the GetSearchPath function. Then it creates COM
objects for the composer and the performance, as follows:

CoInitialize(NULL);

if (!SUCCEEDED(::CoCreateInstance(
 CLSID_DirectMusicComposer,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicComposer,
 (void**)&gpComposer
)))
{
 return CleanupAndExit("Couldn't create a composer object");
}

if (!SUCCEEDED(CoCreateInstance(CLSID_DirectMusicPerformance,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicPerformance,
 (void**)&gpPerformance)))
{
 return CleanupAndExit("Couldn't create a performance object");
}

The application then initializes the performance by calling
IDirectMusicPerformance::Init, which creates a DirectMusic object that can be
used to create and activate its ports. Depending on whether or not DirectSound is
being used for other sound effects, the call either attaches the existing DirectSound
object to the performance by passing in lpDS or creates one by passing in NULL.

#ifdef USE_DSOUND
 if(!SUCCEEDED(gpPerformance->Init(&gpDirectMusic,
 lpDS, hWndMain)))
 {
 return CleanupAndExit("Couldn't initialize the performance");
 }
#else
 if(!SUCCEEDED(gpPerformance->Init(&gpDirectMusic,

in.doc – page 529

 NULL, hWndMain)))
 {
 return CleanupAndExit("Couldn't initialize the performance");
 }
#endif

The application now gets the default port, creates an instance of it with one channel
group, and retrieves its capabilities:

IDirectMusicPort* pPort = NULL;
DMUS_PORTPARAMS dmos;
DMUS_PORTCAPS dmpc;
GUID guidSynthGUID;
HRESULT hr = S_OK;

if (!SUCCEEDED(gpDirectMusic->GetDefaultPort(&guidSynthGUID)))
{
 return CleanupAndExit("Could't GetDefaultPort on IDirectMusic");
}

ZeroMemory(&dmos, sizeof(dmos));
dmos.dwSize = sizeof(DMUS_PORTPARAMS);
dmos.dwChannelGroups = 1;
dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;

if(!SUCCEEDED(gpDirectMusic->CreatePort(guidSynthGUID,
 &dmos,
 &pPort,
 NULL)))
{
 return CleanupAndExit("Couldn't CreatePort on IDirectMusic");
}

ZeroMemory(&dmpc, sizeof(dmpc));
dmpc.dwSize = sizeof(DMUS_PORTCAPS);

if(!SUCCEEDED(pPort->GetCaps(&dmpc)))
{
 if (pPort) pPort->Release();
 return CleanupAndExit("Couldn't GetCaps on IDirectMusicPort");
}

The behavior of the application now varies depending on whether
_SOFTWARE_SYNTH_ is defined. If it is, a synthesizer with DLS capabilities is
wanted, so the application checks for the DMUS_PC_DLS capabilities flag on the
default port. If it fails to find that flag, it goes on to free the default port and

in.doc – page 530

enumerate available ports until if finds an output port that has the DMUS_PC_DLS
capability. Finally, it creates an instance of that port.

if ((dmpc.dwClass != DMUS_PC_OUTPUTCLASS)
 || !(dmpc.dwFlags & DMUS_PC_DLS))
{
 pPort->Release();
 pPort = NULL;
}

if (!pPort)
{
 for (DWORD index = 0; hr == S_OK; index++)
 {
 ZeroMemory(&dmpc, sizeof(dmpc));
 dmpc.dwSize = sizeof(DMUS_PORTCAPS);

 hr = gpDirectMusic->EnumPort(index, &dmpc);
 if(hr == S_OK)
 {
 if ((dmpc.dwClass == DMUS_PC_OUTPUTCLASS) &&
 (dmpc.dwFlags & DMUS_PC_DLS))
 {
 CopyMemory(&guidSynthGUID, &dmpc.guidPort,
 sizeof(GUID));

 ZeroMemory(&dmos, sizeof(dmos));
 dmos.dwSize = sizeof(DMUS_PORTPARAMS);
 dmos.dwChannelGroups = 1;
 dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;

 hr = gpDirectMusic->CreatePort(guidSynthGUID,
 &dmos, &pPort, NULL);
 break;
 }
 }
 }
 if (hr != S_OK)
 {
 if (pPort) pPort->Release();
 return CleanupAndExit("Couldn't initialize the Synth port");
 }
}

in.doc – page 531

If, on the other hand, _SOFTWARE_SYNTH_ is not defined, a legacy hardware port
is wanted, and the application goes on to enumerate ports until it finds the MIDI
mapper. (That code is omitted here.)

Now the port is activated and attached to the performance.

pPort->Activate(TRUE);
gpPerformance->AddPort(pPort);

The next call maps PChannels 0-15 to the first group of MIDI channels on the port.
Note that this step is necessary because the application did not pass NULL to
AddPort.

gpPerformance->AssignPChannelBlock(0, pPort, 1);

The original reference to the port can now be released. This call doesn't remove the
port from the performance.

if (pPort) pPort->Release();

Step 3: Loading the Music Elements
[This is preliminary documentation and subject to change.]

The next step in setting up the DirectMusic functionality of the DMDonuts sample
application is to load the music elements—styles, templates, motifs, chordmaps, and
bands—from file. Like the previous step, this one is carried out in the InitializeGame
function.

First the application creates the loader object:

if (!SUCCEEDED(::CoCreateInstance(
 CLSID_DirectMusicLoader,
 NULL,
 CLSCTX_INPROC,
 IID_IDirectMusicLoader,
 (void**)&gpLoader
)))
{
 return CleanupAndExit("Couldn't create a loader object");
}

Then it sets the search directory for all object types and enables the object cache.
This second call simply confirms the default cache status.

hr = E_FAIL;

/ * The GetSearchPath function gets the media directory
 from the registry and returns it in wszSearchPath. */

in.doc – page 532

if (GetSearchPath(wszSearchPath))
{
 hr = gpLoader->SetSearchDirectory(
 GUID_DirectMusicAllTypes, wszSearchPath, FALSE);
}

/* If that directory doesn't exist, try the current directory. */

if (FAILED(hr))
{
 hr = gpLoader->SetSearchDirectory(GUID_DirectMusicAllTypes,
 L".", FALSE);
}
if (FAILED(hr))
{
 return CleanupAndExit("Couldn't set the search directory \
 for the DirectMusic loader");
}
gpLoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);

The following code snippet loads the style named "Donuts", which is in the
Donuts.sty file. Note that because the application hasn't called
IDirectMusicLoader::ScanDirectory to build a database of objects that can be
loaded by internal name, the first call to IDirectMusicLoader::GetObject will fail.
The fallback procedure is to identify the object by file name and call GetObject
again.

IDirectMusicObject* pObject = NULL;
DMUS_OBJECTDESC ObjectDescript;

ObjectDescript.dwSize = sizeof(DMUS_OBJECTDESC);
ObjectDescript.guidClass = CLSID_DirectMusicStyle;
wcscpy(ObjectDescript.wszName, L"Donuts");
ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_NAME;

if (!SUCCEEDED(gpLoader->GetObject(&ObjectDescript,
 IID_IDirectMusicStyle, (void**)&gapStyle[1])))
{
 wcscpy(ObjectDescript.wszFileName, L"Donuts.sty");
 ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;
 if (!SUCCEEDED(gpLoader->GetObject(&ObjectDescript,
 IID_IDirectMusicStyle, (void**)&gapStyle[1])))
 {
 return CleanupAndExit("Couldn't load style object 1");
 }
}

in.doc – page 533

The InitializeGame function then goes on to load another style and two templates in
similar fashion.

The next step is to initialize an array of motifs that will be used to mark certain
events in the game. Each motif is contained in a style and is obtained by calling the
IDirectMusicStyle::GetMotif method, which creates a segment for the motif. The
method must be supplied with the internal name of the motif, as in the following
example from Donuts.cpp.

WCHAR awszMotifs[NUM_MOTIFS][64];

wcscpy(awszMotifs[MOTIF_BOUNCE], L"Bounce");
.
.
.
hr = gapStyle[0]->GetMotif(awszMotifs[MOTIF_BOUNCE],
 &(gapMotif[0][MOTIF_BOUNCE]));

If you look at the complete code, you'll see that the application loads two sets of
motifs with the same names, one set from the "Donuts" style and the other from
"Donutz." DMDonuts switches between these two styles as the player moves from
level to level. When a gapMotif is played, its first index is determined by the value
of the global gnCurrentStyle, ensuring that it is the correct motif for that level.

The application now initializes four chordmaps for each style. These are obtained
from separate files.

WCHAR awszChordMap[NUM_STYLES][NUM_CHORDMAP][64];
wcscpy(awszChordMap[0][0], L"minaeo.per");
wcscpy(awszChordMap[0][1], L"minfunc.per");
wcscpy(awszChordMap[0][2], L"mipedpt.per");
wcscpy(awszChordMap[0][3], L"tension.per");
wcscpy(awszChordMap[1][0], L"dianoble.per");
wcscpy(awszChordMap[1][1], L"minpedpt.per");
wcscpy(awszChordMap[1][2], L"mippjazz.per");
wcscpy(awszChordMap[1][3], L"minjazz.per");

ObjectDescript.guidClass = CLSID_DirectMusicChordMap;
ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

for (short n = 0; n < NUM_STYLES; n++)
{
 for (short m = 0; m < NUM_CHORDMAP; m++)
 {
 if (hr == S_OK)
 {
 wcscpy(ObjectDescript.wszFileName,

in.doc – page 534

 awszChordMap[n][m]);
 hr = gpLoader->GetObject(&ObjectDescript,
 IID_IDirectMusicChordMap,
 (void**)&gapChordMap[n][m]);
 }
 }
}

if (hr != S_OK)
{
 return CleanupAndExit("Couldn't load a ChordMap");
}

The last elements to be retrieved from the styles are the bands. Each style has two
different bands: one for when the player's ship isn't shielded and one for when it is.
Note that the names of the bands are allocated differently than were the motifs and
chordmaps—each is a BSTR rather than a local array of WCHAR—but the effect is
the same, because in the Win32® API a BSTR is a pointer to a WCHAR array.

As each band is loaded, it is downloaded to the performance, making available the
DLS data for its instruments.

BSTR bstrDefault = SysAllocString(L"Default 2");
BSTR bstrShields = SysAllocString(L"Shields");

for (n = 0; n < NUM_STYLES; n++)
{
 if (hr == S_OK)
 {
 hr = gapStyle[n]->GetBand(bstrShields, &gapShieldBand[n]);
 }
 if (hr == S_OK)
 {
 hr = gapShieldBand[n]->Download(gpPerformance);
 }
 if (hr == S_OK)
 {
 hr = gapStyle[n]->GetBand(bstrDefault, &gapDefaultBand[n]);
 }
 if (hr == S_OK)
 {
 hr = gapDefaultBand[n]->Download(gpPerformance);
 }
}

SysFreeString(bstrDefault);
SysFreeString(bstrShields);

in.doc – page 535

After some error-checking code, the InitializeGame function goes on to create
segments from the four bands it has obtained. These segments will be used to "play"
the band changes at the appropriate times. Once the segments have been created, the
band interfaces are released.

for (n = 0; n < NUM_STYLES; n++)
{
 if (hr == S_OK)
 {
 hr = gapShieldBand[n]->CreateSegment(&gapShieldSegment[n]);
 }
 if (hr == S_OK)
 {
 hr = gapDefaultBand[n]->CreateSegment(&gapDefaultSegment[n]);
 }
 apShieldBand[n]->Release();
 apDefaultBand[n]->Release();
}

Step 4: Setting Up Notifications
[This is preliminary documentation and subject to change.]

The last bit of DirectMusic code inside the InitializeGame function is a request for
notification when playback of the primary segment reaches a beat boundary or the
end of the segment. As you'll see later in this tutorial, the notification mechanism is
used to limit the number of "blowup" motifs that can be played at the same time.

The following code adds the notification types. Note that the notification GUIDs
have to be placed in a variable, because they are passed by reference.

GUID guid;
guid = GUID_NOTIFICATION_SEGMENT;
gpPerformance->AddNotificationType(guid);
guid = GUID_NOTIFICATION_MEASUREANDBEAT;
gpPerformance->AddNotificationType(guid);

Step 5: Creating Primary Segments
[This is preliminary documentation and subject to change.]

The one-time initialization of DirectMusic in the DMDonuts sample application is
now complete. Further initialization is done in the setup_game function each time
the game is started or the player advances to the next level.

The setup_game function first calls another function called ComposeNewSegments,
which selects a style and chordmap based on the current game level, releases any
previously created segments, and then composes two new segments based on the

in.doc – page 536

templates previously loaded from file. One of these segments is an introductory
theme that plays until a donut has been hit; the other plays from that point until the
player beats the level. The snSubLevel variable tracks which part of the level we are
in and is used elsewhere to determine which segment should be played when music
is toggled on with the F7 key.

snSubLevel = 1;
snLastTempo = 0;
gnLastStyle = gnCurrentStyle;
gnLastChordMap = gnCurrentChordMap;
gnCurrentStyle = level % NUM_STYLES;
gnCurrentChordMap = ((level - 1) / 2) % NUM_CHORDMAP;
HRESULT hr = S_OK;
MUSIC_TIME mtSegmentLength;
if (gapSegment[SEGMENT_1])
{
 gapSegment[SEGMENT_1]->Release();
}
hr = gpComposer->ComposeSegmentFromTemplate(
 gapStyle[gnCurrentStyle],
 gpIntroTemplate, 0,
 gapChordMap[gnCurrentStyle][gnCurrentChordMap],
 &gapSegment[SEGMENT_1]
);
if (!SUCCEEDED(hr))
{
 CleanupAndExit("Segment 1 composition failed");
}

We happen to know that the template has a signpost on the last measure that matches
the signpost on the first measure, for graceful looping. Once the segment is
composed, the last measure is lopped off. Note that the value of
MEASURE_LENGTH was calculated in Step 1: Defines and Globals as
(DMUS_PPQ * 4)—that is, four quarter-notes of music time. This is valid because
the time signature is 4/4.

gapSegment[SEGMENT_1]->GetLength(&mtSegmentLength);
gapSegment[SEGMENT_1]->SetLength(
 mtSegmentLength - MEASURE_LENGTH);

Finally, the segment is set to loop repeatedly.

gapSegment[SEGMENT_1]->SetRepeats(999);

The second segment, based on gpGameTemplate, is composed and set up the same
way.

in.doc – page 537

Step 6: Playing a Primary Segment
[This is preliminary documentation and subject to change.]

In the previous step, the setup_game function in Donuts.cpp called the
ComposeNewSegments function, which created two primary segments to be used for
the current game level. Now the setup_game function plays the first of these
segments:

gpPerformance->PlaySegment(
 gapSegment[SEGMENT_1], 0, 0, NULL);

Note that the absence of any flag causes the segment to be played immediately.

The function now plays the default band segment that was created for the current
style. (Remember, there are two different styles that alternate when the game level
changes. Each style has two bands, the default band and the "shield" band.) Playing
the band segment ensures that the correct set of instruments is playing the music.
Note that the band segment must be flagged as secondary. No start time is given in
the third parameter because the changes are to be made immediately, and the last
parameter is NULL because we don't require a pointer to the segment state.

gpPerformance->PlaySegment(
 gapDefaultSegment[gnCurrentStyle],
 DMUS_SEGF_SECONDARY,
 0, NULL);

The default band for the style is used when the player's ship is unshielded, which is
always the case at the beginning of a level. The application plays the second band
inside the UpdateDisplayList function in response to the shields being turned on, and
plays the default band again when the shields are turned off.

Step 7: Transitioning to Another Primary
Segment

[This is preliminary documentation and subject to change.]

DMDonuts cues a different primary segment in two places: when the game level
changes, and when the first hit is made on a donut on any level. The following code
is from the CheckForHits function. When the function finds that a hit is the first to
have occurred on this level, it tells the DirectMusic composer to create a transition
from the current (introductory) theme to the action theme. The call to
IDirectMusicComposer::AutoTransition also cues the transition and the following
action segment so that they play automatically; in this case, the transition will start
on the next measure boundary.

if (gapSegment[SEGMENT_TRANS_1])
{
 gapSegment[SEGMENT_TRANS_1]->Release();
}

in.doc – page 538

gpComposer->AutoTransition(
 gpPerformance, // The performance
 gapSegment[SEGMENT_2], // The next primary segment
 DMUS_COMMANDT_FILL, // Embellishment type
 DMUS_COMPOSEF_MODULATE | // Modulate to new key
 DMUS_COMPOSEF_MEASURE, // and start on measure
 gapChordMap[gnCurrentStyle] [gnCurrentChordMap],
 // Use current chordmap
 &gapSegment[SEGMENT_TRANS_1], // Created transition segment
 NULL, NULL // No segment states needed
);

Note that you don't have to stop the first segment. It stops automatically when a
transition or new primary segment is played.

Step 8: Playing a Motif
[This is preliminary documentation and subject to change.]

DMDonuts uses several motifs to accent the game action: for example, when the
player's ship bounces off the edge of the screen and when an object is hit by the
player's fire.

Playing a motif is very simple, as the following code from the CheckForHits
function shows. The MOTIF_BLOWUP motif is played whenever a donut is hit.

gpPerformance->PlaySegment(
 gapMotif[gnCurrentStyle][MOTIF_BLOWUP],
 DMUS_SEGF_SECONDARY | DMUS_SEGF_GRID, 0, NULL);

The motif must be played as a secondary segment so that it does not interrupt the
main theme being played as the primary segment. It is cued to play on a grid
boundary, the lowest resolution at which it can play without being out of step with
the primary segment. The rtStartTime parameter is 0, indicating that the segment
should play as soon as the first boundary is reached, and the ppSegmentState
parameter is NULL because there's no need to access the segment while it is playing.

Step 9: Handling Notifications
[This is preliminary documentation and subject to change.]

Back in Step 4: Setting Up Notifications we saw how DMDonuts requests
notification whenever a segment ends and whenever a beat or measure boundary is
reached. The purpose of this notification is to help limit the number of "blowup"
motifs playing at any one time.

Notifications are retrieved in the WinMain function. After dealing with any
messages in the queue, the application checks to see if there are any pending
notifications. It does this by calling the

in.doc – page 539

IDirectMusicPerformance::GetNotificationPMsg method. If no notification
message is pending, the method returns S_FALSE and no further action is needed. A
return of S_OK indicates that a notification message has been placed in *pEvent.
Because it has only requested notifications relevant to the beat, the application
doesn't actually need to examine the message, which is immediately discarded. It
then resets snMaxBlowUps, which tracks how many more blowup motifs can be
played till the next beat.

if (gpPerformance)
{
 DMUS_NOTIFICATION_PMSG* pEvent;
 while (S_OK == gpPerformance->GetNotificationPMsg(&pEvent))
 {
 gpPerformance->FreePMsg((DMUS_PMSG*)pEvent);
 snMaxBlowUps = BLOWUPS_PER_BEAT;
 }
}

Step 10: Shutting Down DirectMusic
[This is preliminary documentation and subject to change.]

Closing down DirectMusic is a matter of clearing the loader cache, stopping the
performance, releasing all the objects that have been created, and finally
dereferencing COM (remember, every call to CoInitialize must have a matching call
to CoUninitialize).

The following function performs the necessary cleanup in Donuts.cpp:

void CleanUpDMusic()
{
 if (gpLoader)
 {
 gpLoader->ClearCache(GUID_DirectMusicAllTypes);
 gpLoader->Release();
 }

 if (gpComposer)
 {
 gpComposer->Release();
 }

 if (gpIntroTemplate)
 {
 gpIntroTemplate->Release();
 }

 if (gpGameTemplate)

in.doc – page 540

 {
 gpGameTemplate->Release();
 }

 for (short n = 0; n < NUM_STYLES; n++)
 {
 if (gapShieldBand[n])
 {
 gapShieldBand[n]->Unload(gpPerformance);
 gapShieldBand[n]->Release();
 }
 if (gapDefaultBand[n])
 {
 gapDefaultBand[n]->Unload(gpPerformance);
 gapDefaultBand[n]->Release();
 }
 if (gapShieldSegment[n])
 {
 gapShieldSegment[n]->Release();
 }

 if (gapDefaultSegment[n])
 {
 gapDefaultSegment[n]->Release();
 }

 if (gapStyle[n])
 {
 gapStyle[n]->Release();
 }

 for (short m = 0; m < NUM_CHORDMAP; m++)
 {
 if (gapChordMap[n][m])
 {
 gapChordMap[n][m]->Release();
 }
 }

 for (m = 0; m < NUM_MOTIFS; m++)
 {
 if (gapMotif[n][m])
 {
 gapMotif[n][m]->Release();
 }
 }

in.doc – page 541

 }

 if (gpPerformance)
 {
 gpPerformance->Stop(NULL, NULL, 0, 0);
 gpPerformance->CloseDown();
 gpPerformance->Release();
 }

 for (n = 0; n < NUM_SEGMENTS; n++)
 {
 if (gapSegment[n])
 {
 gapSegment[n]->Release();
 }
 }

 if (gpDirectMusic)
 {
 gpDirectMusic->Release();
 }

 CoUninitialize();
}

DirectMusic Visual Basic Tutorials
[This is preliminary documentation and subject to change.]

This section contains the following tutorials showing how to implement DirectMusic
in a Visual Basic application:

[To be added.]

DirectMusic Samples
[This is preliminary documentation and subject to change.]

The following sample applications demonstrate the use and capabilities of the
DirectMusic® application programming interface:

· 3DMusic Sample

in.doc – page 542

· DMBoids Sample
· DMDonuts Sample
· DirectMusic MIDI Sample
· DirectMusic Shell Sample
· EchoTool Sample
· MusicLines Sample
· PlayMotif Sample
· PlayPrimary Sample

Although DirectX® samples include Microsoft® Visual C++® project workspace
files, you might need to verify other settings in your development environment to
ensure that the samples compile properly. For more information, see Compiling
DirectX Samples and Other DirectX Applications.

3DMusic Sample
[This is preliminary documentation and subject to change.]

Description
The 3DMusic sample shows how to play a MIDI file into a custom DirectSound 3-D
buffer.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\3DMusic

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
The icons represents a listener and a sound source in a 3-D environment, although
movement and orientation are possible in only two dimensions.

Use the arrow keys to move the sound source. Use the numeric keypad to change the
orientation of the listener.

Choosing Play Stereo Drip from the File menu causes a dripping sound to play at
random pan and volume, illustrating how pseudo–3-D effects can be achieved with a
2-D buffer.

Programming Notes
The program uses the registry key set up by the DirectX SDK setup to find the media
file path.

in.doc – page 543

Helper.cpp contains useful functions that set up DirectMusic. These functions are
called from Sound.cpp.

DMBoids Sample
[This is preliminary documentation and subject to change.]

Description
DMBoids is a version of Boids that adds DirectMusic support. As objects fly over a
simple landscape, the music responds to user input and events on the screen.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMBoids

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
Press F10 to access the main menu. The Drivers menu allows you to change the
driver, device, and video mode. The application runs only in full-screen modes.

The A (alignment), C (cohesion) and O (obstacle) keys alter behavior of the boids in
various ways as long as they are held down.

Hold down the S key or the spacebar and the birds flock in closer. Release the key
and they spread apart. Note the use of motifs to track this behavior.

Hold down the M key and the birds wander off their path. Notice that the music
completely changes. Release and the birds will eventually get back on the path.

Press the ESC key to quit.

Programming Notes
DirectMusic features illustrated include the following:

· Software synthesis with DLS. In addition to the musical instruments from the
GS sound set, the application uses custom downloadable sounds such as the
voices that appear to come from the planets.

· Composing and performing style-based segments.
· Musical transitions using style-based motifs and segment cues.
· Echo/articulation tool coded that uses the proximity of the birds to adjust the

echoes and note durations of the music as it plays.

in.doc – page 544

DMDonuts Sample
[This is preliminary documentation and subject to change.]

Description
DM Donuts is a variation of the Space Donuts sample that adds interactive music.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMDonuts

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
Before running the program, make sure that you've set your MIDI control panel to
your default MIDI device. DirectMusic will use this for hardware MIDI. If there is
no sound when you run DMDonuts, it was unable to find the music subdirectory.

While the donut floats in space, notice that the music is subtle and spacey. Press the
arrow keys to move the ship. Bounce around and see how the music and rhythm
respond.

Shoot the donut by firing with the space bar. Immediately there is an explosion of
music and the background music grows in intensity.

Press the 7 key on the numeric keypad. This turns on the shields. Notice how the
music becomes muted as if you were listening from inside the shield.

When all the donut fragments are destroyed, notice that the music immediately
transitions into an ending, then starts the next level on the start of the next musical
theme.

Notice that the music is never the same.

You can control the ship with the joystick if you prefer, by changing the input device
under the Game menu.

The following is a complete list of game commands. All numbers must be entered
from the numeric keypad. "Joy" refers to a joystick button.

Key Command

ESC, F12 Quit
4 Turn left
6 Turn right
5 (Joy 3) Stop
8 Accelerate forward
2 Accelerate backward

in.doc – page 545

7 (Joy 2) Shields
SPACEBAR (Joy
1)

Fire

ENTER Start game
F1 Toggle trailing afterimage effect on/off
F5 Toggle frame rate display on/off
F7 Turn music on/off
F10 Main menu

The display defaults to 640x480 at 256 colors. You can specify a different resolution
and pixel depth on the command line.

The game uses the following command line switches, which are case-sensitive:

e Use software emulation, not hardware acceleration
t Test mode, no input required
x Stress mode. Never halt if you can help it

These switches may be followed by three option numbers representing x-resolution,
y-resolution, and bits per pixel. For example:

donuts -t 800 600 16

Programming Notes
Techniques illustrated include the following:

· Composing and performing style-based segments.
· Autotransitions on game state changes.
· Motifs (short musical clips) to highlight actions. Because the motifs track the

rhythm and harmony of the underlying music, they add to the music while
providing sonic reinforcement.

· Dynamic bands that change the orchestration in response to real-time events.

By default, this sample runs on the software synthesizer. In Windows 95 and
Windows 98, undefine the _SOFTWARE_SYNTH_ compile flag and recompile the
sample to receive the best sound when using good wavetable synthesizers (that
follow the GS/DLS1 standards for volume and velocity behavior). The newly
compiled version will not run on Windows 2000.

DirectMusic MIDI Sample
[This is preliminary documentation and subject to change.]

in.doc – page 546

Description
The DirectMusic MIDI sample is a simple MIDI file player.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMusMIDI

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
Load a MIDI file by choosing Open from the File menu. (There is a sample file in
the \Samples\Multimedia\DMusic\Media folder.) You can also load a file by drag-
and-drop. If Autoplay Dropped Files is selected on the Options menu, a dropped
file automatically starts playing.

Once a file is loaded, you can play, pause, or stop it by choosing from the File menu
or the toolbar.

The Options menu provides a choice for adding reverberation to the music, and
several choices for the interface. The time can be displayed in hours, minutes, and
seconds from the start of play, or in music time ticks.

When no music is playing, you can select a port from the Device menu. Note that to
hear music from the "MIDI Out" port, you must have an external synthesizer
attached.

Programming Notes
The application demonstrates how to load a MIDI file as a segment, play it, stop it,
and restart it either at the beginning or at the point where it was stopped. It also
shows how to set the reverb property.

The code is written in pure C, so methods are called through pointers to vtables. For
more information, see Accessing COM Objects by Using C.

DirectMusic Shell Sample
[This is preliminary documentation and subject to change.]

Description
The DirectMusic Shell sample demonstrates interactive music that responds to
Windows system events.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMShell

in.doc – page 547

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
When you run the program, its icon appears in the tray on the taskbar. Click on the
icon to see a menu that allows you to change music schemes, select the output
device, start and stop the music, and close the program.

Listen to the music and note how it changes and how motifs are introduced in
response to system events such as minimizing, restoring, or closing a window,
opening an application menu or the Start menu, and pressing a key (there are special
sounds for a few keys).

Programming Notes
The Windows system messages are obtained in Dmhook.dll, the source code for
which is found in the (SDK root)\Samples\Multimedia\Dmusic\Src\DMHook folder.
(Dmhook.dll must be compiled with a Microsoft compiler.)

EchoTool Sample
[This is preliminary documentation and subject to change.]

Description
The EchoTool sample shows how to implement a tool in DirectMusic.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\EchoTool

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
Select an option button to change the delay of the echoes. Click the Close button to
exit the application.

Programming Notes
The tool creates up to four delayed echoes of the music playing through it.

Helper.cpp contains useful functions that set up DirectMusic. These functions are
called from Main.cpp. Echotool.cpp contains the tool code.

For more information, see Tutorial 2: Using Tools.

in.doc – page 548

MusicLines Sample
[This is preliminary documentation and subject to change.]

Description
The MusicLines sample demonstrates interactive music elements in a simple game,
and in particular how game elements can be driven by the music.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\MusicLines

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
In the opening dialog box, choose windowed or full-screen mode and a difficulty
level, and set the players to human or computer. If two humans are playing, one can
use the arrow keys while the other uses the keys AZSW.

The object of the game is to force the other player to collide with an existing line.

Change the direction of your line by pressing the arrow keys or the equivalent letter
keys. Observe how the main music changes to reflect the current state of play, how
motifs are used to signal events such as collisions, and how the speed of the lines is
actually controlled by the music.

If you win against the computer, you can continue extending your line or bring the
game to an end by deliberately colliding. Play again by pressing the space bar. Quit
by pressing ALT+F4.

Programming Notes
The music logic is in Mlmusic.cpp and is amply commented.

PlayMotif Sample
[This is preliminary documentation and subject to change.]

Description
This sample application shows how motifs can be played over a primary segment.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\PlayMotf

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

in.doc – page 549

User's Guide
Click the buttons to play the various secondary segments (motifs) on top of the main
playing primary segment. Click Close to exit the application.

Programming Notes
The program uses the registry key set up by the DirectX SDK setup to find the media
file path.

Helper.cpp contains useful functions that set up DirectMusic. These functions are
called from Main.cpp.

PlayPrimary Sample
[This is preliminary documentation and subject to change.]

Description
The PlayPrimary sample shows how to play a primary segment based on an authored
music section.

Path
Source: (SDK root)\Samples\Multimedia\Dmusic\Src\PlayPri

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide
Click Close to quit the program.

Programming Notes
The program uses the registry key set up by the DirectX SDK setup to find the media
file path.

Helper.cpp contains useful functions that set up DirectMusic. These functions are
called from Main.cpp.

	About DirectMusic
	Why Use DirectMusic?
	DirectMusic Architecture
	Core and Performance Layers
	Overview of DirectMusic Objects and Interfaces
	Core Objects and Interfaces
	DirectMusic Object
	Port
	Buffer
	Thru
	Reference Clock

	Loader Objects and Interfaces
	Loader
	Stream
	Object

	Instrument Objects and Interfaces
	Collection
	Instrument
	Band

	Tool Objects and Interfaces
	Tool
	Graph

	Performance Objects and Interfaces
	Performance
	Segment
	Track

	Composition Objects and Interfaces
	Composer
	Style
	Chordmap
	Template

	Synthesizer Objects and Interfaces
	Synthesizer
	Synth Sink

	Overview of DirectMusic Data Flow
	DirectMusic Messages
	Channels
	Message Creation and Delivery
	Performance Message Types
	MIDI Messages
	MIDI Channel Messages
	MIDI notes
	Program changes
	Bank selection
	DirectMusic patch numbers

	MIDI System Messages

	Downloadable Sounds
	Microsoft Software Synthesizer

	DirectMusic Essentials
	Building DirectMusic Projects
	Integrating DirectMusic and DirectSound
	Setting the DirectSound Object
	Setting the DirectSound Buffer Object

	Using Ports
	Default Port
	Legacy Ports
	Port Property Sets

	DirectMusic Loader
	Setting the Loader's Search Directory
	Scanning a Directory for Objects
	Enumerating Objects
	Loading Objects
	Loading an Object from a Resource
	Getting Object Descriptors
	Caching Objects
	Setting Objects
	Custom Loading

	DirectMusic File Format
	About RIFF
	RIFF Notation
	DirectMusic File Chunks
	Common Chunks
	GUID Chunk
	Version Chunk
	UNFO Chunk
	Reference List Chunk

	Band Form
	Chordmap Form
	Segment Form
	Style Form
	Tool Form
	Tool Graph Form
	Track Form
	Band Track Form
	Chord Track List
	Chordmap Track List
	Command Track Chunk
	Mute Track Chunk
	Sequence Track List
	Signpost Track Chunk
	Sysex Track Chunk
	Tempo Track Chunk
	Time Signature Track Chunk

	Using Downloadable Sounds
	Loading a Collection
	Working with Instruments
	Playing a MIDI File with Custom Instruments
	Low-Level DLS

	Playing Music
	Creating the Performance
	Segments
	Tracks
	Using Bands
	Downloading and Unloading Bands
	Automatically Downloading Bands
	Manually Downloading Bands
	Unloading Bands

	Making Band Changes Programmatically
	Ensuring Timely Band Changes

	Timing
	Master Clock
	Reference Time vs. Music Time
	Changing the Tempo
	Performance Time
	Prepare Time
	Latency and Bumper Time
	Segment Timing

	Notification and Event Handling
	Using Notification Events

	Music Parameters
	Setting and Retrieving Track Parameters
	Identifying the Track
	Track Parameter Types
	GUID_ChordParam
	GUID_Clear_All_Bands
	GUID_CommandParam
	GUID_ConnectToDLSCollection
	GUID_Disable_Auto_Download
	GUID_DisableTempo
	GUID_DisableTimeSig
	GUID_Download
	GUID_Enable_Auto_Download
	GUID_EnableTempo
	GUID_EnableTimeSig
	GUID_IDirectMusicBand
	GUID_IDirectMusicChordMap
	GUID_IDirectMusicStyle
	GUID_MuteParam
	GUID_RhythmParam
	GUID_StandardMIDIFile
	GUID_TempoParam
	GUID_TimeSignature
	GUID_Unload

	Disabling and Enabling Messages on a Track

	Setting and Retrieving Global Parameters

	Capturing Music
	DirectMusic Tools
	Music Composition
	Overview of Music Authoring
	Authoring Styles
	Authoring Chordmaps
	Authoring Style-Based Segments
	Authoring MIDI-Based Segments
	Authoring Templates
	Authoring Bands

	Music Files for Composition
	Overview of Programming for Composition
	How Music Varies During Playback
	Music Values and MIDI Notes
	Using Compositional Elements
	Using Authored Segments
	Using Styles
	Using Motifs
	Using Chordmaps
	Using Templates
	Using Transitions

	DirectMusic Reference
	DirectMusic C/C++ Reference
	Interfaces
	Messages
	Structures
	File Structures
	DLS Structures
	Enumerated Types
	Return Values

	DirectMusic Visual Basic Reference
	Classes
	Types
	Enumerations
	Error Codes

	DirectMusic Tutorials
	DirectMusic C/C++ Tutorials
	Tutorial 1: Playing a MIDI File
	Step 1: Initializing COM
	Step 2: Creating the Performance
	Step 3: Creating the Loader
	Step 4: Loading the MIDI File
	Step 5: Playing the MIDI File
	Step 6: Shutting Down DirectMusic

	Tutorial 2: Using Tools
	Step 1: Declaring the Tool Class
	Step 2: Defining the IUnknown Methods
	Step 3: Specifying Message Types
	Step 4: Defining the ProcessPMsg Method
	Step 5: Defining the Class Methods
	Step 6: Adding the Tool to the Performance

	Tutorial 3: Using Compositions
	Step 1: Defines and Globals
	Step 2: Initializing the Performance
	Step 3: Loading the Music Elements
	Step 4: Setting Up Notifications
	Step 5: Creating Primary Segments
	Step 6: Playing a Primary Segment
	Step 7: Transitioning to Another Primary Segment
	Step 8: Playing a Motif
	Step 9: Handling Notifications
	Step 10: Shutting Down DirectMusic

	DirectMusic Visual Basic Tutorials

	DirectMusic Samples
	3DMusic Sample
	DMBoids Sample
	DMDonuts Sample
	DirectMusic MIDI Sample
	DirectMusic Shell Sample
	EchoTool Sample
	MusicLines Sample
	PlayMotif Sample
	PlayPrimary Sample

