
DirectSetup
[This is preliminary documentation and subject to change.]

This section provides information about the DirectSetup component of the DirectX®
application programming interface (API) in the Platform Software Development Kit
(SDK). Information is found under the following main headings:

· About DirectSetup
· DirectSetup Essentials
· DirectSetup Reference
· DirectSetup Samples

About DirectSetup
[This is preliminary documentation and subject to change.]

DirectSetup is a simple application programming interface (API) that provides you
with one-call installation of the DirectX components. This is more than a
convenience—DirectX is a complex product, and installing it is an involved task.
You should not attempt to install DirectX manually.

DirectSetup also provides an automated way to install the appropriate Microsoft®
Windows® registry information for applications that use the DirectPlayLobby
object. This registry information is required for the DirectPlayLobby object to
enumerate and start the application.

DirectSetup includes the following API functions:

DirectXRegisterApplication
DirectXUnRegisterApplication
DirectXSetup
DirectXSetupSetCallback

It also includes a prototype DirectXSetupCallbackFunction that can be defined by
an application in order to customize the user interface during the installation process.
The DirectX Programmer's Reference includes a sample application that
demonstrates the use of this callback function; for more information, see Dinstall.

DirectSetup Essentials
[This is preliminary documentation and subject to change.]

in.doc – page 2

This section contains general information about the DirectSetup component. The
following topics are discussed:

· Setup Overview for DirectSetup
· Preparing the Setup Folder
· Customizing Setup
· Testing the Setup Program
· Enabling AutoPlay

Setup Overview for DirectSetup
[This is preliminary documentation and subject to change.]

Applications and games that depend on DirectX use the DirectXSetup function to
install the necessary system components into an existing Windows installation. The
function optionally updates the display and audio drivers for optimal support of
DirectX. Typically you would call DirectXSetup from the program you are using to
install your own application files.

Note
The DirectXSetup function overwrites system components from previous
versions of DirectX. For example, if you install DirectX 6.0 on a system that
already has DirectX 5.0 components, all DirectX 5.0 components will be
overwritten. Because all DirectX components comply with Component Object
Model (COM) backward compatibility rules, software written for DirectX 5.0
will continue to function properly.

The DirectXSetup function can tell when DirectX components, display drivers, and
audio drivers need to be upgraded. It can also distinguish whether or not these
components can be upgraded without adversely affecting the Windows operating
system. This is said to be a "safe" upgrade. It is important to note that the upgrade is
safe for the operating system, not necessarily for the applications running on the
computer. Some hardware-dependent applications can be negatively affected by an
upgrade that is safe for Windows.

By default, the DirectXSetup function performs only safe upgrades. If the upgrade
of a device driver may adversely affect the operation of Windows, the upgrade is not
performed.

During the setup process, DirectSetup creates a backup copy of the system
components and drivers that are replaced. These can be restored if problems occur.

When display or audio drivers are upgraded, the DirectXSetup function uses a
database created by Microsoft to manage the process. The database contains
information on existing drivers that are provided by Microsoft, the manufacturers of
the hardware, or the vendors of the hardware. This database describes the upgrade
status of each driver, based on testing done at Microsoft and other sites.

in.doc – page 3

You should check the value returned by DirectXSetup. If it is
DSETUPERR_SUCCESS_RESTART, notify the user that changes will not take
effect without a restart, and offer the choice of restarting immediately. See Dinstall.c
in the Dinstall sample application for an example of how to do this.

Preparing the Setup Folder
[This is preliminary documentation and subject to change.]

The DirectXSetup function takes a parameter, lpszRootPath, that points to the root
directory of the installation. Optionally, it can be NULL to indicate that the root path
is the current directory—that is, the directory where your setup program resides.

The root directory must contain Dsetup.dll, Dsetup16.dll, and Dsetup32.dll. It must
also have a folder named "DirectX" (not case sensitive) containing all the
redistributable files and drivers. To create the proper structure on your application
setup disc, you should simply copy the entire contents of the Redist\DirectX6 folder
on the DirectX SDK disc into the root path of your setup program. Note that this
folder was not copied to your development machine when you installed the SDK, so
you have to get it from the original disc.

Customizing Setup
[This is preliminary documentation and subject to change.]

DirectSetup allows you to define a callback function for customizing the DirectX
setup process. In the DirectSetup documentation, this callback function is referred to
as DirectXSetupCallbackFunction, but you can give it any name you like.

If a callback function is not provided by the setup program, the DirectXSetup
function displays status and error information in a dialog box and obtains user input
by calling the Win32® MessageBox function. If a callback is provided, the
information that would have been used to create the status dialog or message box is
instead passed to the callback. The callback function is called once for each DirectX
component and device driver that can be installed or upgraded.

You might use the callback function to do the following:

· Employ a custom interface. Your setup program might display messages in ways
other than by using MessageBox or standard Windows dialog boxes. The
callback function enables you to integrate messages for the DirectX component
of your installation into your own interface.

· Update a progress indicator.
· Suppress the display of status and error messages. Designers of programs for

novice users may want to suppress error messages and let the setup program
handle errors and make upgrade choices silently. This approach requires a
greater development effort for the setup program, but might be appropriate for
the target audience.

in.doc – page 4

The following topics help you customize your setup:

· Creating a DirectSetup Callback Function
· Setting the Callback Function
· Using Upgrade Flags in the Callback Function
· Overriding Defaults in the Callback Function

Creating a DirectSetup Callback
Function

[This is preliminary documentation and subject to change.]

In order to customize the setup process, you must first create a callback function that
conforms to the DirectXSetupCallbackFunction prototype, as in the following
declaration:

DWORD WINAPI DirectXSetupCallbackFunction(
 DWORD dwReason,
 DWORD dwMsgType,
 LPSTR szMessage,
 LPSTR szName,
 void *pInfo);

In this example, adapted from the Dinstall sample application, the name of the
function is the same as that of the prototype, but this is optional. The parameter
names differ slightly from those in the prototype declared in Dsetup.h, and will be
used throughout the following discussion.

Parameters
The dwReason parameter indicates why the callback function has been called. The
possible values are listed and explained in the reference for
DirectXSetupCallbackFunction.

The dwMsgType parameter receives flags equivalent to those that DirectSetup
would, by default, pass to MessageBox, such as those controlling what buttons and
icon are displayed. Of special interest to you are the button flags, which you use to
determine what return values are expected. If this value is 0, the event never requires
user input and DirectSetup would normally display a status message.

The szMessage parameter receives the same text that DirectSetup would otherwise
pass to the status dialog or to MessageBox.

When a driver is a candidate for upgrading, its name is passed in the szName
parameter and pInfo points to information about the how the upgrade will or should
be handled—for example, whether DirectSetup recommends that the old driver be
kept or upgraded. For more information, see Using Upgrade Flags in the Callback
Function.

in.doc – page 5

The way your callback function interprets the parameters is entirely up to you.
Typically you would choose which messages to display (based on dwReason) and
when to present the user with alternatives, and you would modify the interface
accordingly.

Return Value
The value returned by your callback function must conform to the following rules:

· When dwMsgType is 0, the return value must be IDOK. In this case, there are no
choices to be made by the user. (Your application, of course, is free to display a
status message even though no input is required.)

· If dwMsgType is nonzero, the return value must be the same as would have been
returned by MessageBox, given the equivalent choice by the user.

To determine the appropriate return value in the second case, you must test
dwMsgType for the buttons that would normally have been put in a message box.
The following example, from the GetReply function in Dinstall, shows how this can
be done:

/* The global g_wReply identifies the custom dialog button
 that has been selected by the user. */

switch (dwMsgType & 0x0000000F)
{
 / * There would normally have been an OK and a Cancel button.
 Our IDBUT1 is equivalent to the OK button. If the user didn't
 choose that, it was a Cancel. */
 case MB_OKCANCEL:
 wDefaultButton = (g_wReply == IDBUT1) ? IDOK : IDCANCEL;
 break;

 / * And so on with the other button combinations. */
 case MB_OK:
 wDefaultButton = IDOK;
 break;
 case MB_RETRYCANCEL:
 wDefaultButton = (g_wReply == IDBUT1) ? IDRETRY : IDCANCEL;
 break;
 case MB_ABORTRETRYIGNORE:
 if (g_wReply == IDBUT1)
 wDefaultButton = IDABORT;
 else if (g_wReply == IDBUT2)
 wDefaultButton = IDRETRY;
 else
 wDefaultButton = IDIGNORE;
 break;

in.doc – page 6

 case MB_YESNOCANCEL:
 if (g_wReply == IDBUT1)
 wDefaultButton = IDYES;
 else if (g_wReply == IDBUT2)
 wDefaultButton = IDNO;
 else
 wDefaultButton = IDCANCEL;
 break;
 case MB_YESNO:
 wDefaultButton = (g_wReply == IDBUT1) ? IDYES : IDNO;
 break;
 default:
 wDefaultButton = IDOK;
}

This routine translates button clicks from the custom interface into the equivalent
button identifiers in the standard dialog box that DirectSetup would otherwise create.
The wDefaultButton variable is set to the identifier of the equivalent standard dialog
box button, and it is this value that will ultimately be returned from the callback
function.

Remember, you don't necessarily have to give the user a choice even when
dwMsgType is nonzero. You might decide, for example, to upgrade drivers
automatically in a case where DirectSetup would normally ask for confirmation from
the user. The Dinstall sample does this when the user has asked to see only problem
messages and the driver upgrade is considered safe:

case DSETUP_CB_UPGRADE_SAFE:
 switch (dwMsgType & 0x0000000F)
 {
 case MB_YESNO:
 case MB_YESNOCANCEL:
 return IDYES;
 case MB_OKCANCEL:
 case MB_OK:
 default:
 return IDOK;
 }
 break;

The callback function returns either IDYES or IDOK, depending on which button
would have represented a positive choice in a dialog box asking the user whether or
not the upgrade should proceed.

Setting the Callback Function
[This is preliminary documentation and subject to change.]

in.doc – page 7

Before calling DirectXSetup, you must notify DirectSetup that you wish to use a
callback. You do so by calling the DirectXSetupSetCallback function, passing a
pointer to the callback as a parameter. The following example shows how this is
done:

DirectXSetupSetCallback(
 (DSETUP_CALLBACK) DirectXSetupCallbackFunction);

Using Upgrade Flags in the Callback
Function

[This is preliminary documentation and subject to change.]

When the application-defined callback function DirectXSetupCallbackFunction is
called by the DirectXSetup function, it is passed a parameter that contains the
reason the callback function was invoked. If the reason is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the pInfo parameter points to a
DSETUP_CB_UPGRADEINFO structure containing flags that summarize the
DirectXSetup function's recommendations on how the upgrade of DirectX
components and drivers should be performed. The structure member containing the
flags is called UpgradeFlags.

The flags fall into the following categories:

Primary Upgrade Flags
These flags are mutually exclusive. One of them is always present in the
UpgradeFlags structure member. You can extract it by performing a bitwise
AND with DSETUP_CB_UPGRADE_TYPE_MASK.

DSETUP_CB_UPGRADE_FORCE
DSETUP_CB_UPGRADE_KEEP
DSETUP_CB_UPGRADE_SAFE
DSETUP_CB_UPGRADE_UNKNOWN

Secondary Upgrade Flags
Any or all of these flags may be present.

DSETUP_CB_UPGRADE_CANTBACKUP
DSETUP_CB_UPGRADE_HASWARNINGS

Device Active Flag
This flag is present if the device whose driver is being upgraded is active. It may
be combined with any of the others.

DSETUP_CB_UPGRADE_DEVICE_ACTIVE
Device Class Flags

These flags are mutually exclusive. One of them is always present.
DSETUP_CB_UPGRADE_DISPLAY
DSETUP_CB_UPGRADE_MEDIA

in.doc – page 8

In summary: every time the Reason parameter has the value
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the UpgradeFlags member of
the structure pointed to by pInfo contains one Primary Upgrade Flag, zero or more
Secondary Upgrade Flags, zero or one Device Active Flag, and one Device Class
Flag.

If the UpgradeFlags member is set to DSETUP_CB_UPGRADE_KEEP, the
DirectX component or device driver can't be upgraded. Performing an upgrade
would cause Windows to cease functioning properly. The DirectXSetup function
will not perform an upgrade on the component or driver.

A value of DSETUP_CB_UPGRADE_FORCE in UpgradeFlags means that the
component or driver must be upgraded for Windows to function properly. The
DirectXSetup function will upgrade the driver or component. It is possible that the
upgrade may adversely affect some programs on the system. When the
DirectXSetup function detects this condition, the UpgradeFlags member is set to
(DSETUP_CB_UPGRADE_FORCE |
DSETUP_CB_UPGRADE_HAS_WARNINGS). When this occurs, the
DirectXSetup function will perform the upgrade but issue a warning to the user.

Components and drivers are considered safe for upgrade if they will not adversely
affect the operation of Windows when they are installed. In this case, the
UpgradeFlags member is set to DSETUP_CB_UPGRADE_SAFE. It is possible that
the upgrade can be safe for Windows, but still cause problems for programs installed
on the system. When DirectXSetup detects this condition, the UpgradeFlags
member contains the value (DSETUP_CB_UPGRADE_SAFE |
DSETUP_CB_UPGRADE_HAS_WARNINGS). If this condition occurs, the default
action for the DirectXSetup function is not to perform the upgrade.

Overriding Defaults in the Callback
Function

[This is preliminary documentation and subject to change.]

The application-defined function DirectXSetupCallbackFunction can override
some of the default behaviors of the DirectXSetup function through its return value.

For example, the default behavior for DirectXSetup is not to install a component if
the upgrade type in the structure pointed to by the pInfo parameter is set to
(DSETUP_CB_UPGRADE_SAFE | DSETUP_CB_UPGRADE_HAS_WARNINGS).
In this case, the MsgType parameter of the callback function is set to (MB_YESNO |
MB_DEFBUTTON2). Without a callback function, DirectSetup would present the
user with a dialog box whose default button was No. If the callback function does
not seek user input but accepts the default, it returns IDNO. To override the default,
the callback function returns IDYES. If it does override the default, the user will be
notified by the DirectXSetup function.

in.doc – page 9

Testing the Setup Program
[This is preliminary documentation and subject to change.]

To test the DirectSetup component of your setup program, compile a version in
which the DSETUP_TESTINSTALL flag is passed to the DirectXSetup function.
Set up the installation directory as described under Preparing the Setup Folder.

Now, when you run your setup program, DirectSetup will go through the motions of
installing DirectX, including calls to a callback function if you have provided one,
without actually installing any components.

Enabling AutoPlay
[This is preliminary documentation and subject to change.]

If you are building an AutoPlay compact disc title, copy the Autorun.inf file in the
root directory of the DirectX SDK compact disc to the root of your application
directory. This text file contains the following information:

[autorun]
OPEN=SETUP.EXE

If your application's setup program is called Setup.exe, you will not have to make
any changes to this file; otherwise, edit this file to contain the name of your setup
program. For more information, see Autorun.inf.

DirectSetup Reference
[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements of DirectSetup.
Reference material is divided into the following categories:

· Functions
· Structures
· Return Values

Functions
[This is preliminary documentation and subject to change.]

This section contains information on the following global functions used with
DirectSetup:

in.doc – page 10

· DirectXRegisterApplication
· DirectXSetup
· DirectXSetupGetVersion
· DirectXSetupSetCallback
· DirectXSetupCallbackFunction
· DirectXUnRegisterApplication

DirectXRegisterApplication
[This is preliminary documentation and subject to change.]

The DirectXRegisterApplication function registers an application as one designed
to work with DirectPlayLobby.

int WINAPI DirectXRegisterApplication(
 HWND hWnd,
 LPDIRECTXREGISTERAPP lpDXRegApp
);

hWnd
Handle to the parent window. If this parameter is set to NULL, the desktop is
the parent window.

lpDXRegApp
Address of the DIRECTXREGISTERAPP structure that contains the registry
entries that are required for the application to function properly with
DirectPlayLobby.

Return Values
If this function is successful, it returns TRUE.

If it is not successful, it returns FALSE. Use the GetLastError Win32 function to
get extended error information.

Remarks
The DirectXRegisterApplication function inserts the registry entries needed for an
application to operate with DirectPlayLobby. If these registry entries are added with
DirectXRegisterApplication, they should be removed with
DirectXUnRegisterApplication when the application is uninstalled.

Many commercial install programs will remove registry entries automatically when a
program in uninstalled. However, such a program will only do so if it added the
registry entries itself. If the DirectPlayLobby registry entries are added by
DirectXRegisterApplication, commercial install programs will not delete the
registry entries when the application is uninstalled. Therefore, DirectPlayLobby

in.doc – page 11

registry entries that are created by DirectXRegisterApplication should be deleted
by DirectXUnRegisterApplication.

Registry entries needed for DirectPlayLobby access can be created without the use of
the DirectXRegisterApplication function. This, however, is not generally
recommended. See Registering Lobby-able Applications in the DirectPlay®
documentation.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: Use dsetup.lib.

See Also
DirectXUnRegisterApplication

DirectXSetup
[This is preliminary documentation and subject to change.]

The DirectXSetup function installs one or more DirectX components.

int WINAPI DirectXSetup(
 HWND hWnd,
 LPSTR lpszRootPath,
 DWORD dwFlags
);

hWnd
Handle to the parent window for the setup dialog boxes.

lpszRootPath
Pointer to a string that contains the root path of the DirectX component files.
This string must specify a full path to the directory that contains the files
Dsetup.dll, Dsetup16.dll, and Dsetup32.dll, as well as a "DirectX" (not case
sensitive) directory containing redistributable files. If this value is NULL, the
current working directory is used.

dwFlags
One or more flags indicating which DirectX components should be installed. A
full installation (DSETUP_DIRECTX) is recommended.

DSETUP_D3D Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DDRAW Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

in.doc – page 12

DSETUP_DDRAWDRV Installs display drivers provided by
Microsoft.

DSETUP_DINPUT Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DIRECTX Installs DirectX run-time components as well
as DirectX-compatible display and audio
drivers.

DSETUP_DIRECTXSETUP Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DPLAY Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DPLAYSP Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DSOUND Obsolete. DirectX 3 programs that use this
flag will install all DirectX components.

DSETUP_DSOUNDDRV Installs audio drivers provided by Microsoft.
DSETUP_DXCORE Installs DirectX run-time components. Does

not install DirectX-compatible display and
audio drivers.

DSETUP_TESTINSTALL Performs a test installation. Does not actually
install new components.

Return Values
If this function is successful, it returns DSETUPERR_SUCCESS, or
DSETUPERR_SUCCESS_RESTART if the user must restart the system in order for
changes to take effect.

If it is not successful, it returns an error code. For a list of possible return codes, see
Return Values.

Remarks
Before you use the DirectXSetup function in your setup program, you should ensure
that there is at least 15 MB of available disk space on the user's system. This is the
maximum space required for DirectX to set up the appropriate files. If the user's
system already contains the DirectX files, this space is not needed.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: Use dsetup.lib.

in.doc – page 13

DirectXSetupGetVersion
[This is preliminary documentation and subject to change.]

The DirectXSetupGetVersion function retrieves the version number of the DirectX
components that are currently installed.

INT WINAPI DirectXSetupGetVersion(
 DWORD *pdwVersion,
 DWORD *pdwRevision
);

pdwVersion
Address of a variable to receive the version number. Can be NULL if the
version number is not wanted.

pdwRevision
Address of a variable to receive the revision number. Can be NULL if the
revision number is not wanted.

Return Values
If the function is successful, it returns nonzero.

If it is not successful, it returns zero.

Remarks
The DirectXSetupGetVersion function can be used to retrieve the version and
revision numbers before or after the DirectXSetup function is called. If it is called
before the DirectXSetup function is invoked, it gives the version and revision
numbers of the DirectX components that are currently installed. If it is called after
the DirectXSetup function is called, but before the computer has been rebooted, it
will give the version and revision numbers of the DirectX components that will take
effect after the computer is restarted.

The version number in the pdwVersion parameter is composed of the major version
number and the minor version number. The major version number will be in the 16
most significant bits of the DWORD when this function returns. The minor version
number will be in the 16 least significant bits of the DWORD when this function
returns. The version numbers can be interpreted as follows:

DirectX Version Value Pointed At By pdwVersion

DirectX 1 0x00040001
DirectX 2 0x00040002
DirectX 3 0x00040003
DirectX 5.0 0x00040005
DirectX 6.0 0x00040006

in.doc – page 14

Note that there is no version 4 of DirectX.

The version number in the pdwRevision parameter is composed of the release
number and the build number. The release number will be in the 16 most significant
bits of the DWORD when this function returns. The build number will be in the 16
least significant bits of the DWORD when this function returns.

The following sample code fragment demonstrates how the information returned by
DirectXSetupGetVersion can be extracted and used.

DWORD dwVersion;
DWORD dwRevision;
if (DirectXSetupGetVersion(&dwVersion, &dwRevision))
{
 printf("DirectX version is %d.%d.%d.%d\n",
 HIWORD(dwVersion), LOWORD(dwVersion),
 HIWORD(dwRevision), LOWORD(dwRevision));
}

Version and revision numbers can be concatenated into a 64-bit quantity for
comparison. The version number should be in the 32 most significant bits and the
revision number should be in the 32 least significant bits.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: Use dsetup.lib.

See Also
DirectXSetup

DirectXSetupSetCallback
[This is preliminary documentation and subject to change.]

The DirectXSetupSetCallback sets a pointer to a callback function that is
periodically called by DirectXSetup. The callback function can be used for setup
progress notification and to implement a custom user interface for an application's
setup program. For information on the callback function, see
DirectXSetupCallbackFunction. If a setup program does not provide a callback
function, the DirectXSetupSetCallback function should not be invoked.

INT WINAPI DirectXSetupSetCallback(
 DSETUP_CALLBACK Callback

in.doc – page 15

);

Callback
Pointer to a callback function.

Return Values
Currently returns zero.

Remarks
To set a callback function, DirectXSetupSetCallback must be called before the
DirectXSetup function is called.

The name of the callback function passed to DirectXSetupSetCallback is supplied
by the setup program. However, it must match the prototype given in
DirectXSetupCallbackFunction.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: Use dsetup.lib.

See Also
DirectXSetupCallbackFunction, DirectXSetup

DirectXSetupCallbackFunctio
n

[This is preliminary documentation and subject to change.]

DirectXSetupCallbackFunction is a placeholder name for an optional callback
function supplied by the setup program. If present, it is called once for each step of
the setup process.

DWORD DirectXSetupCallbackFunction(
 DWORD Reason,
 DWORD MsgType,
 char *szMessage,
 char *szName,
 void *pInfo
);

in.doc – page 16

Reason
Reason for the callback. It can be one of the following values:
DSETUP_CB_MSG_BEGIN_INSTALL

DirectXSetup is about to begin installing DirectX components and device
drivers.

DSETUP_CB_MSG_BEGIN_INSTALL_DRIVERS
DirectXSetup is about to begin installing device drivers.

DSETUP_CB_MSG_BEGIN_INSTALL_RUNTIME
DirectXSetup is about to begin installing DirectX components.

DSETUP_CB_MSG_BEGIN_RESTORE_DRIVERS
DirectXSetup is about to begin restoring previous drivers.

DSETUP_CB_MSG_CANTINSTALL_BETA
A pre-release beta version of Windows 95 was detected. The DirectX
component or device driver can't be installed.

DSETUP_CB_MSG_CANTINSTALL_NOTWIN32
The operating system detected is not a Windows 32-bit operating system.
DirectX is not compatible with Windows 3.x.

DSETUP_CB_MSG_CANTINSTALL_NT
The DirectX component or device driver can't be installed on versions of
Windows NT prior to version 4.0.

DSETUP_CB_MSG_CANTINSTALL_UNKNOWNOS
The operating system is unknown. The DirectX component or device driver
can't be installed.

DSETUP_CB_MSG_CANTINSTALL_WRONGLANGUAGE
The DirectX component or device driver is not localized to the language
being used by Windows.

DSETUP_CB_MSG_CANTINSTALL_WRONGPLATFORM
The DirectX component or device driver is for another type of computer.

DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE
Driver is being considered for upgrade. Verification from user is
recommended.

DSETUP_CB_MSG_INTERNAL_ERROR
An internal error has occurred. Setup of the DirectX component or device
driver has failed.

DSETUP_CB_MSG_NOMESSAGE
No message to be displayed. The callback function should return.

DSETUP_CB_MSG_NOTPREINSTALLEDONNT
The DirectX component or device driver can't be installed on the version of
Windows NT/Windows 2000 in use.

DSETUP_CB_MSG_PREINSTALL_NT
DirectX is already installed on the version of Windows NT/Windows 2000 in
use.

DSETUP_CB_MSG_SETUP_INIT_FAILED

in.doc – page 17

Setup of the DirectX component or device driver has failed.
MsgType

Contains flags that control the display of a message box. These flags can be
passed to the MessageBox function. An exception is when MsgType is 0. In that
case, the setup program can display status information but should not wait for
input from the user.

szMessage
A localized character string containing error or status messages that can be
displayed in a dialog box created with the MessageBox function.

szName
The value of szName is NULL unless the Reason parameter is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. In that case, szName
contains the name of driver to be upgraded.

pInfo
Pointer to a structure containing upgrade information. When Reason is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE, the setup program is in
the process of upgrading a driver and asking the user whether the upgrade
should take place. In this case, pInfo points to a
DSETUP_CB_UPGRADEINFO structure containing information about the
upgrade.

Return Values
The return value should be the same as would be returned by the MessageBox
function, with one exception. If this function returns zero, the DirectXSetup
function will perform the default action for upgrade of the DirectX component or
driver.

Remarks
The name of the DirectXSetupCallbackFunction is supplied by the setup program.
The DirectXSetupSetCallback function is used to pass the address of the callback
function to DirectSetup.

If MsgType is equal to zero, the setup program may display status information, but it
should not wait for user input. In this case the function should return IDOK.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: User-defined.

in.doc – page 18

See Also
MessageBox, DirectXSetupSetCallback, Customizing Setup

DirectXUnRegisterApplication
[This is preliminary documentation and subject to change.]

The DirectXUnRegisterApplication function deletes the registration of an
application designed to work with DirectPlayLobby.

int WINAPI DirectXUnRegisterApplication(
 HWND hWnd,
 LPGUID lpGUID
);

hWnd
Handle to the parent window. Set this to NULL if the desktop is the parent
window.

lpGUID
Pointer to a GUID that represents the DirectPlay application to be unregistered.

Return Values
If the function succeeds, the return value is TRUE meaning that the registration is
successfully deleted.

If the function fails, the return value is FALSE.

Remarks
The DirectXUnRegisterApplication function removes registry the entries needed
for an application to work with DirectPlayLobby. An uninstall program should only
use DirectXUnRegisterApplication if it used DirectXRegisterApplication when
the application was installed.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.
 Import Library: Use dsetup.lib.

See Also
DirectXRegisterApplication

in.doc – page 19

Structures
[This is preliminary documentation and subject to change.]

This section contains information about the following structures used with
DirectSetup:

· DIRECTXREGISTERAPP
· DSETUP_CB_UPGRADEINFO

Note
The memory for all DirectX structures must be initialized to zero before use. In
addition, all structures that contain a dwSize member must set the member to
the size of the structure, in bytes, before use. The following example from
DirectDraw performs these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(ddcaps));
ddcaps.dwSize = sizeof(ddcaps);

// Now the structure can be used.
.
.

DIRECTXREGISTERAPP
[This is preliminary documentation and subject to change.]

The DIRECTXREGISTERAPP structure contains the registry entries needed for
applications designed to work with DirectPlayLobby.

typedef struct _DIRECTXREGISTERAPP {
 DWORD dwSize;
 DWORD dwFlags;
 LPSTR lpszApplicationName;
 LPGUID lpGUID;
 LPSTR lpszFilename;
 LPSTR lpszCommandLine;
 LPSTR lpszPath;
 LPSTR lpszCurrentDirectory;
} DIRECTXREGISTERAPP, *PDIRECTXREGISTERAPP,
*LPDIRECTXREGISTERAPP;

dwSize
Size of the structure. Must be initialized to the size of the
DIRECTXREGISTERAPP structure.

in.doc – page 20

dwFlags
Reserved for future use.

lpszApplicationName
Name of the application.

lpGUID
Globally unique identifier (GUID) of the application.

lpszFilename
Name of the executable file to be called.

lpszCommandLine
Command-line arguments for the executable file.

lpszPath
Path of the executable file.

lpszCurrentDirectory
Current directory. This is typically the same as lpszPath.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.

DSETUP_CB_UPGRADEINFO
[This is preliminary documentation and subject to change.]

The DSETUP_CB_UPGRADEINFO structure is passed as a parameter to the
application-defined DirectXSetupCallbackFunction. It contains valid information
only when the Reason parameter is
DSETUP_CB_MSG_CHECK_DRIVER_UPGRADE. Callback functions can use it
to get status information on the upgrade that is about to be done.

typedef struct _DSETUP_CB_UPGRADEINFO {
 DWORD UpgradeFlags;
} DSETUP_CB_UPGRADEINFO;

UpgradeFlags
One or more flags indicating the status of the upgrade. The following values are
defined:
DSETUP_CB_UPGRADE_CANTBACKUP

The old system components can't be backed up. Upgrade can be performed,
but the components or drivers can't be restored later.

DSETUP_CB_UPGRADE_DEVICE_ACTIVE
The device is currently in use.

DSETUP_CB_UPGRADE_DEVICE_DISPLAY

in.doc – page 21

The device driver being upgraded is for a display device.
DSETUP_CB_UPGRADE_DEVICE_MEDIA

The device driver being upgraded is for a media device.
DSETUP_CB_UPGRADE_FORCE

Windows may not function correctly if the component is not upgraded. The
upgrade will be performed.

DSETUP_CB_UPGRADE_HASWARNINGS
DirectSetup can upgrade the driver for this device, but doing so may affect
one or more programs on the system. The szMessage parameter contains the
names of which programs may be affected. Upgrade not recommended.

DSETUP_CB_UPGRADE_KEEP
The system may fail if this device driver is upgraded. Upgrade not allowed.

DSETUP_CB_UPGRADE_SAFE
DirectSetup can safely upgrade this device driver. Upgrade recommended. A
safe upgrade will not adversely affect the operation of Windows. Some
hardware-dependent programs may be adversely affected.

DSETUP_CB_UPGRADE_UNKNOWN
DirectSetup does not recognize the existing driver for this device. This value
will occur frequently. Upgrading may adversely affect the use of the device.
It is strongly recommended that the upgrade not be performed.

Remarks
You can use the DSETUP_CB_UPGRADE_TYPE_MASK value to extract the
upgrade type (FORCE, KEEP, SAFE, or UNKNOWN) from UpgradeFlags.

QuickInfo
 Windows NT: Requires version 4.0 SP3 or later.
 Windows: Requires Windows 95 or later. Available as a redistributable for
Windows 95.
 Header: Declared in dsetup.h.

See Also
DirectXSetupCallbackFunction

Return Values
[This is preliminary documentation and subject to change.]

The DirectXSetup function can return the following values. It can also return a
standard COM error.

DSETUPERR_SUCCESS
Setup was successful and no restart is required.

in.doc – page 22

DSETUPERR_SUCCESS_RESTART
Setup was successful and a restart is required.

DSETUPERR_BADSOURCESIZE
A file's size could not be verified or was incorrect.

DSETUPERR_BADSOURCETIME
A file's date and time could not be verified or were incorrect.

DSETUPERR_BADWINDOWSVERSION
DirectX does not support the Windows version on the system.

DSETUPERR_CANTFINDDIR
The setup program could not find the working directory.

DSETUPERR_CANTFINDINF
A required .inf file could not be found.

DSETUPERR_INTERNAL
An internal error occurred.

DSETUPERR_NEWERVERSION
A later version of DirectX has already been installed. Applications can safely ig
nore this error, because the newer version will not be overwritten and is fully co
mpatible with applications written for earlier versions.

DSETUPERR_NOCOPY
A file's version could not be verified or was incorrect.

DSETUPERR_NOTPREINSTALLEDONNT
The version of Windows NT/Windows 2000 on the system does not contain the
current version of DirectX. An older version of DirectX may be present, or
DirectX may be absent altogether.

DSETUPERR_OUTOFDISKSPACE
The setup program ran out of disk space during installation.

DSETUPERR_SOURCEFILENOTFOUND
One of the required source files could not be found.

DSETUPERR_UNKNOWNOS
The operating system on your system is not currently supported.

DSETUPERR_USERHITCANCEL
The Cancel button was pressed before the application was fully installed.

DirectSetup Visual Basic
Reference

[This is preliminary documentation and subject to change.]

This section contains reference information for the API elements that DirectSetup
provides. Reference material is divided into the following categories.

in.doc – page 23

· Methods
· Types

Methods
[This is preliminary documentation and subject to change.]

The methods that implement DirectSetup are contained within the main DirectX7
class. The documentation for the following methods are found under the DirectX7
class reference section:

· DirectX7.DirectXRegisterApplication
· DirectX7.DirectXSetup
· DirectX7.DirectXSetupGetVersion
· DirectX7.DirectXUnregisterApplication

Types
[This is preliminary documentation and subject to change.]

There is one type that is used with DirectSetup, DIRECTXREGISTERAPP.

DIRECTXREGISTERAPP
[This is preliminary documentation and subject to change.]

Type DIRECTXREGISTERAPP
 lFlags As Long
 strApplicationName As String
 strCommandLine As String
 strCurrentDirectory As String
 strFilename As String
 strGuid As String
 strPath As String
End Type

lFlags

strApplicationName

strCommandLine

strCurrentDirectory

IDH__dx_DIRECTXREGISTERAPP_dsetup_vb

in.doc – page 24

strFilename

strGuid

strPath

DirectSetup Samples
[This is preliminary documentation and subject to change.]

This section provides a summary of the application in the DirectX SDK that is
primarily intended to demonstrate the DirectSetup component. The following sample
program demonstrates the use and capabilities of DirectSetup :

· Dinstall Sample

Although DirectX samples include Microsoft® Visual C++® project workspace files,
you might need to verify other settings in your development environment to ensure
that the samples compile properly. For more information, see Compiling DirectX
Samples and Other DirectX Applications.

Dinstall Sample
[This is preliminary documentation and subject to change.]

Description
Dinstall is an example of how to use DirectXSetup interfaces to install the DirectX
subsystem and DirectX drivers. It shows how to use a callback function to present
messages and get user input through a custom interface, in this case a simple
modeless dialog box.

Path
Source: (SDK root)\Samples\Multimedia\Dxmisc\Src\Setup

Executable: (SDK root)\Samples\Multimedia\Dxmisc\Bin

in.doc – page 25

User's Guide
First copy the entire contents of the Redist\DirectX6 folder from the DirectX SDK
CD into the same folder as Dinstall.exe. In your development environment, set the
working directory to this folder as well. (In Microsoft® Visual C++®, this setting is
on the Debug page of the Project Settings dialog box.)

Run the program and select Start Install from the File menu. DirectSetup performs
a simulated installation of DirectX (see Programming Notes) and advises you of its
progress in a modeless dialog box. The Options menu allows you to change the level
of messages shown. However, if you are performing only a simulated installation,
you will never see problem or update messages.

Choose Get Version from the File menu. The program shows the version and
revision number of DirectX currently installed on the system.

Programming Notes
The driver folders in \Redist\DirectX6\Directx\Drivers contain localized versions of
Microsoft-provided DirectX drivers. You can delete any number of these folders
from your working directory if you want to save disk space.

By default, the program passes DSETUP_TESTINSTALL to the DirectXSetup
function. This means that no files are actually copied, nor is the registry modified.
To perform a real installation, delete this flag from the call.

Dinstall employs a callback function to monitor the progress of installation and
intercept messages. Depending on the user's preferred warning level, as tracked in
g_fStatus, messages may be ignored or presented to the user in a modeless dialog
box. If user input is required, the appropriate buttons are displayed and the GetReply
function monitors the message queue until one of the buttons is pressed.

	About DirectSetup
	DirectSetup Essentials
	Setup Overview for DirectSetup
	Preparing the Setup Folder
	Customizing Setup
	Creating a DirectSetup Callback Function
	Setting the Callback Function
	Using Upgrade Flags in the Callback Function
	Overriding Defaults in the Callback Function

	Testing the Setup Program
	Enabling AutoPlay

	DirectSetup Reference
	Functions
	Structures
	Return Values

	DirectSetup Visual Basic Reference
	Methods
	Types

	DirectSetup Samples
	Dinstall Sample

