
Contents
RenderWare V1.4 Help File                         
The following Help Topics are available:

Using the Library
Data Types
Function Index Alphabetically   
Function Index by Category
The Scripting Language
Platform Specific Information
Error Codes
The Texture File Formats
Library Defaults

For Help on Help, Press F1

You will be notified when the final release of this help file is available.

Using the Library
This section presents an overview of the main concepts of RenderWare. The following topics are discussed· Coordinate Systems.· Representation of Transformations.· Virtual Camera Model.· Hierarchical Modeling.· Structure of a RenderWare Program.· Error Handling.
· Debugging.

Related Topics
Overview
Coordinate Systems
Matrices
The Virtual Camera Model
Hierarchical Modeling
The Structure of a RenderWare Program
Error Reporting
Debugging

Overview
A Clump is a collection of Polygons and Vertices. Clump objects allow applications to
handle large numbers of related polygons and vertices as a single, atomic entity. This greatly
simplifies application construction.
Each polygon has an associated Material object, which defines the appearance of the
polygon.    Each material object may be shared by many polygons. Material objects
encapsulate the following surface properties: geometry sampling type, light sampling
type, RGB color; ambient, diffuse and specular coefficients of reflection, opacity,
texture and texture modes.A Light source illuminates objects in a scene. Three types of light source are supported: · A directional light source (or distant light source) emits light in a specified direction and is assumed to be an infinite distance from a scene. The sun is an example of a directional light source.· A point light source emits light of equal intensity in all directions from a specified position. A light bulb is an example of a point light source.

· A conical light source emits a cone of light centered about a specified axial direction
from a specified position. A spot light is an example of a conical light source.

A Camera captures an image of the objects in a 3D scene projected onto an image plane (or
view plane). The projection may be either perspective or parallel. A rectangular region of this
plane (called the view window) is stored as a 2D image in the cameras image buffer. The
rectangular region of pixels on the output device onto which a cameras view window is
mapped is the cameras viewport.
A Scene is a collection of clumps and lights. A scene may be viewed through one or more
cameras. At any instant, however, only one camera is active (the current camera) and the
results of rendering are stored in the image buffer of this camera.

Coordinate SystemsRenderWare recognizes the following coordinate systems:
· Object Space

Each clump has a local coordinate system (or Object Space). This is the coordinate system
in which geometry being added to a clump is specified. For example:

RwAddVertexToClump(Clump, 1.0, 1.0, 1.0);
adds a new vertex to Clump at (1.0, 1.0, 1.0) in the clumps object space. When constructing geometry using a script file or RenderWares Object Builder API functions, the coordinates specified are transformed by the current transform matrix (CTM) before being added to the clump.
· World Space

The coordinate system of a scene is known as the world coordinate system (or World
Space). This is the coordinate system that is used for specifying the positions of lights and
cameras.
RenderWare uses a right-handed world coordinate system. This has the same orientation as
that given by taking the thumb, first and second fingers of your right hand as the X, Y and Z
axes respectively. The positive X axis points to the right, the positive Y axis points up, whilst
the positive Z axis points forwards (out of the screen).

· Camera Space
Each camera has a viewing coordinate system (or Camera Space). Camera space has its
origin at the cameras position. The positive Z axis of camera space is given by the view
direction (or Look At vector). Unlike world space, camera space is left-handed. The units of
camera space are the same as those of world space.
Camera space is primarily used in the API function RwVCMoveCamera() which moves the
camera a certain number of units left, right, up, down, forwards or backwards relative to the
current camera position.

· Device SpaceThe device coordinate system (or Device Space) is a two dimensional coordinate system. Its units are those of the display (screen or window) to which the cameras image buffer is copied when RwShowCameraImage() is called. Device space is primarily used for specifying the position and extent of camera viewports. Device space is closely related to viewport space as described below.
· Viewport Space

The coordinate system of a cameras viewport is the viewport coordinate system (or
Viewport Space). Viewport space is used when picking, when damaging or undamaging
the cameras viewport, when specifying a portion of the viewport into which a backdrop
should be copied and when rendering user-draws. The units of viewport space are the same
as those of device space. The terms device space units and viewport space units will be
used interchangeably throughout this document.
To convert a point in device space to the viewport space of a camera, simply subtract the X
and Y coordinates of the cameras viewport from the X and Y coordinates of the point. This
conversion is often useful when attempting to pick an object under the mouse pointer. The
mouse position will normally be returned to the application in device (screen or window)
coordinates. However, viewport coordinates are needed for the pick operation and so the
above conversion should be performed. This conversion is not necessary if the viewports
origin is the same as the origin of device space (as is often the case).

Matrices
RenderWare uses 4 x 4 homogeneous matrices to represent 3D transformations. Rotation
and scaling are encoded in the top-left 3 x 3 sub-matrix, and translation in the final row:

Such matrices are available to the application programmer through the opaque data type
RwMatrix4d.
In addition to various high-level matrix operations (such as multiplication) the elements of a
matrix can be set or retrieved either individually or as a whole. For example, the API function
RwGetMatrixElements() copies the elements of a matrix into a 4 x 4 array of real numbers:

RwMatrix4d *matrix;
RwReal elements[4][4];

matrix = RwCreateMatrix();
RwGetMatrixElements(matrix, elements);

The first index of the elements array is the row number and the second is the column
number. Thus, the X, Y and Z values of the translation component of matrix are
elements[3][0], elements[3][1] and elements[3][2] respectively.

The Virtual Camera Model
The purpose of a camera is to project the objects in a 3D scene onto an image plane (or view
plane), a rectangular region of which, called the view plane window (or view window), is
output as a 2D image. The rectangular portion of the display surface onto which a cameras
view window is mapped is called the viewport. RenderWare supports both perspective
and parallel projections.

A camera can be positioned anywhere in world coordinate space and can be pointed in any direction.Note that:· The camera position is the origin of camera space. It is also the center of projection, except when the view offset has been specified. When a view offset is specified, the center of projection is moved parallel to the view plane, from the camera position.· The Z axis of camera space (N) is defined by the cameras Look At vector. This is normal to the view plane.· The view plane is defined to be one unit away from the camera position, along the N axis.· The viewing direction is defined by a vector from the center of projection to the center of the view plane.· The camera or viewing coordinate system (VCS) is left-handed.· The view up vector (V) specifies the up direction, i.e., where the top of the screen is. Together with N, it establishes the orientation of the camera and of the view plane window within the view plane. RenderWare refers to this vector as the Look Up vector.· The U vector gives the direction of the positive X axis in the camera coordinate system. There is no need to explicitly set this parameter since RenderWare can compute U as the cross-product of V and N. RenderWare calls this the Look Right vector.· The view window determines image content, i.e., the rectangular region of the view plane that appears in the image produced by the camera. It is centered about (0.0, 0.0, 1.0) in camera space.
· Changing the view window is analogous to changing the setting of a zoom lens in a

real camera and can simulate the effects of wide angle or telephoto lenses (by
specifying larger and smaller extents for the view window respectively). To get objects
to appear in their normal size, the view window extent should be set to one.
Increasing the size of the view window widens the field of view, which means that a
larger proportion of the scene will appear in the image and therefore the objects in
the scene appear smaller.

· The user can also change the position of the front (near) and back (far) clipping
planes (both of which are co-planar with the view plane) by specifying a distance from
the camera position. The near clipping plane must be at a distance greater than
0.025 units from the camera.

Hierarchical Modeling
Hierarchical modeling is the process of building models that preserve the hierarchical
structure of objects and allow the position and orientation of an object in the hierarchy to be
specified relative to its parent.

Related Topics
Hierarchical Modeling in RenderWare
Constructing Hierarchical Models in Scripts
Traversing Clump Hierarchies
Finding a Particular Clump In a Hierarchy

Hierarchical Modeling in RenderWare
RenderWares hierarchical modeling support provides the ability to explicitly model
articulation or joints connecting objects.
A clump may have a parent and zero or more children.
Each clump has its own independent, local coordinate system. A clump has three associated
matrices: a modeling transformation matrix, a joint (or articulation) transformation matrix,
and a local transformation matrix (LTM)
The modeling and joint transformations of a child clump together specify the mapping from
its the local coordinate system to that of the parent clump. The joint transformation specifies
the rotation of the child clump about its local origin; clumps are therefore always hinged
about their local origin (the joint is always at the origin of the child clump). The modeling
transformation specifies where the origin of the child clump is with respect to the origin of
the parent clump.
Typically, the geometry being added to a clump is positioned with respect to that clumps
origin by applying translation, rotation or scaling to the current transformation matrix.
The local transformation matrix (LTM) of a clump maps from the local coordinate system of
the clump to the world coordinate system of the scene to which it belongs. It may be
calculated by initialization to the identity matrix followed by an ascent from that clump to
the root of its hierarchy with post transformation first by the joint and then the modeling
transformation at each level. Note that a clumps local transformation is computed by
RenderWare and can be retrieved by RwGetClumpLTM(). It cannot (and need not) be set
directly by the application programmer.

Constructing Hierarchical Models in Scripts
This section gives a simple example of building a hierarchical model in a RenderWare script
(.rwx) file. The example is equally applicable to RenderWares Object Builder API functions.
The following is an example of a script defining a simple hierarchical model forming part of a
robots body:

ModelBegin
ClumpBegin

Color 1.0 0.0 0.0
Surface 0.5 0.5 0.5

Block 0.6 0.8 0.3

Translate 0.3 0.4 0.15
ClumpBegin

Color 1.0 1.0 1.0

Translate 0.1 -0.4 0.0
Block 0.2 0.8 0.2

ClumpEnd
ClumpEnd

ModelEnd
The top-level ClumpBegin ... ClumpEnd block defines a clump representing the central
section of a robots body. One arm of the robot is then modeled by a child of this clump.
The Translate keyword applies a translation to the current transformation matrix (CTM).
When the definition of the child clump is begun (with ClumpBegin), the modeling matrix for
the child clump is set to the CTM. The first Translate keyword positions the child clump in
relation to its parent; the childs local origin is displaced by [0.3 0.4 0.15] from that of the
parent.
Before adding the second block corresponding to the child clump, a translation is applied to
the CTM. This specifies the position of the block relative to the origin of the clump.
The rotation of the arm about the shoulder joint requires only one additional line in the
script: RotateJointTM. This keyword should be inserted immediately before the
ClumpBegin ... ClumpEnd defining the child clump. The command specifies the direction of
the axis of rotation about the joint (in the childs local space) and the angle of rotation in
degrees:

RotateJointTM 1.0 0.0 0.0 30
The above rotates the arm about the X axis of the childs local space by 30 degrees.

Traversing Clump Hierarchies
There are two ways of traversing clump hierarchies:
1 Starting from any clump in a clump hierarchy, every other clump in that hierarchy may be

visited with clump access functions such as RwGetClumpParent(), RwGetNextClump() and
RwGetFirstChildClump().

2 All clumps in a hierarchy may be iterated over by the API function
RwForAllClumpsInHierarchy() and its variants. This family of functions is convenient in
situations when the same operation is to be applied to each clump in a hierarchy.

Finding a Particular Clump In a Hierarchy
There are two main techniques for finding a particular clump:
1 RenderWare allows an integer tag to be attached to each clump. A clumps tag can be set

by the API function RwSetClumpTag() or the script keyword Tag and retrieved by the API
function RwGetClumpTag(). Tags are convenient for marking parts of a hierarchical model
for identification and manipulation by an application program. A tagged clump may be
found with RwFindTaggedClump().

2 The second, more general technique involves RwFindClump()or one of its variants. These
functions apply a boolean (predicate) call-back function to each clump in a hierarchy in
turn until the call-back function returns non-zero. Iteration is then terminated. The clump
passed as the argument to the call-back function is returned.

The Structure of a RenderWare Program
The include file rwlib.h contains the prototypes for all RenderWare API functions. Any
application program exploiting RenderWare should include this include file.
There are three other important include files: rwtypes.h, rwmacros.h and rwerrors.h.
rwtypes.h contains the declarations of RenderWares data types; rwmacros.h contains
macro functions for fixed-point arithmetic and rwerrors.h contains the RenderWare error
codes. Each of these files is 6d by rwlib.h, there is no need to explicitly include them.The first and last RenderWare API functions called by an application program must be RwOpen() (or its variant RwOpenExt()) and RwClose() respectively.A typical RenderWare application:· initializes the library· creates and initializes a camera· creates a scene· creates and initializes one or more lights and adds them to a scene· creates or reads one or more clumps and add them to a scene.· repeatedly renders a scene

· closes the library
Each of these tasks is discussed in more detail below. Code fragments are given to illustrate
each operation. These code fragments are sections of a floating-point, RenderWare
application targeted at the Microsoft Windows 3.1 operating system.
The code fragments are from a program which displays a clump read from a script file.
For the sake of clarity the following code fragments omit the various macros necessary for
compatibility with the fixed-point RenderWare libraries. Furthermore, variable declarations
and some error checking have been omitted.

Related Topics
Initializing the Library
Creating and Initializing a Camera
Creating a Scene
Creating a Light Source and adding it to a Scene
Creating a Clump and adding it to a Scene
Rendering a Scene
Closing the Library

Initializing the Library
RwOpen() initializes the library for a particular output device.

if (RwOpen(MSWindows, NULL))
{

/*
 * Since the return value was non-zero,
 * the application can continue...
 */

Creating and Initializing a Camera
A new camera can be created with RwCreateCamera(). This requires the maximum width
and height of the cameras viewport and a device-specific parameter as its arguments:

cam = RwCreateCamera(320, 200, NULL);
if (cam)

{
/*
 * As NULL was not returned the call
 * was successful and the application can
 * continue...
 */

The above code fragment creates a camera cam with a maximum viewport size of 320 by
200 pixels.
By default, the camera is positioned at the origin of world space, looking down the world
space Z axis in the direction of decreasing Z. The camera has a view window of 1.0 unit by
1.0 unit and has a viewport background color of black (0.0, 0.0, 0.0). The default projection
model is perspective.
To move the camera back 10.0 units down the Z axis from its initial position:

RwVCMoveCamera(cam, 0.0, 0.0, -10.0);
Important Note:
By default, the cameras viewport has a width and height of zero. The application program
must explicitly set the viewport of each new camera to a non-zero width and height. This
viewport should be set with the API function RwSetCameraViewport() as soon as the
desired size is established.
The following code fragment sets the cameras viewport in response to a WM_SIZE message
from MS Windows:

case WM_SIZE:
width = LOWORD(lParam);
height = HIWORD(lParam);
RwSetCameraViewport(cam, 0, 0, width, height);

Creating a Scene
RwOpen() creates a scene (the default scene) which holds all clumps and lights when they
are first created. The default scene can be viewed and rendered with a camera in the same
way as any other scene. However, it is recommended that an application creates a specific
scene for rendering and only uses the default scene to hold currently unused clumps and
lights.

if (scene = RwCreateScene())
{

/*
 * Since NULL was not returned,
 * the call was successful and the
 * application can continue...
 */

Creating a Light Source and adding it to a Scene
A light source is created by calling RwCreateLight().

if (light = RwCreateLight(rwPOINT,
0.0, 10.0, 0.0, 1.0))

{
/*
 * Since NULL was not returned,
 * the call was successful and the
 * application can continue...
 */

The above code fragment creates a point light source of maximum brightness (1.0)
positioned at (0.0, 10.0, 0.0) in world space.
To add the light to the scene:

RwAddLightToScene(scene, light);

Creating a Clump and adding it to a Scene
A clump is read from a RenderWare script file as follows:

ball = RwReadShape(ball.rwx);
if (ball)
{

 /*
 * Since NULL was not returned,
 * the call was successful and the
 * application can continue...
 */

If the application wishes to replace the surface properties of the clump defined in the script
file it can do so via the RenderWare API functions which deal with polygons and materials:

RwForAllPolygonsInClumpInt(ball,
RwSetPolygonGeometrySampling, rwSOLID);

RwForAllPolygonsInClumpInt(ball,
RwSetPolygonLightSampling, rwVERTEX);

RwForAllPolygonsInClumpReal(ball,
RwSetPolygonAmbient, 0.7);

color.r = 1.0;
color.g = 0.0;
color.b = 1.0;
RwForAllPolygonsInClumpPointer(ball,

RwSetPolygonColorStruct, &color);
The above code fragment sets the geometry sampling type, light sampling type, ambient
reflection coefficient, and color of all the clumps polygons.
To add the clump to the scene:

RwAddClumpToScene(scene, ball);

Rendering a Scene
At some point, the application must render the scene and display the results of that
rendering. Under Windows the application may do this in response to a WM_PAINT message:

case WM_PAINT:
hdc = BeginPaint(window, &ps);

RwBeginCameraUpdate(cam, (void *)window);
RwClearCameraViewport(cam);
RwRenderScene(scene);

RwEndCameraUpdate(cam);
RwShowCameraImage(cam, (void *)hdc);

EndPaint(window, &ps);

Closing the Library
Finally, when all rendering is complete, the RenderWare library is closed:

RwClose();

Error Reporting
RenderWare reports errors by setting a global error status. The majority of API functions
have a distinguished return value which indicates that the global error status has been set
by that function.
The global error status may be interrogated by RwGetError(). This returns E_RW_NOERROR if
no error has occurred. Otherwise, an error code is returned representing the first error
encountered since the global error status was last cleared. The global error code is cleared
to E_RW_NOERROR by calling RwGetError().
The global error status is set when an error occurs and the global error status is
E_RW_NOERROR. The actual error code set indicates the type of the error. Once set, the error
status is not set by any subsequent error until RwGetError() is called. This ensures that the
first error encountered is not over written by subsequent errors
As previously described, the majority of API functions have a distinguished return value
which indicates that the global error status has been set by that function. However, there
are functions where this is not possible. For example, the function RwGetClumpParent() can
return NULL as a legal value (when the clump is the root of a hierarchy). The documentation
for any such function directs the application to call RwGetError() to determine whether an
error occurred.
It is strongly recommend that application programs test the return values of library functions
to check for errors. This is particularly important in the case of RenderWares constructor
functions such as RwCreateMatrix() or RwCreateCamera().
The range of error codes that may be returned by RwGetError() is given in Appendix C.
RenderWare does not include descriptive strings for each error type. Therefore, to determine
the nature of an error it may be necessary to convert a numeric error code into a
description. Appendix C contains a table which maps numeric error codes to error identifiers.
Furthermore, when using the RenderWare debugging kernel, texture messages for each error
generated are issued to the debugging stream. This can be extremely useful in tracking
down errors.
Finally, note that application programs may set RenderWares global error status using
RwSetUserError(). This signals that an error was encountered in an application supplied
call back function. Its primary function is to prematurely terminate the iteration performed
by one of RenderWares RwForAll...() functions.

Debugging
Two forms of the RenderWare library are available. The retail version, with which all final,
retail quality systems should be linked and the debugging version which aids in the
development of RenderWare applications.
Although slower than the retail version, the debugging version performs more error checking
and issues messages to alert the application programmer to potential problems. A set of API
functions are provided to control the type of tracing and debugging information generated.
In the retail version of the library, these functions are simply null operations. Applications
can, therefore, switch between debugging and production libraries by simply re-linking or,
for DLL users, by simply switching DLLs.Debugging messages are associated with three levels of severity:· Informational A control flow annotation.· Warning A recoverable error was encountered.

· Error A fatal error was encountered.
The above are listed in ascending order of severity. The items in the list correspond to values
(rwINFORM, rwWARNING, and rwERROR) of the enumerated type RwDebugSeverity. The
messages dispatched to the debugging stream may be filtered according to their severity by
setting the minimum severity level. For example, setting the severity level to rwWARNING
would filter out informational messages whilst retaining warning and error messages.There are four categories of debugging messages: · Assertion failure messages.· Script trace messages.· Miscellaneous messages.

· API function tracing messages.
All messages share the following format:

RW <severity level> [xx:yyyy:RwFunctionName] <text of the message>
The <xx:yyyy> is a code comprising a two- and four-digit number. This code is of no
significance to the application programmer, but is informative to RenderWares technical
support staff when investigating problems. If the function generating the message is a
RenderWare API function then the function name will also appear in the message. All other
internal functions will have a reported name of    RwInternal.
I. Assertion Failure Messages
These messages report the failure of assertions made within the library functions. For
example, the RwCreateCamera() function asserts that its maximum width and height
arguments should have positive values. If either the width or height is negative the assertion
fails and a message is issued.
An assertion failure message takes one of the following two forms:

RW INFORM [xx:yyyy:RwCreateCamera] ASSERT FAILED
RW WARNING [xx:yyyy:RwCreateCamera] ASSERT FAILED

Assertion failure messages can have either informational or warning level severity.
Assertion failure messages are informative to RenderWares technical support staff but
contain no significant information for the application programmer.
Note that the execution of an API function continues after the detection of an assertion
failure. The debugging version of the library behaves in the same way as the standard
version.
II. Scripting Trace Messages
These messages trace the parsing of a script file. This is useful in finding problems in script
files that fail to load.
The format of a scripting trace message is:

RW INFORM [xx:yyyy] SCRIPT Line <line number>: Parsing <scripting keyword>
For example:

RW INFORM [12:3324] SCRIPT Line:25 Parsing ClumpEnd
Note that scripting trace messages always have severity level rwINFORM.
III. Miscellaneous Messages
Several of the debugging and tracing messages (including all API level errors) fall into this
category. Two examples are:

RW ERROR [15:8463:RwSetLightBrightness] E_RW_INV_LIGHT: Invalid light type
passed to library function

RW INFORM [92:3425:RwCurrentMatrix] RwCurrentMatrix is obsolete. Please use
RwScratchMatrix.

Miscellaneous messages can be of any severity level. API level error messages are always at
severity level rwERROR.
The above message classes can be enabled or disabled individually or collectively. By
default, assertion failure and miscellaneous messages are enabled whilst script trace
messages are disabled.
IV. API Function Tracing Messages
These messages trace function calls made to the RenderWare library. A message for each
entry into and for each exit from an API function is produced.
Example API function tracing messages are:

RW INFORM [92:3425:RwCurrentMatrix] ENTER
RW INFORM [92:3425:RwCurrentMatrix] EXIT

Note that API function tracing messages always have severity level rwINFORM.
Some example scenarios for controlling debugging messages are given below:
Scenario 1: Report Everything

RwSetDebugSeverity(rwINFORM);
RwSetDebugOutputState(rwENABLE);

Scenario 2: Report Only API-level Errors
RwSetDebugSeverity(rwERROR);
RwSetDebugOutputState(rwENABLE);

Scenario 3: Report Only Script Tracing Information
RwSetDebugSeverity(rwINFORM);
RwSetDebugAssertionState(rwDISABLE);
RwSetDebugMessageState(rwDISABLE);
RwSetDebugTraceState(rwENABLE);

Scenario 4: Report All Warnings and Errors
RwSetDebugSeverity(rwWARNING);
RwSetDebugOutputState(rwENABLE);

 This code is only valid when using a floating-point RenderWare library. The macro functions
necessary for correct fixed-point operation have been omitted for clarity.

 RwCreateMatrix() can fail and so its return value should be checked. However, for the sake
of clarity this check can has been omitted.

 The local transformation matrix (LTM) transforms local space into world space. Thus, to find
the world space coordinates of a clump's vertex, transform the position of the vertex by the
LTM.

 RwForAllClumpsInHierarchyInt(), RwForAllClumpsInHierarchyLong(),
RwForAllClumpsInHierarchyReal(), and RwForAllClumpsInHierarchyPointer().

 RwFindClumpInt(), RwFindClumpLong(), RwFindClumpReal(), RwFindClumpPointer().

 Certain versions of RenderWare have platform specific include files. These include files are
not automatically included by rwlib.h. See Appendix B for more information.

 Although these code fragments are taken from an MS Windows 3.1 application the
modifications necessary for other platforms are trivial.

 Subsequent errors are most often the direct result of the first error. Such error cascades are
not significant. The first error encountered is the source of    the problem.

Data Types
The RenderWare library exports a small number of data types and associated functions
which operate there on.
All RenderWare API functions and data types are prefixed with Rw. For example:

RwRenderScene()
RwClump *

All RenderWare enumerated type values are prefixed with rw. For example:
rwWIREFRAME

From the programmers perspective, there are two major categories of data types within the
RenderWare library: public types and opaque types.
Public types may be created and manipulated by the standard C language mechanisms. For
example, a field in an object of the public structure type RwV3d can be set directly:

RwV3d point;
point.x = 1.0;

Unlike instances of the public types, opaque objects, such as matrices, cameras, clumps and
lights, can only be created and accessed by RenderWare API functions which identify those
objects by opaque object pointers. The implementation of opaque types is hidden from the
application programmer in much the same manner as the C language standard library FILE
structure. For example, a field in an object of the opaque type RwClump can only be set with
the appropriate RenderWare API function:

RwClump *clump;

clump = RwCreateClump(10, 10);
RwSetClumpTag(clump, 23);

Related Topics
Public Types
Opaque Types

Public TypesThis category consists of:· Numeric types (such as RwReal and RwInt32).· Structure types (such as RwV3d).· Enumerated types (such as RwCameraProjection).
· Bitfield types (such as RwClumpHints).

Related Topics
Numeric Types
Structure Types
Enumerated Types
Bitfield Types

Numeric Types

Related Topics
RwReal
Integer Types

RwRealRenderWare provides both fixed-point and floating-point libraries. A single data type, RwReal and a set of arithmetic and type conversion macros are provided to allow the development of library numeric type independent programs. The RwReal type should be used to represent real values - those with fractional parts - throughout the code.There are three possible scenarios in which an application program may exploit the RenderWare library.
· If the application is only to be used with the fixed point version of the library, then:

(i) The RenderWare arithmetic macros, e.g., RMul and RAdd, must be used instead of
Cs corresponding arithmetic operators.

(ii) Cs built-in types - int, long, float and double - should be converted to
RenderWares RwReal with the conversion macros, e.g., CREAL and INT2REAL.
Prototypes for RenderWare API functions use RwReal * rather than float *. (iii)RwReal is a 32-bit fixed point number, with a signed twos complement representation.The top 16 bits hold the integer part of a real number whilst the bottom 16 bits hold the fractional part. · If the application program is to be portable across both versions of the library, then points (i)(ii) above apply, but not (iii); in the floating point version of the library. RwReal corresponds to float.

· If the floating point version of the library is to be used exclusively, then:
(iv)RwReal is interpreted by the library as float.
(v) there is no need to use either the conversion macros or the arithmetic macros

However, the conversion and arithmetic macros will perform correctly with the floating
point version of the library and do not incur any run-time performance penalty.
Application programmers are encouraged to apply the macros consistently to facilitate
any future port between fixed and floating-point libraries.
To facilitate the use of the RwReal type, several conversion macros are provided:· CREAL(x) takes an integer or floating-point constant x as an argument and returns an RwReal · INT2REAL(x) takes an int or long variable x as an argument and returns an RwReal· FL2REAL(x) takes a float or double variable x as an argument and returns an RwReal· REAL2INT(x) takes an RwReal variable x as an argument and returns an int
· REAL2FL(x) takes an RwReal variable x as an argument and returns a floatIn addition, there are several arithmetic macros that take RwReal arguments and return an RwReal result:· RAdd(x, y) c.f. x + y· RSub(x, y) c.f. x - y· RMul(x, y) c.f. x * y· RDiv(x, y) c.f. x / y· RAbs(x) c.f. fabs(x)
· RSqrt(x) c.f. sqrt(x)

In floating-point versions of the library, the arithmetic macros handle over- and under-flow
exactly as their C counterparts. In fixed-point versions of the library, RAdd and RSub work
modulo 2^16 - so that overflow results in wrapping; RMul and RDiv return the value of
greatest possible absolute value and correct sign on overflow; RMul returns zero on
underflow whilst RDiv returns the numerator on division by zero.
Note that the arguments passed to the above type conversion and arithmetic macros may
be evaluated multiple times. Therefore, applications should avoid passing arguments that
have evaluation side-effects.
The following code fragment demonstrates the application of some of these macros. It is
compatible with both fixed-and floating-point versions of the library:

#define PI 3.14159265358979323846

RwReal
sinangle(RwReal degrees)
{

RwReal radians;
RwReal sine;

/*
 * Convert to radians.
 */
radians = RMul(degrees, RDiv(CREAL(PI),CREAL(180)));

/*
 * Find sin by call to double sin(double x).
 */
sine = FL2REAL(sin(REAL2FL(radians)));

return sine;
}

The smallest and largest positive real numbers that can be represented are available via the
macros REAL_MIN and REAL_MAX respectively.

Integer Types
RenderWare supports a number of integer types to aid in portability across platforms. These
types are defined as follows:

typedef short RwInt16; /* 16 bit signed integer */
typedef unsigned short RwUInt16; /* 16 bit unsigned integer */
typedef long RwInt32; /* 32 bit signed integer */
typedef unsigned long RwUInt32; /* 32 bit unsigned integer */
typedef RwInt32 RwBool; /* Boolean type */

These types should be used throughout a RenderWare application in preference to their
underlying native type. This is particularly important when building 16-bit RenderWare
applications using either Visual C++ or Borland C++. Certain RenderWare functions, such as
RwGetCameraViewport(), require pointers to RwInt32s or pointers to arrays of RwInt32s. It
is essential in 16-bit environments that the objects passed to these functions are declared
RwInt32 and not int.

Structure Types
Structure types are normal C structures. Their fields can be set and retrieved directly.
Structure types are always passed to RenderWare API functions by reference.

Related Topics
RwV3d
RwUV
RwRect
RwRGBColor
RwPaletteEntry
Pick Related Structures
RwOpenArgument

RwV3d
The type RwV3d represents points and vectors. It is defined as follows:

typedef struct
{

RwReal x, y, z; x, y and z coordinates    of a 3D point or the x, y and z   
components of a 3D vector

} RwV3d;

RwUV
The type RwUV represents the texture coordinates of a vertex. It is defined as follows:

typedef struct
{

RwReal u, v; u and v texture coordinates in the range
CREAL(0.0)...CREAL(32.0)

} RwUV;

RwRect
The type RwRect represents a rectangular region. It is defined as follows:

typedef struct
{

RwInt32 x, y, w, h; x, y - offset; w, h - size

} RwRect;

RwRGBColor
The type RwRGBColor represents RGB color triples. It is defined as follows:

typedef struct
{

RwReal r, g, b; Intensities in the range
CREAL(0.0)...CREAL(1.0)

} RwRGBColor;

RwPaletteEntry
The type RwPaletteEntry represents a palette entry. It is defined as follows:

typedef struct
{

unsigned char r, g, b; Intensities in the range 0 - 255
unsigned char flags; Reserved

}

Pick Related Structures
Applications often need to identify the object lying under a specified position in the cameras
viewport. This can be accomplished with RenderWares pick functions. These return a pointer
to an RwPickRecord structure, which provides information about the object (if any) which
was picked.
A RwPickRecord structure is defined as follows:

typedef struct
{

RwPickObject type; Type of object picked
union
{

RwPickClumpData clump; Picked clump data
RwPickVertexData vertex; Picked vertex data

}object
} RwPickRecord

The type field describes the type of object picked. Depending on the value of this field,
either the clump or vertex pick data records should be examined.
RwPickVertexData and RwPickClumpData are respectively defined as follows:

typedef struct
{

RwInt32 vindex; Index of vertex closest to the pick position
RwInt32 d2; Distance squared (in viewport space units) from the pick

position to closest vertex
} RwPickVertexData;

Fields vindex and d2 specify the index of the closest viewport space vertex to the pick
position and the square of distance (in viewport space units) from that vertex to the actual
pick position.

typedef struct
{

RwClump *clump; Pointer to the clump picked
RwPolygon3d *polygon; Pointer to the polygon picked
RwPickVertexData vertex; Picked vertex data
RwV3d wcpoint; World coordinate of pick position

} RwPickClumpData;
This structure specifies the clump picked, the polygon picked, the vertex picked, and the
pick position on this polygon in world space.

RwOpenArgument
The type RwOpenArgument identifies a library configuration option when opening the library
with the RwOpenExt() API function. It is defined as follows:

typedef struct
{

RwOpenOption option; Option identifier
void *value; Parameter value

} RwOpenArgument;
The field option identifies the open option and value is a device specific parameter
associated with that option. The available options are described in Appendix B.

Enumerated Types
Enumerated types are used when one of a small range of options must be specified. It
should be noted that for all the enumerated types defined by RenderWare, the first value in
the list is reserved to indicate errors.
Where the list of possible options is fixed in a device and platform independent way the C
enum construct defines the enumerated type. However, certain RenderWare enumerated
types have options which are device or platform specific. In those cases the C enum construct
is not adopted. A new type name is introduced based on a C integral type and the values of
the type are defined as macros.

Related Topics
Axis Alignment Type
Camera Projection Type
Combination Type
Debug Severity Type
Debug State Type
Device Action Type
Device Information Type
Error Code Type
Geometry Sampling Type
Light Type
Light Sampling Type
Open Option Type
Pick Object Type
Search Mode Type
Spline Type
Spline Path Type
State Type
System Information Type
Texture Dither Mode Type
User-Draw Types

Axis Alignment Type
Clumps may have their axes aligned with the Look At, Look Right and Look Up vectors of the
camera used to render that clump. This is mainly useful for creating sprites or decals (2D
bitmaps aligned with the viewplane of the viewing camera). However, a clumps axis
alignment type may be used to constrain the motion of any clump. The axis alignment type
is defined as follows:
RwAxisAlignment

rwNAAXISALIGNMENT Error code
rwNOAXISALIGNMENT Do not align the clump with the viewing camera.
rwALIGNAXISZORIENTX

Preserve the horizontal orientation of the clump when
aligning with the viewing camera.

rwALIGNAXISZORIENTY
Preserve the vertical orientation of the clump when
aligning with the viewing camera.

rwALIGNAXISXYZ Align the X, Y and Z axes of the clump with the Look Right,
Look Up and Look At vectors of the viewing    camera.

Camera Projection Type
Cameras project according to either a perspective or parallel model. The projection type is
as follows:
RwCameraProjection

rwNACAMERAPROJECTION
Error code

rwPERSPECTIVE Perspective projection
rwPARALLEL Parallel projection

Combination Type
A combination operator can be applied to several objects, most commonly matrices. The
operator determines the order in which one object is combined with another: pre-
concatenation, post-concatenation, or replacement. The combination operator is as follows:
RwCombineOperation

rwNACOMBINEOPERATION
Error code

rwREPLACE Assignment (replace existing value)
rwPRECONCAT Pre-concatenation
rwPOSTCONCAT Post-concatenation

Debug Severity Type
Debugging or trace messages from debugging libraries are output to a debugging stream.
Each message can be issued at one of three levels of severity: informational, warning or
error. The severity level is as follows:
RwDebugSeverity

rwNADEBUGMESSAGESEVERITY
Error code

rwINFORM Control flow annotation
rwWARNING Non-fatal exception
rwERROR Fatal exception

Debug State Type
Previous versions of RenderWare provided a type (RwDebugState) to explicitly represent the
debug trace state. In RenderWare V1.4 the debug trace state is represented by the new
generic state type RwState. To maintain backwards compatibility RwDebugState has been
retained as a synonym for RwState. As RwDebugState will be removed from the API in the
next release of RenderWare, references to RwDebugState should be replaced by RwState.
RwDebugState is as follows:
RwDebugState

rwNADEBUGMESSAGESTATUS
Error code

rwDISABLE Disable messages
rwENABLE Enable messages

Device Action Type
The RenderWare API function RwDeviceControl() performs device specific actions. Values of
the type RwDeviceAction identify what action RwDeviceControl() performs.
The device information type is as follows:
RwDeviceAction

rwNADEVICEACTION Error code
Specific device drivers may define additional device actions. Appendix B documents any
additional (platform specific) actions.

Device Information Type
The API function RwGetDeviceInfo() returns information about the current RenderWare
device driver. Values of the type RwDeviceInfo identify what device information
RwGetDeviceInfo() returns.
The device information type is as follows:
RwDeviceInfo

rwNADEVICEINFO Error code
rwRENDERDEPTH Current render depth
rwINDEXEDRENDERING

Rendering with an index color scheme (color table) or
direct color.

rwPALETTEBASED Does the output device have a palette that RenderWare
will attempt to modify.

The following options only apply to palette based devices.
rwPALETTE Fetch the RenderWare palette
rwPALETTESIZE The number of entries in the entire palette
rwFIRSTPALETTEENTRY

Index of the first palette entry available for use by an
application

rwLASTPALETTEENTRY Index of the last palette entry available for use by an
application

Specific device drivers may define additional information types. Appendix B documents any
additional (platform specific) options.

Error Code Type
For a full description of the error code type, RwErrorCode, see Appendix C: Error Codes

Geometry Sampling Type
Geometry may be visualised in one of three ways: as a cloud of points representing polygon
vertices, as a wireframe of polygon edges, or as a solid enclosed by filled polygons. The
geometry sampling type is as follows:
RwGeometrySampling

rwNAGEOMETRYSAMPLING
Error code

rwPOINTCLOUD Render vertices
rwWIREFRAME Render edges
rwSOLID Render polygons

Light Type
Lights may be directional, point, or conical sources. The light type is as follows:
RwLightType

rwNALIGHTTYPE Error code
rwDIRECTIONAL Directional light source
rwPOINT Point light source
rwCONICAL Conical light source

Light Sampling Type
The lighting of a polygon in a clump can be calculated in either of two ways: a single lighting
sample per polygon at the polygons center, or several lighting samples per polygon - one at
each polygon vertex. The former is called flat shading (shading is constant over a polygons
entire surface). The latter is called smooth shading (shading may vary over the polygon to
yield an apparently smooth surface). These options may be selected by setting the light
sampling type of a polygons material to rwFACET or rwVERTEX respectively.
The light sampling type is as follows:
RwLightSampling

rwNALIGHTSAMPLING Error code
rwFACET Flat shading
rwVERTEX Smooth shading

Open Option Type
Library configuration options may be specified when opening the library with the
RwOpenExt() API function. Values of the type RwOpenOption identify the various options.
The open options are as follows:
RwOpenOption

rwNAOPENOPTION Error code
rwNOOPENOPTION Null (ignored) option
rwGAMMACORRECT Enable gamma correction

Specific device drivers may define additional open options. Appendix B documents any
additional (platform specific) options.

Pick Object Type
RenderWares pick functions return information about a pick operation in a pick record
(supplied by reference as an argument). The pick type identifies this record as a clump pick
data record, and is as follows:
RwPickObject

rwNAPICKOBJECT No Clump picked
rwPICKCLUMP Clump picked

Search Mode Type
Several API functions operate on the texture dictionary stack. The behavior of some of these,
e.g., RwGetNamedTexture(), is determined by the current search mode. This can have either
of two values: rwLOCAL, specifying a search limited to the top dictionary on the stack or
rwGLOBAL, specifying a search through all dictionaries on the stack. The search mode type is
as follows:
RwSearchMode

rwNASEARCHMODE Error code
rwLOCAL Search locally (top-most dictionary only)
rwGLOBAL Search globally (all dictionaries)

Spline Type
A spline is described by a set of control points through which the spline passes. The spline
can be open or closed. In the former case the curve starts at the first control point and ends
at the last point. In the later case the last point is joined to the first point. The spline type is
as follows:
RwSplineType

rwNASPLINETYPE Error code
rwOPENLOOP Open spline (end points not joined)
rwCLOSEDLOOP Closed spline (end points joined)

RenderWare splines are interpolatory, non-rational, cubic B-splines. The rwOPENLOOP type is
open in having disjoint start and end points whilst the rwCLOSEDLOOP type is closed in
forming a complete circuit.

Spline Path Type
Once created, a spline can be sampled as a parametric curve. Points on the spline may be
computed by specifying a parameter in the range [CREAL(0.0) - CREAL(1.0)]. The spline
path type specifies the manner of interpolation. An rwSMOOTH path is interpolated uniformly
across the range, whilst a rwNICEENDS path will have zero differential at its ends. The spline
path type is as follows:
RwSplinePath

rwNASPLINEPATHTYPE Error code
rwSMOOTH Uniform interpolation across the range.
rwNICEENDS Zero differential at ends.

State Type
This is a generic state type. It is used whenever an attribute can be switched on or off. The
state type is as follows:
RwState

rwNASTATE Error code
rwOFF Object is turned off
rwON Object is turned on

System Information Type
The API function RwGetSystemInfo() returns information about the current RenderWare
library. Values of the type RwSystemInfo identify the information returned by
RwGetSystemInfo().
The system information type is as follows:
RwSystemInfo

rwNASYSTEMINFO Error code
rwVERSIONSTRING A string including major and minor version numbers and

the release string
rwVERSIONMAJOR The major version number of the library
rwVERSIONMINOR The minor version number of the library
rwVERSIONRELEASE A string identifying a particular release of RenderWare
rwFIXEDPOINTLIB Does the current library using fixed-point numerics
rwDEBUGGINGLIB Does the current library use the RenderWare debugging

kernel

Texture Dither Mode Type
The RwTextureDitherMode type controls whether the apparent color resolution of textures
should be enhanced by dithering. It is important to note that textures are dithered when
being read but not during rendering. These flags, therefore, only apply when a texture is first
read from disk.
Dithering is only appropriate if the texture being read has not already been dithered.
Previous versions of RenderWare attempted to avoid re-dithering by examining the size and
depth of the texture being read. If the texture did not have to be resized and was already of
the correct depth then it would not be dithered. Otherwise was dithering was performed.
Current versions of RenderWare provide finer grain control over texture dithering. There are
three texture dithering modes; rwDITHERON forces textures to be dithered when loaded,
rwDITHEROFF prevents textures from being dithered and rwAUTODITHER provides backwards
compatibility by deciding whether to dither according to the size and depth of the image
read.
The texture dither mode is as follows:
RwTextureDitherMode

rwNATEXTUREDITHER Error code
rwDITHERON Always dither
rwDITHEROFF Never dither
rwAUTODITHER Dither if necessary

User-Draw Types
An application may supplement the image generated by RenderWares 3D rendering with 2D
graphics such as labels. Such composition is supported via call-back functions known as
User-Draws. The enumerated type RwUserDrawType represents the alignment of the user-
draw object relative to the associated RenderWare object. A user-draw object may be aligned
with the origin of the owning clump, with a vertex of the owning clump, with the bounding
box of the owning clump or with a cameras viewport. The user-draw type is defined as
follows:
RwUserDrawType

rwNAUSERDRAWTYPE Error code
rwCLUMPALIGN Align to a clumps origin
rwVERTEXALIGN Align to a clumps vertex
rwBBOXALIGN Align to a clumps viewport bounding box
rwVPALIGN Align to a cameras viewport

Bitfield Types
Like enumerated types, bitfields are used when selecting from a small number of
alternatives. Unlike enumerated types, however, bitfields allow the selection of several
independent options simultaneously.
The bitfield types can be manipulated with the C bitwise manipulation operators: | (or), &
(and), ~ (not) and ^ (xor). Furthermore, 0 is a valid value for any bitfield and indicates that
none of the available options have been selected.

Related Topics
Raster Options
Palette Options
Clump Hints
Texture Modes
UserDraw Alignments

Raster Options
The bitfield type RwRasterOptions controls several aspects of raster loading, these options
being resizing, dithering and gamma correction. These options are specified when loading a
raster with RwReadRaster() or when creating a raster from a platform specific bitmap with
RwBitmapRaster().
To understand the effect of raster options, the size and depth constraints of rasters should
be appreciated. The depth of a raster is always equal to RenderWares current rendering
depth (8 or 16 bit in version 1.4). If the source of a raster (either a bitmap file or a platform
specific bitmap object) is of a different depth to the rendering depth, the source pixels will
be converted to that depth. Furthermore, if a raster is to be employed as the pixel source for
a texture map it may have to be changed in size. Single frame texture maps have a fixed
width and height of 128 pixels. Multi-frame texture maps have a fixed width of 128 pixels
and a height of n * 128 pixels (where n is the number of frames).
The raster options are as follows:
rwFITRASTER will resize the raster to texture map dimensions. Specify this option if the
raster is to be selected into a texture with RwCreateTexture() or RwSetTextureRaster().
rwGAMMARASTER will gamma correct the raster. Do not specify this option if the source of the
raster has already been gamma corrected.
rwAUTODITHERRASTER dithers a raster only if it has been resized (the source bitmap was not
of texture map size and rwFITIMAGE was specified) or changed in depth. This option mirrors
the rwAUTODITHER texture dither mode. rwAUTODITHERRASTER must not be specified with
rwDITHERRASTER.
rwDITHERASTER forces dithering of a raster. If neither rwAUTODITHERRASTER nor
rwDITHERRASTER is specified the raster will not be dithered.
RwRasterOptions

rwAUTODITHERRASTER
Dither the raster if necessary

rwDITHERRASTER Dither the raster
rwFITRASTER Resize the raster to the appropriate size for a texture
rwGAMMARASTER Gamma correct the raster

Palette Options
The bitfield type RwPaletteOptions specifies the options that can be performed when
setting the palette entries.
The palette options are as follows:
rwGAMMAPALETTE will gamma correct the palette. Do not specify this option if the source of
the palette has already been gamma corrected. This option will normally be used when
reading the palette from a bitmap which will be loaded via RwReadRaster() with the
corresponding rwGAMMARASTER option set.
RwPaletteOptions

rwGAMMAPALETTE Gamma correct the palette.

Clump Hints
The bitfield type RwClumpHints optimizes rendering by passing hints to RenderWare about
the nature of a clump and the environment in which it is to be rendered.
The clump hints are as follows:
rwCONTAINER marks the clump as a container - a clump which spatially contains other
clumps. For example, a clump representing a room should normally have the rwCONTAINER
hint set.
rwHS specifies that hidden surfaces should be removed when the clump is rendered.
rwEDITABLE marks the clump as being editable (its vertices may be moved and new vertices
and polygons added).
RwClumpHints

rwCONTAINER Clump is a container
rwHS Apply hidden surface removal to the clump
rwEDITABLE Clumps geometry may be edited

Texture Modes
The bitfield type RwTextureModes provides fine grain control over the rendering of textures.
Three textures modes are defined: rwLIT, rwFORESHORTEN and rwFILTER.
If rwLIT is specified, the associated texture will be lit according to the current light sampling
type of the material (rwFACET or rwVERTEX). If it is not specified, the texture will not be
affected by lighting; its luminance will be as tabulated in the textures bitmap data.
rwFORESHORTEN controls the interpolation of texture coordinates. A texture image is applied
by assigning a texel color to each pixel within a projected polygon from an associated
position within that image. This position is specified by a pair of texture coordinates,
conventionally called (u, v). These coordinates are each in the range [0.0 - 32.0] and
measure how far to the right and below the upper left corner of the image (respectively) to
take the texel color. Each vertex in a clump may be assigned a pair of texture coordinates. A
textured image is "wrapped" over a polygon by interpolating texture coordinates defined at
the vertices over the polygon's projection.
By default, the texture coordinates specified at the vertices are interpolated bilinearly over
the screen projection of a polygon. This method of texture coordinate interpolation is
analogous to the luminance interpolation of Gouraud shading, and gives high speed
performance. For perspective views however, this bilinear interpolation is only
mathematically correct if the polygon is at a constant depth from - and therefore lies in a
plane parallel to -- the view plane. The bilinear screen space interpolation of texture
coordinates over the projection of a polygon which is not parallel to the view plane will "drift"
away from their true values when the interpolation is distant from the projected vertices,
although the interpolation always synchronizes with exact values at the vertices. Such
inaccuracies are often negligible, but can be noticeable if a polygon extends over a
significant depth range relative to the screen or projects to a large screen area. A large
depth range introduces inaccuracies into the bilinear interpolation, whilst a large projected
area allows plenty of screen "real estate" away from vertices over which these may
accumulate. Such inaccuracies manifest themselves by the applied texture not being
foreshortened as would be expected in a perspective image.
The rwFORESHORTEN texture mode will ensure that exact texture coordinates are interpolated
over the entire screen projection of a polygon, thereby rendering the expected
foreshortening. However, the arithmetic underlying this interpolation can be significantly
more involved than that for bilinear interpolation. The indiscriminate application of this
texture mode can degrade performance to an unacceptable level. The rwFORESHORTEN
texture mode should only applied when texturing polygons for which bilinear interpolation is
significantly inaccurate -- those extending over a significant depth range relative to the
screen plane and projecting to a large screen area. The interpolation adopted in the
rwFORESHORTEN texture mode has been optimized for polygons projecting to a large screen
area, so that visual and performance integrity may be ensured simultaneously.
The rwFILTER texture mode reduces texture aliasing artifacts arising from extreme
texellation to make the texture map appear more continuous. By default, when "zooming in"
to a textured polygon, the square texel boundaries become clearly visible, emphasizing
discrete texel steps in the texture map. The texture map may be made to appear more
continuous and hence realistic, since such sharp transitions tend not to occur in real world
texture detail, by applying the rwFILTER texture mode. This mode smoothes the transition
between adjacent texels to reduce the sharp edges which would otherwise appear.
RwTextureModes

rwLIT Texture is illuminated by light sources.
rwFORESHORTEN Texture is foreshortened in a perspectively correct manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.

UserDraw Alignments
The bitfield type RwUserDrawAlignmentTypes controls the justification of a user draw
relative to the object with which it is associated - clump vertex, clump bounding box, clump
origin or camera viewport. The four options, rwALIGNTOP, rwALIGNBOTTOM, rwALIGNLEFT and
rwALIGNRIGHT, respectively justify the top, bottom, left or right edge of a user draw with the
associated object. These options may be combined; for example, specifying rwALIGNTOP |
rwALIGNLEFT, will align the top left hand corner of the user draw with the associated object.
Two simplification options are provided for common types of alignment, rwALIGNTOPLEFT
and rwALIGNBOTTOMRIGHT. Specifying both rwALIGNTOP and rwALIGNBOTTOM is not permitted.
Specifying both rwALIGNLEFT and rwALIGNRIGHT is not permitted. If no options are selected
the user draw will be centered about the associated object.
RwUserDrawAlignmentTypes

rwALIGNTOP Align to top edge
rwALIGNBOTTOM Align to bottom edge
rwALIGNLEFT Align to left edge
rwALIGNRIGHT Align to right edge
rwALIGNTOPLEFT Align to top and left edges
rwALIGNBOTTOMRIGHT Align to bottom and right edges

Opaque Types
Most RenderWare objects are opaque - their implementation is hidden from the user. These
objects are created by RenderWare API functions which return pointers thereto. Such opaque
objects can only be accessed through RenderWare API functions. These functions require
that the target object is identified by its opaque object pointer. As such, opaque objects are
similar to the C standard library FILE structure.
The opaque object types are:

RwCamera * A camera
RwClump * A collection of polygons and vertices
RwLight * A light
RwMaterial * A set of attributes defining a surface material
RwMatrix4d * A 4 x 4 transformation matrix
RwPolygon3d * A polygon
RwRaster * A bitmap (used by textures or as a camera backdrop)
RwScene * A scene
RwSpline * A spline
RwTexture * A texture (single or multi-frame)
RwUserDraw * A 2D, application drawn object

 Fixed-point compatibility macros omitted for clarity.

 Error checking omitted for clarity.

 Previous versions of RenderWare included a second real number type, RPARAM. However,
with this release of RenderWare RPARAM has been removed and all real numbers are
repredented by the RwReal    type. References to RPARAM should be removed from all code.

Function Index Alphabetically   
RwAddChildToClump()
RwAddClumpToScene()
RwAddHint()
RwAddHintToClump()
RwAddLightToScene()
RwAddPolygonsToClump()
RwAddPolygonToClump()
RwAddTextureModeToMaterial()
RwAddTextureModeToPolygon()
RwAddTextureModeToSurface()
RwAddUserDrawToClump()
RwAddVector()
RwAddVertexToClump()
RwBeginCameraUpdate()
RwBitmapRaster()
RwBlock()
RwCalculateClumpVertexNormal()
RwClearCameraViewport()
RwClose()
RwCloseDebugStream()
RwClumpBegin()
RwClumpDistance()
RwClumpEnd()
RwCone()
RwCopyMaterial()
RwCopyMatrix()
RwCreateCamera()
RwCreateClump()
RwCreateLight()
RwCreateMaterial()
RwCreateMatrix()
RwCreateRaster()
RwCreateScene()
RwCreateSpline()
RwCreateSprite()
RwCreateTexture()
RwCreateUserDraw()
RwCrossProduct()
RwCubicTexturizeClump()
RwCurrentMaterial()
RwCylinder()
RwDamageCameraViewport()
RwDefaultScene()
RwDestroyCamera()
RwDestroyClump()
RwDestroyLight()
RwDestroyMaterial()
RwDestroyMatrix()
RwDestroyPolygon()
RwDestroyRaster()
RwDestroyScene()
RwDestroySpline()
RwDestroyTexture()

RwDestroyUserDraw()
RwDeviceControl()
RwDisc()
RwDotProduct()
RwDuplicateCamera()
RwDuplicateClump()
RwDuplicateLight()
RwDuplicateMaterial()
RwDuplicateMatrix()
RwDuplicateRaster()
RwDuplicateSpline()
RwDuplicateUserDraw()
RwEndCameraUpdate()
RwEnvMapClump()
RwFindClump()
RwFindClumpInt()
RwFindClumpLong()
RwFindClumpReal()
RwFindClumpPointer()
RwFindNamedTexture()
RwFindTaggedClump()
RwFindTaggedPolygon()
RwForAllClumpsInHierarchy()
RwForAllClumpsInHierarchyInt()
RwForAllClumpsInHierarchyLong()
RwForAllClumpsInHierarchyReal()
RwForAllClumpsInHierarchyPointer()
RwForAllClumpsInScene()
RwForAllClumpsInSceneInt()
RwForAllClumpsInSceneLong()
RwForAllClumpsInSceneReal()
RwForAllClumpsInScenePointer()
RwForAllLightsInScene()
RwForAllLightsInSceneInt()
RwForAllLightsInSceneLong()
RwForAllLightsInSceneReal()
RwForAllLightsInScenePointer()
RwForAllNamedTextures()
RwForAllNamedTexturesInt()
RwForAllNamedTexturesLong()
RwForAllNamedTexturesReal()
RwForAllNamedTexturesPointer()
RwForAllPolygonsInClump()
RwForAllPolygonsInClumpInt()
RwForAllPolygonsInClumpLong()
RwForAllPolygonsInClumpReal()
RwForAllPolygonsInClumpPointer()
RwForAllUserDrawsInClump()
RwForAllUserDrawsInClumpInt()
RwForAllUserDrawsInClumpLong()
RwForAllUserDrawsInClumpReal()
RwForAllUserDrawsInClumpPointer()
RwGetCameraBackColor()
RwGetCameraBackdrop()
RwGetCameraBackdropOffset()

RwGetCameraBackdropViewportRect()
RwGetCameraData()
RwGetCameraFarClipping()
RwGetCameraImage()
RwGetCameraLookAt()
RwGetCameraLookRight()
RwGetCameraLookUp()
RwGetCameraLTM()
RwGetCameraNearClipping()
RwGetCameraPosition()
RwGetCameraProjection()
RwGetCameraViewOffset()
RwGetCameraViewport()
RwGetCameraViewportRaster()
RwGetCameraViewwindow()
RwGetClumpAxisAlignment()
RwGetClumpBBox()
RwGetClumpData()
RwGetClumpHints()
RwGetClumpJointMatrix()
RwGetClumpLocalBBox()
RwGetClumpLTM()
RwGetClumpMatrix()
RwGetClumpNumChildren()
RwGetClumpNumPolygons()
RwGetClumpNumUserDraws()
RwGetClumpNumVertices()
RwGetClumpOrigin()
RwGetClumpOwner()
RwGetClumpParent()
RwGetClumpRoot()
RwGetClumpState()
RwGetClumpTag()
RwGetClumpVertex()
RwGetClumpVertexNormal()
RwGetClumpVertexUV()
RwGetClumpVertexViewportPosition()
RwGetClumpViewportRect()
RwGetDebugAssertionState()
RwGetDebugMessageState()
RwGetDebugScriptState()
RwGetDebugSeverity()
RwGetDebugTraceState()
RwGetDeviceInfo()
RwGetError()
RwGetFirstChildClump()
RwGetInternalError()
RwGetLightBrightness()
RwGetLightColor()
RwGetLightConeAngle()
RwGetLightData()
RwGetLightLTM()
RwGetLightOwner()
RwGetLightPosition()
RwGetLightState()

RwGetLightType()
RwGetLightVector()
RwGetMaterialAmbient()
RwGetMaterialColor()
RwGetMaterialDiffuse()
RwGetMaterialGeometrySampling()
RwGetMaterialLightSampling()
RwGetMaterialOpacity()
RwGetMaterialSpecular()
RwGetMaterialTexture()
RwGetMaterialTextureModes()
RwGetMatrixElement()
RwGetMatrixElements()
RwGetNamedTexture()
RwGetNextClump()
RwGetNumNamedTextures()
RwGetPaletteEntries()
RwGetPolygonAmbient()
RwGetPolygonCenter()
RwGetPolygonColor()
RwGetPolygonData()
RwGetPolygonDiffuse()
RwGetPolygonGeometrySampling()
RwGetPolygonLightSampling()
RwGetPolygonMaterial()
RwGetPolygonNormal()
RwGetPolygonNumSides()
RwGetPolygonOpacity()
RwGetPolygonOwner()
RwGetPolygonSpecular()
RwGetPolygonTag()
RwGetPolygonTexture()
RwGetPolygonTextureModes()
RwGetPolygonUV()
RwGetPolygonVertices()
RwGetRasterData()
RwGetRasterDepth()
RwGetRasterHeight()
RwGetRasterPixels()
RwGetRasterStride()
RwGetRasterWidth()
RwGetSceneData()
RwGetSceneNumClumps()
RwGetSceneNumLights()
RwGetShapePath()
RwGetSplineData()
RwGetSplineNumPoints()
RwGetSplinePoint()
RwGetSystemInfo()
RwGetTextureData()
RwGetTextureDictSearchMode()
RwGetTextureDithering()
RwGetTextureFrame()
RwGetTextureFrameStep()
RwGetTextureGammaCorrection()

RwGetTextureName()
RwGetTextureNumFrames()
RwGetTextureRaster()
RwGetUserDrawAlignment()
RwGetUserDrawCallback()
RwGetUserDrawData()
RwGetUserDrawOffset()
RwGetUserDrawOwner()
RwGetUserDrawParentAlignment()
RwGetUserDrawSize()
RwGetUserDrawType()
RwGetUserDrawVertexIndex()
RwHemisphere()
RwIdentityCTM()
RwIdentityJointTM()
RwIdentityMatrix()
RwInclude()
RwIncludeGeometry()
RwInvalidateCameraViewport()
RwInvertMatrix()
RwJointTransformBegin()
RwJointTransformEnd()
RwMaskTexture()
RwMaterialBegin()
RwMaterialEnd()
RwModelBegin()
RwModelEnd()
RwMultiplyMatrix()
RwNormalize()
RwNormalizeClump()
RwOpen()
RwOpenDebugStream()
RwOpenExt()
RwOrthoNormalizeMatrix()
RwPanCamera()
RwPickClump()
RwPickScene()
RwPointCamera()
RwPolygon()
RwPolygonExt()
RwPopCurrentMaterial()
RwPopScratchMatrix()
RwProtoBegin()
RwProtoEnd()
RwProtoInstance()
RwProtoInstanceGeometry()
RwPushCurrentMaterial()
RwPushScratchMatrix()
RwQuad()
RwQuadExt()
RwQueryRotateMatrix()
RwRandom()
RwReadMaskRaster()
RwReadNamedTexture()
RwReadRaster()

RwReadShape()
RwReadTexture()
RwReleaseRasterPixels()
RwRemoveChildFromClump()
RwRemoveClumpFromScene()
RwRemoveHint()
RwRemoveHintFromClump()
RwRemoveLightFromScene()
RwRemoveTextureModeFromMaterial()
RwRemoveTextureModeFromPolygon()
RwRemoveTextureModeFromSurface()
RwRemoveUserDrawFromClump()
RwRenderClump()
RwRenderScene()
RwResetCamera()
RwReversePolygonFace()
RwRevolveCamera()
RwRotateCTM()
RwRotateJointTM()
RwRotateMatrix()
RwRotateMatrixCos()
RwScaleCTM()
RwScaleMatrix()
RwScaleVector()
RwScratchMatrix()
RwSetAxisAlignment()
RwSetCameraBackColor()
RwSetCameraBackColorStruct()
RwSetCameraBackdrop()
RwSetCameraBackdropOffset()
RwSetCameraBackdropViewportRect()
RwSetCameraData()
RwSetCameraFarClipping()
RwSetCameraLookAt()
RwSetCameraLookUp()
RwSetCameraNearClipping()
RwSetCameraPosition()
RwSetCameraProjection()
RwSetCameraViewOffset()
RwSetCameraViewport()
RwSetCameraViewwindow()
RwSetClumpAxisAlignment()
RwSetClumpData()
RwSetClumpHints()
RwSetClumpState()
RwSetClumpTag()
RwSetClumpVertex()
RwSetClumpVertexNormal()
RwSetClumpVertexUV()
RwSetClumpVertices()
RwSetDebugAssertionState()
RwSetDebugMessageState()
RwSetDebugOutputState()
RwSetDebugScriptState()
RwSetDebugSeverity()

RwSetDebugStream()
RwSetDebugTraceState()
RwSetHints()
RwSetLightBrightness()
RwSetLightColor()
RwSetLightColorStruct()
RwSetLightConeAngle()
RwSetLightData()
RwSetLightPosition()
RwSetLightState()
RwSetLightVector()
RwSetMaterialAmbient()
RwSetMaterialColor()
RwSetMaterialColorStruct()
RwSetMaterialDiffuse()
RwSetMaterialGeometrySampling()
RwSetMaterialLightSampling()
RwSetMaterialOpacity()
RwSetMaterialSpecular()
RwSetMaterialSurface()
RwSetMaterialTexture()
RwSetMaterialTextureModes()
RwSetMatrixElement()
RwSetMatrixElements()
RwSetPaletteEntries()
RwSetPolygonAmbient()
RwSetPolygonColor()
RwSetPolygonColorStruct()
RwSetPolygonData()
RwSetPolygonDiffuse()
RwSetPolygonGeometrySampling()
RwSetPolygonLightSampling()
RwSetPolygonMaterial()
RwSetPolygonOpacity()
RwSetPolygonSpecular()
RwSetPolygonSurface()
RwSetPolygonTag()
RwSetPolygonTexture()
RwSetPolygonTextureModes()
RwSetPolygonUV()
RwSetRasterData()
RwSetSceneData()
RwSetShapePath()
RwSetSplineData()
RwSetSplinePoint()
RwSetSurface()
RwSetSurfaceAmbient()
RwSetSurfaceColor()
RwSetSurfaceDiffuse()
RwSetSurfaceGeometrySampling()
RwSetSurfaceLightSampling()
RwSetSurfaceOpacity()
RwSetSurfaceSpecular()
RwSetSurfaceTexture()
RwSetSurfaceTextureExt()

RwSetSurfaceTextureModes()
RwSetTag()
RwSetTextureData()
RwSetTextureDictSearchMode()
RwSetTextureDithering()
RwSetTextureFrame()
RwSetTextureFrameStep()
RwSetTextureGammaCorrection()
RwSetTextureRaster()
RwSetUserDrawAlignment()
RwSetUserDrawCallback()
RwSetUserDrawData()
RwSetUserDrawOffset()
RwSetUserDrawParentAlignment()
RwSetUserDrawSize()
RwSetUserDrawType()
RwSetUserDrawVertexIndex()
RwSetUserError()
RwShowCameraImage()
RwSphere()
RwSphericalTexturizeClump()
RwSplinePoint()
RwSplineTransform()
RwSRandom()
RwSubtractVector()
RwTextureDictBegin()
RwTextureDictEnd()
RwTextureNextFrame()
RwTiltCamera()
RwTransformBegin()
RwTransformCamera()
RwTransformCameraOrientation()
RwTransformClump()
RwTransformClumpJoint()
RwTransformCTM()
RwTransformEnd()
RwTransformJointTM()
RwTransformLight()
RwTransformMatrix()
RwTransformPoint()
RwTransformVector()
RwTranslateCTM()
RwTranslateMatrix()
RwTriangle()
RwTriangleExt()
RwUndamageCameraViewport()
RwVCMoveCamera()
RwVertex()
RwVertexExt()
RwWCMoveCamera()
RwWriteShape()

Function Index by Category

Related Topics
Camera Functions
Clump Functions
Debug Functions
Error Functions
Light Functions
Material Functions
Matrix Functions
Object Builder Functions
Point / Vector Functions
Polygon Functions
Raster Functions
Scene Functions
Shape Functions
Spline Functions
Texture Functions
User Draw Functions
Other Functions

Camera Functions
RwBeginCameraUpdate() Changed
RwClearCameraViewport()
RwCreateCamera()
RwDamageCameraViewport()
RwDestroyCamera()
RwDuplicateCamera()
RwEndCameraUpdate()
RwGetCameraBackColor()
RwGetCameraBackdrop()
RwGetCameraBackdropOffset()
RwGetCameraBackdropViewportRect()
RwGetCameraData()
RwGetCameraFarClipping()    New
RwGetCameraImage()
RwGetCameraLTM() New
RwGetCameraLookAt()
RwGetCameraLookRight()
RwGetCameraLookUp()
RwGetCameraNearClipping()
RwGetCameraPosition()
RwGetCameraProjection()
RwGetCameraViewOffset()
RwGetCameraViewport()
RwGetCameraViewportRaster()
RwGetCameraViewwindow()
RwInvalidateCameraViewport()
RwPanCamera()
RwPointCamera()
RwResetCamera()
RwRevolveCamera()
RwSetCameraBackColor()
RwSetCameraBackColorStruct()
RwSetCameraBackdrop()
RwSetCameraBackdropOffset()
RwSetCameraBackdropViewportRect()
RwSetCameraData()
RwSetCameraFarClipping() New
RwSetCameraLookAt()
RwSetCameraLookUp()
RwSetCameraNearClipping()
RwSetCameraPosition()
RwSetCameraProjection()
RwSetCameraViewOffset()
RwSetCameraViewport()
RwSetCameraViewwindow()
RwShowCameraImage() Changed
RwTiltCamera()
RwTransformCamera() Changed
RwTransformCameraOrientation()
RwUndamageCameraViewport()
RwVCMoveCamera()
RwWCMoveCamera()

Clump Functions
RwAddChildToClump()
RwAddHintToClump()
RwAddPolygonsToClump()
RwAddPolygonToClump()
RwAddVertexToClump()
RwCalculateClumpVertexNormal()
RwClumpDistance()
RwCreateClump()
RwCreateSprite()
RwCubicTexturizeClump()
RwDestroyClump()
RwDuplicateClump()
RwEnvMapClump()
RwFindClump()
RwFindClumpInt()
RwFindClumpLong() Obsolete
RwFindClumpPointer()
RwFindClumpReal()
RwFindTaggedClump()
RwForAllClumpsInHierarchy()
RwForAllClumpsInHierarchyInt()
RwForAllClumpsInHierarchyLong() Obsolete
RwForAllClumpsInHierarchyPointer()
RwForAllClumpsInHierarchyReal()
RwForAllPolygonsInClump()
RwForAllPolygonsInClumpInt()
RwForAllPolygonsInClumpLong() Obsolete
RwForAllPolygonsInClumpPointer()
RwForAllPolygonsInClumpReal()
RwGetClumpAxisAlignment()
RwGetClumpBBox()
RwGetClumpData()
RwGetClumpHints()
RwGetClumpJointMatrix()
RwGetClumpLocalBBox() New
RwGetClumpLTM()
RwGetClumpMatrix()
RwGetClumpNumChildren()
RwGetClumpNumPolygons()
RwGetClumpNumVertices()
RwGetClumpOrigin()
RwGetClumpOwner()
RwGetClumpParent()
RwGetClumpRoot()
RwGetClumpState()
RwGetClumpTag()
RwGetClumpVertex()
RwGetClumpVertexNormal()
RwGetClumpVertexUV()
RwGetClumpVertexViewportPosition()
RwGetClumpViewportRect()
RwGetFirstChildClump()
RwGetNextClump()

RwNormalizeClump()
RwPickClump()
RwRemoveChildFromClump()
RwRemoveHintFromClump()
RwRenderClump()
RwSetClumpAxisAlignment()
RwSetClumpData()
RwSetClumpHints()
RwSetClumpState()
RwSetClumpTag()
RwSetClumpVertex()
RwSetClumpVertexNormal()
RwSetClumpVertexUV()
RwSetClumpVertices()
RwSphericalTexturizeClump()
RwTransformClump()
RwTransformClumpJoint()

Debug Functions
RwCloseDebugStream()
RwGetDebugAssertionState() Changed
RwGetDebugMessageState() Changed
RwGetDebugScriptState() Changed
RwGetDebugSeverity()
RwGetDebugTraceState() New
RwOpenDebugStream()
RwSetDebugAssertionState() Changed
RwSetDebugMessageState() Changed
RwSetDebugOutputState() Changed
RwSetDebugScriptState() Changed
RwSetDebugSeverity()
RwSetDebugStream() NonDLL
RwSetDebugTraceState() New

Error Functions
RwGetError()
RwGetInternalError()
RwSetUserError()

Light Functions
RwCreateLight()
RwDestroyLight()
RwDuplicateLight()
RwGetLightBrightness()
RwGetLightColor() New
RwGetLightConeAngle()
RwGetLightData()
RwGetLightOwner()
RwGetLightPosition()
RwGetLightState()
RwGetLightType()
RwGetLightVector()
RwSetLightBrightness()
RwSetLightColor() New
RwSetLightColorStruct() New
RwSetLightConeAngle()
RwSetLightData()
RwGetLightLTM() New
RwSetLightPosition()
RwSetLightState()
RwSetLightVector()
RwTransformLight() Changed

Material Functions
RwAddTextureModeToMaterial()
RwCopyMaterial()
RwCreateMaterial()
RwCurrentMaterial()
RwDestroyMaterial()
RwDuplicateMaterial()
RwGetMaterialAmbient()
RwGetMaterialColor()
RwGetMaterialDiffuse()
RwGetMaterialGeometrySampling()
RwGetMaterialLightSampling()
RwGetMaterialOpacity()
RwGetMaterialSpecular()
RwGetMaterialTexture()
RwGetMaterialTextureModes()
RwPopCurrentMaterial()
RwPushCurrentMaterial()
RwRemoveTextureModeFromMaterial()
RwSetMaterialAmbient()
RwSetMaterialColor()
RwSetMaterialColorStruct()
RwSetMaterialDiffuse()
RwSetMaterialGeometrySampling()
RwSetMaterialLightSampling()
RwSetMaterialOpacity()
RwSetMaterialSpecular()
RwSetMaterialSurface()
RwSetMaterialTexture()
RwSetMaterialTextureModes()

Matrix Functions
RwCopyMatrix()
RwCreateMatrix()
RwDestroyMatrix()
RwDuplicateMatrix()
RwGetMatrixElement()
RwGetMatrixElements()
RwIdentityMatrix()
RwInvertMatrix()
RwMultiplyMatrix()
RwOrthoNormalizeMatrix()
RwPopScratchMatrix()
RwPushScratchMatrix()
RwQueryRotateMatrix()
RwRotateMatrix()
RwRotateMatrixCos()
RwScaleMatrix()
RwScratchMatrix()
RwSetMatrixElement()
RwSetMatrixElements()
RwTransformMatrix()
RwTranslateMatrix()

Object Builder Functions
RwAddHint()
RwBlock()
RwClumpBegin()
RwClumpEnd()
RwCone()
RwCylinder()
RwDisc()
RwHemisphere()
RwIdentityCTM()
RwIdentityJointTM()
RwInclude()
RwIncludeGeometry()
RwJointTransformBegin()
RwJointTransformEnd()
RwMaterialBegin()
RwMaterialEnd()
RwModelBegin()
RwModelEnd()
RwPolygon()
RwPolygonExt()
RwProtoBegin()
RwProtoEnd()
RwProtoInstance()
RwProtoInstanceGeometry()
RwQuad()
RwQuadExt()
RwRemoveHint()
RwRotateCTM()
RwRotateJointTM()
RwScaleCTM()
RwSetAxisAlignment()
RwSetHints()
RwSetSurface()
RwSetSurfaceAmbient()
RwSetSurfaceColor()
RwSetSurfaceDiffuse()
RwSetSurfaceGeometrySampling()
RwSetSurfaceLightSampling()
RwSetSurfaceOpacity()
RwSetSurfaceSpecular()
RwSetSurfaceTexture()
RwSetSurfaceTextureExt()
RwSetSurfaceTextureModes() 3
RwSetTag()
RwSphere()
RwTransformBegin()
RwTransformCTM()
RwTransformEnd()
RwTransformJointTM()
RwTranslateCTM()
RwTriangle()
RwTriangleExt()
RwVertex()

RwVertexExt()

Point / Vector Functions
RwAddVector()
RwCrossProduct()
RwDotProduct()
RwNormalize()
RwScaleVector()
RwSubtractVector()
RwTransformPoint()
RwTransformVector()

Polygon Functions
RwAddTextureModeToPolygon()
RwDestroyPolygon()
RwFindTaggedPolygon()
RwGetPolygonAmbient()
RwGetPolygonCenter()
RwGetPolygonColor()
RwGetPolygonData()
RwGetPolygonDiffuse()
RwGetPolygonGeometrySampling()
RwGetPolygonLightSampling()
RwGetPolygonMaterial()
RwGetPolygonNormal()
RwGetPolygonNumSides()
RwGetPolygonOpacity()
RwGetPolygonOwner()
RwGetPolygonSpecular()
RwGetPolygonTag()
RwGetPolygonTexture()
RwGetPolygonTextureModes()
RwGetPolygonUV()
RwGetPolygonVertices()
RwRemoveTextureModeFromPolygon()
RwReversePolygonFace()
RwSetPolygonAmbient()
RwSetPolygonColor()
RwSetPolygonColorStruct()
RwSetPolygonData()
RwSetPolygonDiffuse()
RwSetPolygonGeometrySampling()
RwSetPolygonLightSampling()
RwSetPolygonMaterial()
RwSetPolygonOpacity()
RwSetPolygonSpecular()
RwSetPolygonSurface()
RwSetPolygonTag()
RwSetPolygonTexture()
RwSetPolygonTextureModes()
RwSetPolygonUV()

Raster Functions
RwBitmapRaster() Changed
RwCreateRaster()
RwDestroyRaster()
RwDuplicateRaster()
RwGetRasterData()
RwGetRasterDepth()
RwGetRasterHeight()
RwGetRasterPixels() Changed
RwGetRasterStride()
RwGetRasterWidth()
RwReadMaskRaster()
RwReadRaster()
RwReleaseRasterPixels() New
RwSetRasterData()

Scene Functions
RwAddClumpToScene()
RwAddLightToScene()
RwCreateScene()
RwDefaultScene()
RwDestroyScene()
RwForAllClumpsInScene()
RwForAllClumpsInSceneInt()
RwForAllClumpsInSceneLong() Obsolete
RwForAllClumpsInScenePointer()
RwForAllClumpsInSceneReal()
RwForAllLightsInScene()
RwForAllLightsInSceneInt()
RwForAllLightsInSceneLong() Obsolete
RwForAllLightsInScenePointer()
RwForAllLightsInSceneReal()
RwGetSceneData()
RwGetSceneNumClumps()
RwGetSceneNumLights()
RwPickScene()
RwRemoveClumpFromScene()
RwRemoveLightFromScene()
RwRenderScene()
RwSetSceneData()

Shape Functions
RwGetShapePath()
RwReadShape()
RwSetShapePath()
RwWriteShape()

Spline Functions
RwCreateSpline()
RwDestroySpline()
RwDuplicateSpline()
RwGetSplineData()
RwGetSplineNumPoints()
RwGetSplinePoint()
RwSetSplineData()
RwSetSplinePoint()
RwSplinePoint()
RwSplineTransform()

Texture Functions
RwAddTextureModeToSurface()
RwCreateTexture()
RwDestroyTexture()
RwFindNamedTexture()
RwForAllNamedTextures()
RwForAllNamedTexturesInt()
RwForAllNamedTexturesLong() Obsolete
RwForAllNamedTexturesPointer()
RwForAllNamedTexturesReal()
RwGetNamedTexture()
RwGetNumNamedTextures()
RwGetTextureData()
RwGetTextureDictSearchMode()
RwGetTextureDithering()
RwGetTextureFrame()
RwGetTextureFrameStep()
RwGetTextureGammaCorrection()
RwGetTextureName()
RwGetTextureNumFrames()
RwGetTextureRaster()
RwMaskTexture()
RwReadNamedTexture()
RwReadTexture()
RwRemoveTextureModeFromSurface()
RwSetTextureData()
RwSetTextureDictSearchMode()
RwSetTextureDithering()
RwSetTextureFrame()
RwSetTextureFrameStep()
RwSetTextureGammaCorrection()
RwSetTextureRaster()
RwTextureDictBegin()
RwTextureDictEnd()
RwTextureNextFrame()

User Draw Functions
RwAddUserDrawToClump() NonDLL
RwCreateUserDraw() NonDLL
RwDestroyUserDraw() NonDLL
RwDuplicateUserDraw() NonDLL
RwForAllUserDrawsInClump() NonDLL
RwForAllUserDrawsInClumpInt() NonDLL
RwForAllUserDrawsInClumpLong() NonDLL Obsolete
RwForAllUserDrawsInClumpPointer() NonDLL
RwForAllUserDrawsInClumpReal() NonDLL
RwGetClumpNumUserDraws() NonDLL
RwGetUserDrawAlignment() NonDLL
RwGetUserDrawCallback() NonDLL
RwGetUserDrawData() NonDLL
RwGetUserDrawOwner() NonDLL
RwGetUserDrawParentAlignment() NonDLL
RwGetUserDrawSize() NonDLL
RwGetUserDrawType() NonDLL
RwGetUserDrawVertexIndex() NonDLL
RwRemoveUserDrawFromClump() NonDLL
RwSetUserDrawAlignment() NonDLL
RwSetUserDrawCallback() NonDLL
RwSetUserDrawData() NonDLL
RwSetUserDrawOffset() NonDLL
RwSetUserDrawParentAlignment() NonDLL
RwSetUserDrawSize() NonDLL
RwSetUserDrawType() NonDLL
RwSetUserDrawVertexIndex() NonDLL

Other Functions
RwClose()
RwDeviceControl() Changed
RwGetDeviceInfo() Changed
RwGetPaletteEntries() New
RwGetSystemInfo() Changed
RwOpen() Changed
RwOpenExt() Changed
RwRandom() New
RwSetPaletteEntries() New
RwSRandom() New

RwClump *
RwAddChildToClump(RwClump *parent, RwClump *child);

Description

Makes the second clump a child of the first. If child is already a child of another
clump, it will be removed from that clumps list of children before being added to
parent.

Arguments

parent Pointer to the parent clump.
child Pointer to the child clump.

Return Value

The argument parent if successful, and NULL otherwise.
Comments

After addition, the childs modeling and joint (articulation) transformations will be
relative to those of its new parent.

See Also
RwGetClumpNumChildren ()
RwGetClumpParent ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()

RwScene *
RwAddClumpToScene(RwScene *scene, RwClump *clump);

Description

Adds the clump (and all its descendants) to the scene.
Arguments

scene Pointer to the scene.
clump Pointer to the clump.

Return Value

The argument scene if successful, and NULL otherwise.
Comments

Note that the clump being added must not have a parent (i.e., it must be a root
clump).

See Also
RwAddLightToScene ()
RwDestroyClump ()
RwDestroyScene ()
RwForAllClumpsInScene ()
RwGetClumpOwner ()
RwGetSceneNumClumps ()
RwRemoveClumpFromScene ()

RwBool
RwAddHint(RwClumpHints hints);

Description

Adds a hint (or set of hints) to the current clump under construction. A clumps hints
enable RenderWare to render a scene containing that clump more efficiently.

Arguments

hints A bitfield representing a hint (or bitwise or of hints).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

Currently, the following hints are supported:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () block.

See Also
RwAddHintToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwRemoveHint ()
RwSetHints ()

RwClump *
RwAddHintToClump(RwClump *clump, RwClumpHints hint);

Description

Adds a hint (or set of hints) to the clump. A clumps hints enable RenderWare to
render a scene containing that clump more efficiently.

Arguments

clump Pointer to the clump.
hint A bitfield representing a hint (or bitwise or of hints).

Return Value

The argument clump if successful, and NULL otherwise.
Comments

Currently, the following hints are supported:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
See Also

RwAddHint ()
RwGetClumpHints ()
RwRemoveHintFromClump ()
RwSetClumpHints ()

RwScene *
RwAddLightToScene(RwScene *scene, RwLight *light);

Description

Adds the light to the scene.
Arguments

scene Pointer to the scene.
light Pointer to the light.

Return Value

The argument scene if successful, and NULL otherwise.
See Also

RwDestroyLight ()
RwDestroyScene ()
RwForAllLightsInScene ()
RwGetLightOwner ()
RwGetSceneNumLights ()
RwRemoveLightFromScene ()

RwClump *
RwAddPolygonsToClump(RwClump *dest, RwClump *source);

Description

Makes copies of all the polygons (and their associated vertices and materials) in the
source clump and adds them to the destination clump.

Arguments

dest Pointer to the destination clump.
source Pointer to the source clump.

Return Value

The argument dest if successful, and NULL otherwise.
Comments

As this function modifies the geometry of the destination clump, the destination
clump is made editable (the rwEDITABLE hint is set).

See Also
RwAddHintToClump ()
RwAddPolygonToClump ()
RwAddVertexToClump ()
RwForAllPolygonsInClump ()
RwGetClumpNumPolygons ()
RwGetPolygonOwner ()

RwPolygon3d *
RwAddPolygonToClump(RwClump *clump, RwInt32 sides, RwInt32 *vlist);

Description

Creates a polygon and adds it to the clump. The current material is applied to the
new polygon.

Arguments

clump Pointer to the clump.
sides Number of sides of the polygon.
vlist Pointer to an array of RwInt32s containing the vertex indices of the new

polygon.
Return Value

A pointer to the new polygon if successful, and NULL otherwise.
Comments

As this function modifies the geometry of the destination clump, the destination
clump is made editable (the rwEDITABLE hint is set).
For 16-bit applications accessing the RenderWare DLL the vertex index list pointed
to by    vlist must be declared as an array of RwInt32s and not ints.

See Also
RwAddHintToClump ()
RwAddPolygonsToClump ()
RwAddVertexToClump ()
RwForAllPolygonsInClump ()
RwGetClumpNumPolygons ()
RwGetPolygonOwner ()

RwMaterial *
RwAddTextureModeToMaterial(RwMaterial *material,

RwTextureModes mode);
Description

Adds the given texture mode (or modes) to the material. Texture modes permit fine
grain control over the rendering of textures.

Arguments

material Pointer to the material.
mode A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument material if successful, and NULL otherwise.
Comments

The following texture modes are supported:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToPolygon ()
RwAddTextureModeToSurface ()
RwGetMaterialTextureModes ()
RwSetMaterialLightSampling ()
RwSetMaterialTexture ()
RwSetMaterialTextureModes ()
RwRemoveTextureModeFromMaterial ()

RwPolygon3d *
RwAddTextureModeToPolygon(RwPolygon3d *polygon,

RwTextureModes mode);
Description

Adds the given texture mode (or modes) to the polygons material. Texture modes
permit fine grain control over the rendering of textures.

Arguments

polygon Pointer to the polygon.
Mode A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

The following texture modes are supported:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToMaterial ()
RwAddTextureModeToSurface ()
RwGetPolygonTextureModes ()
RwSetPolygonLightSampling ()
RwSetPolygonTexture ()
RwSetPolygonTextureModes ()
RwRemoveTextureModeFromPolygon ()

RwBool
RwAddTextureModeToSurface(RwTextureModes mode);

Description

Adds the given texture mode (or modes) to the current material. Texture modes
permit fine grain control over the rendering of textures.

Arguments

mode A bitfield representing a texture mode (or bitwise or of modes).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The following texture modes are supported:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwAddTextureModeToMaterial ()
RwAddTextureModeToPolygon ()
RwModelBegin ()
RwModelEnd ()
RwSetSurfaceTexture ()
RwSetSurfaceTextureModes ()
RwRemoveTextureModeFromSurface ()

RwClump *
RwAddUserDrawToClump(RwClump *clump, RwUserDraw *userdraw);

Description

Adds the user-draw to the clump. If the user-draw is already owned by another
clump, it is first removed from that clump.

Arguments

clump Pointer to the clump.
userdraw Pointer to the user-draw.

Return Value

The argument clump if successful, and NULL otherwise.
See Also

RwCreateUserDraw ()
RwDestroyClump ()
RwDestroyUserDraw ()
RwDuplicateUserDraw ()
RwForAllUserDrawsInClump ()
RwGetClumpNumUserDraws ()
RwGetUserDrawOwner ()
RwRemoveUserDrawFromClump ()

RwV3d *
RwAddVector(RwV3d *a, RwV3d *b, RwV3d *c);

Description

Adds two vectors.
Arguments

a Pointer to the first vector.
b Pointer to the second vector.
c Pointer to the vector that will receive the result.

Return Value

The argument c if successful, and NULL otherwise.
See Also

RwCrossProduct ()
RwDotProduct ()
RwNormalize ()
RwScaleVector ()
RwSubtractVector ()
RwTransformVector ()

RwInt32
RwAddVertexToClump(RwClump *clump, RwReal x, RwReal y, RwReal z);

Description

Adds a vertex to the clump.
Arguments

clump Pointer to the clump.
x X co-ordinate of the vertex (in object space co-ordinates).
y Y co-ordinate of the vertex (in object space co-ordinates).
z Z co-ordinate of the vertex (in object space co-ordinates).

Return Value

A positive integer representing the index of the vertex within the clump if
successful, and 0 otherwise.

Comments

As this function modifies the geometry of the clump, the clump is made editable by
this function (the rwEDITABLE hint is set).
The initial texture co-ordinates of the vertex are [CREAL(0.5), CREAL(0.5)] and the
initial unit shading normal is computed by RenderWare.

See Also
RwAddPolygonsToClump ()
RwAddPolygonToClump ()
RwGetClumpNumVertices ()
RwSetClumpVertex ()
RwSetClumpVertexUV ()
RwSetClumpVertexNormal ()
RwSetClumpVertices ()

RwCamera *
RwBeginCameraUpdate(RwCamera *camera, void *param);

Description

Makes camera the current camera (the camera used in subsequent rendering
operations).

Arguments

camera Pointer to the camera.
param Device dependent parameter.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

For a description of the device dependent parameter, param, see Appendix B.
RwClearCameraViewport () , RwRenderClump () , and RwRenderScene () should only
be called from within an RwBeginCameraUpdate () … RwEndCameraUpdate () .

See Also
RwClearCameraViewport ()
RwEndCameraUpdate ()
RwRenderClump ()
RwRenderScene ()
RwShowCameraImage ()

RwRaster *
RwBitmapRaster(void *bitmap, RwRasterOptions options);

Description

Converts a platform specific bitmap to a raster. The bitmap will be processed
according to the specified options.

Arguments

bitmap The source bitmap (device dependent parameter).
options A bitfield representing a raster processing option (or bitwise or of

options).
Return Value

A pointer to the new raster if successful, and NULL otherwise.
Comments

This function is useful for generating texture maps at run-time. An application can
convert platform specific, 2D rendering into a raster with RwBitmapRaster () . The
resultant raster can then be selected into a texture map with
RwSetTextureRaster () .
The supported raster options are as follows:

rwAUTODITHERRASTER Dither the raster only if the source bitmap is to be resized
(rwFITRASTER has been specified) or if the bitmap is a
different depth from the current RenderWare render depth.

rwDITHERRASTER Dither the raster.
rwFITRASTER Resize the raster to texture map dimensions,

i.e., 128 x n * 128 (where n is the number of frames in a
multi-frame texture).

rwGAMMARASTER Gamma correct the raster.
See Also

RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwReadRaster ()
RwReadMaskRaster ()
RwSetTextureRaster ()

RwBool
RwBlock(RwReal width, RwReal height, RwReal depth);

Description

Adds a block, centered about the origin, to the current clump under construction.
The block is transformed by the CTM, and the current material is applied to its
polygons.

Arguments

width Block width.
height Block height.
depth Block depth.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

It is an error if any of the blocks dimensions are degenerate, i.e., CREAL(0.0).
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwCone ()
RwCylinder ()
RwDisc ()
RwHemisphere ()
RwProtoBegin ()
RwProtoEnd ()
RwSphere ()

RwClump *
RwCalculateClumpVertexNormal(RwClump *clump, RwInt32 index);

Description

Activates automatic calculation of the unit shading normal at the vertex which
belongs to clump and has the vertex index index. This ensures that the unit shading
normal of the vertex will be recalculated every time the vertex is moved with
RwSetClumpVertex () or the set of polygons sharing the vertex is modified.

Arguments

clump Pointer to the clump.
index The vertex index.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

Automatic calculation is deactivated after a call to RwSetClumpVertexNormal () or if
the vertex is created by calling RwVertexExt () with a non-NULL normal.
Unit shading normals are automatically recalculated by default.

See Also
RwGetClumpVertexNormal ()
RwSetClumpVertex ()
RwSetClumpVertexNormal ()
RwVertexExt ()

RwCamera *
RwClearCameraViewport(RwCamera *camera);

Description

Clears the cameras image buffer. If the camera does not have a backdrop raster the
viewport will be cleared to the cameras background color. If the camera has a
backdrop raster the cameras backdrop viewport rectangle will be filled with the
backdrop raster. The remainder of the viewport will be cleared to the cameras
background color.

Arguments

camera Pointer to the camera.
Return Value

The argument camera if successful, and NULL otherwise.
Comment

This function can only be called within the context of an RwBeginCameraUpdate ()
… RwEndCameraUpdate () block.

See Also
RwBeginCameraUpdate ()
RwDamageCameraViewport ()
RwEndCameraUpdate ()
RwInvalidateCameraViewport ()
RwSetCameraBackColor ()
RwSetCameraBackdrop ()
RwSetCameraBackdropViewportRect ()
RwUndamageCameraViewport ()

void
RwClose(void);

Description

Closes the RenderWare library.
Arguments

None.
Return Value

None.
Comments

This function must be called before the program exits.
RwClose () frees the following resources:
· the default scene, and any clumps and lights contained in that scene.· the scratch matrix stack.· the transformation matrix stack.· the joint transformation matrix stack.· the material stack.· all cameras.
· all named textures (and their rasters) and texture dictionaries.RwClose () does not free the following resources:· scenes other than the default scene.· clumps and lights not in the default scene.· matrices created with RwCreateMatrix () or RwDuplicateMatrix () .· materials created with RwCreateMaterial () or RwDuplicateMaterial () .· unnamed textures.· rasters not selected into named textures (this includes camera backdrop rasters which must be destroyed explicitly). · splines.
· user-draws not owned by clumps in the default scene.

See Also
RwCreateMaterial ()
RwCreateMatrix ()
RwDuplicateMaterial ()
RwDuplicateMatrix ()
RwOpen ()
RwOpenExt ()

void
RwCloseDebugStream(void);

Description

Closes the current debug stream.
Arguments

None.
Return Value

None.
Comments

No more debugging messages will be issued until a debugging stream is specified
with RwSetDebugStream () or opened using RwOpenDebugStream () .

See Also
RwOpenDebugStream ()
RwSetDebugStream ()

RwBool
RwClumpBegin(void);

Description

Identifies the beginning of a clump definition. The modeling matrix for the clump is
set to the CTM at this time. The joint (articulation) matrix for the clump is set to the
current joint transformation matrix.
The current transformation matrix, the current joint transformation matrix, and the
current material are pushed onto the main transformation stack, the joint
transformation stack, and the material stack respectively.

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block. A call to RwClumpBegin () may be nested, to any depth, within
an RwProtoBegin () … RwProtoEnd () or    RwClumpBegin () … RwClumpEnd () block.
When nested within an RwProtoBegin () … RwProtoEnd () or RwClumpBegin () …
RwClumpEnd () block, an RwClumpBegin () … RwClumpEnd () block creates a child
clump.
If the nested RwClumpBegin () … RwClumpEnd () block is within an RwProtoBegin ()
… RwProtoEnd () block, then no clump is actually created, instead a child definition
is added to the prototype under construction.

See Also
RwClumpEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()

RwReal
RwClumpDistance(RwClump *clump, RwV3d *point);

Description

Calculates the distance from the origin of the clump to the point (in world space
units).

Arguments

clump Pointer to the clump.
point Pointer to the point.

Return Value

The distance between the origin of the clump and the point in world space units if
successful. Errors can be checked for using RwGetError () .

See Also
RwGetClumpOrigin ()

RwClump *
RwClumpEnd(RwClump **pointer);

Description

Marks the end of the construction of clump and returns the newly created clump.
The main transformation stack, the joint transformation stack and the material stack
are restored to their state at the time of the matching RwClumpBegin () .

Arguments

pointer Pointer to the clump pointer that will receive the clump.
Return Value

A pointer to the new clump if successful, and NULL otherwise.
Comments

The function returns a pointer to the newly created clump. If a non-NULL argument is
passed then pointer will also be set to point to the new clump.
When there are nested RwClumpEnd () calls, i.e., a hierarchical model is being built,
NULL should be used as the argument in all RwClumpEnd () calls except the top-level
one. Do not rely on the clump pointers returned by this function when creating child
clumps.

See Also
RwClumpBegin ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()

RwBool
RwCone(RwReal height, RwReal radius, RwInt32 nsides);

Description

Adds a cone to the current clump under construction. The cone is transformed by
the CTM, and the current material is assigned to its polygons. The base of the cone
lies on the X-Z plane, extending up the Y axis. The base is not closed.

Arguments

height Cone height.
radius Radius of the cone base.
nsides Number of sides.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

It is an error if the cones radius is degenerate, i.e. CREAL(0.0).
If a negative radius is specified, the polygons forming the cone will face inward.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwBlock ()
RwClumpBegin ()
RwClumpEnd ()
RwCylinder ()
RwDisc ()
RwHemisphere ()
RwProtoBegin ()
RwProtoEnd ()
RwSphere ()

RwMaterial *
RwCopyMaterial(RwMaterial *source, RwMaterial *dest);

Description

Copies material source to material dest.
Arguments

source Pointer to the source material.
dest Pointer to the destination material.

Return Value

The argument dest if successful, and NULL otherwise.
See Also

RwCreateMaterial ()
RwDestroyMaterial ()
RwDuplicateMaterial ()
RwPushCurrentMaterial ()

RwMatrix4d *
RwCopyMatrix(RwMatrix4d *source, RwMatrix4d *dest);

Description

Copies matrix source to matrix dest.
Arguments

source Pointer to the source matrix.
dest Pointer to the destination matrix.

Return Value

The argument dest if successful, and NULL otherwise.
See Also

RwCreateMatrix ()
RwDestroyMatrix ()
RwDuplicateMatrix ()
RwPushScratchMatrix ()

RwCamera *
RwCreateCamera(RwInt32 maxwidth, RwInt32 maxheight, void *param);

Description

Creates a new camera.
Arguments

maxwidth Maximum width of the camera viewport (in device space units).
maxheight Maximum height of the camera viewport (in device space units).
param Device dependent parameter.

Return Value

A pointer to the new camera if successful, and NULL otherwise.
Comments

For a description of the device dependent parameter, param, see Appendix B.By default:· The camera is positioned at the origin, looking down the negative Z axis (into thescreen). · The Look Up vector is the positive Y axis of the world space.· The projection model is rwPERPSECTIVE. · The viewport has a position of (0, 0) and a size of 0 by 0.· The view window is centered about the origin of the camera space and has a sizeof CREAL(1.0) by CREAL(1.0). · The view offset is (CREAL(0.0), CREAL(0.0)).· The near (front) clipping plane is approximately CREAL(0.05) world space units from the camera.· The far (back) clipping plane distance, in world space units from the camera, is alarge value which depends on the numeric type of the library.· The camera background color is black, i.e., [CREAL(0.0), CREAL(0.0), CREAL(0.0)]. · The backdrop raster is NULL.· The backdrop offset is (0, 0).
· The backdrop viewport rectangle has a position of (0, 0) and a size of 0 by 0.

See Also
RwDestroyCamera ()
RwDuplicateCamera ()
RwResetCamera ()

RwClump *
RwCreateClump(RwInt32 vcount, RwInt32 pcount);

Description

Creates a new, empty clump. The clump is added to the default scene.
Arguments

vcount Initial number of vertices.
pcount Initial number of polygons.

Return Value

A pointer to the new clump if successful, and NULL otherwise.
Comments

The arguments vcount and pcount are initial guidelines only, the actual number of
polygons and vertices in a clump is not constrained by these initial values.

See Also
RwAddPolygonsToClump ()
RwAddPolygonToClump ()
RwAddVertexToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateSprite ()
RwDestroyClump ()
RwDuplicateClump ()
RwReadShape ()

RwLight *
RwCreateLight(RwLightType type, RwReal x, RwReal y, RwReal z,

 RwReal intensity);
Description

Creates a new light. The light is added to the default scene.
Arguments

type Type of light.
x X component of the lights position in world space co-ordinates (for point

and conical lights), or vector (for directional lights).
y Y component of the lights position in world space co-ordinates (for point

and conical lights), or vector (for directional lights).
z Z component of the lights position in world space co-ordinates (for point

and conical lights), or vector (for directional lights).
intensity Intensity of the light in the range CREAL(0.0) to CREAL(1.0).

Return Value

A pointer to the new light if successful, and NULL otherwise.
Comments

The default light state is rwON.
For conical lights, the default direction vector is down the negative Y axis, and the
default cone angle is CREAL(30.0) degrees.

See Also
RwAddLightToScene ()
RwDestroyLight ()
RwDuplicateLight ()

RwMaterial *
RwCreateMaterial(void);

Description

Creates a new material with default values for its attributes.
Arguments

None.
Return Value

A pointer to the newly created material if successful, and NULL otherwise.
Comments

By default:· The materials coefficients of ambient, diffuse, and specular reflection are CREAL(0.0).· The materials light sampling type is rwFACET.· The materials geometry sampling type is rwSOLID. · The material has no texture.· The materials only texture mode is rwLIT.
· The materials opacity is CREAL(1.0).

See Also
RwCurrentMaterial ()
RwDestroyMaterial ()
RwDuplicateMaterial ()
RwPushCurrentMaterial ()

RwMatrix4d *
RwCreateMatrix(void);

Description

Creates a new transformation matrix.
Arguments

None.
Return Value

A pointer to the new matrix if successful, and NULL otherwise.
Comments

The new matrix is initialized to the identity matrix.
See Also

RwScratchMatrix ()
RwDestroyMatrix ()
RwDuplicateMatrix ()
RwPushScratchMatrix ()

RwRaster *
RwCreateRaster(RwInt32 width, RwInt32 height);

Description

Creates a new raster.
Arguments

width Width of the raster (in pixels).
height Height of the raster (in pixels).

Return Value

A pointer to the new raster if successful, and NULL otherwise.
Comments

The depth of the raster created is the same as the current render depth (the current
render depth can be retrieved by RwGetDeviceInfo ()).
The rasters pixels are not initialized by RwCreateRaster () . The initial pixel values
are undefined.

See Also
RwBitmapRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwGetDeviceInfo ()
RwGetTextureRaster ()
RwReadRaster ()
RwReadMaskRaster ()
RwSetCameraBackdrop ()
RwSetTextureRaster ()

RwScene *
RwCreateScene(void);

Description

Creates a new, empty scene.
Arguments

None.
Return Value

A pointer to the new scene if successful, and NULL otherwise.
See Also

RwAddClumpToScene ()
RwAddLightToScene ()
RwDefaultScene ()
RwDestroyScene ()

RwSpline *
RwCreateSpline(RwInt32 npoints, RwSplineType type, RwV3d *points);

Description

Creates a new spline.
Arguments

npoints Number of control points (greater than or equal to 4).
type Type of the spline.
points Array of control points.

Return Value

A pointer to the new spline if successful, and NULL otherwise.
Comments

A minimum of 4 control points must be specified.
See Also

RwDestroySpline ()
RwDuplicateSpline ()

RwClump *
RwCreateSprite(RwTexture *texture);

Description

Creates a sprite. A sprite is a specialized form of clump which is used to display unlit
textures constrained to be co-planar with the viewplane of a camera.

Arguments

texture Pointer to the texture.
Return Value

A pointer to the newly created sprite if successful, and NULL otherwise.
Comments

This function is a simplification function which creates a clump with a single,
rectangular polygon, one unit in width and one unit in height, centered about the
origin and lying in the X-Y plane. The given texture is made the current texture of
the polygons material and the materials texture mode is set to 0, i.e., the sprite is
unlit, not foreshortened and unfiltered. The clumps axis alignment parameter is set
to rwALIGNAXISXYZ.
The resulting clump may be manipulated in exactly the same way and using exactly
the same API calls as clumps created by RwReadShape () , RwClumpBegin () …
RwClumpEnd () , and RwCreateClump () . In particular, RwDestroyClump () should be
used to destroy the clump created by RwCreateSprite () when it is no longer
required.

See Also
RwAddPolygonToClump ()
RwAddVertexToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwDestroyClump ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadShape ()
RwReadTexture ()
RwSetClumpAxisAlignment ()
RwSetPolygonTexture ()
RwSetPolygonTextureModes ()

RwTexture *
RwCreateTexture(RwRaster *raster);

Description

Creates a new texture and sets its raster to raster.
Arguments

raster Pointer to the raster.
Return Value

A pointer to the newly created texture if successful, and NULL otherwise.
Comments

The specified raster must have a width of 128 pixels and a height of 128 pixels (or n
* 128 pixels for multi-frame textures where n is the number of frames). The raster
will not be resized if it not already of the correct size.
Rasters cannot be shared between textures. It is an error to specify a raster already
selected into a texture.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwDestroyTexture ()
RwFindNamedTexture ()
RwGetCameraViewportRaster ()
RwGetNamedTexture ()
RwMaskTexture ()
RwReadMaskRaster ()
RwReadNamedTexture ()
RwReadRaster ()
RwReadTexture ()
RwSetTextureRaster ()

RwUserDraw *
RwCreateUserDraw(RwUserDrawType type,

RwUserDrawAlignmentTypes alignment,
RwInt32 x, RwInt32 y, RwInt32 width, RwInt32 height,
void (*callback)(RwUserDraw *userdraw,
void *camimage, RwRect *rect, void *data));

Description

Creates a user-draw.
Arguments

type Type of user-draw to create.
alignment A bitfield representing an alignment type (or bitwise or of alignment

types).
x X offset of the user-draw from the alignment point (in viewport space

units).
y Y offset of the user-draw from the alignment point (in viewport space

units).
width Width of the user-draw (in viewport space units).
height Height of the user-draw (in viewport space units).
callback Pointer to the call-back function that will render the user-draw.

Return Value

A pointer to the new user-draw if successful, and NULL otherwise.
Comments

The type of the user-draw determines whether it is aligned with a clumps origin
(rwCLUMPALIGN), with a clumps vertex (rwVERTEXALIGN), with a clumps bounding
box in viewport space (rwBBOXALIGN), or a cameras viewport (rwVPALIGN).
The following alignment flags are supported: rwALIGNTOP, rwALIGNBOTTOM,
rwALIGNLEFT and rwALIGNRIGHT. For convenience, two common combinations of
these flags, rwALIGNTOPLEFT and rwALIGNBOTTOMRIGHT are also defined.
Assuming that the type of the user-draw is rwVERTEXALIGN, then the interpretations
of the different valid values for alignment are as follows:

0 The center of the user-draw is aligned with the vertex.
rwALIGNTOP The midpoint of the top edge of the user-draw rectangle is

aligned with the vertex.
rwALIGNBOTTOM The midpoint of the bottom edge of the user-draw

rectangle is aligned with the vertex.
rwALIGNLEFT The midpoint of the left edge of the user-draw rectangle is

aligned with the vertex.
rwALIGNRIGHT The midpoint of the right edge of the user-draw rectangle

is aligned with the vertex.
RwALIGNTOP | rwALIGNLEFT

The top left corner of the user-draw rectangle is aligned
with the vertex.

RwALIGNTOP | rwALIGNRIGHT
The top right corner of the user-draw rectangle is aligned
with the vertex.

RwALIGNBOTTOM | rwALIGNLEFT
The bottom left corner of the user-draw rectangle is
aligned with the vertex.

RwALIGNBOTTOM | rwALIGNRIGHT
The bottom right corner of the user-draw rectangle is
aligned with the vertex.

A user-draw is positioned at an offset (x, y) from the point of alignment and its size
is specified by width and height.
User-draw call-backs should be declared as follows:

void callback(RwUserDraw *userdraw, void *camimage,
RwRect *rect, void *data);

Where the call-backs arguments are as follows:
userdraw Pointer to the user-draw to be rendered.
camimage The cameras image buffer as returned by RwGetCameraImage () for the

current camera. camimage is device dependent. For more information,
see Appendix B.

rect Pointer to a rectangle defining the area of the cameras image buffer into
which the call-back may render. This rectangle is specified in viewport
space co-ordinates, i.e., (0, 0) is the origin of the viewport.

data Pointer to the user data of the user-draw being drawn. This value can be
obtained by calling RwGetUserDrawData () with userdraw as an
argument. data is passed directly to the call-back function for the
convenience of the application developer.

Note that the call-back function is always called after all clumps in the scene have
been rendered, i.e., when RwEndCameraUpdate () is called. Therefore user-draw
rendering always appear in front of clump rendering. In the case of overlapping
user-draws, the order of rendering is not defined.

See Also
RwAddUserDrawToClump ()
RwDestroyClump ()
RwDestroyUserDraw ()
RwDuplicateUserDraw ()
RwEndCameraUpdate ()
RwGetCameraImage ()
RwGetUserDrawData ()

RwV3d *
RwCrossProduct(RwV3d *a, RwV3d *b, RwV3d *c);

Description

Calculates the cross product of two vectors.
Arguments

a Pointer to the left vector.
b Pointer to the right vector.
c Pointer to the vector that will receive the result.

Return Value

The argument c if successful, and NULL otherwise.
Comments

c must not point to the same vector as either of the other arguments.
See Also

RwAddVector ()
RwDotProduct ()
RwNormalize ()
RwScaleVector ()
RwSubtractVector ()
RwTransformVector ()

RwClump *
RwCubicTexturizeClump(RwClump *clump);

Description

Sets the texture co-ordinates for every polygon belonging to the clump using the
cubic projection method.
A cubic mapping results in the construction of a nominal cube which has the texture
applied to each of the cubes six facets. The resulting cube (with a copy of the
texture applied to each face) is then mapped to the clump by shrink wrapping the
clump with the cube.

Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

This function need only be called once, the first time a clump is textured, and not
each time the clump is rendered.
Note that this function does not set the textures associated with the clumps
polygons; this must be accomplished separately. The following code fragment
illustrates this procedure:

RwForAllPolygonsInClumpPointer(clump, (RwPolygon3d*(*)
())RwSetPolygonTexture, texture);

See Also
RwEnvMapClump ()
RwForAllPolygonsInClump ()
RwSetClumpVertexUV ()
RwSetPolygonTexture ()
RwSetPolygonUV ()
RwSphericalTexturizeClump ()
RwVertexExt ()

RwMaterial *
RwCurrentMaterial(void);

Description

Retrieves the current material.
Arguments

None.
Return Value

A pointer to the current material if successful, and NULL otherwise.
Comments

The material returned by RwCurrentMaterial () must not be destroyed with
RwDestroyMaterial () . The material stack is destroyed by RenderWare when
RwClose () is called.

See Also
RwClose ()
RwCreateMaterial ()
RwDestroyMaterial ()
RwPopCurrentMaterial ()
RwPushCurrentMaterial ()

RwBool
RwCylinder(RwReal height, RwReal baserad, RwReal toprad,

 RwInt32 nsides);
Description

Adds a cylinder to the current clump under construction. The cylinder is transformed
by the CTM, and the current material is assigned to its polygons. The base of the
cylinder lies on the X-Z plane, extending up the Y axis.

Arguments

height Cylinder height.
baserad Radius of the cylinder base.
toprad Radius of the cylinder top.
nsides Number of sides.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

It is an error if the cylinders radius is degenerate, i.e., CREAL(0.0).
Note that if both baserad and toprad are negative the polygons forming the
cylinder will face inward. It is an error if one of the radii is negative and the other is
positive.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwBlock ()
RwClumpBegin ()
RwClumpEnd ()
RwCone ()
RwDisc ()
RwHemisphere ()
RwSphere ()
RwProtoBegin ()
RwProtoEnd ()

RwCamera *
RwDamageCameraViewport(RwCamera *camera, RwInt32 x, RwInt32 y,

RwInt32 width, RwInt32 height);
Description

Damages a rectangular area of the cameras viewport. The rectangle is added to the
area to be updated by RwShowCameraImage () and cleared by
RwClearCameraViewport () .

Arguments

camera Pointer to the camera.
x X co-ordinate of the rectangles top left corner (in viewport space co-

ordinates).
y Y co-ordinate of the rectangles top left corner (in viewport space co-

ordinates).
width Width of the rectangle (in viewport space units).
height Height of the rectangle (in viewport space units).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwBeginCameraUpdate ()
RwClearCameraViewport ()
RwEndCameraUpdate ()
RwInvalidateCameraViewport ()
RwShowCameraImage ()
RwUndamageCameraViewport ()

RwScene *
RwDefaultScene(void);

Description

Retrieves the default scene.
Arguments

None.
Return Value

A pointer to the default scene.
Comments

The scene returned by RwDefaultScene () must not be destroyed with
RwDestroyScene () . The default scene is destroyed by RenderWare when RwClose ()
is called.

See Also
RwClose ()
RwClumpEnd ()
RwCreateClump ()
RwCreateLight ()
RwCreateScene ()
RwCreateSprite ()
RwDestroyScene ()
RwReadShape ()
RwRemoveClumpFromScene ()
RwRemoveLightFromScene ()

RwBool
RwDestroyCamera(RwCamera *camera);

Description

Destroys the camera.
Arguments

camera Pointer to the camera.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

All cameras not explicitly destroyed are automatically destroyed by RwClose () .
This function does not destroy the device dependent object specified in the call to
RwCreateCamera () . Furthermore, the cameras backdrop raster (if any) is not
destroyed.

See Also
RwClose ()
RwCreateCamera ()
RwDuplicateCamera ()
RwSetCameraBackdrop ()

RwBool
RwDestroyClump(RwClump *clump);

Description

Destroys the clump.
Arguments

clump Pointer to the clump.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

Note that this function is recursive - it destroys the clump and all its descendants (if
any). Furthermore, any user-draw objects added to this clump will also be destroyed
by RwDestroyClump () .

See Also
RwAddUserDrawToClump ()
RwClumpEnd ()
RwCreateClump ()
RwCreateSprite ()
RwDestroyScene ()
RwDuplicateClump ()
RwReadShape ()

RwBool
RwDestroyLight(RwLight *light);

Description

Destroys the light.
Arguments

light Pointer to the light.
Return Value

TRUE if successful, and FALSE otherwise.
See Also

RwCreateLight ()
RwDestroyScene ()
RwDuplicateLight ()
RwRemoveLightFromScene ()

RwBool
RwDestroyMaterial(RwMaterial *material);

Description

Destroys the material.
Arguments

material Pointer to the material.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function must not be used to destroy a polygons material (as obtained by a call
to RwGetPolygonMaterial ()), or a material from the material stack (as obtained by
RwCurrentMaterial () ,    RwPopCurrentMaterial () or RwPushCurrentMaterial ()).

See Also
RwCreateMaterial ()
RwDuplicateMaterial ()
RwGetPolygonMaterial ()
RwPopCurrentMaterial ()
RwPushCurrentMaterial ()

RwBool
RwDestroyMatrix(RwMatrix4d *matrix);

Description

Destroys the matrix.
Arguments

matrix Pointer to the matrix.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function must not be used to destroy a matrix from the scratch matrix stack (as
obtained by RwScratchMatrix () , RwPopScratchMatrix () or
RwPushScratchMatrix ()).

See Also
RwCreateMatrix ()
RwScratchMatrix ()
RwDuplicateMatrix ()
RwPopScratchMatrix ()
RwPushScratchMatrix ()

RwBool
RwDestroyPolygon(RwPolygon3d *polygon);

Description

Destroys the polygon.
Arguments

polygon Pointer to the polygon.
Return Value

TRUE if successful, and FALSE otherwise.
See Also

RwAddPolygonsToClump ()
RwAddPolygonToClump ()
RwDestroyClump ()

RwBool
RwDestroyRaster(RwRaster *raster);

Description

Destroys the raster.
Arguments

raster Pointer to the raster.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

It is an error to attempt to destroy a textures raster. RwDestroyTexture () destroys
both a texture and its raster. This also applies to rasters selected into texture by
RwCreateTexture () or RwSetTextureRaster () .
RwDestroyCamera () does not destroy a cameras backdrop raster. The backdrop
raster should be destroyed by RwDestroyRaster () .

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyCamera ()
RwDestroyTexture ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwGetTextureRaster ()
RwReadRaster ()
RwReadMaskRaster ()
RwSetCameraBackdrop ()
RwSetTextureRaster ()

RwBool
RwDestroyScene(RwScene *scene);

Description

Destroys the scene and all its clumps and lights.
Arguments

scene Pointer to the scene.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

To prevent a clump or light from being destroyed, use RwRemoveClumpFromScene ()
or RwRemoveLightFromScene () before calling RwDestroyScene () .
The default scene cannot be destroyed.

See Also
RwCreateScene ()
RwDefaultScene ()
RwDestroyClump ()
RwDestroyLight ()
RwRemoveClumpFromScene ()
RwRemoveLightFromScene ()

RwBool
RwDestroySpline(RwSpline *spline);

Description

Destroys the spline.
Arguments

spline Pointer to the spline.
Return Value

TRUE if successful, and FALSE otherwise.
See Also

RwCreateSpline ()
RwDuplicateSpline ()

RwBool
RwDestroyTexture(RwTexture *texture);

Description

Destroys the texture (and its raster).
Arguments

texture Pointer to the texture.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

Textures which are still referenced by materials must not be destroyed. Remove the
references to a texture with RwSetMaterialTexture () or RwSetPolygonTexture ()
before destroying the texture.
If the texture is defined in a dictionary, this function removes it from that dictionary.

See Also
RwCreateTexture ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadShape ()
RwReadTexture ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetTextureRaster ()
RwTextureDictEnd ()

RwBool
RwDestroyUserDraw(RwUserDraw *userdraw);

Description

Destroys the user-draw.
Arguments

userdraw Pointer to the user-draw.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

If userdraw is owned by a clump it will be removed from the clump prior to being
destroyed.
Note that RwDestroyClump () destroys any user-draw objects that belong to the
clump being destroyed.

See Also
RwAddUserDrawToClump ()
RwCreateUserDraw ()
RwDestroyClump ()
RwDuplicateUserDraw ()
RwRemoveUserDrawFromClump ()

RwInt32
RwDeviceControl(RwDeviceAction action, RwInt32 param1,

void *param2, RwInt32 size);
Description

Performs low-level, device dependent actions.
Arguments

action Device dependent action.
param1 First action specific parameter.
param2 Second action specific parameter.
size Size in bytes of the buffer (if any) pointed to by param2.

Return Value

The return value is dependent on the device dependent action being performed.
Comments

The size parameter is new with RenderWare V1.4. size gives the size in bytes of
the buffer pointed to by the second action specific parameter, param2. For example,
to control the stretching of rendering under    Microsoft Windows the following device
control would be used:

RwWinOutputSize winOutputSize;
winOutputSize.width = 640;
winOutputSize.height = 480;
winOutputSize.camera = Camera;
RwDeviceControl(rwWINSETOUTPUTSIZE, 0L, &winOutputSize,

sizeof(winOutputSize));
If param2 is NULL size is ignored.
The supported actions and their associated parameter values are device dependent.
See Appendix B for details.

RwBool
RwDisc(RwReal height, RwReal radius, RwInt32 nsides);

Description

Adds a disc to the current clump under construction. The disc is transformed by the
CTM, and the current material is assigned to its polygons. The disc lies on the Y =
height plane, centered about the Y axis. This function is primarily used to cap cones
and cylinders.

Arguments

height Disc plane.
radius Radius of the disc.
nsides Number of sides.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

It is an error if the discs radius is degenerate, i.e., CREAL(0.0).
Note that it is possible for the argument radius to have a negative value. In which
case, the polygons forming the disc will be reversed.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwBlock ()
RwClumpBegin ()
RwClumpEnd ()
RwCone ()
RwCylinder ()
RwHemisphere ()
RwProtoBegin ()
RwProtoEnd ()
RwSphere ()

RwReal
RwDotProduct(RwV3d *a, RwV3d *b);

Description

Calculates the dot product of two vectors.
Arguments

a Pointer to the left vector.
b Pointer to the right vector.

Return Value

The dot product. Errors can be checked for using RwGetError () .
Comments

The answer is effectively meaningful only when the vectors are normalized (unit
length).

See Also
RwAddVector ()
RwCrossProduct ()
RwGetError ()
RwNormalize ()
RwScaleVector ()
RwSubtractVector ()
RwTransformVector ()

RwCamera *
RwDuplicateCamera(RwCamera *camera, void *param);

Description

Creates a new camera with the same attributes as camera.
Arguments

camera Pointer to the camera.
param Device dependent parameter.

Return Value

A pointer to the new camera if successful, and NULL otherwise.
Comments

For a description of the device dependent parameter, param, see Appendix B.
If camera has a backdrop raster the raster will not be duplicated. The new camera
will share the raster with camera.

See Also
RwCreateCamera ()
RwDestroyCamera ()

RwClump *
RwDuplicateClump(RwClump *clump);

Description

Creates a new clump with the same attributes as clump. The new clump is added to
the same scene as clump.

Arguments

clump Pointer to the clump.
Return Value

A pointer to the new clump if successful, and NULL otherwise.
Comments

Note that this function is recursive - it copies the clump and all its descendants (if
any).

See Also
RwAddClumpToScene ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwCreateSprite ()
RwDestroyClump ()
RwReadShape ()

RwLight *
RwDuplicateLight(RwLight *light);

Description

Creates a new light with the same attributes as light. The new light is added to the
same scene as light.

Arguments

light Pointer to the light.
Return Value

A pointer to the new light if successful, and NULL otherwise.
See Also

RwAddLightToScene ()
RwCreateLight ()
RwDestroyLight ()

RwMaterial *
RwDuplicateMaterial(RwMaterial *material);

Description

Creates a new material with the same attributes as material.
Arguments

material Pointer to the material.
Return Value

A pointer to the new material if successful, and NULL otherwise.
See Also

RwCreateMaterial ()
RwDestroyMaterial ()

RwMatrix4d *
RwDuplicateMatrix(RwMatrix4d *matrix);

Description

Creates a new matrix with the same elements as matrix.
Arguments

matrix Pointer to the matrix to duplicate.
Return Value

Pointer to the new matrix if successful, and NULL otherwise.
See Also

RwCreateMatrix ()
RwDestroyMatrix ()

RwRaster *
RwDuplicateRaster(RwRaster *raster);

Description

Creates a new raster with the same attributes as raster. The pixels of raster are
copied to the new raster.

Arguments

raster Pointer to the raster.
Return Value

Pointer to the new raster if successful, and NULL otherwise.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwDestroyRaster ()
RwGetCameraViewportRaster ()
RwReadRaster ()
RwReadMaskRaster ()

RwSpline *
RwDuplicateSpline(RwSpline *spline);

Description

Creates a new spline with the same attributes as spline.
Arguments

spline Pointer to the spline.
Return Value

A pointer to the new spline if successful, and NULL otherwise.
See Also

RwCreateSpline ()
RwDestroySpline ()

RwUserDraw *
RwDuplicateUserDraw(RwUserDraw *userdraw);

Description

Creates a new user-draw with the same attributes as userdraw.
Arguments

userdraw Pointer to the user-draw to be duplicated.
Return Value

A pointer to the new user-draw if successful, and NULL otherwise.
Comments

The new user-draw is owned by the same clump as userdraw, if userdraw has an
owning clump, otherwise it will not be owned by a clump and should be added to a
clump with RwAddUserDrawToClump () .

 See Also
RwAddUserDrawToClump ()
RwCreateUserDraw ()
RwDestroyUserDraw ()

RwCamera *
RwEndCameraUpdate(RwCamera *camera);

Description

Performs all necessary housekeeping activities after rendering into the cameras
image buffer is complete.

Arguments

camera Pointer to the camera.
Return Value

The argument camera if successful, and NULL otherwise.
Comments

RwClearCameraViewport () , RwRenderClump () and RwRenderScene () should only
be called from within an RwBeginCameraUpdate () … RwEndCameraUpdate () . Upon
exit from this block, rendering to the specified cameras image buffer is complete.
RwShowCameraImage () can then be used to update the hosts display.

See Also
RwBeginCameraUpdate ()
RwClearCameraViewport ()
RwRenderClump ()
RwRenderScene ()
RwShowCameraImage ()

RwClump *
RwEnvMapClump(RwClump *clump);

Description

Performs a view dependent projection of an environment map onto a clump.
 Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

To ensure the accuracy of the map, call this function each time the clump is
transformed or the viewing camera is moved.
The environment map must have been previously assigned to that clump using;

RwForAllPolygonsInClumpPointer(clump, (RwPolygon3d*(*)
())RwSetPolygonTexture, texture);

See Also
RwCubicTexturizeClump ()
RwForAllPolygonsInClump ()
RwSetClumpVertexUV ()
RwSetPolygonTexture ()
RwSetPolygonUV ()
RwSphericalTexturizeClump ()

RwClump *
RwFindClump(RwClump *root, RwInt32 (*func)(RwClump *clump));

RwClump *
RwFindClumpInt(RwClump *root,

RwBool (*func)(RwClump *clump, RwInt32 arg), RwInt32 arg);

RwClump *
RwFindClumpLong(RwClump *root,

RwBool (*func)(RwClump *clump, RwInt32 arg), RwInt32 arg);

RwClump *
RwFindClumpReal(RwClump *root,

RwBool (*func)(RwClump *clump, RwReal arg), RwReal arg);

RwClump *
RwFindClumpPointer(RwClump *root,

RwBool (*func)(RwClump *clump, void *arg), void *arg);
Description

Finds a particular clump in a hierarchy by applying a boolean call-back function to
each clump in the hierarchy in turn. If any invocation of the call-back function
returns TRUE, iteration is terminated and the clump passed as the argument to the
call-back function is returned.
The call-back function can either be a RenderWare API function or user-defined. It is
important to note that a return value of TRUE indicates success (i.e., the clump
being sought was found) and stops iteration, while a return value of FALSE indicates
that the search should continue. If the search fails (i.e., no predicate returns TRUE),
NULL is returned.
The difference between RwFindClump () and its variations listed above is that for
RwFindClump () the call-back function takes only one argument (a clump pointer),
whereas in the case of its variations, the call-back function takes an additional, user-
supplied argument (arg) that can be of type RwInt32, RwReal or void * respectively.

Arguments

root Pointer to the root clump.
func Pointer to the call-back function.
arg A user supplied argument to be passed to the call-back function.

Return Value

A pointer to the clump found if the search was successful, and NULL if the search
failed or if any errors occurred. Errors can be checked for using RwGetError () .

Comments

The traversal of the clump hierarchy is done in a depth-first manner.
Note: RwFindClumpLong () now has identical functionality to    RwFindClumpInt () . It
is retained in this release for backward compatibility but will be removed from a
future release of RenderWare. New applications should use RwFindClumpInt () .

See Also
RwAddChildToClump ()
RwFindTaggedClump ()
RwForAllClumpsInHierarchy ()
RwGetError ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()

RwTexture *
RwFindNamedTexture(char *name);

Description

Searches for a texture with the name name. If the current search mode is rwLOCAL,
only the current dictionary is searched. If the current search mode is rwGLOBAL, the
entire texture dictionary stack is searched. In the latter case, the search starts with
the current texture dictionary, i.e., the top element of the stack, and proceeds
downwards until a texture with the specified name is found or there are no more
dictionaries to be examined.

Arguments

name The texture name.
Return Value

A pointer to a texture. If there is an error or if no texture with that name is found,
NULL is returned. Errors can be checked for using RwGetError () .

Comments

This function only searches the current dictionary or dictionary stack. It will not
attempt to load a texture from disk.

See Also
RwCreateTexture ()
RwDestroyTexture ()
RwForAllNamedTextures ()
RwGetError ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadTexture ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetTextureDictSearchMode ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwClump *
RwFindTaggedClump(RwClump *clump, RwInt32 tag);

Description

Looks for the clump with the specified tag in the hierarchy rooted at clump.
Arguments

clump Pointer to the clump.
tag Integer tag to find.

Return Value

A pointer to the clump found if the search was successful, and NULL if the search
failed or if any errors occurred. Errors can be checked for using RwGetError () .

See Also
RwAddChildToClump ()
RwFindClump ()
RwFindTaggedPolygon ()
RwForAllClumpsInHierarchy ()
RwGetClumpTag ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()
RwSetClumpTag ()
RwSetTag ()

RwPolygon3d *
RwFindTaggedPolygon(RwClump *clump, RwInt32 tag);

Description

Looks for the polygon with the specified tag in the polygon list of clump.
Arguments

clump Pointer to the clump.
tag Integer tag to find (only the 16 least significant bits are valid).

Return Value

A pointer to the polygon found if the search was successful, and NULL if the search
failed or if any errors occurred. Errors can be checked for using RwGetError () .

See Also
RwForAllPolygonsInClump ()
RwFindTaggedClump ()
RwGetError ()
RwGetPolygonTag ()
RwPolygonExt ()
RwQuadExt ()
RwSetPolygonTag ()
RwTriangleExt ()

RwClump *
RwForAllClumpsInHierarchy(RwClump *root,

RwClump *(*func) (RwClump *clump));

RwClump *
RwForAllClumpsInHierarchyInt(RwClump *root,

RwClump *(*func)(RwClump *clump, RwInt32 arg), RwInt32 arg);

RwClump *
RwForAllClumpsInHierarchyLong(RwClump *root,

RwClump *(*func)(RwClump *clump, RwInt32 arg), RwInt32 arg);

RwClump *
RwForAllClumpsInHierarchyReal(RwClump *root,

RwClump *(*func)(RwClump *clump, RwReal arg), RwReal arg);

RwClump *
RwForAllClumpsInHierarchyPointer(RwClump *root,

RwClump *(*func)(RwClump *clump, void *arg), void *arg);
Description

Applies a call-back function to all clumps in the hierarchy whose root is pointed to
by root. If any invocation of the call-back function sets RenderWares error status,
iteration is terminated. The call-back function can either be a RenderWare API
function or a user-defined function. In the latter case, the call-back function should
call RwSetUserError () if it fails for any reason.
The difference between RwForAllClumpsInHierarchy () and its variations listed
above is that for RwForAllClumpsInHierarchy () the call-back function takes only
one argument (a clump pointer), whereas in the case of its variations, the call-back
function takes an additional, user-supplied argument (arg) that can be of type
RwInt32, RwReal or void * respectively.

Arguments

root Pointer to the root clump.
func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

If the return type of the call-back function is not RwClump *, then the pointer to the
call-back function should be cast to the expected type, i.e., a pointer to a function
whose return type is RwClump *. For example, in the case of a call-back function
named foo whose return type is int, the following C expression should be used:

(RwClump*(*)())foo
The traversal of the clump hierarchy is done in a depth-first manner.
Note: RwForAllClumpsInHierarchyLong () now has identical functionality to   
RwForAllClumpsInHierarchyInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllClumpsInHierarchyInt () .

See Also
RwAddChildToClump ()
RwFindClump ()
RwFindTaggedClump ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()
RwSetUserError ()

RwScene *
RwForAllClumpsInScene(RwScene *scene,

RwClump *(*func) (RwClump *clump));

RwScene *
RwForAllClumpsInSceneInt(RwScene *scene,

RwClump *(*func) (RwClump *clump, RwInt32 arg), RwInt32 arg);

RwScene *
RwForAllClumpsInSceneLong(RwScene *scene,

RwClump *(*func) (RwClump *clump, RwInt32 arg), RwInt32 arg);

RwScene *
RwForAllClumpsInSceneReal(RwScene *scene,

RwClump *(*func) (RwClump *clump, RwReal arg), RwReal arg);

RwScene *
RwForAllClumpsInScenePointer(RwScene *scene,

RwClump *(*func) (RwClump *clump, void *arg), void *arg);
Description

Applies a call-back function to all clumps in the scene. If any invocation of the call-
back function sets RenderWares error status, iteration is terminated. The call-back
function can either be a RenderWare API function or a user-defined function. In the
latter case, the call-back function should call RwSetUserError () if it fails for any
reason.
The difference between RwForAllClumpsInScene () and its variations listed above is
that for RwForAllClumpsInScene () the call-back function takes only one argument
(a clump pointer), whereas in the case of its variations, the call-back function takes
an additional, user-supplied argument (arg) that can be of type RwInt32, RwReal or
void * respectively.

Arguments

scene Pointer to the scene.
func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function

Return Value

The argument scene if successful, and NULL otherwise.
Comments

If the return type of the call-back function is not RwClump *, then the pointer to the
call-back function should be cast to the expected type, i.e., a pointer to a function
whose return type is RwClump *. For example, in the case of a call-back function
named foo whose return type is int, the following C expression should be used:

(RwClump*(*)())foo
Note: RwForAllClumpsInSceneLong () now has identical functionality to   
RwForAllClumpsInSceneInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllClumpsInSceneInt () .

See Also
RwAddClumpToScene ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwForAllClumpsInHierarchy ()
RwForAllLightsInScene ()
RwGetSceneNumClumps ()
RwReadShape ()
RwRemoveClumpFromScene ()
RwSetUserError ()

RwScene *
RwForAllLightsInScene(RwScene *scene,

RwLight *(*func) (RwLight *light));

RwScene *
RwForAllLightsInSceneInt(RwScene *scene,

RwLight *(*func) (RwLight *light, RwInt32 arg), RwInt32 arg);

RwScene *
RwForAllLightsInSceneLong(RwScene *scene,

RwLight *(*func) (RwLight *light, RwInt32 arg), RwInt32 arg);

RwScene *
RwForAllLightsInSceneReal(RwScene *scene,

RwLight *(*func) (RwLight *light, RwReal arg), RwReal arg);

RwScene *
RwForAllLightsInScenePointer(RwScene *scene,

RwLight *(*func)(RwLight *light, void *arg), void *arg);
Description

Applies a call-back function to all lights in the scene. If any invocation of the call-
back function sets RenderWares error status, iteration is terminated. The call-back
function can either be a RenderWare API function or a user-defined function. In the
latter case, the call-back function should call RwSetUserError () if it fails for any
reason.
The difference between RwForAllLightsInScene () and its variations listed above is
that for RwForAllLightsInScene () the call-back function takes only one argument
(a light pointer), whereas in the case of its variations, the call-back function takes an
additional, user-supplied argument (arg) that can be of type RwInt32, RwReal or
void * respectively.

Arguments

scene Pointer to the scene.
func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function.

Return Value

The argument scene if successful, and NULL otherwise.
Comments

If the return type of the call-back function is not RwLight *, then the pointer to the
call-back function should be cast to the expected type, i.e., a pointer to a function
whose return type is RwLight *. For example, in the case of a call-back function
named foo whose return type is int, the following C expression should be used:

(RwLight*(*)())foo
Note: RwForAllLightsInSceneLong () now has identical functionality to   
RwForAllLightsInSceneInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllLightsInSceneInt () .

See Also
RwAddLightToScene ()
RwCreateLight ()
RwDestroyLight ()
RwForAllClumpsInScene ()
RwGetSceneNumLights ()
RwRemoveLightFromScene ()

RwBool
RwForAllNamedTextures(RwTexture *(*func)(RwTexture *texture));

RwBool
RwForAllNamedTexturesInt(RwTexture *(*func)(RwTexture *texture, RwInt32 arg),

RwInt32 arg);

RwBool
RwForAllNamedTexturesLong(RwTexture *(*func)(RwTexture *texture, RwInt32 arg),

RwInt32 arg);

RwBool
RwForAllNamedTexturesReal(RwTexture *(*func)(RwTexture *texture, RwReal arg),

RwReal arg);

RwBool
RwForAllNamedTexturesPointer(RwTexture *(*func)(RwTexture *texture, void

*arg), void *arg);
Description

Applies a call-back function to all named textures. Depending on the current search
mode, the scope is either the current texture dictionary (rwLOCAL) or the entire
texture dictionary stack (rwGLOBAL). The call-back function can either be a
RenderWare API function or a user-defined function. In the latter case, the call-back
function should call RwSetUserError () if it fails for any reason.
The difference between RwForAllNamedTextures () and its variations listed above is
that for RwForAllNamedTextures () the call-back function takes only one argument
(a texture pointer), whereas in the case of its variations, the call-back function takes
an additional, user-supplied argument (arg) that can be of type RwInt32, RwReal or
void * respectively.

Arguments

func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

If the return type of the call-back function is not RwTexture *, then the pointer to
the call-back function should be cast to the expected type, i.e., a pointer to a
function whose return type is RwTexture *. For example, in the case of a call-
back function named foo whose return type is int, the following C expression
should be used:

RwTexture*(*)())foo
Note: RwForAllNamedTexturesLong () now has identical functionality to   
RwForAllNamedTexturesInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllNamedTexturesInt () .

See Also
RwFindNamedTexture ()
RwDestroyTexture ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwSetTextureDictSearchMode ()
RwSetUserError ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwClump *
RwForAllPolygonsInClump(RwClump *clump,

RwPolygon3d *(*func)(RwPolygon3d *polygon));

RwClump *
RwForAllPolygonsInClumpInt(RwClump *clump,

RwPolygon3d *(*func)(RwPolygon3d *polygon, RwInt32 arg),
RwInt32 arg);

RwClump *
RwForAllPolygonsInClumpLong(RwClump *clump,

RwPolygon3d *(*func)(RwPolygon3d *polygon, RwInt32 arg),
RwInt32 arg);

RwClump *
RwForAllPolygonsInClumpReal(RwClump *clump,

RwPolygon3d *(*func)(RwPolygon3d *polygon, RwReal arg),
RwReal arg);

RwClump *
RwForAllPolygonsInClumpPointer(RwClump *clump,

RwPolygon3d *(*func)(RwPolygon3d *polygon, void *arg),
void *arg);

Description

Applies a call-back function to all polygons belonging to a given clump. If any
invocation of the call-back function sets RenderWares error status, iteration is
terminated. The call-back function can either be a RenderWare API function or a
user-defined function. In the latter case, the call-back function should call
RwSetUserError () if it fails for any reason.
The difference between RwForAllPolygonsInClump () and its variations listed above
is that for RwForAllPolygonsInClump () the call-back function takes only one
argument (a polygon pointer), whereas in the case of its variations, the call-back
function takes an additional, user-supplied argument (arg) that can be of type
RwInt32, RwReal or void * respectively.

Arguments

clump Pointer to the clump.
func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

If the return type of the call-back function is not RwPolygon3d *, then the pointer to
the call-back function should be cast to the expected type, i.e., a pointer to a
function whose return type is RwPolygon3d *. For example, in the case of a call-back
function named foo whose return type is int, the following C expression should be
used:

(RwPolygon3d*(*)()) foo
Note: RwForAllPolygonsInClumpLong () now has identical functionality to   
RwForAllPolygonsInClumpInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllPolygonsInClumpInt () .

See Also
RwAddPolygonToClump ()
RwAddPolygonsToClump ()
RwFindTaggedPolygon ()
RwGetClumpNumPolygons ()
RwPolygon ()
RwPolygonExt ()
RwQuad ()
RwQuadExt ()
RwSetUserError ()
RwTriangle ()
RwTriangleExt ()

RwClump *
RwForAllUserDrawsInClump(RwClump *clump,

RwUserDraw *(*func)(RwUserDraw *userdraw));

RwClump *
RwForAllUserDrawsInClumpInt(RwClump *clump,

RwUserDraw *(*func)(RwUserDraw *userdraw, RwInt32 arg),
RwInt32 arg);

RwClump *
RwForAllUserDrawsInClumpLong(RwClump *clump,

RwUserDraw *(*func)(RwUserDraw *userdraw, RwInt32 arg),
RwInt32 arg);

RwClump *
RwForAllUserDrawsInClumpReal(RwClump *clump,

RwUserDraw *(*func)(RwUserDraw *userdraw, RwReal arg),
RwReal arg);

RwClump *
RwForAllUserDrawsInClumpPointer(RwClump *clump,

RwUserDraw *(*func)(RwUserDraw *userdraw, void *arg),
void *arg);

Description

Applies a call-back function to all user-draws belonging to a given clump. If any
invocation of the call-back function sets RenderWares error status, iteration is
terminated. The call-back function can either be a RenderWare API function or a
user-defined function. In the latter case, the call-back function should call
RwSetUserError () if it fails for any reason.
The difference between RwForAllUserDrawsInClump () and its variations listed
above is that for RwForAllUserDrawsInClump () the call-back function takes only
one argument (a user-draw pointer), whereas in the case of its variations, the call-
back function takes an additional, user-supplied argument (arg) that can be of type
RwInt32, RwReal or void * respectively.

Arguments

clump Pointer to the clump.
func Pointer to the call-back function.
arg A user-supplied argument to be passed to the call-back function.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

If the return type of the call-back function is not RwUserDraw *, then the pointer to
the call-back function should be cast to the expected type, i.e., a pointer to a
function whose return type is RwUserDraw *. For example, in the case of a call-back
function named foo whose return type is int, the following C expression should be
used:

(RwUserDraw*(*)())foo
Note: RwForAllUserDrawsInClumpLong () now has identical functionality to   
RwForAllUserDrawsInClumpInt () . It is retained in this release for backward
compatibility but will be removed from a future release of RenderWare. New
applications should use RwForAllUserDrawsInClumpInt () .

See Also
RwAddUserDrawToClump ()
RwDuplicateUserDraw ()
RwGetClumpNumUserDraws ()
RwRemoveUserDrawFromClump ()
RwSetUserError ()

RwRGBColor *
RwGetCameraBackColor(RwCamera *camera, RwRGBColor *color);

Description

Retrieves the cameras background fill color.
Arguments

camera Pointer to the camera.
color Pointer to the RwRGBColor that will receive the cameras color.

Return Value

The argument color if successful, and NULL otherwise.
See Also

RwClearCameraViewport ()
RwGetCameraBackdrop ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackColor ()
RwSetCameraBackColorStruct ()

RwRaster *
RwGetCameraBackdrop(RwCamera *camera);

Description

Retrieves the cameras backdrop raster.
Arguments

camera Pointer to the camera.
Return Value

Pointer to the cameras backdrop raster if one has been set, and NULL if there is an
error or if no backdrop raster is associated with the camera. Errors can be checked
for using RwGetError () .

See Also
RwDestroyRaster ()
RwGetCameraBackColor ()
RwGetCameraBackdropOffset ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackdrop ()

RwCamera *
RwGetCameraBackdropOffset(RwCamera *camera, RwInt32 *x, RwInt32 *y);

Description

Retrieves the offset (from the origin of the cameras backdrop viewport rectangle) of
the cameras backdrop.

Arguments

camera Pointer to the camera.
x Pointer to integer to receive the horizontal offset (in pixels).
y Pointer to integer to receive the vertical offset (in pixels).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

The X and Y offset (modulo the width and height of the backdrop) specify the pixel
in the backdrop which will be mapped to the origin of the backdrop viewport
rectangle. Therefore, the effect of increasing the X offset will be to scroll the
backdrop to the left and increasing the Y offset will scroll the backdrop up.
For 16-bit applications accessing the RenderWare DLL the variables pointed to by x
and y must be declared as RwInt32s and not ints.

See Also
RwGetCameraBackdrop ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackdrop ()
RwSetCameraBackdropOffset ()
RwSetCameraBackdropViewportRect ()

RwCamera *
RwGetCameraBackdropViewportRect(RwCamera *camera, RwInt32 *x,

RwInt32 *y, RwInt32 *width, RwInt32 *height);
Description

Retrieves the rectangular area of the viewport into which the cameras backdrop
raster is rendered.

Arguments

camera Pointer to the camera.
x Pointer to integer to receive the X co-ordinate of rectangle (in viewport

space co-ordinates).
y Pointer to integer to receive the Y co-ordinate of rectangle (in viewport

space co-ordinates).
width Pointer to integer to receive the width of the rectangle (in viewport space

units).
height Pointer to integer to receive the height of the rectangle (in viewport

space units).
Return Value

 The argument camera if successful, and NULL otherwise.
Comments

If the backdrop viewport rectangle is larger than the backdrop raster, the raster will
be tiled to fill the rectangle. If the backdrop viewport rectangle is smaller than the
backdrop raster, the raster will be cropped to the rectangle.
Areas of the viewport not covered by the backdrop will be filled with the cameras
background color.
The backdrop viewport rectangle is not automatically changed when the cameras
viewport is modified. RwSetCameraBackdropViewportRect () should be used to
modify the backdrop viewport rectangle appropriately when the cameras viewport is
modified.
For 16-bit applications accessing the RenderWare DLL the variables pointed to by x,
y, width and height must be declared as RwInt32s and not ints.

See Also
RwGetCameraBackColor ()
RwGetCameraBackdrop ()
RwGetCameraBackdropOffset ()
RwSetCameraBackColor ()
RwSetCameraBackdrop ()
RwSetCameraBackdropOffset ()
RwSetCameraBackdropViewportRect ()
RwSetCameraViewport ()

void *
RwGetCameraData(RwCamera *camera);

Description

Retrieves the cameras user data pointer.
Arguments

camera Pointer to the camera.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetCameraData ()

RwReal
RwGetCameraFarClipping(RwCamera *camera);

Description

Retrieves the distance from the camera's position to the back clipping plane.
Arguments

camera Pointer to the camera.
Return Value

The distance from the camera to the far clipping plane if successful, and CREAL(-
1.0) otherwise.

See Also
RwCreateCamera ()
RwGetCameraNearClipping ()
RwSetCameraFarClipping ()
RwSetCameraNearClipping ()

void *
RwGetCameraImage(RwCamera *camera);

Description

Retrieves a pointer to the cameras image buffer.
Arguments

camera Pointer to the camera.
Return Value

A pointer to the image buffer if successful, and NULL otherwise.
Comments

The image buffer format is device dependent. For more information, see Appendix
B.

See Also
RwCreateCamera ()
RwCreateUserDraw ()
RwDuplicateCamera ()
RwDestroyCamera ()

RwV3d *
RwGetCameraLookAt(RwCamera *camera, RwV3d *vector);

Description

Retrieves the cameras Look At vector (the direction in which the camera points).
Arguments

camera Pointer to the camera.
vector Pointer to the vector that will receive the Look At vector.

Return Value

The argument vector if successful, and NULL otherwise.
See Also

RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwPanCamera ()
RwPointCamera ()
RwResetCamera ()
RwSetCameraLookAt ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwV3d *
RwGetCameraLookRight(RwCamera *camera, RwV3d *vector);

Description

Retrieves the cameras Look Right (or U) vector.
Arguments

camera Pointer to the camera.
vector Pointer to the vector that will receive the Look Right vector.

Return Value

The argument vector if successful, and NULL otherwise.
See Also

RwGetCameraLookAt ()
RwGetCameraLookUp ()
RwPanCamera ()
RwPointCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwTransformCameraOrientation ()

RwV3d *
RwGetCameraLookUp(RwCamera *camera, RwV3d *vector);

Description

Retrieves the cameras Look Up (or V) vector.
Arguments

camera Pointer to the camera.
vector Pointer to the vector that will receive the Look Up vector.

Return Value

The argument vector if successful, and NULL otherwise.
See Also

RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwPointCamera ()
RwRevolveCamera ()
RwResetCamera ()
RwSetCameraLookUp ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwMatrix4d *
RwGetCameraLTM(RwCamera *camera, RwMatrix4d *matrix)

Description

Retrieves the cameras Local Transformation Matrix (LTM) which maps object space
to world space.

Arguments

camera Pointer to the camera.
matrix Pointer to the matrix that will receive the LTM.

Return Value

The argument matrix if successful and NULL otherwise.
Comments

The matrix returned by this function may be used to position a light or a clump at
the camera. The following code fragment demonstrates this.

RwGetCameraLTM(Camera, RwScratchMatrix());
RwTransformLight(Light, RwScratchMatrix(), rwREPLACE);

See Also
RwCreateCamera ()
RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwGetCameraPosition ()
RwGetClumpLTM ()
RwGetLightLTM ()
RwResetCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwSetCameraPosition ()
RwTransformCamera ()
RwTransformClump ()
RwTransformLight ()

RwReal
RwGetCameraNearClipping(RwCamera *camera);

Description

Retrieves the distance from the cameras position to the near clipping plane.
Arguments

camera Pointer to the camera.
Return Value

The distance from the camera to the near clipping plane if successful, and CREAL(-
1.0) otherwise.

See Also
RwCreateCamera ()
RwGetCameraFarClipping()
RwSetCameraFarClipping()
RwSetCameraNearClipping ()

RwV3d *
RwGetCameraPosition(RwCamera *camera, RwV3d *position);

Description

Retrieves the cameras position in world space.
Arguments

camera Pointer to the camera.
position Pointer to the point that will receive the cameras position (in world space

co-ordinates).
Return Value

The argument position if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwDuplicateCamera ()
RwResetCamera ()
RwSetCameraPosition ()
RwTransformCamera ()
RwVCMoveCamera ()
RwWCMoveCamera ()

RwCameraProjection
RwGetCameraProjection(RwCamera *camera);

Description

Retrieves the cameras projection type.
Arguments

camera Pointer to the camera.
Return Value

The cameras projection type if successful, and rwNACAMERAPROJECTION otherwise.
Comments

The projection types are:
rwPARALLEL Parallel projection.
rwPERSPECTIVE Perspective projection.

See Also
RwCreateCamera ()
RwSetCameraProjection ()

RwV3d *
RwGetCameraViewOffset(RwCamera *camera, RwV3d *offset);

Description

Retrieves the view offset of the camera.
Arguments

camera Pointer to the camera.
offset Pointer to the vector to receive the view offset.

Return Value

The argument offset if successful, and NULL otherwise.
Comments

The X field of offset will be set to the offset in the direction of the cameras    "Look
Right" vector, the Y field will be set to the offset in the direction "Look Up" vector,
whilst the Z field will be set to CREAL(0.0).

See Also
RwResetCamera ()
RwSetCameraViewOffset ()

RwCamera *
RwGetCameraViewport(RwCamera *camera, RwInt32 *x, RwInt32 *y,

RwInt32 *width, RwInt32 *height);
Description

Retrieves the cameras viewport in device space co-ordinates.
Arguments

camera Pointer to the camera.
x Pointer to the integer that will receive the X co-ordinate of the top left

corner of the viewport (in device space co-ordinates).
y Pointer to the integer that will receive the Y co-ordinate of the top left

corner of the viewport (in device space co-ordinates).
width Pointer to the integer that will receive the width of the viewport (in

device space units).
height Pointer to the integer that will receive the height of the viewport (in

device space units).
Return Value

The argument camera if successful, and NULL otherwise.
Comments

The viewport origin is the top left of the viewport.
For 16-bit applications accessing the RenderWare DLL the variables pointed to by x,
y, width and height must be declared as RwInt32s and not ints.

See Also
RwGetCameraViewwindow ()
RwResetCamera ()
RwSetCameraViewport ()
RwSetCameraViewwindow ()

RwRaster *
RwGetCameraViewportRaster(RwCamera *camera, RwRaster *raster);

Description

Copies the cameras viewport to the specified raster.
Arguments

camera Pointer to the source camera.
raster Pointer to the destination raster.

Return Value

The argument raster if successful, and NULL otherwise.
Comments

RwGetCameraViewportRaster () performs a straight copy. No conversion, filtering or
color matching is performed. raster must have been previously created by
RwCreateRaster () and must be large enough to hold the cameras viewport.
If the raster is to be subsequently used as a texture map the width and height of the
cameras viewport must be 128.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewport ()
RwGetTextureRaster ()
RwSetCameraViewport ()
RwSetTextureRaster ()

RwCamera *
RwGetCameraViewwindow(RwCamera *camera, RwReal *width,

RwReal *height);
Description

Retrieves the width and height of the cameras view window in world space units.
Arguments

camera Pointer to the camera.
width Pointer to the RwReal that will receive the width of the view window (in

world space units).
height Pointer to the RwReal that will receive the height of the view window (in

world space units).
Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwGetCameraViewport ()
RwResetCamera ()
RwSetCameraViewport ()
RwSetCameraViewwindow ()

RwAxisAlignment
RwGetClumpAxisAlignment(RwClump *clump);

Description

Retrieves the axis alignment type of the clump.
Arguments

clump Pointer to the clump.
Return Value

The axis alignment type of the clump if successful, and rwNAAXISALIGNMENT
otherwise.

Comments

The following axis alignment types are supported:
rwNOAXISALIGNMENT The clump is not axis aligned, it is unconstrained.
RwALIGNAXISZORIENTX

The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local X axis is preserved.

RwALIGNAXISZORIENTY
The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local Y axis is preserved.

RwALIGNAXISXYZ The local X, Y and Z axes of the clump are aligned with the
cameras Look Right, Look Up and Look At vectors
respectively.

A clump that is axis aligned will be aligned with the view planes of all cameras used
to view that clump.

See Also
RwCreateSprite ()
RwSetAxisAlignment ()
RwSetClumpAxisAlignment ()

RwClump *
RwGetClumpBBox(RwClump *clump, RwV3d *bll, RwV3d *fur);

Description

Retrieves the bounding box of the clump in world space co-ordinates.
Arguments

clump Pointer to the clump.
bll Pointer to the point that will receive the back, lower, left co-ordinates of

the bounding box (in world space co-ordinates).
fur Pointer to the point that will receive the front, upper, right co-ordinates

of the bounding box (in world space co-ordinates).
Return Value

The argument clump if successful, and NULL otherwise.
Comments

This function is closely related to RwGetClumpLocalBBox () . However, this function
returns a bounding box which is in world coordinate space. The bounding box
returned by this function is aligned with the X, Y and Z axes of world space.
Note that this function is not recursive; it returns the bounding box of the specified
clump only and not its descendants.

See Also
RwGetClumpLocalBBox ()
RwGetClumpViewportRect ()

void *
RwGetClumpData(RwClump *clump);

Description

Retrieves the clumps user data pointer.
Arguments

clump Pointer to the clump.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
in NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetClumpData ()

RwClumpHints
RwGetClumpHints(RwClump *clump);

Description

Retrieves the hints associated with the clump.
Arguments

clump Pointer to the clump.
Return Value

A bitfield representing a hint (or bitwise or of hints) associated with the clump. If
there is an error or if no hints have been added to the clump, 0 is returned. Errors
can be checked for using RwGetError () .

Comments

The clump hints are:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
See Also

RwAddHintToClump ()
RwGetError ()
RwRemoveHintFromClump ()
RwSetClumpHints ()

RwMatrix4d *
RwGetClumpJointMatrix(RwClump *clump, RwMatrix4d *matrix);

Description

Retrieves the clumps joint (articulation) matrix.
Arguments

clump Pointer to the clump.
matrix Pointer to the matrix that will receive the clumps joint (articulation)

matrix.
Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwGetClumpLTM ()
RwGetClumpMatrix ()
RwNormalizeClump ()
RwTransformClumpJoint ()

RwClump *
RwGetClumpLocalBBox(RwClump *clump, RwV3d *bll, RwV3d *fur);

Description

Retrieves the bounding box of the clump in local space co-ordinates.
Arguments

clump Pointer to the clump.
bll Pointer to the point that will receive the back, lower, left co-ordinates of

the bounding box (in local space co-ordinates).
fur Pointer to the point that will receive the front, upper, right co-ordinates

of the bounding box (in local space co-ordinates).
Return Value

The argument clump if successful, and NULL otherwise.
Comments

This function is closely related to RwGetClumpBBox () . However, this function returns
a bounding box which is in local coordinate space (i.e., has not been transformed by
the clumps LTM).
Note that this function is not recursive; it returns the bounding box of the specified
clump only and not its descendants.

See Also
RwGetClumpBBox ()
RwGetClumpViewportRect ()

RwMatrix4d *
RwGetClumpLTM(RwClump *clump, RwMatrix4d *matrix);

Description

Retrieves the clumps Local Transformation Matrix (LTM) which maps object space to
world space.

Arguments

clump Pointer to the clump.
matrix Pointer to the matrix that will receive the clumps LTM.

Return Value

The argument matrix if successful, and NULL otherwise.
Comments

The clumps LTM is the result of the concatenation of all modeling and joint
(articulation) matrices from this clump to the root of the hierarchy.

See Also
RwAddChildToClump ()
RwGetClumpJointMatrix ()
RwGetClumpMatrix ()
RwGetClumpParent ()
RwGetClumpRoot ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwNormalizeClump ()
RwTransformClump ()
RwTransformClumpJoint ()

RwMatrix4d *
RwGetClumpMatrix(RwClump *clump, RwMatrix4d *matrix);

Description

Retrieves the clumps modeling matrix.
Arguments

clump Pointer to the clump.
matrix Pointer to the matrix that will receive the clumps modeling matrix.

Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwGetClumpJointMatrix ()
RwGetClumpLTM ()
RwNormalizeClump ()
RwTransformClump ()

RwInt32
RwGetClumpNumChildren(RwClump *clump);

Description

Retrieves the number of children of the clump.
Arguments

clump Pointer to the clump.
Return Value

The number of children of the clump if successful, and -1 otherwise.
Comments

This function returns the number of direct children of the clump and not the number
of descendants of the clump in the hierarchy.

See Also
RwAddChildToClump ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()

RwInt32
RwGetClumpNumPolygons(RwClump *clump);

Description

Retrieves the number of polygons in the clump.
Arguments

clump Pointer to the clump.
Return Value

The number of polygons in the clump if successful, and -1 otherwise.
See Also

RwAddPolygonToClump ()
RwAddPolygonsToClump ()
RwDestroyPolygon ()
RwForAllPolygonsInClump ()
RwGetClumpNumVertices ()
RwPolygon ()
RwPolygonExt ()
RwQuad ()
RwQuadExt ()
RwTriangle ()
RwTriangleExt ()

RwInt32
RwGetClumpNumUserDraws(RwClump *clump);

Description

Retrieves the number of user-draws owned by the clump.
Arguments

clump Pointer to the clump.
Return Value

The number of user-draws owned by clump if successful, and -1 otherwise.
See Also

RwAddUserDrawToClump ()
RwDestroyUserDraw ()
RwDuplicateUserDraw ()
RwForAllUserDrawsInClump ()
RwRemoveUserDrawFromClump ()

RwInt32
RwGetClumpNumVertices(RwClump *clump);

Description

Retrieves the number of vertices in the clump.
Arguments

clump Pointer to the clump.
Return Value

The number of vertices in the clump if successful, and -1 otherwise.
See Also

RwAddVertexToClump ()
RwGetClumpNumPolygons ()
RwVertex ()
RwVertexExt ()

RwV3d *
RwGetClumpOrigin(RwClump *clump, RwV3d *origin);

Description

Retrieves the origin of the clumps local co-ordinate (object) space in world space co-
ordinates.

Arguments

clump Pointer to the clump.
origin Pointer to the point that will receive the clumps origin (in world space co-

ordinates).
Return Value

The argument origin if successful, and NULL otherwise.
See Also

RwClumpDistance ()
RwGetClumpLTM ()

RwScene *
RwGetClumpOwner(RwClump *clump);

Description

Retrieves the scene that owns the clump.
Arguments

clump Pointer to the clump.
Return Value

The scene that owns the clump if successful, and NULL otherwise.
See Also

RwAddClumpToScene ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwCreateSprite ()
RwDuplicateClump ()
RwReadShape ()
RwRemoveClumpFromScene ()

RwClump *
RwGetClumpParent(RwClump *clump);

Description

Retrieves the clumps parent.
Arguments

clump Pointer to the clump.
Return Value

A pointer to the parent clump. NULL is returned if the clump is the root of a hierarchy
or if an error occurred. Errors can be checked for using RwGetError () .

See Also
RwAddChildToClump ()
RwGetClumpRoot ()
RwGetError ()
RwGetFirstChildClump ()
RwRemoveChildFromClump ()

RwClump *
RwGetClumpRoot(RwClump *clump);

Description

Retrieves the root of the clump hierarchy containing the clump.
Arguments

clump Pointer to the clump.
Return Value

The root clump if successful, and NULL otherwise.
See Also

RwAddChildToClump ()
RwGetClumpParent ()
RwGetFirstChildClump ()
RwGetNextClump ()
RwRemoveChildFromClump ()

RwState
RwGetClumpState(RwClump *clump);

Description

Retrieves the clumps on/off state.
Arguments

clump Pointer to the clump.
Return Value

The clumps state if successful, and rwNASTATE otherwise.
Comments

The states are:
rwON The clump is to be a candidate for rendering and picking.
rwOFF The clump is not to be a candidate for rendering and

picking.
A state of rwON should be interpreted as making a clump a candidate for rendering
and picking. Such a clump will not be rendered if it lies outside the view volume and
it will not be picked unless one of its polygons is the foremost under the pick
position.
The state affects only the clump to which it is applied and not to that clumps
children. Thus, to prevent a single clump in a hierarchy from being rendered it is
preferable to modify the clumps state rather than to remove it from a scene with
RwRemoveClumpFromScene () .

See Also
RwAddClumpToScene ()
RwDestroyClump ()
RwRemoveClumpFromScene ()
RwSetClumpState ()

RwInt32
RwGetClumpTag(RwClump *clump);

Description

Retrieves the integer tag associated with the clump.
Arguments

clump Pointer to the clump.
Return Value

The clumps tag. Errors can be checked for using RwGetError () .
See Also

RwFindTaggedClump ()
RwGetError ()
RwGetPolygonTag ()
RwSetClumpTag ()
RwSetTag ()

RwV3d *
RwGetClumpVertex(RwClump *clump, RwInt32 index, RwV3d *coords);

Description

Retrieves the object space co-ordinates of the vertex which belongs to clump and
has the vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
coords Pointer to the point that will receive the vertexs position (in object space

co-ordinates).
Return Value

The argument coords if successful, and NULL otherwise.
Comments

The vertex index must be an integer greater than 0 and less than or equal to the
number of vertices that belong to the clump.

See Also
RwGetClumpVertexNormal ()
RwGetClumpVertexUV ()
RwSetClumpVertex ()
RwSetClumpVertices ()

RwV3d *
RwGetClumpVertexNormal(RwClump *clump, RwInt32 index, RwV3d *normal);

Description

Returns the unit shading normal of the vertex which belongs to clump and has
vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
normal Pointer to the vector that will receive the unit shading normal.

Return Value

The argument normal if successful, and NULL otherwise.
Comments

The vertex index must be an integer greater than 0 and less than or equal to the
number of vertices that belong to the clump.

See Also
RwCalculateClumpVertexNormal ()
RwGetClumpVertex ()
RwGetClumpVertexUV ()
RwGetPolygonNormal ()
RwSetClumpVertexNormal ()
RwVertexExt ()

RwUV *
RwGetClumpVertexUV(RwClump *clump, RwInt32 index, RwUV *uv);

Description

Retrieves the texture (U, V) co-ordinates of the vertex which belongs to clump and
has vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
uv Pointer to the RwUV structure that will receive the texture co-ordinates of

the vertex.
Return Value

The argument uv if successful, and NULL otherwise.
Comments

The vertex index must be an integer greater than 0 and less than or equal to the
number of vertices that belong to the clump.

See Also
RwCubicTexturizeClump ()
RwEnvMapClump ()
RwGetClumpVertex ()
RwGetClumpVertexNormal ()
RwSetClumpVertexUV ()
RwSetPolygonUV ()
RwSphericalTexturizeClump ()
RwVertexExt ()

RwBool
RwGetClumpVertexViewportPosition(RwClump *clump, RwInt32 index,

RwCamera *camera, RwInt32 *x, RwInt32 *y, RwBool *visible);
Description

Retrieves the viewport space co-ordinates of the vertex belonging to clump with the
vertex index index in the viewport of camera. visible indicates whether the vertex
has been clipped from the view volume.

Arguments

clump Pointer to the clump.
index The vertex index.
camera Pointer to the camera.
x Pointer to integer to receive the X co-ordinate of the vertex (in viewport

space co-ordinates).
y Pointer to integer to receive the Y co-ordinate of the vertex (in viewport

space co-ordinates).
visible Pointer to integer to receive TRUE if the vertex is visible, and FALSE if it

has been clipped from the view volume.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

If visible is FALSE the integer values pointed to by x and y are undefined.
For 16-bit applications accessing the RenderWare DLL the variables pointed to by x
and y must be declared as RwInt32s and not ints. Furthermore, the variable
pointed to by visible must be declared as an RwBool.

See Also
RwGetClumpVertex ()
RwGetClumpViewportRect ()
RwSetClumpVertex ()

RwClump *
RwGetClumpViewportRect(RwClump *clump, RwCamera *camera,

RwInt32 *x, RwInt32 *y, RwInt32 *width, RwInt32 *height);
Description

Retrieves the 2D rectangle that encloses the projection of the clump onto the
specified cameras viewport.

Arguments

clump Pointer to the clump.
camera Pointer to the camera.
x Pointer to the integer that will receive the X co-ordinate of the top left

corner of the rectangle (in viewport space co-ordinates).
y Pointer to the integer that will receive the Y co-ordinate of the top left

corner of the rectangle (in viewport space co-ordinates).
width Pointer to the integer that will receive the width of the rectangle (in

viewport space units).
height Pointer to the integer that will receive the height of the rectangle (in

viewport space units).
Return Value

A pointer to the argument clump, and NULL otherwise.
For 16-bit applications accessing the RenderWare DLL the variables pointed to by x,
y, width and height must be declared as RwInt32s and not ints.

See Also
RwDamageCameraViewport ()
RwGetClumpBBox ()
RwGetClumpLocalBBox()
RwGetClumpVertexViewportPosition ()
RwUndamageCameraViewport ()

RwState
RwGetDebugAssertionState(void);

Description

Gets the current state of assertion failure messages.
Arguments

None.
Return Value

The current state of assertion failure messages.
Comments

The assertion message states are:
rwON Assertion messages are enabled.
rwOFF Assertion messages are disabled.

See Also
RwGetDebugMessageState ()
RwGetDebugScriptState ()
RwGetDebugTraceState()
RwSetDebugAssertionState ()
RwSetDebugOutputState ()

RwState
RwGetDebugMessageState(void);

Description

Gets the current state of miscellaneous messages.
Arguments

None.
Return Value

The current state of miscellaneous messages.
Comments

The miscellaneous message states are:
rwON Miscellaneous messages are enabled.
rwOFF Miscellaneous messages are disabled.

See Also
RwGetDebugAssertionState ()
RwGetDebugScriptState ()
RwGetDebugTraceState()
RwSetDebugMessageState ()
RwSetDebugOutputState ()

RwState
RwGetDebugScriptState(void);

Description

Gets the current state of scripting trace messages.
Arguments

None.
Return Value

The current state of scripting trace messages.
Comments

The script trace message states are:
rwON Script trace messages are enabled.
rwOFF Script trace messages are disabled.

See Also
RwGetDebugAssertionState ()
RwGetDebugMessageState ()
RwGetDebugTraceState()
RwSetDebugOutputState ()
RwSetDebugScriptState ()

RwDebugSeverity
RwGetDebugSeverity(void);

Description

Gets the current minimum severity level for the reporting of debugging messages.
Arguments

None.
Return Value

The current debug severity level.
Comments

The debug message severity levels are:
rwINFORM Control flow annotations, non-fatal exceptions and fatal

exceptions are all enabled.
rwWARNING Non-fatal exceptions and fatal exceptions are enabled.
rwERROR Fatal exceptions are enabled.

See Also
RwSetDebugSeverity ()

RwState
RwGetDebugTraceState(void);

Description

Gets the current state of API function trace messages.
Arguments

None.
Return Value

The current state of API function trace messages.
Comments

The API function trace message states are:
rwON API function trace messages are enabled.
rwOFF API function trace messages are disabled.

See Also
RwGetDebugAssertionState ()
RwGetDebugMessageState ()
RwGetDebugScriptState()
RwSetDebugOutputState ()
RwSetDebugTraceState ()

RwBool
RwGetDeviceInfo(RwDeviceInfo info, void *value, RwInt32 size);

Description

Retrieves information about an aspect of the current RenderWare device driver. The
specific information to query is given by info.

Arguments

info Aspect of current device driver to query.
value Pointer to a buffer to receive the result of the query. The actual data type

of value is dependent on the value of info.
size Size in bytes of the buffer pointed to by param2.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The value parameter of each device information type is as follows:
rwRENDERDEPTH A pointer to an RwInt32 to receive the current depth (in

bits) of rendering.
rwINDEXEDRENDERING A pointer to an RwBool which will be nonzero if rendering is

indexed color based and zero if direct color based.
rwPALETTEBASED A pointer to an RwBool which will be nonzero if the output

device has a palette that RenderWare will attempt to
modify, and zero if the output device uses direct color.

The following options apply when the output device is palette based:
rwPALETTE A pointer to a device specific value which will receive a

device dependent RenderWare palette object. See
Appendix B for a description of this parameter.

rwPALETTESIZE A pointer to an RwInt32 to receive the number of entries in
the entire palette (this will normally be 256 for 8-bit
devices).

rwFIRSTPALETTEENTRY
A pointer to an RwInt32 to receive the palette index of the
first palette entry available for use by an application.

rwLASTPALETTEENTRY
A pointer to an RwInt32 to receive the palette index of the
last palette entry available for use by an application.

Further information types may be supported by specific device drivers. See
Appendix B for more information.
The size parameter is new with RenderWare V1.4. size gives the size in bytes of
the buffer pointed to by value. For example to determine RenderWares current
render depth the following would be used:

RwInt32 depth;
RwGetDeviceInfo(rwRENDERDEPTH, &depth, sizeof(depth);

See Also
RwDeviceControl ()

RwGetSystemInfo ()
RwSetPaletteEntries()
RwOpenExt ()

RwErrorCode
RwGetError(void);

Description

Gets the value of RenderWares global error status (as set by the first function that
generated an error since the last call to RwGetError ()) and then clears the error
status.

Arguments

None.
Return Value

An error code indicating the type of error that has occurred if the error status has
been set. If no error has been set then E_RW_NOERROR is returned.

See Also
RwGetInternalError ()
RwSetUserError ()

RwClump *
RwGetFirstChildClump(RwClump *clump);

Description

Retrieves the first child of the clump.
Arguments

clump Pointer to the clump.
Return Value

A pointer to the child clump. NULL is returned if the clump has no children or an
error occurred. Errors can be checked for using RwGetError () .

Comments

In the absence of any deletions, the first child of a clump is the one that was first
added to the clump using RwAddChildToClump () .

See Also
RwAddChildToClump ()
RwGetClumpNumChildren ()
RwGetClumpParent ()
RwGetError ()
RwGetNextClump ()
RwRemoveChildFromClump ()

RwInt32
RwGetInternalError(void);

Description

Retrieves a code representing the type of internal error that has occurred.
Arguments

None.
Return Value

The internal error code.
Comments

In the unlikely event that RwGetError () returns E_RW_INTERNAL, this function
should be called in order to retrieve the internal error code. The number returned
can then be reported to the RenderWare technical support department.

See Also
RwGetError ()
RwSetUserError ()

RwReal
RwGetLightBrightness(RwLight *light);

Description

Retrieves the lights brightness.
Arguments

light Pointer to the light.
Return Value

The brightness of the light if successful. Errors can be checked for using
RwGetError () .

Comments

If the lights color has been    previously set with a call to RwSetLightColor () then
the value returned by RwGetLightBrightness () will be the average intensity of the
red, green and blue channels of the lights color.

See Also
RwCreateLight ()
RwGetError ()
RwSetLightBrightness ()

RwRGBColor *
RwGetLightColor(RwLight *light, RwRGBColor *color);

Description

Retrieves the color of a light.
Arguments

light Pointer to the light.
color Pointer to the RwRGBColor that will receive the lights color.

Return Value

The argument color if successful, and NULL otherwise.
Comments

If a lights brightness has been previously set with RwSetLightBrightness () the
red, green and blues channels of the color returned by RwGetLightColor () will be
equal to the specified brightness.
In RenderWare V1.4, colored light sources are only available when performing 16-bit
rendering. Under 8-bit rendering RwGetLightColor () , RwSetLightColor () and
RwSetLightColorStruct () are still available to the API, however, light sources will
always be white.

See Also
RwSetLightColor ()
RwSetLightColorStruct ()
RwSetLightBrightness ()

RwReal
RwGetLightConeAngle(RwLight *light);

Description

Retrieves the cone angle of a conical or point light.
Arguments

light Pointer to the light.
Return Value

The cone angle of the light if successful. Errors can be checked for using
RwGetError () .

Comments

For a point light source, CREAL(180.0) is returned.
See Also

RwCreateLight ()
RwGetError ()
RwSetLightConeAngle ()

void *
RwGetLightData(RwLight *light);

Description

Retrieves the lights user data pointer.
Arguments

light Pointer to the light.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetLightData ()

RwMatrix4d *
RwGetLightLTM(RwLight *light, RwMatrix4d *matrix)

Description

Retrieves the lights Local Transformation Matrix (LTM) which maps object space to
world space.

Arguments

light Pointer to the light.
matrix Pointer to the matrix that will receive the LTM.

Return Value

The argument matrix if successful and NULL otherwise.
Comments

The matrix returned by this function may be used to position a camera or a clump at
the light. The following code fragment demonstrates this.

RwGetLightLTM(Light, RwScratchMatrix());
RwTransformCamera(Camera, RwScratchMatrix(), rwREPLACE);

See Also
RwCreateLight ()
RwGetClumpLTM ()
RwGetCameraLTM ()
RwGetLightPosition ()
RwGetLightVector ()
RwSetLightPosition ()
RwSetLightVector ()
RwTransformCamera ()
RwTransformClump ()
RwTransformLight ()

RwScene *
RwGetLightOwner(RwLight *light);

Description

Retrieves the scene that owns the light.
Arguments

light Pointer to the light.
Return Value

The scene that owns the light if successful, and NULL otherwise.
See Also

RwAddLightToScene ()
RwCreateLight ()
RwRemoveLightFromScene ()

RwV3d *
RwGetLightPosition(RwLight *light, RwV3d *position);

Description

Retrieves the position of a point or conical light in world space co-ordinates.
Arguments

light Pointer to the light.
position Pointer to the point that will receive the lights position (in world space

co-ordinates).
Return Value

The argument position if successful, and NULL otherwise.
See Also

RwCreateLight ()
RwSetLightPosition ()
RwTransformLight ()

RwState
RwGetLightState(RwLight *light);

Description

Retrieves the lights on/off state.
Arguments

light Pointer to the light.
Return Value

The lights state if successful, and rwNASTATE otherwise.
Comments

The states are:
rwON The light is on.
rwOFF The light is off.

See Also
RwCreateLight ()
RwGetClumpState ()
RwSetLightState ()

RwLightType
RwGetLightType(RwLight *light);

Description

Retrieves the type of the light.
Arguments

light Pointer to the light.
Return Value

The light type if successful, and rwNALIGHTTYPE otherwise.
Comments

The light types are:
rwDIRECTIONAL A directional light source.
rwPOINT A point light source.
rwCONICAL A conical (or spot) light source.

See Also
RwCreateLight ()

RwV3d *
RwGetLightVector(RwLight *light, RwV3d *vector);

Description

Retrieves the illumination vector of a directional or conical light.
Arguments

light Pointer to the light.
vector Pointer to a vector that will receive the lights vector.

Return Value

The argument vector if successful, and NULL otherwise.
See Also

RwCreateLight ()
RwSetLightVector ()
RwTransformLight ()

RwReal
RwGetMaterialAmbient(RwMaterial *material);

Description

Retrieves the materials ambient reflection coefficient.
Arguments

material Pointer to the material.
Return Value

The ambient reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialDiffuse ()
RwGetMaterialSpecular ()
RwGetPolygonAmbient ()
RwSetMaterialAmbient ()
RwSetMaterialSurface ()

RwRGBColor *
RwGetMaterialColor(RwMaterial *material, RwRGBColor *color);

Description

Retrieves the materials color.
Arguments

material Pointer to the material.
color Pointer to the RwRGBColor that will receive the materials color.

Return Value

The argument color if successful, and NULL otherwise.
See Also

RwGetPolygonColor ()
RwSetMaterialColor ()
RwSetMaterialColorStruct ()

RwReal
RwGetMaterialDiffuse(RwMaterial *material);

Description

Retrieves the materials diffuse reflection coefficient.
Arguments

material Pointer to the material.
Return Value

The diffuse reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialAmbient ()
RwGetMaterialSpecular ()
RwGetPolygonDiffuse ()
RwSetMaterialDiffuse ()
RwSetMaterialSurface ()

RwGeometrySampling
RwGetMaterialGeometrySampling(RwMaterial *material);

Description

Retrieves the materials geometry sampling type.
Arguments

material Pointer to the material.
Return Value

The materials geometry sampling type if successful, and rwNAGEOMETRYSAMPLING
otherwise.

Comments

The geometry sampling types are:
rwPOINTCLOUD Render geometry as a cloud of points.
rwWIREFRAME Render geometry as a wireframe of polygon edges.
rwSOLID Render geometry as a solid bounded by filled polygons.

See Also
RwGetMaterialLightSampling ()
RwGetPolygonGeometrySampling ()
RwSetMaterialGeometrySampling ()

RwLightSampling
RwGetMaterialLightSampling(RwMaterial *material);

Description

Retrieves the materials light sampling type.
Arguments

material Pointer to the material.
Return Value

The materials light sampling type if successful, and rwNALIGHTSAMPLING otherwise.
Comments

The light sampling types are:
rwFACET Flat shading.
rwVERTEX Smooth shading.

See Also
RwGetMaterialGeometrySampling ()
RwGetPolygonLightSampling ()
RwSetMaterialLightSampling ()

RwReal
RwGetMaterialOpacity(RwMaterial *material);

Description

Retrieves the materials opacity
Arguments

material Pointer to the material.
Return Value

The opacity if successful. Errors can be checked for using RwGetError () .
Comments

An opacity of CREAL(1.0) yields an entirely opaque material. An opacity of
CREAL(0.0) yields an entirely transparent material.

See Also
RwGetError ()
RwGetPolygonOpacity ()
RwSetMaterialOpacity ()

RwReal
RwGetMaterialSpecular(RwMaterial *material);

Description

Retrieves the materials specular reflection coefficient.
Arguments

material Pointer to the material.
Return Value

The specular reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialAmbient ()
RwGetMaterialDiffuse ()
RwGetPolygonSpecular ()
RwSetMaterialSpecular ()
RwSetMaterialSurface ()

RwTexture *
RwGetMaterialTexture(RwMaterial *material);

Description

Retrieves the materials texture.
Arguments

material Pointer to the material.
Return Value

A pointer to the materials texture if successful, and NULL if there is no texture
associated with the material or if there is an error. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialTextureModes ()
RwGetPolygonTexture ()
RwSetMaterialTexture ()

RwTextureModes
RwGetMaterialTextureModes(RwMaterial *material);

Description

Retrieves the materials texture mode (or modes).
Arguments

material Pointer to the material.
Return Value

The materials texture modes if successful. Errors can be checked for using
RwGetError () .

Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToMaterial ()
RwGetError ()
RwGetMaterialTexture ()
RwGetPolygonTextureModes ()
RwRemoveTextureModeFromMaterial ()
RwSetMaterialTextureModes ()

RwReal
RwGetMatrixElement(RwMatrix4d *matrix, RwInt32 row, RwInt32 column);

Description

Retrieves the value of an individual element of the matrix.
Arguments

matrix Pointer to the matrix.
row Row index in the range 0 to 3.
column Column index in the range 0 to 3.

Return Value

The matrix element if successful. Errors can be checked for using RwGetError () .
See Also

RwGetError ()
RwGetMatrixElements ()
RwSetMatrixElement ()
RwSetMatrixElements ()

RwReal *
RwGetMatrixElements(RwMatrix4d *matrix, RwReal elements[4][4]);

Description

Retrieves the elements of a matrix into a four by four array of RwReals. The top row
of the matrix is copied into the first four array entries.

Arguments

matrix Pointer to the matrix.
elements Pointer to a four by four array of RwReals to receive the elements of the

matrix.
Return Value

The argument elements if successful, and NULL otherwise.
Comments

By convention a matrix is taken to transform a row vector by post multiplication.
See Also

RwGetMatrixElement ()
RwSetMatrixElement ()
RwSetMatrixElements ()

RwTexture *
RwGetNamedTexture(char *name);

Description

Searches for the named texture. If the current search mode is rwLOCAL, the function
searches only the current dictionary. If the current search mode is rwGLOBAL, the
function searches the whole of the texture dictionary stack. If the search fails, an
attempt is made to read the named texture from disk. If the named texture is found,
it is stored into the current texture dictionary.

Arguments

name Name of a texture.
Return Value

A pointer to the named texture if successful, and NULL otherwise.
Comments

The string supplied as the texture name should form the leaf part (i.e., without path
or extension) of the filename of the texture file. Furthermore, for the sake of
portability of texture files across the different platforms supported by RenderWare, it
is best to choose texture file names that are a maximum of eight characters long
and which are acceptable to MS-DOS as file names.
If the function cannot find the named texture in the texture dictionary stack, it will
look for a texture file in the directories whose names appear in the shape path.
Furthermore, if the specified name does not have a file extension, then this function
will also search for the specified name followed by the extensions .ras, .env, .tex,
.bmp and .rle.
An example of a valid texture is marble, which will match with file names marble,
marble.tex,    marble.ras,    marble.env,    marble.bmp and marble.rle.

See Also
RwCreateTexture ()
RwDestroyTexture ()
RwFindNamedTexture ()
RwForAllNamedTextures ()
RwGetShapePath ()
RwReadNamedTexture ()
RwReadTexture ()
RwSetShapePath ()
RwSetTextureDictSearchMode ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwClump *
RwGetNextClump(RwClump *clump);

Description

Retrieves the next sibling of the clump.
Arguments

clump Pointer to the clump.
Return Value

A pointer to the sibling clump. NULL is returned if the clump has no next sibling or an
error occurred. Errors can be checked for using RwGetError () .

See Also
RwAddChildToClump ()
RwGetClumpNumChildren ()
RwGetClumpParent ()
RwGetError ()
RwGetFirstChildClump ()
RwRemoveChildFromClump ()

RwInt32
RwGetNumNamedTextures(void);

Description

Retrieves the number of named textures in either the current texture dictionary or in
all dictionaries in the texture dictionary stack.

Arguments

None.
Return Value

The number of named textures if successful, and -1 otherwise.
Comments

If the texture dictionary search mode is rwLOCAL, the number of textures in the
current texture dictionary is returned. If the search mode is rwGLOBAL the number of
textures in all dictionaries on the texture dictionary stack is returned.

See Also
RwDestroyTexture ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwSetTextureDictSearchMode ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwPaletteEntry *
RwGetPaletteEntries(RwInt32 start, RwInt32 length,

RwPaletteEntry *palette);
Description

Reads length entries from the current RenderWare palette starting at entry start.
Arguments

start First palette entry to read.
length Number of entries to read
palette Pointer to an array of RwPaletteEntrys to hold retrieved values.

Return Value

The argument palette if successful, and NULL otherwise.
See Also

RwGetDeviceInfo ()
RwSetPaletteEntries ()

RwReal
RwGetPolygonAmbient(RwPolygon3d *polygon);

Description

Retrieves the ambient reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The ambient reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialAmbient ()
RwGetPolygonDiffuse ()
RwGetPolygonSpecular ()
RwSetPolygonAmbient ()
RwSetPolygonSurface ()

RwV3d *
RwGetPolygonCenter(RwPolygon3d *polygon, RwV3d *center);

Description

Retrieves the center of the polygon in object space co-ordinates.
Arguments

polygon Pointer to the polygon.
center Pointer to point that will receive the polygon center (in object space co-

ordinates).
Return Value

The argument center if successful, and NULL otherwise.
See Also

RwGetPolygonNormal ()

RwRGBColor *
RwGetPolygonColor(RwPolygon3d *polygon, RwRGBColor *color);

Description

Retrieves the color of the polygons material.
Arguments

polygon Pointer to the polygon.
color Pointer to the RwRGBColor that will receive the materials color.

Return Value

The argument color if successful, and NULL otherwise.
See Also

RwGetMaterialColor ()
RwSetPolygonColor ()
RwSetPolygonColorStruct ()

void *
RwGetPolygonData(RwPolygon3d *polygon);

Description

Retrieves the polygons user data pointer.
Arguments

polygon Pointer to the polygon.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetPolygonData ()

RwReal
RwGetPolygonDiffuse(RwPolygon3d *polygon);

Description

Retrieves the diffuse reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The diffuse reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialDiffuse ()
RwGetPolygonAmbient ()
RwGetPolygonSpecular ()
RwSetPolygonDiffuse ()
RwSetPolygonSurface ()

RwGeometrySampling
RwGetPolygonGeometrySampling(RwPolygon3d *polygon);

Description

Retrieves the geometry sampling type of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The geometry sampling type of the polygons material if successful, and
rwNAGEOMETRYSAMPLING otherwise.

Comments

The geometry sampling types are:
rwPOINTCLOUD Render geometry as a cloud of points.
rwWIREFRAME Render geometry as a wireframe of polygon edges.
rwSOLID Render geometry as a solid bounded by filled polygons.

See Also
RwGetMaterialGeometrySampling ()
RwGetPolygonLightSampling ()
RwSetPolygonGeometrySampling ()

RwLightSampling
RwGetPolygonLightSampling(RwPolygon3d *polygon);

Description

Retrieves the light sampling type of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The light sampling type of the polygons material if successful, and
rwNALIGHTSAMPLING otherwise.

Comments

The light sampling types are:
rwFACET Flat shading.
rwVERTEX Smooth shading.

See Also
RwGetMaterialLightSampling ()
RwGetPolygonGeometrySampling ()
RwSetPolygonLightSampling ()

RwMaterial *
RwGetPolygonMaterial(RwPolygon3d *polygon);

Description

Retrieves the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

Pointer to the polygons material if successful, and NULL otherwise.
Comments

Do not attempt to destroy the material returned by this function.
See Also

RwDestroyMaterial ()
RwGetPolygonAmbient ()
RwGetPolygonColor ()
RwGetPolygonDiffuse ()
RwGetPolygonGeometrySampling ()
RwGetPolygonLightSampling ()
RwGetPolygonOpacity ()
RwGetPolygonSpecular ()
RwGetPolygonTexture ()
RwGetPolygonTextureModes ()
RwSetPolygonMaterial ()

RwV3d *
RwGetPolygonNormal(RwPolygon3d *polygon, RwV3d *normal);

Description

Retrieves the polygons surface normal vector.
Arguments

polygon Pointer to the polygon.
normal Pointer to the vector that will receive the polygon normal.

Return Value

The argument normal if successful, and NULL otherwise.
See Also

RwGetClumpVertexNormal ()
RwGetPolygonCenter ()

RwInt32
RwGetPolygonNumSides(RwPolygon3d *polygon);

Description

Retrieves the number of sides of the polygon.
Arguments

polygon Pointer to the polygon.
Return Value

The number of sides of the polygon if successful, and 0 otherwise.
See Also

RwGetPolygonVertices ()

RwReal
RwGetPolygonOpacity(RwPolygon3d *polygon);

Description

Retrieves the opacity of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The opacity if successful. Errors can be checked for using RwGetError () .
Comments

An opacity of CREAL(1.0) yields an entirely opaque polygon. An opacity of
CREAL(0.0) yields an entirely transparent polygon.

See Also
RwGetError ()
RwGetMaterialOpacity ()
RwSetPolygonOpacity ()

RwClump *
RwGetPolygonOwner(RwPolygon3d *polygon);

Description

Retrieves the clump that owns the polygon.
Arguments

polygon Pointer to the polygon.
Return Value

A pointer to the clump that owns the polygon if successful, and NULL otherwise.
See Also

RwFindTaggedPolygon ()
RwForAllPolygonsInClump ()

RwReal
RwGetPolygonSpecular(RwPolygon3d *polygon);

Description

Retrieves the specular reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The specular reflection coefficient if successful. Errors can be checked for using
RwGetError () .

See Also
RwGetError ()
RwGetMaterialSpecular ()
RwGetPolygonAmbient ()
RwGetPolygonDiffuse ()
RwSetPolygonSpecular ()

RwInt32
RwGetPolygonTag(RwPolygon3d *polygon);

Description

Retrieves the polygons tag.
Arguments

polygon Pointer to the polygon.
Return Value

The polygons tag if successful. Errors can be checked for using RwGetError () .
Note: Only the least significant 16 bits of the tag are valid. The most significant 16-
bits will be set to zero.

See Also
RwFindTaggedPolygon ()
RwGetError ()
RwGetClumpTag ()
RwPolygonExt ()
RwQuadExt ()
RwSetPolygonTag ()
RwVertexExt ()

RwTexture *
RwGetPolygonTexture(RwPolygon3d *polygon);

Description

Retrieves the texture of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

A pointer to the texture of the polygons material. NULL is returned if there is no
texture associated with the polygons material or if there is an error. Errors can be
checked for using RwGetError () .

See Also
RwGetError ()
RwGetMaterialTexture ()
RwSetPolygonTexture ()

RwTextureModes
RwGetPolygonTextureModes(RwPolygon3d *polygon);

Description

Retrieves the texture mode (or modes) of the polygons material.
Arguments

polygon Pointer to the polygon.
Return Value

The polygons materials texture modes if successful. Errors can be checked for using
RwGetError () .

Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToPolygon ()
RwGetError ()
RwGetMaterialTextureModes ()
RwRemoveTextureModeFromPolygon ()
RwSetPolygonTexture ()
RwSetPolygonTextureModes ()

RwUV *
RwGetPolygonUV(RwPolygon3d *polygon, RwUV *uvarray);

Description

Retrieves the texture (U, V) co-ordinates of the vertices of the polygon.
Arguments

polygon Pointer to the polygon.
uvarray Pointer to an array of RwUV structures that will receive the texture co-

ordinates of the polygons vertices.
Return Value

The argument uvarray if successful, and NULL otherwise.
Comments

The size of the array uvarray must match the number of the vertices of the
polygon.

See Also
RwCubicTexturizeClump ()
RwEnvMapClump ()
RwGetClumpVertexUV ()
RwGetPolygonNumSides ()
RwSetClumpVertexUV ()
RwSetPolygonUV ()
RwSphericalTexturizeClump ()
RwVertexExt ()

RwInt32
RwGetPolygonVertices(RwPolygon3d *polygon, RwInt32 *vlist);

Description

Retrieves the polygons vertex indices.
Arguments

polygon Pointer to the polygon.
vlist Pointer to an array of RwInt32s that will receive the vertex indices.

Return Value

The number of vertices if successful, and 0 otherwise.
Comments

For 16-bit applications accessing the RenderWare DLL the vertex index list pointed
to by vlist must be declared as an array of RwInt32s and not ints.

See Also
RwAddPolygonToClump ()
RwGetPolygonNumSides ()
RwGetPolygonUV ()

void *
RwGetRasterData(RwRaster *raster);

Description

Retrieves the rasters user data pointer.
Arguments

raster Pointer to the raster.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetRasterData ()

RwInt32
RwGetRasterDepth(RwRaster *raster);

Description

Retrieves the depth (in bits) of the raster.
Arguments

raster Pointer to the raster.
Return Value

The depth (in bits) of raster if successful, and -1 otherwise.
Comments

The raster depth is always equal to RenderWares current render depth.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwGetDeviceInfo ()
RwGetRasterHeight ()
RwGetRasterPixels ()
RwGetRasterStride ()
RwGetRasterWidth ()
RwReadMaskRaster ()
RwReadRaster ()

RwInt32
RwGetRasterHeight(RwRaster *raster);

Description

Retrieves the height (in pixels) of the raster.
Arguments

raster Pointer to the raster.
Return Value

The height (in pixels) of raster if successful, and -1 otherwise.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwGetRasterDepth ()
RwGetRasterPixels ()
RwGetRasterStride ()
RwGetRasterWidth ()
RwReadMaskRaster ()
RwReadRaster ()

unsigned char *
RwGetRasterPixels(RwRaster *raster);

Description

Retrieves a pointer to the pixels of the raster.
Arguments

raster Pointer to the raster.
Return Value

A pointer to the pixels of raster if successful, and NULL otherwise.
Comments

The memory used to store the pixels of a raster may be stored in the memory of a
peripheral    device or may move in main memory. In order that an application can
read and write to this memory it must be locked. RwGetRasterPixels () performs
this locking. The pointer returned by this function must be released (and the
associated memory unlocked) after use by a call to RwReleaseRasterPixels () .
Following RwReleaseRasterPixels () the pointer is no longer valid and it must not
be cached for later use. To prevent performance degradation it is essential that the
pointer is released as soon as possible.
The pointer returned by this function points to an array of bytes organized into
RwGetRasterHeight () scan lines. Each scan line is RwGetRasterStride () bytes in
width.
The pixel format is dependent on the rasters depth. For an 8 bit raster each pixel
occupies a single byte. This byte is an index into the RenderWare color palette. For a
16 bit raster each pixel occupies two bytes which are interpreted as a short (16 bit)
integer. This integer represents a direct, RGB color specification. The least
significant five bits (bits 0 - 4) are the blue channel, the next six bits (bits 5 - 10) are
the green channel and the most significant five bits (bits 11 - 15) are the red
channel.
Under Windows 3.1x, the type of the pointer returned by RwGetRasterPixels () can
vary with the development environment being used. See Appendix B for more
information.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwGetRasterDepth ()
RwGetRasterHeight ()
RwGetRasterStride ()
RwGetRasterWidth ()
RwReadMaskRaster ()
RwReadRaster ()
RwReleaseRasterPixels ()

RwInt32
RwGetRasterStride(RwRaster *raster);

Description

Retrieves the stride (width in bytes) of the raster.
Arguments

raster Pointer to the raster.
Return Value

The stride (width in bytes) of raster if successful, and -1 otherwise.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwGetRasterDepth ()
RwGetRasterHeight ()
RwGetRasterPixels ()
RwGetRasterWidth ()
RwReadMaskRaster ()
RwReadRaster ()

RwInt32
RwGetRasterWidth(RwRaster *raster);

Description

Retrieves the width (in pixels) of the raster.
Arguments

raster Pointer to the raster.
Return Value

The width (in pixels) of raster if successful, and -1 otherwise.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwGetRasterDepth ()
RwGetRasterHeight ()
RwGetRasterPixels ()
RwGetRasterStride ()
RwReadMaskRaster ()
RwReadRaster ()

void *
RwGetSceneData(RwScene *scene);

Description

Retrieves the scenes user data pointer.
Arguments

scene Pointer to the scene.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetSceneData ()

RwInt32
RwGetSceneNumClumps(RwScene *scene);

Description

Retrieves the number of clumps in the scene.
Arguments

scene Pointer to the scene.
Return Value

The number of clumps in the scene if successful, and -1 otherwise.
See Also

RwAddClumpToScene ()
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwCreateSprite ()
RwForAllClumpsInScene ()
RwGetSceneNumLights ()
RwReadShape ()
RwRemoveClumpFromScene ()

RwInt32
RwGetSceneNumLights(RwScene *scene);

Description

Retrieves the number of lights in the scene.
Arguments

scene Pointer to the scene.
Return Value

The number of lights in the scene if successful, and -1 otherwise.
See Also

RwAddLightToScene ()
RwCreateLight ()
RwForAllLightsInScene ()
RwGetSceneNumClumps ()
RwRemoveLightFromScene ()

char *
RwGetShapePath(char *path);

Description

Retrieves the current shape path.
Arguments

path Pointer to the string that will receive the path. The required size of path
is defined by RWMAXPATHLEN.

Return Value

The argument path if successful, and NULL otherwise.
See Also

RwGetNamedTexture()
RwReadNamedTexture()
RwReadShape()
RwReadRaster()
RwReadMaskRaster()
RwReadTexture()
RwSetShapePath()
RwSetSurfaceTexture()
RwSetSurfaceTextureExt()

void *
RwGetSplineData(RwSpline *spline);

Description

Retrieves the splines user data pointer.
Arguments

spline Pointer to the spline.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetSplineData ()

RwInt32
RwGetSplineNumPoints(RwSpline *spline);

Description

Retrieves the number of control points of the spline.
Arguments

spline Pointer to the spline.
Return Value

Number of control points if successful, and 0 otherwise.
See Also

RwCreateSpline ()
RwGetSplinePoint ()
RwSetSplinePoint ()

RwV3d *
RwGetSplinePoint(RwSpline *spline, RwInt32 index, RwV3d *point);

Description

Retrieves the specified control point of the spline.
Arguments

spline Pointer to the spline.
index Index of the control point to get, in the range 1 £ index £ total number

of control points.
point Pointer to the point that will receive the specified control point.

Return Value

The argument point if successful, and NULL otherwise.
Comments

Note that an index of 1 will retrieve the first control point.
See Also

RwCreateSpline ()
RwGetSplineNumPoints ()
RwSetSplinePoint ()

RwBool
RwGetSystemInfo(RwSystemInfo info, void *value, RwInt32 size);

Description

Retrieves information about an aspect of the RenderWare system. The particular
aspect of system configuration to query is given by info.

Arguments

info Aspect of RenderWare system configuration to query.
value Pointer to a buffer to receive the result of the query. The actual data type

of value is dependent on the value of info.
size Size in bytes of the buffer pointed to by value.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The value parameter for each system information type is as follows:
rwVERSIONSTRING A pointer to an array of characters which will receive a

version string of the form NN.nn rel. Where NN is the
major version number of the RenderWare library being
used, nn is the minor version number and rel is a string
identifying the release. For example, 1.4 FCS.

rwVERSIONMAJOR A pointer to an RwInt32 which will receive the major
version number of the RenderWare library being used.

rwVERSIONMINOR A pointer to an RwInt32 which will receive the minor
version number of the RenderWare library being used.

rwVERSIONRELEASE A pointer to an array of characters which will receive a
string identify the particular release of the RenderWare
library being used.

rwFIXEDPOINTLIB A pointer to an RwBool which will be non-zero if the
RenderWare library uses fixed point arithmetic, and zero if
the library uses floating point arithmetic.

rwDEBUGGINGLIB A pointer to an RwBool which will be non-zero if a
debugging RenderWare library is being used, and zero if a
retail library is being used.

The size parameter is new with RenderWare V1.4. size gives the size in bytes of
the buffer pointed to by value. For example, to retrieve the RenderWare version
string the following would be used:

char verStr[80];
RwGetSystemInfo(rwVERSIONSTRING, verStr, sizeof(verStr));

See Also
RwGetDeviceInfo ()
RwOpenExt ()

void *
RwGetTextureData(RwTexture *texture);

Description

Retrieves the textures user data pointer.
Arguments

texture Pointer to the texture.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetTextureData ()

RwSearchMode
RwGetTextureDictSearchMode(void);

Description

Retrieves the texture dictionary stacks current search mode.
Arguments

None.
Return Value

The current texture dictionary stack search mode.
Comments

The texture dictionary search modes are:
rwLOCAL Search only the top most dictionary in the texture

dictionary stack.
rwGLOBAL Search all the dictionaries in the texture dictionary stack.

See Also
RwFindNamedTexture ()
RwForAllNamedTextures ()
RwGetNamedTexture ()
RwSetTextureDictSearchMode ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwTextureDitherMode
RwGetTextureDithering(void);

Description

Retrieves the current global texture dithering mode applied to subsequently loaded
textures.

Arguments

None.
Return Value

The current texture dithering mode.
Comments

The current texture dithering mode is a global parameter which controls whether
textures read from disk are dithered to increase perceived color resolution.
The texture dithering modes are:

rwDITHERON Activates dithering.
rwDITHEROFF Deactivates dithering.
rwAUTODITHER Adopts the auto-dithering mode of raster reading to decide

whether to dither textures.
The default mode is rwAUTODITHER.

See Also
RwGetTextureGammaCorrection ()
RwReadRaster ()
RwSetTextureDithering ()
RwSetTextureGammaCorrection ()

RwInt32
RwGetTextureFrame(RwTexture *texture);

Description

Gets the textures current frame index.
Arguments

texture Pointer to the texture.
Return Value

The current frame index (an integer greater than or equal to zero) if successful, and
-1 otherwise.

See Also
RwGetTextureFrameStep ()
RwGetTextureNumFrames ()
RwSetTextureFrame ()
RwTextureNextFrame ()

RwInt32
RwGetTextureFrameStep(RwTexture *texture);

Description

Retrieves the textures frame step size.
Arguments

texture Pointer to the texture.
Return Value

The current step size to be used by RwTextureNextFrame () . Errors can be checked
for using RwGetError () .

See Also
RwGetError ()
RwGetTextureFrame ()
RwGetTextureNumFrames ()
RwSetTextureFrameStep ()
RwTextureNextFrame ()

RwState
RwGetTextureGammaCorrection(void);

Description

Retrieves the current global texture gamma correction mode applied to
subsequently loaded textures.

Arguments

None.
Return Value

The current texture gamma correction mode.
Comments

The current texture gamma correction mode is a global parameter which controls
whether textures read from disk are gamma corrected or not.
The texture gamma correction modes are:

rwON Gamma correct.
rwOFF Do not gamma correct.

The default mode is rwON.
See Also

RwGetTextureDithering ()
RwReadRaster ()
RwSetTextureDithering ()
RwSetTextureGammaCorrection ()

char *
RwGetTextureName(RwTexture *texture, char *name, RwInt32 size);

Description

Retrieves the textures name.
Arguments

texture Pointer to the texture.
name Pointer to the string that will receive the texture name.
size Size of the string pointed to by name.

Return Value

The textures name. If there is an error or if the texture is not in a dictionary, NULL is
returned. Errors can be checked for using RwGetError () .

Comments

This function has changed in RenderWare V1.4. Previously, this function returned a
pointer to an internal texture name. It now copies the texture name into an
application supplied string of the given size.
Only textures which are defined in dictionaries have names. Textures which are
created using RwCreateTexture () or RwReadTexture () (rather than
RwFindNamedTexture () , RwGetNamedTexture () or RwReadNamedTexture ()) are not
placed in dictionaries and hence have no name. RwGetNamedTexture () will return
NULL for such textures and the contents of the string pointed to by name will be
undefined.

See Also
RwCreateTexture ()
RwFindNamedTexture ()
RwGetError ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadTexture ()

RwInt32
RwGetTextureNumFrames(RwTexture *texture);

Description

Retrieves the number of frames in the texture.
Arguments

texture Pointer to the texture.
Return Value

Number of frames in the texture if successful, and -1 otherwise.
See Also

RwGetTextureFrame ()
RwGetTextureFrameStep ()
RwSetTextureFrame ()
RwSetTextureFrameStep ()
RwTextureNextFrame ()

RwRaster *
RwGetTextureRaster(RwTexture *texture);

Description

Retrieves a pointer to the textures raster.
Arguments

texture Pointer to the texture.
Return Value

The textures raster if successful, and NULL otherwise.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwFindNamedTexture ()
RwGetCameraViewportRaster ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadRaster ()
RwReadTexture ()
RwSetTextureRaster ()

RwUserDrawAlignmentTypes
RwGetUserDrawAlignment(RwUserDraw *userdraw);

Description

Retrieves the alignment flag (or flags) of the user-draw. The alignment flags
determine which part of the user-draws bounding box is used for alignment.

Arguments

userdraw Pointer to the user-draw.
Return Value

A bitfield representing the set of alignment flags associated with the user-draw if
successful. Errors can be checked for using RwGetError () .

Comments

The alignment flags are:
0 Center the user-draw.
rwALIGNTOP Align with the top edge of the user-draw.
rwALIGNBOTTOM Align with the bottom edge of the user-draw.
rwALIGNLEFT Align with the left edge of the user-draw.
rwALIGNRIGHT Align with the right edge of the user-draw.

See Also
RwCreateUserDraw ()
RwGetError ()
RwGetUserDrawParentAlignment ()
RwSetUserDrawAlignment ()

void

(*RwGetUserDrawCallback(RwUserDraw *userdraw)) (RwUserDraw *userdraw, void
*camimage, RwRect *rect, void *data);

Description

Retrieves the call-back function used to render the user-draw.
Arguments

userdraw Pointer to the user-draw.
Return Value

A pointer to the user-draws call-back function if successful, and NULL otherwise.
Comments

User-draw call-backs should be declared as follows:
void callback(RwUserDraw *userdraw, void *camimage,

RwRect *rect, void *data);
Where the call-backs arguments are:
userdraw Pointer to the user-draw to be rendered.
camimage The cameras image buffer as returned by RwGetCameraImage () for the

current camera. camimage is device dependent. For more information,
see Appendix B.

rect Pointer to a rectangle defining the area of the cameras image buffer into
which the call-back may render. This rectangle is specified in viewport
space co-ordinates, i.e., (0, 0) is the origin of the viewport.

data Pointer to the user data of the user-draw being drawn. This value can be
obtained by calling RwGetUserDrawData () with userdraw as an
argument. data is passed directly to the call-back function for the
convenience of the application developer.

Note that the call-back function is always called after all clumps in the scene have
been rendered, i.e., when RwEndCameraUpdate () is called. Therefore user-draw
rendering always appear in front of clump rendering. In the case of overlapping
user-draws, the order of rendering is not defined.

See Also
RwCreateUserDraw ()
RwEndCameraUpdate ()
RwGetCameraImage ()
RwGetUserDrawData ()
RwSetUserDrawCallback ()

void *
RwGetUserDrawData(RwUserDraw *userdraw);

Description

Retrieves the user-draws user data pointer.
Arguments

userdraw Pointer to the user-draw.
Return Value

The user data pointer. NULL is returned if there is an error or if the user data pointer
is NULL. Errors can be checked for using RwGetError () .

See Also
RwGetError ()
RwSetUserDrawData ()

RwUserDraw *
RwGetUserDrawOffset(RwUserDraw *userdraw, RwInt32 *x, RwInt32 *y);

Description

Retrieves the user-draws offset (in viewport space units) from the alignment point of
the user-draw.

Arguments

userdraw Pointer to the user-draw.
x Pointer to the integer that will receive the horizontal offset from the

alignment point of the user-draw (in viewport space units).
y Pointer to the integer that will receive the vertical offset from the

alignment point of the user-draw (in viewport space units).
Return Value

The argument userdraw if successful, and NULL otherwise.
See Also

RwCreateUserDraw ()
RwSetUserDrawOffset ()

RwClump *
RwGetUserDrawOwner(RwUserDraw *userdraw);

Description

Retrieves the clump that owns the user-draw.
Arguments

userdraw Pointer to the user-draw.
Return Value

The clump that owns the user-draw. NULL is returned if the user-draw is not currently
owned by a clump or if an error occurs. Errors can be checked for using
RwGetError () .

See Also
RwAddUserDrawToClump ()
RwCreateUserDraw ()
RwDuplicateUserDraw ()
RwForAllUserDrawsInClump ()
RwGetError ()
RwRemoveUserDrawFromClump ()

RwUserDrawAlignmentTypes
RwGetUserDrawParentAlignment(RwUserDraw *userdraw);

Description

Retrieves the alignment flag (or flags) of the user-draws parent. A user-draws parent
is either the bounding box of the clump that owns the user-draw or the current
cameras viewport.
The alignment flags of the user-draws parent determine which part of the user-
draws parent rectangle is aligned with the user-draw. The actual point of alignment
between a user-draw and its parent is determined by the user-draws alignment flags
and the parents alignment flags.

Arguments

userdraw Pointer to the user-draw.
Return Value

A bitfield representing the set of alignment flags associated with the user-draws
parent. Errors can be checked for using RwGetError () .

Comments

If the user-draws type is rwBBOXALIGN then the user-draws parent is the bounding
box of the clump to which the user-draw is attached. If the type is rwVPALIGN, the
user-draws parent is the viewport of the current camera when the user-draw is
rendered. If the user-draws type is rwVERTEXALIGN or rwCLUMPALIGN then the user-
draw has no parent and the parent alignment flags are ignored.
The alignment flags are:

0 Align with the center of the parent.
rwALIGNTOP Align with the top edge of the parent.
rwALIGNBOTTOM Align with the bottom edge of the parent.
rwALIGNLEFT Align with the left edge of the parent.
rwALIGNRIGHT Align with the right edge of the parent.

See Also
RwCreateUserDraw ()
RwGetUserDrawAlignment ()
RwSetUserDrawAlignment ()
RwSetUserDrawParentAlignment ()

RwUserDraw *
RwGetUserDrawSize(RwUserDraw *userdraw, RwInt32 *width, RwInt32 *height);

Description

Retrieves the width and height (in viewport space units) of the user-draw.
Arguments

userdraw Pointer to the user-draw.
width Pointer to the integer that will receive the width of the user-draw (in

viewport space units).
height Pointer to the integer that will receive the height of the user-draw (in

viewport space units).
Return Value

The argument userdraw if successful, and NULL otherwise.
See Also

RwCreateUserDraw ()
RwSetUserDrawSize ()

RwUserDrawType
RwGetUserDrawType(RwUserDraw *userdraw);

Description

Retrieves the user-draws type.
Arguments

userdraw Pointer to the user-draw.
Return Value

The user-draws type if successful, and rwNAUSERDRAWTYPE otherwise.
Comments

The user-draw types are:
rwCLUMPALIGN Align with the origin of the owning clump.
rwVERTEXALIGN Align with a vertex of the owning clump.
rwBBOXALIGN Align with the viewport bounding box of the owning clump.
rwVPALIGN Align with the viewing cameras viewport.

See Also
RwCreateUserDraw ()
RwGetClumpViewportRect ()
RwSetUserDrawType ()

RwInt32
RwGetUserDrawVertexIndex(RwUserDraw *userdraw);

Description

Retrieves the index of the clump vertex with which the user-draw is aligned.
Arguments

userdraw Pointer to the user-draw.
Return Value

The index of the vertex the user-draw is aligned with if successful, and 0 otherwise.
Comments

The vertex index is only used if the user-draws type is rwVERTEXALIGN, for all other
user-draw types it is ignored.
The vertex index is an index into the vertex list of the owning clump of the user-
draw.

See Also
RwCreateUserDraw ()
RwSetUserDrawVertexIndex ()

RwBool
RwHemisphere(RwReal radius, RwInt32 density);

Description

Adds a hemisphere to the current clump. The hemisphere is transformed by the
CTM, and the current material is assigned to its polygons. The base of the
hemisphere lies on the X-Z plane.

Arguments

radius Radius of the hemisphere.
density Density of facets in the hemisphere. The number of facets increases

exponentially with density.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwBlock ()
RwClumpBegin ()
RwClumpEnd ()
RwCone ()
RwCylinder ()
RwDisc ()
RwProtoBegin ()
RwProtoEnd ()
RwSphere ()

RwBool
RwIdentityCTM(void);

Description

Sets the CTM to the identity matrix.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityJointTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateCTM ()
RwScaleCTM ()
RwTransformCTM ()
RwTranslateCTM ()

RwBool
RwIdentityJointTM(void);

Description

Sets the current joint transformation matrix to the identity matrix.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityCTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateJointTM ()
RwTransformJointTM ()

RwMatrix4d *
RwIdentityMatrix(RwMatrix4d *matrix);

Description

Sets the matrix to the identity matrix.
Arguments

matrix Pointer to the matrix.
Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwIdentityCTM ()
RwIdentityJointTM ()
RwInvertMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwBool
RwInclude(RwClump *clump);

Description

Inserts copies of the polygons and vertices of clump into the current clump under
construction. The source polygons and vertices are transformed by the CTM before
being added. The materials of the source polygons are copied to the new polygons.

Arguments

clump Pointer to the clump.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwIncludeGeometry ()
RwProtoBegin ()
RwProtoEnd ()
RwReadShape ()

RwBool
RwIncludeGeometry(RwClump *clump);

Description

Inserts copies of the polygons and vertices of the clump into the current clump
under construction. The source polygons and vertices are transformed by the CTM
before being added to the current clump. The current material is assigned to the
new polygons (the materials of the source polygons are ignored).

Arguments

clump Pointer to the clump.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwInclude ()
RwProtoBegin ()
RwProtoEnd ()
RwReadShape ()

RwCamera *
RwInvalidateCameraViewport(RwCamera *camera);

Description

Marks the whole of the cameras viewport as damaged.
Arguments

camera Pointer to the camera.
Return Value

The argument camera if successful, and NULL otherwise.
Comment

This function will cause the entire viewport to be copied to the display when the
next call to RwShowCameraImage () is made. It will also cause the entire viewport to
be cleared by the next call to RwClearCameraViewport () .

See Also
RwClearCameraViewport ()
RwDamageCameraViewport ()
RwSetCameraViewport ()
RwShowCameraImage ()
RwUndamageCameraViewport ()

RwMatrix4d *
RwInvertMatrix(RwMatrix4d *source, RwMatrix4d *dest);

Description

Inverts matrix source and stores the result in matrix dest.
Arguments

source Pointer to the matrix to be inverted.
dest Pointer to the matrix that will receive the result.

Return Value

The argument dest if successful, and NULL otherwise.
Comments

The source and destination arguments must not point to the same matrix.
See Also

RwIdentityMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwBool
RwJointTransformBegin(void);

Description

Pushes a copy of the current joint transformation matrix onto the joint
transformation stack.

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwIdentityJointTM ()
RwJointTransformEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwRotateJointTM ()
RwTransformBegin ()
RwTransformJointTM ()

RwBool
RwJointTransformEnd(void);

Description

Restores the previous value of the joint transformation matrix. Also has the effect of
restoring the joint transformation stack to its state at the time of the last
RwJointTransformBegin () .

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwIdentityJointTM ()
RwJointTransformBegin ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwRotateJointTM ()
RwTransformJointTM ()
RwTransformEnd ()

RwTexture *
RwMaskTexture(RwTexture *texture, RwRaster *mask);

Description

Masks the texture with the mask raster mask.
Arguments

texture Pointer to the texture.
mask Pointer to the mask raster.

Return Value

The argument texture if successful, and NULL otherwise.
Comments

The mask raster must of exactly the same width and height as the texture. If the
texture is a multi-frame texture, the masks height must be equal to n * 128, where n
is the number of frames in the texture.
The mask raster must have been previously created with RwReadMaskRaster () .
Masking a texture is a destructive operation. The masking cannot be undone and
applies to all materials referencing the masked texture.

See Also
RwCreateRaster ()
RwCreateTexture ()
RwReadMaskRaster ()
RwSetSurfaceTextureExt ()
RwSetTextureRaster ()

RwBool
RwMaterialBegin(void);

Description

Pushes a copy of the current material onto the material stack.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwMaterialEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwPushCurrentMaterial ()

RwBool
RwMaterialEnd(void);

Description

Restores the previous state of the current material. The material stack is restored to
its state at the time of the last RwMaterialBegin () .

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwMaterialBegin ()
RwModelBegin ()
RwModelEnd ()
RwPopCurrentMaterial ()
RwProtoBegin ()
RwProtoEnd ()

RwBool
RwModelBegin(void);

Description

Sets up a modeling context for prototype declaration and clump creation. Prototype
clumps declared within an RwModelBegin () … RwModelEnd () block may
subsequently be instanced when building further prototypes or the desired model.

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

An RwModelBegin () … RwModelEnd () block may have any number of prototype
clump declarations but must have one, and only one, top-level RwClumpBegin () …
RwClumpEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwProtoInstance ()
RwProtoInstanceGeometry ()

RwBool
RwModelEnd(void);

Description

Marks the end of a model definition.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

An RwModelBegin () … RwModelEnd () block may have any number of prototype
clump declarations but must have one, and only one, top-level RwClumpBegin () …
RwClumpEnd () .
RwModelEnd () will destroy all prototypes defined since the previous
RwModelBegin () .

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelBegin ()
RwProtoBegin ()
RwProtoEnd ()

RwMatrix4d *
RwMultiplyMatrix(RwMatrix4d *a, RwMatrix4d *b, RwMatrix4d *c);

Description

Multiplies two matrices together.
Arguments

a Pointer to the left matrix.
b Pointer to the right matrix.
c Pointer to the matrix that will receive the result.

Return Value

The argument c if successful, and NULL otherwise.
Comments

Note that the matrix used for the result (c) must be a different matrix from the
matrices being multiplied together, (a and b).

See Also
RwIdentityMatrix ()
RwInvertMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwV3d *
RwNormalize(RwV3d *vector);

Description

Normalizes a vector to unit length while retaining the ratio between its X, Y, and Z
components.

Arguments

vector Pointer to the vector.
Return Value

The argument vector if successful, and NULL otherwise.
Comments

Note that it is an error to normalize a vector whose magnitude is zero.
See Also

RwAddVector ()
RwCrossProduct ()
RwDotProduct ()
RwScaleVector ()
RwSubtractVector ()

RwClump *
RwNormalizeClump(RwClump *clump);

Description

Transforms the clump so that all the clumps vertices lie within unit space. The
clumps modeling and joint (articulation) matrices are set to the identity.

Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

Note that this function is not recursive. The descendants of the specified clump (if
any) are not normalized.

See Also
RwGetClumpBBox ()
RwGetClumpLocalBBox()
RwGetClumpJointMatrix ()
RwGetClumpLTM ()
RwGetClumpMatrix ()
RwTransformClump ()
RwTransformClumpJoint ()

RwBool
RwOpen(char *device, void *param);

Description

Initializes the RenderWare library. This function (or its variant RwOpenExt ()) must be
called before any other RenderWare functions.

Arguments

device A string whose value is either NullDevice or device-dependent.
param A device dependent parameter.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

For a description of the device dependent parameters, device and param, see
Appendix B.

See Also
RwClose ()
RwOpenExt ()

RwBool
RwOpenDebugStream(char *filename);

Description

Opens the named file as the current debugging stream.
Arguments

filename Name of a file.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

Note that this function appends information to the specified file or device.
On certain platforms special filenames are recognized which, for example, allow the
debugging stream to be redirected to a monochrome, debugging monitor. For more
information, see Appendix B.

See Also
RwCloseDebugStream ()
RwSetDebugStream ()

RwBool
RwOpenExt(char *device, void *param, RwInt32 numargs,

RwOpenArgument *args);
Description

Initializes the RenderWare library with a number of optional arguments. This
function (or its variant RwOpen ()) must be called before any other RenderWare
functions.

Arguments

device A string whose value is either NullDevice or device-dependent.
param A device dependent parameter.
numargs The number of optional arguments specified.
args An array of optional open arguments.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The array of arguments (args) is modified by the call to RwOpenExt () . After a call to
RwOpenExt () the contents of the argument array are no longer defined and must be
reinitialized if the argument array is to be used in another call to RwOpenExt () .
For a description of the device dependent parameters, device and param and the
optional argument types supported, see Appendix B.

See Also
RwClose ()
RwDeviceControl ()
RwOpen ()

RwMatrix4d *
RwOrthoNormalizeMatrix(RwMatrix4d *source, RwMatrix4d *dest);

Description

Ortho-normalizes the source matrix and places the result in the destination matrix.
Arguments

source Pointer to the matrix to orthonormalize.
dest Pointer to the matrix to receive the result.

Return Value

The argument dest if successful, and NULL otherwise.
Comments

Whilst RenderWare supports arbitrary 4 x 4 homogenous matrices, many
applications deal only in rigid body transformations comprising only rotation and
translation without scaling or shearing.
The 4 x 4 homogeneous matrix representing such a transformation has a special
form of upper-left 3 x 3 sub-matrix known as an orthonormal matrix. An orthonormal
matrix is characterized by its inverse being equal to its transpose.
Mathematically, the upper-left 3 x 3 sub-matrix corresponding to a rigid body
transformation remains orthonormal after that transformation is combined with
other rigid body transformations.      The upper 3 x 3 sub matrix corresponding to the
inverse of a rigid body transformation should also be orthonormal.
Numerically however,      after extended matrix composition, some scale or shear
factors may begin to accumulate due to rounding. To prevent the significant build up
of such factors, RwOrthoNormalizeMatrix () should be periodically applied to a
clumps modeling or joint matrix as appropriate. This will filter out any such
accumulated rounding factors from the upper-left 3 x 3 sub-matrix.
The minimal satisfactory frequency of orthonormalization will depend on the nature
of the application and whether a fixed- or floating- point version of the RenderWare
library is being used. Typically, an orthonormalization frequency of once every 128
frames is adequate.

See Also
RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwCamera *
RwPanCamera(RwCamera *camera, RwReal angle);

Description

Rotates the camera about its Y axis.
Arguments

camera Pointer to the camera.
angle Angle of rotation (in degrees).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

A positive value for angle will pan the camera to the left.
See Also

RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwPointCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwPickRecord *
RwPickClump(RwClump *clump, RwInt32 vpx, RwInt32 vpy, RwCamera *camera,

RwPickRecord *pick);
Description

Finds the frontmost polygon of the clump whose projection on the cameras viewport
contains the specified point.

Arguments

clump Pointer to the clump.
vpx X co-ordinate (in viewport space co-ordinates).
vpy Y co-ordinate (in viewport space co-ordinates).
camera Pointer to the camera.
pick Pointer to the pick record.

Return Value

A pointer to the argument pick if successful, and NULL otherwise.
Comments

vpx and vpy must be in viewport rather than device space co-ordinates. To convert
from a point in device space co-ordinates (such as the position of the mouse) to
viewport space co-ordinates simply subtract the X and Y co-ordinates of the
cameras viewport from the X and Y co-ordinates of the point.
The pick record has a type field that will have either the value rwNAPICKOBJECT or
rwPICKCLUMP. The former means that the clump was not picked.
If the pick records type is rwPICKCLUMP, then assuming that pick is a pick record
structure whose address was passed as the last argument of the function, upon
return from the function:

pick.object.clump.clump
is a pointer to the clump picked,

pick.object.clump.polygon
is a pointer to the polygon picked,

pick.object.clump.vertex
is an RwPickVertexData structure giving information about the picked vertex, and

pick.object.clump.wcpoint
is the world space co-ordinates of the actual point picked.
RwPickVertexData is defined as follows:

typedef struct
{

RwInt32 vindex;
RwInt32 d2;

} RwPickVertexData;
Fields vindex and d2 specify respectively the index of the vertex picked and the
square of its distance (in viewport space units) from the actual pick position.

See Also

RwPickScene ()

RwPickRecord *
RwPickScene(RwScene *scene, RwInt32 vpx, RwInt32 vpy, RwCamera *camera,

RwPickRecord *pick);
Description

Finds the frontmost clump of the scene whose projection on the cameras viewport
contains the specified point.

Arguments

scene Pointer to the scene.
vpx X co-ordinate (in viewport space co-ordinates).
vpy Y co-ordinate (in viewport space co-ordinates).
camera Pointer to the camera.
pick Pointer to the pick record.

Return Value

A pointer to the argument pick if successful, and NULL otherwise.
Comments

vpx and vpy must be in viewport rather than device space co-ordinates. To convert
from a point in device space co-ordinates (such as the position of the mouse) to
viewport space co-ordinates simply subtract the X and Y co-ordinates of the
cameras viewport from the X and Y co-ordinates of the point.
The pick record has a type field that will have either the value rwNAPICKOBJECT or
rwPICKCLUMP.
If the pick records type is rwNAPICKOBJECT, then no clumps were picked.
If the pick records type is rwPICKCLUMP, then assuming that pick is a pick record
structure whose address was passed as the last argument of the function, upon
return from the function:

pick.object.clump.clump
is a pointer to the clump picked,

pick.object.clump.polygon
is a pointer to the polygon picked,

pick.object.clump.vertex
is an RwPickVertexData structure giving information about the vertex picked, and

pick.object.clump.wcpoint
is the world space co-ordinates of the actual point picked.
RwPickVertexData is defined as follows:

typedef struct
{

RwInt32 vindex;
RwInt32 d2;

} RwPickVertexData;
Fields vindex and d2 specify respectively the index of the vertex picked and the
square of its distance (in viewport space units) from the actual pick position.

See Also
RwPickClump ()

RwCamera *
RwPointCamera(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Re-orients the camera to point at the given point, while keeping its position
constant.

Arguments

camera Pointer to the camera.
x X co-ordinate of the point to look at (in world space co-ordinates).
y Y co-ordinate of the point to look at (in world space co-ordinates).
z Z co-ordinate of the point to look at (in world space co-ordinates).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwPanCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwBool
RwPolygon(RwInt32 sides, RwInt32 *vlist);

Description

Adds a polygon to the current clump under construction. The current material is
assigned to the polygon.

Arguments

sides Number of sides of the polygon.
vlist Pointer to an array of vertex indices.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The size of the array vlist must be equal to sides.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.
For 16-bit applications accessing the RenderWare DLL the vertex index list pointed
to by    vlist must be declared as an array of RwInt32s and not ints.

See Also
RwAddPolygonToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwPolygonExt ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwTriangle ()
RwTriangleExt ()
RwVertex ()
RwVertexExt ()

RwBool
RwPolygonExt(RwInt32 sides, RwInt32 *vlist, RwInt32 tag);

Description

Adds a polygon with the given integer tag to the current clump under construction.
The current material is assigned to the polygon.

Arguments

sides Number of sides of the polygon.
vlist Array of vertex indices.
tag Integer tag to set (only the least significant 16 bits are valid).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The size of the array vlist must be equal to sides.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.
For 16-bit applications accessing the RenderWare DLL the vertex index list pointed
to by    vlist must be declared as an array of RwInt32s and not ints.

See Also
RwAddPolygonToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwFindTaggedPolygon ()
RwPolygon ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwSetPolygonTag ()
RwSetTag ()
RwTriangle ()
RwTriangleExt ()
RwVertex ()
RwVertexExt ()

RwMaterial *
RwPopCurrentMaterial(void);

Description

Pops the current material from the material stack, restoring the previously pushed
material.

Arguments

None.
Return Value

A pointer to the new current material if successful, and NULL otherwise.
See Also

RwCurrentMaterial ()
RwMaterialEnd ()
RwPushCurrentMaterial ()

RwMatrix4d *
RwPopScratchMatrix(void);

Description

Pops the current scratch matrix from the scratch matrix stack, restoring the
previously pushed matrix.

Arguments

None.
Return Value

A pointer to the new scratch matrix if successful, and NULL otherwise.
Comments

The scratch matrix stack is a convenient source of temporary matrices for building
transforms.

See Also
RwScratchMatrix ()
RwPushScratchMatrix ()

RwBool
RwProtoBegin(char *name);

Description

Identifies the beginning of a prototype clump declaration.
Arguments

name Name of the prototype.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function overrides any existing prototype of the same name.
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoEnd ()
RwProtoInstance ()
RwProtoInstanceGeometry ()

RwBool
RwProtoEnd(void);

Description

Marks the end of a prototype clump declaration.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoInstance ()
RwProtoInstanceGeometry ()

RwBool
RwProtoInstance(char *name);

Description

Creates an instance of the named prototype and copies its polygons and vertices to
the clump under construction. The source polygons and vertices are transformed by
the CTM before being added to the current clump. The materials of the source
polygons are copied to the new polygons.

Arguments

name Name of a prototype.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

A prototype of the given name must have already been defined within the enclosing
RwModelBegin () … RwModelEnd () block.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwProtoInstanceGeometry ()

RwBool
RwProtoInstanceGeometry(char *name);

Description

Creates an instance of the named prototype and copies its polygons and vertices to
the clump under construction. The source polygons and vertices are transformed by
the CTM before being added to the current clump. The current material is assigned
to the new polygons. The materials of the source polygons are ignored.

Arguments

name Name of a prototype.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

A prototype of the given name must have already been defined within the enclosing
RwModelBegin () … RwModelEnd () block.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwProtoInstance ()

RwMaterial *
RwPushCurrentMaterial(void);

Description

Pushes a copy of the current material onto the material stack.
Arguments

None.
Return Value

A pointer to the new current material if successful, and NULL otherwise.
See Also

RwCurrentMaterial ()
RwMaterialBegin ()
RwPopCurrentMaterial ()

RwMatrix4d *
RwPushScratchMatrix(void);

Description

Pushes a copy of the scratch matrix onto the scratch matrix stack.
Arguments

None.
Return Value

A pointer to the new scratch matrix if successful, and NULL otherwise.
Comments

The scratch matrix stack is a convenient source of temporary matrices for building
transforms.

See Also
RwScratchMatrix ()
RwPopScratchMatrix ()

RwBool
RwQuad(RwInt32 v1, RwInt32 v2, RwInt32 v3, RwInt32 v4);

Description

Adds a quadrilateral to the current clump under construction. The current material is
assigned to the polygon.

Arguments

v1 Index of the first vertex of the polygon.
v2 Index of the second vertex of the polygon.
v3 Index of the third vertex of the polygon.
v4 Index of the fourth vertex of the polygon.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function is exactly equivalent to calling RwPolygon () with an array of four
vertex indices.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddPolygonToClump ()
RwPolygon ()
RwPolygonExt ()
RwQuadExt ()
RwTriangle ()
RwTriangleExt ()
RwVertex ()
RwVertexExt ()

RwBool
RwQuadExt(RwInt32 v1, RwInt32 v2, RwInt32 v3, RwInt32 v4,

 RwInt32 tag);
Description

Adds a quadrilateral with the given integer tag to the current clump under
construction. The current material is assigned to the polygon.

Arguments

v1 Index of the first vertex of the polygon.
v2 Index of the second vertex of the polygon.
v3 Index of the third vertex of the polygon.
v4 Index of the fourth vertex of the polygon.
tag Integer tag to set (only the least significant 16 bits of the tag are valid).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function is exactly equivalent to calling RwPolygonExt () with an array of four
vertex indices.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddPolygonToClump ()
RwFindTaggedPolygon ()
RwGetPolygonTag ()
RwPolygon ()
RwPolygonExt ()
RwQuad ()
RwSetPolygonTag ()
RwSetTag ()
RwTriangle ()
RwTriangleExt ()
RwVertex ()
RwVertexExt ()

RwMatrix4d *
RwQueryRotateMatrix(RwMatrix4d *matrix, RwV3d *axis,

 RwReal *degrees);
Description

Retrieves the rotation component from a matrix comprising only rotations and
translations. The rotation is returned as a unit direction vector along the axis of
rotation through the origin and an angle in degrees. This function is the inverse of
RwRotateMatrix () with the RwCombineOperation rwREPLACE.

Arguments

matrix Pointer to the rotation/translation matrix.
axis Pointer to the vector to receive the unit direction vector along the axis of

rotation through the origin.
degrees Pointer to the RwReal to receive the angle of rotation in degrees.

Return Value

The argument matrix if successful, and NULL otherwise.
Comments

A rotation has two possible descriptions in this axis/angle form, since a rotation
about a given axis through the origin by a given angle theta is the same as a
rotation about an axis in the reverse direction by the angle 360-theta. The angle
returned is always in the range CREAL(0.0) to CREAL(180.0). The direction of the
axis of rotation returned is chosen to ensure that the angle lies in this range.
Notice that only matrices known to be composed solely of rotations and translations
should be queried with this function. The results of querying other matrices
incorporating transforms such as scales are unlikely to be of practical use.
RwOrthoNormalizeMatrix () may be applied to extract the rotation/translation
component matrix from a more general transformation matrix.

See Also
RwGetMatrixElements ()
RwGetMatrixElement ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()

RwInt32
RwRandom(void)

Description

Generates a pseudo random number
Arguments

None.
Return Value

A pseudo random RwInt32 number. There is no error return.
Comments

RwRandom () uses a non-linear additive feedback random number generator
employing a default table of size 31 long integers to return successive pseudo-
random numbers in the range from 0    to (2**31)-1.    The period of this random
number generator is very large, approximately 16*((2**31)-1).
RwRandom () and RwSRandom () have (almost) the same    calling    sequence and
initialization properties as rand() and srand(). The difference is that rand()
produces a much less random sequence - in fact, the low dozen bits generated by
rand go through a cyclic pattern. All the bits generated by RwRandom () are usable.
For example,

RwRandom() & 01
will produce a random binary value.

See Also
RwSRandom ()

RwRaster *
RwReadMaskRaster(char *filename);

Description

Reads a mask raster from the specified file. The resulting raster can be applied to a
texture as a mask.

Arguments

filename Name of the mask raster file.
Return Value

A pointer to the new mask raster if successful, and NULL otherwise.
Comments

The raster read by RwReadMaskRaster () is used to mask a texture. Those pixels
which are masked out by the raster are not rendered. Thus, a mask raster is
effectively a one bit alpha channel which, when applied to a texture, gives control
over the transparency of individual pixels.
The raster read by RwReadMaskRaster () is converted to the texture map
dimensions of 128 pixels in width by 128 pixels in height (or n * 128 pixels for a
multi-frame texture where n is the number of frames in the texture). Furthermore,
the image read will be converted to the current RenderWare render depth.
The file read by this operation should contain a gray scale image of any supported
depth. The gray scale value of each pixel is simply thresholded to determine
whether it represents an opaque or transparent pixel. Pixels whose value is less than
half of the available range of gray values represent transparent pixels. Those whose
value is greater than or equal to half the available range of gray values represent
opaque pixels.
If filename is not a full path, the library searches for the specified file in all
directories on its shape path.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwGetShapePath ()
RwMaskTexture ()
RwSetCameraBackdrop ()
RwSetShapePath ()
RwSetTextureRaster ()

RwTexture *
RwReadNamedTexture(char *name);

Description

Reads a texture with the specified name and stores it into the current texture
dictionary.

Arguments

name Name of a texture.
Return Value

A pointer to a newly created texture if successful, and NULL otherwise.
Comments

This function uses the environment variable RWSHAPEPATH as its search path. The
texture read from disk will replace any texture with the specified name that is
already in the current texture dictionary.
The string supplied as the texture name must form the leaf part (i.e., without path
or extension) of the pathname for the texture file. Furthermore, for the sake of
portability of script files across the different platforms supported by RenderWare, it
is best to choose texture file names that are a maximum of eight characters long
and which are acceptable to MS-DOS as file names.
An example of a valid texture name is marble, which will match with file names
marble, marble.tex, marble.ras, marble.env, marble.bmp and marble.env.

See Also
RwCreateTexture ()
RwDestroyTexture ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwGetShapePath ()
RwReadTexture ()
RwSetShapePath ()

RwRaster *
RwReadRaster(char *filename, RwRasterOptions options);

Description

Reads a raster from the specified file. The raster will be processed according to the
specified options.

Arguments

filename Name of the raster file.
options A bitfield representing a raster processing option (or bitwise or of

options).
Return Value

A pointer to the new raster if successful, and NULL otherwise.
Comments

If filename is not a full path, the library searches for the specified file in all
directories on its shape path.
The supported raster options are as follows:

rwAUTODITHERRASTER Dither the raster only if the source bitmap is to be resized
(rwFITRASTER has been specified) or if the bitmap is a
different depth from the current RenderWare render depth.

rwDITHERASTER Dither the raster.
rwFITRASTER Resize the raster to texture map dimensions,

i.e. 128 x n * 128 (where n is the number of frames in a
multi-frame texture).

rwGAMMARASTER Gamma correct the raster.
See Also

RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwGetDeviceInfo ()
RwGetShapePath ()
RwReadMaskRaster ()
RwSetCameraBackdrop ()
RwSetShapePath ()
RwSetTextureDithering ()
RwSetTextureGammaCorrection ()
RwSetTextureRaster ()

RwClump *
RwReadShape(char *filename);

Description

Loads a clump from a script (.rwx) file. If filename is not an absolute path, the
library searches for the specified file in all directories on its shape path.

Arguments

filename Pointer to the filename string.
Return Value

A pointer to the new clump if successful, and NULL otherwise
Comments

The clump is added to the default scene.
See Also

RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()
RwDefaultScene ()
RwDestroyClump ()
RwGetShapePath ()
RwSetShapePath ()
RwWriteShape ()

RwTexture *
RwReadTexture(char *filename);

Description

Reads a texture from the specified file.
Arguments

filename Name of the texture file.
Return Value

A pointer to the new texture if successful, and NULL otherwise.
Comments

If filename is not a full path, the library searches for the specified file in all
directories on its shape path.
Unlike RwReadNamedTexture () , the texture read from disk will not be placed in the
current texture dictionary.

See Also
RwCreateTexture ()
RwDestroyTexture ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwGetShapePath ()
RwGetTextureRaster ()
RwReadNamedTexture ()
RwReadRaster ()
RwSetShapePath ()
RwSetTextureRaster ()

RwRaster *
RwReleaseRasterPixels(RwRaster *raster, unsigned char *pixels);

Description

Releases a pointer to the pixels of a raster previously obtained with
RwGetRasterPixels () .

Arguments

raster Pointer to the raster.
pixels Pointer to the pixels of raster.

Return Value

The argument raster if successful, and NULL otherwise.
Comments

The pointer pixels must have been obtained by a call to RwGetRasterPixels ()
with raster as an argument.
The memory used to store the pixels of a raster may be stored in the memory of a
peripheral    device or may move in main memory. In order that an application can
read and write to this memory it must be locked. RwGetRasterPixels () performs
this locking. The pointer returned by this function must be released (and the
associated memory unlocked) after use by a call to RwReleaseRasterPixels () .
Following RwReleaseRasterPixels () the pointer is no longer valid and it must not
be cached for later use. To prevent performance degradation it is essential that the
pointer is released as soon as possible.
For Windows 3.1x applications the type of the pixels pointer can vary with the
development environment used. See Appendix B for more information on the
pointer type.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwGetRasterDepth ()
RwGetRasterHeight ()
RwGetRasterPixels ()
RwGetRasterStride ()
RwGetRasterWidth ()
RwReadMaskRaster ()
RwReadRaster ()

RwClump *
RwRemoveChildFromClump(RwClump *clump);

Description

Removes the clump from its parents list of children.
Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

Once removed, the clump becomes the root of a hierarchy consisting of itself and
any descendants.

See Also
RwAddChildToClump ()
RwGetClumpNumChildren ()
RwGetClumpParent ()
RwGetClumpRoot ()
RwGetFirstChildClump ()
RwGetNextClump ()

RwClump *
RwRemoveClumpFromScene(RwClump *clump);

Description

Removes the clump from its scene.
Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

The clump being removed must be the root of its clump hierarchy, i.e., it must not
have a parent clump.
The clump is added to the default scene. Clumps cannot be explicitly removed from
the default scene.

See Also
RwAddClumpToScene ()
RwDefaultScene ()
RwDestroyClump ()
RwForAllClumpsInScene ()
RwGetSceneNumClumps ()
RwRemoveLightFromScene ()

RwBool
RwRemoveHint(RwClumpHints hints);

Description

Removes a hint (or set of hints) from the current clump under construction. A
clumps hints enable RenderWare to render a scene containing that clump more
efficiently.

Arguments

hints A bitfield representing a hint (or bitwise or of hints).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The clump hints are:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () block.

See Also
RwAddHint ()
RwClumpBegin ()
RwClumpEnd ()
RwRemoveHintFromClump ()
RwSetHints ()

RwClump *
RwRemoveHintFromClump(RwClump *clump, RwClumpHints hint);

Description

Removes a hint (or set of hints) from the clump.
Arguments

clump Pointer to the clump.
hint A bitfield representing a hint (or bitwise or of hints).

Return Value

The argument clump if successful, and NULL otherwise.
Comments

The clump hints are:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent      hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
See Also

RwAddHintToClump ()
RwGetClumpHints ()
RwRemoveHint ()
RwSetClumpHints ()

RwLight *
RwRemoveLightFromScene(RwLight *light);

Description

Removes the light from its scene.
Arguments

light Pointer to the light.
Return Value

The argument light if successful, and NULL otherwise.
Comments

The light is added to the default scene. Lights cannot be explicitly removed from the
default scene.

See Also
RwAddLightToScene ()
RwDefaultScene ()
RwDestroyLight ()
RwForAllLightsInScene ()
RwGetSceneNumLights ()
RwRemoveClumpFromScene ()

RwMaterial *
RwRemoveTextureModeFromMaterial(RwMaterial *material,

 RwTextureModes mode);
Description

Removes a texture mode (or modes) from the material. Texture modes permit fine
grain control over the rendering of textures.

Arguments

material Pointer to the material.
mode A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument material if successful, and NULL otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToMaterial ()
RwGetMaterialTextureModes ()
RwRemoveTextureModeFromPolygon ()
RwRemoveTextureModeFromSurface ()
RwSetMaterialLightSampling ()
RwSetMaterialTexture ()
RwSetMaterialTextureModes ()

RwPolygon3d *
RwRemoveTextureModeFromPolygon(RwPolygon3d *polygon,

 RwTextureModes mode);
Description

Removes a texture mode (or modes) from the polygons material. Texture modes
permit fine grain control over the rendering of textures.

Arguments

polygon Pointer to the polygon.
mode A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.

See Also
RwAddTextureModeToPolygon ()
RwGetPolygonTextureModes ()
RwRemoveTextureModeFromMaterial ()
RwRemoveTextureModeFromSurface ()
RwSetPolygonLightSampling ()
RwSetPolygonTexture ()
RwSetPolygonTextureModes ()

RwBool
RwRemoveTextureModeFromSurface(RwTextureModes mode);

Description

Removes a texture mode (or modes) from the current material. Texture modes
permit fine grain control over the rendering of textures.

Arguments

mode A bitfield representing a texture mode (or bitwise or of modes).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwAddTextureModeToSurface ()
RwModelBegin ()
RwModelEnd ()
RwRemoveTextureModeFromMaterial ()
RwRemoveTextureModeFromPolygon ()
RwSetSurfaceTexture ()
RwSetSurfaceTextureModes ()

RwUserDraw *
RwRemoveUserDrawFromClump(RwUserDraw *userdraw);

Description

Removes the user-draw from its clump.
Arguments

userdraw Pointer to the user-draw.
Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

After being removed from a clump, the user-draw has no owning clump. To make
use of such a user-draw, add it to a clump using RwAddUserDrawToClump () .

See Also
RwAddUserDrawToClump ()
RwCreateUserDraw ()
RwDestroyUserDraw ()
RwDuplicateUserDraw ()
RwForAllUserDrawsInClump ()
RwGetClumpNumUserDraws ()

RwClump *
RwRenderClump(RwClump *clump);

Description

Renders the clump into the current cameras image buffer.
Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise
Comments

Clumps rendered by RwRenderClump () are illuminated by the lights in the default
scene (if any).
Note that this function is not recursive, i.e., it only renders the specified clump and
not its descendants.
This function can only be called in the context of an RwBeginCameraUpdate () …
RwEndCameraUpdate () block.

See Also
RwBeginCameraUpdate ()
RwClearCameraViewport ()
RwDefaultScene ()
RwEndCameraUpdate ()
RwRenderScene ()
RwShowCameraImage ()

RwScene *
RwRenderScene(RwScene *scene);

Description

Renders the scene into the current cameras image buffer.
Arguments

scene Pointer to the scene.
Return Value

The argument scene if successful, and NULL otherwise.
Comments

This function can only be called in the context of an RwBeginCameraUpdate () …
RwEndCameraUpdate () block.

See Also
RwBeginCameraUpdate ()
RwClearCameraViewport ()
RwEndCameraUpdate ()
RwRenderClump ()
RwShowCameraImage ()

RwCamera *
RwResetCamera(RwCamera *camera);

Description

Resets the camera to its initial position and orientation, at the origin, looking down
the negative Z axis.

Arguments

camera Pointer to the camera.
Return Value

The argument camera if successful, and NULL otherwise.
Comments

RwResetCamera () performs the following (and only the following) actions:
Moves the cameras position to the origin of world space.
Points the camera down the negative Z axis of world space.
Points the cameras Look Up vector up the positive Y axis of world space.
Sets the cameras view window size to CREAL(1.0) by CREAL(1.0).
Sets the cameras view offset to (CREAL(0.0), CREAL(0.0)).
Damages the cameras entire viewport.

See Also
RwCreateCamera ()
RwInvalidateCameraViewport ()
RwPointCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwSetCameraViewOffset ()
RwSetCameraViewwindow ()
RwTransformCamera ()
RwTransformCameraOrientation ()

RwPolygon3d *
RwReversePolygonFace(RwPolygon3d *polygon);

Description

Reverses the vertex ordering of the polygon.
Arguments

polygon Pointer to the polygon.
Return Value

The argument polygon if successful, and NULL otherwise.
Comments

RwReversePolygonFace () modifies the facedness of a single polygon by reversing
the order of the vertices in the polygons vertex list.
As this function modifies the geometry of the clump which owns the polygon, the
clump is made editable (the rwEDITABLE hint is set) by this function.

See Also

None.

RwCamera*
RwRevolveCamera(RwCamera *camera, RwReal angle);

Description

Rotates the camera about its Z axis.
Arguments

camera Pointer to the camera.
angle Angle of rotation (in degrees).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

A positive value for angle will cause the camera to revolve clockwise.
See Also

RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwPanCamera ()
RwResetCamera ()
RwSetCameraLookUp ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwBool
RwRotateCTM(RwReal rx, RwReal ry, RwReal rz, RwReal angle);

Description

Pre-concatenates a rotation matrix onto the CTM.
Arguments

rx X component of the axis of rotation.
ry Y component of the axis of rotation.
rz Z component of the axis of rotation.
angle Angle of rotation (in degrees).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityCTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateJointTM ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleCTM ()
RwTransformCTM ()
RwTranslateCTM ()

RwBool
RwRotateJointTM(RwReal rx, RwReal ry, RwReal rz, RwReal angle);

Description

Pre-concatenates a rotation matrix onto the current joint transformation matrix.
Arguments

rx X component of the axis of rotation.
ry Y component of the axis of rotation.
rz Z component of the axis of rotation.
angle Angle of rotation (in degrees).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityJointTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateCTM ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwTransformJointTM ()

RwMatrix4d *
RwRotateMatrix(RwMatrix4d *matrix, RwReal rx, RwReal ry, RwReal rz, RwReal

angle, RwCombineOperation op);
Description

Builds a rotation matrix and applies it to matrix. The operation may be a pre-
concatenation, post-concatenation, or replacement.

Arguments

matrix Pointer to the matrix.
rx X component of the axis of rotation.
ry Y component of the axis of rotation.
rz Z component of the axis of rotation.
angle Angle of rotation (in degrees).
op Combination operator.

Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwQueryRotateMatrix ()
RwRotateCTM ()
RwRotateJointTM ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwMatrix4d *
RwRotateMatrixCos(RwMatrix4d *matrix, RwReal rx, RwReal ry,

RwReal rz, RwReal cosangle, RwReal rotdir,
RwCombineOperation op);

Description

Builds a rotation matrix and applies it to matrix. The angle of rotation is given by
the cosine of the angle (cosangle) and a direction of rotation (rotdir). The
operation may be a pre-concatenation, post-concatenation, or replacement.

Arguments

matrix Pointer to the matrix.
rx X component of the axis of rotation.
ry Y component of the axis of rotation.
rz Z component of the axis of rotation.
cosangle Cosine of the angle of rotation
rotdir Direction of rotation (a positive value specifies anti-clockwise rotation

and a negative value specifies clockwise rotation).
op Combination operator.

Return Value

The argument matrix if successful, and NULL otherwise.
Comments

This function should be used in preference to RwRotateMatrix () when the cosine of
the angle of rotation is known. In such cases RwRotateMatrixCos () is more efficient
than RwRotateMatrix () .

See Also
RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwQueryRotateMatrix ()
RwRotateCTM ()
RwRotateJointTM ()
RwRotateMatrix ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwBool
RwScaleCTM(RwReal sx, RwReal sy, RwReal sz);

Description

Pre-concatenates a scaling matrix onto the CTM.
Arguments

sx Scale factor in the X axis.
sy Scale factor in the Y axis.
sz Scale factor in the Z axis.

Return Value

TRUE if successful, and FALSE otherwise
Comments

Note that if no scaling is to be applied CREAL(1.0) should be specified rather than
CREAL(0.0).
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityCTM ()
RwIdentityJointTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateCTM ()
RwRotateJointTM ()
RwScaleMatrix ()
RwTransformCTM ()
RwTransformJointTM ()
RwTranslateCTM ()

RwMatrix4d *
RwScaleMatrix(RwMatrix4d *matrix, RwReal sx, RwReal sy, RwReal sz,

RwCombineOperation op);
Description

Builds a scaling matrix and applies it to matrix. The operation may be a pre-
concatenation, post-concatenation, or replacement.

Arguments

matrix Pointer to the matrix.
sx Scale factor in the X axis.
sy Scale factor in the Y axis.
sz Scale factor in the Z axis.
op Combination operator.

Return Value

The argument matrix if successful, and NULL otherwise.
Comments

Note that if no scaling is to be applied CREAL(1.0) should be specified rather than
CREAL(0.0).

See Also
RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleCTM ()
RwTransformMatrix ()
RwTranslateMatrix ()

RwV3d *
RwScaleVector(RwV3d *a, RwReal scale, RwV3d *b);

Description

Scales a vector.
Arguments

a Pointer to the vector.
scale Scale factor.
b Pointer to the vector that will receive the result.

Return Value

The argument b if successful, and NULL otherwise.
See Also

RwAddVector ()
RwCrossProduct ()
RwDotProduct ()
RwNormalize ()
RwSubtractVector ()
RwTransformVector ()

RwMatrix4d *
RwScratchMatrix(void);

Description

Retrieves the current scratch matrix (the top matrix of the scratch matrix stack).
Arguments

None.
Return Value

A pointer to the scratch matrix.
Comments

The scratch matrix stack is a convenient source of temporary matrices for building
transforms.
The matrix returned by RwScratchMatrix () must not be destroyed with
RwDestroyMatrix () . The scratch matrix stack is destroyed by RenderWare when
RwClose () is called.

See Also
RwClose ()
RwCreateMatrix ()
RwDestroyMatrix ()
RwPopScratchMatrix ()
RwPushScratchMatrix ()

RwBool
RwSetAxisAlignment(RwAxisAlignment alignment);

Description

Sets the axis alignment type of the current clump under construction.
Arguments

alignment The axis alignment type.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The following axis alignment types are supported:
rwNOAXISALIGNMENT The clump is not axis aligned, it is unconstrained.
rwALIGNAXISZORIENTX

The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local X axis is preserved.

rwALIGNAXISZORIENTY
The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local Y axis is preserved.

rwALIGNAXISXYZ The local X, Y and Z axes of the clump are aligned with the
cameras Look Right, Look Up and Look At vectors
respectively.

A clump that is axis aligned will be aligned with the view planes of all cameras used
to view that clump.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwCreateSprite ()
RwSetClumpAxisAlignment ()

RwCamera *
RwSetCameraBackColor(RwCamera *camera, RwReal r, RwReal g, RwReal b);

Description

Sets the cameras background fill color.
Arguments

camera Pointer to the camera.
r Red component of the color in the range CREAL(0.0) to CREAL(1.0).
g Green component of the color in the range CREAL(0.0) to CREAL(1.0).
b Blue component of the color in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

This function is identical to RwSetCameraBackColorStruct () with the exception that
it takes individual RwReals for the red, green and blue components of the color
rather than an RwRGBColor structure as the color specification.
The background of the cameras viewport is cleared when
RwClearCameraViewport () is called.
If the camera does not have a backdrop raster then the cameras entire viewport is
filled with the background color. It the camera has a backdrop raster then those
areas of the viewport outside the backdrop viewport rectangle will be filled with the
background color.

See Also
RwClearCameraViewport ()
RwGetCameraBackColor ()
RwSetCameraBackColorStruct ()
RwSetCameraBackdrop ()
RwSetCameraBackdropViewportRect ()

RwCamera *
RwSetCameraBackColorStruct(RwCamera *camera, RwRGBColor *color);

Description

Sets the cameras background fill color.
Arguments

camera Pointer to the camera.
color Pointer to the color.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

This function is identical to RwSetCameraBackColor () with the exception that it
takes an RwRGBColor structure as the color specification rather than individual
RwReals for the red, green and blue components of the color.
The background of the cameras viewport is cleared when
RwClearCameraViewport () is called.
If the camera does not have a backdrop raster then the cameras entire viewport is
filled with the background color. It the camera has a backdrop raster then those
areas of the viewport outside the backdrop viewport rectangle will be filled with the
background color.

See Also
RwClearCameraViewport ()
RwGetCameraBackColor ()
RwSetCameraBackColor ()
RwSetCameraBackdrop ()
RwSetCameraBackdropViewportRect ()

RwCamera *
RwSetCameraBackdrop(RwCamera *camera, RwRaster *raster);

Description

Sets the cameras backdrop raster.
Arguments

camera Pointer to the camera.
raster Pointer to the raster.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

To ensure that a camera has a visible backdrop it is not only necessary to set the
cameras backdrop but also to set the rectangle of the viewport which will be filled
by the backdrop. As the default backdrop viewport rectangle has a width and height
of 0 the backdrop will not be visible unless a non-empty rectangle is specified. This
is accomplished by RwSetCameraBackdropViewportRect () .
Areas of the viewport outside the backdrop viewport rectangle will be filled with the
cameras background color.
The backdrop raster associated with a camera is not destroyed automatically when
the camera is destroyed. The backdrop raster (if any) must by explicitly destroyed
by RwDestroyRaster () .

See Also
RwDestroyRaster ()
RwGetCameraBackdrop ()
RwGetCameraBackdropOffset ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackColor ()
RwSetCameraBackColorStruct ()
RwSetCameraBackdropOffset ()
RwSetCameraBackdropViewportRect ()

RwCamera *
RwSetCameraBackdropOffset(RwCamera *camera, RwInt32 x, RwInt32 y);

Description

Sets the offset (from the origin of the cameras backdrop viewport rectangle) of the
cameras backdrop raster.

Arguments

camera Pointer to the camera.
x The horizontal offset (in pixels).
y The vertical offset (in pixels).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

The X and Y offset (modulo the width and height of the backdrop) specify the pixel
in the backdrop which will be mapped to the origin of the backdrop viewport
rectangle. Therefore, the effect of increasing the X offset will be to scroll the
backdrop to the left and increasing the Y offset will scroll the backdrop up.

See Also
RwGetCameraBackdrop ()
RwGetCameraBackdropOffset ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackdrop ()
RwSetCameraBackdropViewportRect ()

RwCamera *
RwSetCameraBackdropViewportRect(RwCamera *camera, RwInt32 x,

 RwInt32 y, RwInt32 width, RwInt32 height);
Description

Sets the rectangular area of the viewport into which the cameras backdrop raster is
rendered.

Arguments

camera Pointer to the camera.
x The X co-ordinate of rectangle (in viewport space co-ordinates).
y The Y co-ordinate of rectangle (in viewport space co-ordinates).
width The width of the rectangle (in viewport space units).
height The height of the rectangle (in viewport space units).

Return Value

 The argument camera if successful, and NULL otherwise.
Comments

The default backdrop viewport rectangle has a width and height of 0. In order to
ensure that the backdrop raster is visible it is necessary to set a viewport rectangle
which has a non-zero width and height.
If the backdrop viewport rectangle is larger than the backdrop raster, the raster will
be tiled to fill the rectangle. If the backdrop raster is larger than the viewport
rectangle it will be cropped to fit the rectangle.
If the backdrop viewport rectangle does not fill the entire viewport, areas of the
viewport outside the backdrop rectangle will be filled with the cameras background
color.
The backdrop viewport rectangle is not automatically changed when the camera
viewport is modified. RwSetCameraBackdropViewportRect () should be used to
modify the backdrop viewport rectangle appropriately when the cameras viewport is
modified.

See Also
RwGetCameraBackColor ()
RwGetCameraBackdrop ()
RwGetCameraBackdropOffset ()
RwGetCameraBackdropViewportRect ()
RwSetCameraBackColor ()
RwSetCameraBackColorStruct ()
RwSetCameraBackdrop ()
RwSetCameraBackdropOffset ()
RwSetCameraViewport ()

RwCamera *
RwSetCameraData(RwCamera *camera, void *data);

Description

Sets the cameras user data pointer.
Arguments

camera Pointer to the camera.
data User data pointer.

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwGetCameraData ()

RwCamera *
RwSetCameraFarClipping(RwCamera *camera, RwReal fard);

Description

Sets the distance from the camera position to the far (back) clipping plane.
Arguments

camera Pointer to the camera.
fard Distance (in world space units) from the camera to the far clipping plane.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

The default far clipping distance is a large value which is dependent on the numeric
type of the library.

See Also
RwCreateCamera ()
RwGetCameraFarClipping ()
RwGetCameraNearClipping ()
RwSetCameraNearClipping ()

RwCamera *
RwSetCameraLookAt(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Sets the cameras Look At vector, while maintaining its position.
Arguments

camera Pointer to the camera.
x X component of the vector.
y Y component of the vector.
z Z component of the vector.

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwGetCameraLookAt ()
RwPanCamera ()
RwPointCamera ()
RwResetCamera ()
RwSetCameraLookUp ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwCamera *
RwSetCameraLookUp(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Sets the cameras Look Up (or V) vector, while maintaining its position.
Arguments

camera Pointer to the camera.
x X component of the vector.
y Y component of the vector.
z Z component of the vector.

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwGetCameraLookUp ()
RwPointCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwTiltCamera ()
RwTransformCameraOrientation ()

RwCamera *
RwSetCameraNearClipping(RwCamera *camera, RwReal near);

Description

Sets the distance from the camera position to the near (front) clipping plane.
Arguments

camera Pointer to the camera.
near Distance (in world space units) from the camera to the near clipping

plane.
Return Value

The argument camera if successful, and NULL otherwise.
Comments

The default near clipping distance is CREAL(0.05). The minimum clipping distance
which can be specified is CREAL(0.025).

See Also
RwCreateCamera ()
RwGetCameraFarClipping()
RwGetCameraNearClipping ()
RwSetCameraFarClipping()

RwCamera *
RwSetCameraPosition(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Sets the cameras position in world space co-ordinates.
Arguments

camera Pointer to the camera.
x X co-ordinate of the new camera position (in world space co-ordinates).
y Y co-ordinate of the new camera position (in world space co-ordinates).
z Z co-ordinate of the new camera position (in world space co-ordinates).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwGetCameraPosition ()
RwResetCamera ()
RwTransformCamera ()
RwVCMoveCamera ()
RwWCMoveCamera ()

RwCamera *
RwSetCameraProjection(RwCamera *camera, RwCameraProjection model);

Description

Sets the cameras projection model.
Arguments

camera Pointer to the camera.
model Camera projection model.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

The projection types are:
rwPARALLEL Parallel projection.
rwPERSPECTIVE Perspective projection.

See Also
RwCreateCamera ()
RwGetCameraProjection ()

RwCamera *
RwSetCameraViewOffset(RwCamera *camera, RwReal x, RwReal y);

Description

Sets the cameras view offset, thereby shearing the view volume.
Arguments

camera Pointer to the camera.
x View offset displacement in the direction of the cameras "Look Right"

vector (in world space units).
y View offset displacement in the direction of the cameras "Look Up"

vector (in world space units).
Return Value

The argument camera if successful, and NULL otherwise.
Comments

The X and Y offsets are measured in world space units in a plane passing through
the camera position and parallel to the view window, in the directions of the
cameras "Look Right" and "Look Up" vectors respectively. For a perspective view,
this moves the apex of the view pyramid whilst its edges remain fixed to the corners
of the view window. For a parallel view, this shears the view parallelepiped whilst its
edges remain fixed to the corners of the view window.
Successive calls to RwSetCameraViewOffset () specify the offset as absolute values
from the initial unsheared camera position; successive offsets are not accumulated
as relative displacements.

See Also
RwGetCameraViewOffset ()
RwResetCamera ()

RwCamera *
RwSetCameraViewport(RwCamera *camera, RwInt32 x, RwInt32 y,

 RwInt32 width, RwInt32 height);
Description

Defines a rectangular area of the display (screen or window) onto which the
cameras view window is mapped.

Arguments

camera Pointer to the camera.
x X co-ordinate of the viewport origin (in device space co-ordinates).
y Y co-ordinate of the viewport origin (in device space co-ordinates).
width Width of the viewport (in device space units).
height Height of the viewport (in device space units).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

The viewport origin is the top left of the viewport.
See Also

RwCreateCamera ()
RwGetCameraViewport ()
RwSetCameraBackdropViewportRect ()
RwSetCameraViewwindow ()

RwCamera *
RwSetCameraViewwindow(RwCamera *camera, RwReal width, RwReal height);

Description

Sets the relative size of the view window in the view plane. Larger values give a
wider field of view, smaller values a narrower field of view.

Arguments

camera Pointer to the camera.
width Width of the view window (in world space units).
height Height of the view window (in world space units).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwCreateCamera ()
RwGetCameraViewwindow ()
RwResetCamera ()
RwSetCameraViewport ()

RwClump *
RwSetClumpAxisAlignment(RwClump *clump, RwAxisAlignment alignment);

Description

Sets the axis alignment type of the clump.
Arguments

clump Pointer to the clump.
alignment The axis alignment type.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

The axis alignment types are:
rwNOAXISALIGNMENT The clump is not axis aligned, it is unconstrained.
rwALIGNAXISZORIENTX

The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local X axis is preserved.

rwALIGNAXISZORIENTY
The clumps local Z axis is aligned with the Look At vector
of the camera, but the orientation of the 2D projection of
the clumps local Y axis is preserved.

rwALIGNAXISXYZ The local X, Y and Z axes of the clump are aligned with the
cameras Look Right, Look Up and Look At vectors
respectively.

A clump that is axis aligned will be aligned with the view planes of all cameras used
to view that clump.

See Also
RwCreateSprite ()
RwGetClumpAxisAlignment ()
RwSetAxisAlignment ()

RwClump *
RwSetClumpData(RwClump *clump, void *data);

Description

Sets the clumps user data pointer.
Arguments

clump Pointer to the clump.
data User data pointer.

Return Value

The argument clump if successful, and NULL otherwise.
See Also

RwGetClumpData ()

RwClump *
RwSetClumpHints(RwClump *clump, RwClumpHints hints);

Description

Sets the hints of the clump to those given. A clumps hints enable RenderWare to
render a scene containing that clump more efficiently.

Arguments

clump Pointer to the clump.
hints A bitfield representing a hint (or bitwise or of hints).

Return Value

The argument clump if successful, and NULL otherwise.
Comments

Unlike RwAddHintToClump () , which simply adds one or more hints to a clumps set of
hints, RwSetClumpHints () replaces the entire set of hints of a clump with those
specified.
The clump hints are:

rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
See Also

RwAddHintToClump ()
RwGetClumpHints ()
RwRemoveHintFromClump ()
RwSetHints ()

RwClump *
RwSetClumpState(RwClump *clump, RwState state);

Description

Sets the clumps on/off state.
Arguments

clump Pointer to the clump.
state The clump state.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

The clumps state determines whether the clump will be considered as a candidate
for rendering and picking.
The clump states are:

rwON The clump will be a candidate for rendering and picking.
rwOFF The clump will not be a candidate for rendering and

picking.
A state of rwON should be interpreted as making the clump a candidate for rendering
and picking. Such a clump will not appear if it lies outside the view volume and it
will not be picked unless one of its polygons is the foremost under the pick position.
The state affects only the clump to which it is applied and not to the clumps
children. Thus, to prevent a single clump in a hierarchy from being rendered it is
preferable to modify the clumps state rather than to remove it from a scene with
RwRemoveClumpFromScene () .

See Also
RwAddClumpToScene ()
RwDestroyClump ()
RwGetClumpState ()
RwRemoveClumpFromScene ()

RwClump *
RwSetClumpTag(RwClump *clump, RwInt32 tag);

Description

Assigns the integer tag to the clump.
Arguments

clump Pointer to the clump.
tag Integer tag value to set.

Return Value

The argument clump if successful, NULL otherwise.
See Also

RwGetClumpTag ()
RwSetPolygonTag ()
RwSetTag ()

RwClump *
RwSetClumpVertex(RwClump *clump, RwInt32 index, RwV3d *coords);

Description

Sets the object space position of the vertex which belongs to clump and has the
vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
coords Pointer to the point that specifies the vertexs position (in object space

co-ordinates).
Return Value

The argument clump if successful, and NULL otherwise.
Comments

The vertex index is an integer greater than 0 and less than or equal to the number
of vertices that belong to the clump.
As this function modifies the geometry of the clump, the clump is made editable
(the rwEDITABLE hint is set) by this function.

See Also
RwGetClumpVertex ()
RwSetClumpVertexNormal ()
RwSetClumpVertexUV ()
RwSetClumpVertices ()

RwClump *
RwSetClumpVertexNormal(RwClump *clump, RwInt32 index, RwV3d *normal);

Description

Sets the unit shading normal at the vertex which belongs to clump and has the
vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
normal Pointer to the vector that specifies the unit shading normal.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

By default, RenderWare automatically calculates unit shading normals. When a
clump is read, created or edited the unit shading normals are recalculated.
However, In addition to setting the normal, RwSetClumpVertexNormal () suspends
automatic recalculation of the normal at the specified vertex.
To enable automatic recalculation of the normal at a vertex use
RwCalculateClumpVertexNormal () .

See Also
RwCalculateClumpVertexNormal ()
RwGetClumpVertexNormal ()
RwSetClumpVertex ()
RwSetClumpVertexUV ()

RwClump *
RwSetClumpVertexUV(RwClump *clump, RwInt32 index, RwReal u,

 RwReal v);
Description

Sets the texture (U, V) co-ordinates of the vertex which belongs to clump and has
the vertex index index.

Arguments

clump Pointer to the clump.
index The vertex index.
u U co-ordinate of the vertexs texture co-ordinates.
v V co-ordinate of the vertexs texture co-ordinates.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

The vertex index is an integer greater than 0 and less than or equal to the number
of vertices that belong to the clump.

See Also
RwCubicTexturizeClump ()
RwEnvMapClump ()
RwGetClumpVertexUV ()
RwSetClumpVertex ()
RwSetClumpVertexNormal ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetPolygonUV ()
RwSphericalTexturizeClump ()

RwClump *
RwSetClumpVertices(RwClump *clump, RwInt32 *vlist, RwV3d *coords, RwInt32

nverts);
Description

Sets the object space co-ordinates of one or more vertices of the clump.
Arguments

clump Pointer to the clump.
vlist Pointer to an array of vertex indices.
coords Pointer to an array of vertex co-ordinates (in object space co-ordinates).
nverts Number of vertices whose co-ordinates will be modified.

Return Value

The argument clump if successful, and NULL otherwise.
Comments

Each element of the indices array gives the vertex index of a vertex to modify, the
corresponding element of the coords array gives the new co-ordinates of that
vertex.
The arrays indices and coords must be of length nverts. There must be at least
nverts vertices in the clump.
It is considerably more efficient to use a single call to RwSetClumpVertices () then
multiple calls to RwSetClumpVertex () when modifying two or more vertices of a
clump.
As this function modifies the geometry of the clump, the clump is made editable
(the rwEDITABLE hint is set) by this function.
For 16-bit applications accessing the RenderWare DLL the vertex index list pointed
to by    vlist must be declared as an array of RwInt32s and not ints.

See Also
RwGetClumpVertex ()
RwSetClumpVertex ()
RwSetClumpVertexNormal ()
RwSetClumpVertexUV ()

void
RwSetDebugAssertionState(RwState state);

Description

Enables or disables the generation of assertion messages.
Arguments

state The enable/disable flag.
Return Value

None.
Comments

The assertion message states are:
rwON Assertion messages are enabled.
rwOFF Assertion messages are disabled.

See Also
RwGetDebugAssertionState ()
RwSetDebugMessageState ()
RwSetDebugOutputState ()
RwSetDebugScriptState ()
RwSetDebugTraceState()

void
RwSetDebugMessageState(RwState state);

Description

Enables or disables the generation of miscellaneous messages.
Arguments

state The enable/disable flag.
Return Value

None.
Comments

The miscellaneous message states are:
rwON Miscellaneous messages are enabled.
rwOFF Miscellaneous messages are disabled.

See Also
RwGetDebugMessageState ()
RwSetDebugAssertionState ()
RwSetDebugOutputState ()
RwSetDebugScriptState ()
RwSetDebugTraceState()

void
RwSetDebugOutputState(RwState state);

Description

Enables or disables the generation of all types of debugging messages.
Arguments

state The debugging state.
Return Value

None.
Comments

This function is equivalent to calling RwSetDebugAssertionState () ,
RwSetDebugMessageState () ,
RwSetDebugScriptState ()RwSetDebugScriptState and RwSetDebugTraceState ()
with the argument state.
The message states are:

rwON Messages are enabled.
rwOFF Messages are disabled.

See Also
RwGetDebugAssertionState ()
RwGetDebugMessageState ()
RwGetDebugScriptState ()
RwSetDebugAssertionState ()
RwSetDebugMessageState ()
RwSetDebugScriptState ()
RwSetDebugTraceState()

void
RwSetDebugScriptState(RwState state);

Description

Enables or disables the generation of script trace messages.
Arguments

state The enable/disable flag.
Return Value

None.
Comments

The script trace message states are:
rwON Script trace messages are enabled.
rwOFF Script trace messages are disabled.

See Also
RwGetDebugScriptState ()
RwSetDebugAssertionState ()
RwSetDebugMessageState ()
RwSetDebugOutputState ()
RwSetDebugTraceState()

void
RwSetDebugSeverity(RwDebugSeverity severity);

Description

Sets the minimum severity level for the reporting of debugging messages.
Arguments

severity The minimum severity level.
Return Value

None.
Comments

The debug message severity levels are:
rwINFORM Control flow annotations, non-fatal exceptions and fatal

exceptions are all enabled.
rwWARNING Non-fatal exceptions and fatal exceptions are enabled.
rwERROR Fatal exceptions are enabled.

See Also
RwGetDebugSeverity ()

RwBool
RwSetDebugStream(FILE *stream);

Description

Sets the current debugging stream.
Arguments

stream File pointer.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function is useful in situations where a file pointer is available but a file name is
not, i.e., files that have been opened previously or standard streams such as
stderr.

See Also
RwCloseDebugStream ()
RwOpenDebugStream ()

void
RwSetDebugTraceState(RwState state);

Description

Enables or disables the generation of API function trace messages.
Arguments

state The enable/disable flag.
Return Value

None.
Comments

The API function trace message states are:
rwON API function trace messages are enabled.
rwOFF API function trace messages are disabled.

See Also
RwGetDebugTraceState ()
RwSetDebugAssertionState ()
RwSetDebugMessageState ()
RwSetDebugOutputState ()
RwSetDebugScriptState()

RwBool
RwSetHints(RwClumpHints hints);

Description

Sets the hints of the current clump under construction to those given. A clumps
hints enable RenderWare to render a scene containing that clump more efficiently.

Arguments

hints A bitfield representing a hint (or bitwise or of hints).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The clump hints are:
rwCONTAINER The clump spatially contains other clumps.
rwHS Action should be taken to prevent hidden surfaces from

being visible when the clump is rendered.
rwEDITABLE The clumps geometry is editable (its vertices can be

moved and new vertices and polygons added).
Unlike RwAddHint () , which simply adds one or more hints to the current clumps set
of hints, RwSetHints () replaces the current clumps entire set of hints with those
specified.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () block.

See Also
RwAddHint ()
RwClumpBegin ()
RwClumpEnd ()
RwRemoveHint ()
RwSetClumpHints ()

RwLight *
RwSetLightBrightness(RwLight *light, RwReal brightness);

Description

Sets the lights brightness.
Arguments

light Pointer to the light.
brightness Brightness, in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument light if successful, and NULL otherwise.
Comments

This function is identical to RwSetLightColor(light, brightness, brightness,
brightness). For a scene using colored lights, RwSetLightColor () should be used
to control the intensity of the light.

See Also
RwCreateLight ()
RwGetLightBrightness ()
RwSetLightColor()
RwSetLightColorStruct()
RwGetLightColor()

RwLight *
RwSetLightColor(RwLight *light, RwReal r, RwReal g, RwReal b);

Description

Sets the color of a light.
Arguments

light Pointer to the light.
r Red component of the color in the range CREAL(0.0) to CREAL(1.0).
g Green component of the color in the range CREAL(0.0) to CREAL(1.0).
b Blue component of the color in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument light if successful, and NULL otherwise.
Comments

The value returned by RwGetLightBrightness () for a light whose color has been
set with RwSetLightColor () is the average intensity of the red, green and blue
channels of the lights color.
This function is identical to RwSetLightColorStruct () with the exception that it
takes individual RwReals for the red, green and blue components of the color rather
than an RwRGBColor structure as the color specification.
In RenderWare V1.4, colored light sources are only available when performing 16-bit
rendering. Under 8-bit rendering RwGetLightColor () , RwSetLightColor () and
RwSetLightColorStruct () are still available to the API, however, light sources will
always be white.

See Also
RwSetLightBrightness ()
RwSetLightColorStruct ()
RwGetLightColor ()

RwLight *
RwSetLightColorStruct(RwLight *light, RwRGBColor *color);

Description

Sets the color of a light.
Arguments

light Pointer to the light.
color Pointer to the color.

Return Value

The argument light if successful, and NULL otherwise.
Comments

The value returned by RwGetLightBrightness () for a light whose color has been
set with RwSetLightColorStruct () is the average intensity of the red, green and
blue channels of the lights color.
This function is identical to RwSetLightColor () with the exception that it takes an
RwRGBColor structure as the color specification rather than individual RwReals for
the red, green and blue components of the color.
In RenderWare V1.4, colored light sources are only available when performing 16-bit
rendering. Under 8-bit rendering RwGetLightColor () , RwSetLightColor () and
RwSetLightColorStruct () are still available to the API, however, light sources will
always be white.

See Also
RwSetLightBrightness ()
RwSetLightColor ()
RwGetLightColor ()

RwLight *
RwSetLightConeAngle(RwLight *light, RwReal angle);

Description

Sets the angle at which a conical light illuminates objects (measured from the
direction vector of the light).

Arguments

light Pointer to the light.
angle Cone angle (in degrees).

Return Value

The argument light if successful, and NULL otherwise.
Comments

This function is only valid for conical lights (those lights created with the light type
rwCONICAL).

See Also
RwCreateLight ()
RwGetLightConeAngle ()
RwGetLightType ()

RwLight *
RwSetLightData(RwLight *light, void *data);

Description

Sets the lights user data pointer.
Arguments

light Pointer to the light.
data User data pointer.

Return Value

The argument light if successful, and NULL otherwise.
See Also

RwGetLightData ()

RwLight *
RwSetLightPosition(RwLight *light, RwReal x, RwReal y, RwReal z);

Description

Sets the position of a point or conical light source in world space co-ordinates.
Arguments

light Pointer to the light.
x X co-ordinate of the light position (in world space co-ordinates).
y Y co-ordinate of the light position (in world space co-ordinates).
z Z co-ordinate of the light position (in world space co-ordinates).

Return Value

The argument light if successful, and NULL otherwise.
Comments

This function is only valid for point and conical lights (those lights created with the
light types rwPOINT or rwCONICAL).

See Also
RwCreateLight ()
RwGetLightPosition ()
RwGetLightType ()
RwTransformLight ()

RwLight *
RwSetLightState(RwLight *light, RwState state);

Description

Turns the light on or off.
Arguments

light Pointer to the light.
state The light state.

Return Value

The argument light if successful, and NULL otherwise.
Comments

The light states are:
rwON The light is on.
rwOFF The light is off.

See Also
RwGetLightState ()

RwLight *
RwSetLightVector(RwLight *light, RwReal x, RwReal y, RwReal z);

Description

Sets the illumination vector of a directional or conical light source.
Arguments

light Pointer to the light.
x X component of the light vector.
y Y component of the light vector.
z Z component of the light vector.

Return Value

The argument light if successful, and NULL otherwise.
Comments

This function is only valid for directional and conical lights (those lights created with
the light types rwDIRECTIONAL or rwCONICAL).

See Also
RwCreateLight ()
RwGetLightType ()
RwGetLightVector ()
RwTransformLight ()

RwMaterial *
RwSetMaterialAmbient(RwMaterial *material, RwReal ka);

Description

Sets the materials ambient reflection coefficient.
Arguments

material Pointer to the material.
ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
See Also

RwGetMaterialAmbient ()
RwSetMaterialDiffuse ()
RwSetMaterialSpecular ()
RwSetMaterialSurface ()
RwSetPolygonAmbient ()
RwSetSurfaceAmbient ()

RwMaterial *
RwSetMaterialColor(RwMaterial *material, RwReal r, RwReal g,

RwReal b);
Description

Sets the materials color.
Arguments

material Pointer to the material.
r Red component of the color, in the range CREAL(0.0) to CREAL(1.0).
g Green component of the color, in the range CREAL(0.0) to CREAL(1.0).
b Blue component of the color, in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
Comments

This function is identical to RwSetMaterialColorStruct () with the exception that it
takes individual RwReals for the red, green and blue components of the color rather
than an RwRGBColor structure as the color specification.

See Also
RwGetMaterialColor ()
RwSetMaterialColorStruct ()
RwSetPolygonColor ()
RwSetPolygonColorStruct ()
RwSetSurfaceColor ()

RwMaterial *
RwSetMaterialColorStruct(RwMaterial *material, RwRGBColor *color);

Description

Sets the materials color.
Arguments

material Pointer to the material.
color Pointer to the color.

Return Value

The argument material if successful, and NULL otherwise.
Comments

This function is identical to RwSetMaterialColor () with the exception that it takes
an RwRGBColor structure as the color specification rather than individual RwReals for
the red, green and blue components of the color. This can be useful as a call-back in
RwForAll…() functions.

See Also
RwGetMaterialColor ()
RwSetMaterialColor ()
RwSetPolygonColor ()
RwSetPolygonColorStruct ()
RwSetSurfaceColor ()

RwMaterial *
RwSetMaterialDiffuse(RwMaterial *material, RwReal kd);

Description

Sets the materials diffuse reflection coefficient.
Arguments

material Pointer to the material.
kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
See Also

RwGetMaterialDiffuse ()
RwSetMaterialAmbient ()
RwSetMaterialSpecular ()
RwSetMaterialSurface ()
RwSetPolygonDiffuse ()
RwSetSurfaceDiffuse ()

RwMaterial *
RwSetMaterialGeometrySampling(RwMaterial *material, RwGeometrySampling type);

Description

Sets the materials geometry sampling type.
Arguments

material Pointer to the material.
type The geometry sampling type.

Return Value

The argument material if successful, and NULL otherwise.
Comments

The geometry sampling types are:
rwPOINTCLOUD Render geometry as a cloud of points.
rwWIREFRAME Render geometry as a wireframe of polygon edges.
rwSOLID Render geometry as a solid bounded by filled polygons.

See Also
RwGetMaterialGeometrySampling ()
RwSetMaterialLightSampling ()
RwSetPolygonGeometrySampling ()
RwSetSurfaceGeometrySampling ()

RwMaterial *
RwSetMaterialLightSampling(RwMaterial *material,

 RwLightSampling type);
Description

Sets the materials light sampling type.
Arguments

material Pointer to the material.
type The light sampling type.

Return Value

The argument material if successful, and NULL otherwise.
Comments

The light sampling types are:
rwFACET Flat shading.
rwVERTEX Smooth shading.

See Also
RwGetMaterialLightSampling ()
RwSetMaterialGeometrySampling ()
RwSetPolygonLightSampling ()
RwSetSurfaceLightSampling ()

RwMaterial *
RwSetMaterialOpacity(RwMaterial *material, RwReal opacity);

Description

Sets the materials opacity.
Arguments

material Pointer to the material.
opacity Opacity in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
Comments

An opacity of CREAL(1.0) yields an entirely opaque material. An opacity of
CREAL(0.0) yields an entirely transparent material.

See Also
RwGetMaterialOpacity ()
RwSetPolygonOpacity ()
RwSetSurfaceOpacity ()

RwMaterial *
RwSetMaterialSpecular(RwMaterial *material, RwReal ks);

Description

Sets the materials specular reflection coefficient.
Arguments

material Pointer to the material.
ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
See Also

RwGetMaterialSpecular ()
RwSetMaterialAmbient ()
RwSetMaterialDiffuse ()
RwSetMaterialSurface ()
RwSetPolygonSpecular ()
RwSetSurfaceSpecular ()

RwMaterial *
RwSetMaterialSurface(RwMaterial *material, RwReal ka, RwReal kd, RwReal ks);

Description

Sets the materials surface attributes (ambient, diffuse, and specular reflection
coefficients).

Arguments

material Pointer to the material.
ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument material if successful, and NULL otherwise.
See Also

RwGetMaterialAmbient ()
RwGetMaterialDiffuse ()
RwGetMaterialSpecular ()
RwSetMaterialAmbient ()
RwSetMaterialDiffuse ()
RwSetMaterialSpecular ()
RwSetPolygonSurface ()
RwSetSurface ()

RwMaterial *
RwSetMaterialTexture(RwMaterial *material, RwTexture *texture);

Description

Sets the materials texture.
Arguments

material Pointer to the material.
texture Pointer to the texture.

Return Value

The argument material if successful, and NULL otherwise.
Comments

NULL may be passed as the second argument to remove the materials texture.
See Also

RwCreateTexture ()
RwFindNamedTexture ()
RwGetMaterialTexture ()
RwGetNamedTexture ()
RwReadNamedTexture ()
RwReadTexture ()
RwSetPolygonTexture ()
RwSetSurfaceTexture ()

RwMaterial *
RwSetMaterialTextureModes(RwMaterial *material, RwTextureModes modes);

Description

Sets the texture modes of the material. Texture modes permit fine grain control over
the rendering of textures.

Arguments

material Pointer to the material.
modes A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument material if successful, and NULL otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.
Unlike RwAddTextureModeToMaterial () , which simply adds one or more texture
modes to a materials set of modes, RwSetMaterialTextureModes () replaces a
materials entire set of modes with those specified.

See Also
RwAddTextureModeToMaterial ()
RwGetMaterialTextureModes ()
RwRemoveTextureModeFromMaterial ()
RwSetMaterialLightSampling ()
RwSetMaterialTexture ()
RwSetPolygonTextureModes ()
RwSetSurfaceTextureModes ()

RwMatrix4d *
RwSetMatrixElement(RwMatrix4d *matrix, RwInt32 row, RwInt32 col, RwReal

element);
Description

Sets an individual element of the matrix.
Arguments

matrix Pointer to the matrix.
row Row index in the range 0 to 3.
col Column index in the range 0 to 3.
element New matrix element.

Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwGetMatrixElement ()
RwSetMatrixElement ()
RwSetMatrixElements ()

RwMatrix4d *
RwSetMatrixElements(RwMatrix4d *matrix, RwReal elements[4][4]);

Description

Sets the elements of a matrix from a four by four array of RwReals. The first four
entries of the array are copied into the top row of the matrix.

Arguments

matrix Pointer to the matrix.
elements Pointer to a four by four array of RwReals holding the values to be

copied.
Return Value

The argument matrix if successful, and NULL otherwise.
Comments

By convention a matrix is taken to transform a row vector by post multiplication.
The final column of the array will normally be [CREAL(0.0), CREAL(0.0),
CREAL(0.0), CREAL(1.0)].

See Also
RwGetMatrixElement ()
RwGetMatrixElements ()
RwSetMatrixElement ()

RwInt32
RwSetPaletteEntries(RwInt32 start, RwInt32 length,

RwPaletteEntry *palette, RwPaletteOptions options);
Description

Sets length palette entries of the current RenderWare palette starting at entry
start.

Arguments

start First palette entry to set.
length Number of entries to set.
palette Pointer to an array of RwPaletteEntrys.
options A bitfield representing a palette processing operation.

Return Value

The argument length if successful, and 0 otherwise.
Comments

The supported palette options are as follows:
· rwGAMMAPALETTE Gamma correct the palette.
Note: Not all platforms allow the application to overwrite all of the palette. Under
Windows for example the first 10 and the last 10 entries are reserved by the
system. An attempt to set these system entries will result in an error being returned
by this function.
The function RwGetDeviceInfo () can be used to determine the first and last palette
entries available to the application.

See Also
RwGetDeviceInfo ()
RwGetPaletteEntries ()

RwPolygon3d *
RwSetPolygonAmbient(RwPolygon3d *polygon, RwReal ka);

Description

Sets the ambient reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialAmbient () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialAmbient(RwGetPolygonMaterial(polygon), ka);
See Also

RwGetPolygonAmbient ()
RwSetMaterialAmbient ()
RwSetPolygonDiffuse ()
RwSetPolygonSpecular ()
RwSetPolygonSurface ()
RwSetSurfaceAmbient ()

RwPolygon3d *
RwSetPolygonColor(RwPolygon3d *polygon,

RwReal r, RwReal g, RwReal b);
Description

Sets the color of the polygons material.
Arguments

polygon Pointer to the polygon.
r Red component of the color, in the range CREAL(0.0) to CREAL(1.0).
g Green component of the color, in the range CREAL(0.0) to CREAL(1.0).
b Blue component of the color, in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

This function is identical to RwSetPolygonColorStruct () with the exception that it
takes individual RwReals for the red, green and blue components of the color rather
than an RwRGBColor structure as the color specification.
RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialColor () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialColor(RwGetPolygonMaterial(polygon), r, g, b);
See Also

RwSetMaterialColor ()
RwSetMaterialColorStruct ()
RwSetPolygonColorStruct ()
RwSetSurfaceColor ()

RwPolygon3d *
RwSetPolygonColorStruct(RwPolygon3d *polygon, RwRGBColor *color);

Description

Sets the color of the polygons material.
Arguments

polygon Pointer to the polygon.
color Pointer to the color.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

This function is identical to RwSetPolygonColor () with the exception that it takes
an RwRGBColor structure as the color specification rather than individual RwReals for
the red, green and blue components of the color. This can be useful as a call-back in
RwForAll…() functions.
RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialColorStruct () to change the
underlying polygon material. This change will then be propagated to all polygons
which use the material. The following line of code demonstrates how this is
achieved:

RwSetMaterialColorStruct(RwGetPolygonMaterial(polygon),
 color);

See Also
RwGetPolygonColor ()
RwSetMaterialColor ()
RwSetMaterialColorStruct ()
RwSetPolygonColor ()
RwSetSurfaceColor ()

RwPolygon3d *
RwSetPolygonData(RwPolygon3d *polygon, void *data);

Description

Sets the polygons user data pointer.
Arguments

polygon Pointer to the polygon.
data User data pointer.

Return Value

The argument polygon if successful, and NULL otherwise.
See Also

RwGetPolygonData ()

RwPolygon3d *
RwSetPolygonDiffuse(RwPolygon3d *polygon, RwReal kd);

Description

Sets the diffuse reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialDiffuse () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialDiffuse(RwGetPolygonMaterial(polygon), kd);
See Also

RwGetPolygonDiffuse ()
RwSetMaterialDiffuse ()
RwSetPolygonAmbient ()
RwSetPolygonSpecular ()
RwSetPolygonSurface ()
RwSetSurfaceDiffuse ()

RwPolygon3d *
RwSetPolygonGeometrySampling(RwPolygon3d *polygon,

RwGeometrySampling type);
Description

Sets the geometry sampling type of the polygons material.
Arguments

polygon Pointer to the polygon.
type The geometry sampling type.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

The geometry sampling types are:
rwPOINTCLOUD Render geometry as a cloud of points.
rwWIREFRAME Render geometry as a wireframe of polygon edges.
rwSOLID Render geometry as a solid bounded by filled polygons.

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialGeometrySampling () to change the
underlying polygon material. This change will then be propagated to all polygons
which use the material. The following line of code demonstrates how this is
achieved:

RwSetMaterialGeometrySampling(
RwGetPolygonMaterial(polygon), type);

See Also
RwGetPolygonGeometrySampling ()
RwSetMaterialGeometrySampling ()
RwSetPolygonLightSampling ()
RwSetSurfaceGeometrySampling ()

RwPolygon3d *
RwSetPolygonLightSampling(RwPolygon3d *polygon, RwLightSampling type);

Description

Sets the light sampling type of the polygons material.
Arguments

polygon Pointer to the polygon.
type The light sampling type.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

The light sampling types are:
rwFACET Flat shading.
rwVERTEX Smooth shading.

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialLightSampling () to change the
underlying polygon material. This change will then be propagated to all polygons
which use the material. The following line of code demonstrates how this is
achieved:

RwSetMaterialLightSampling(
RwGetPolygonMaterial(polygon), type);

See Also
RwGetPolygonLightSampling ()
RwSetMaterialLightSampling ()
RwSetPolygonGeometrySampling ()
RwSetSurfaceLightSampling ()

RwPolygon3d *
RwSetPolygonMaterial(RwPolygon3d *polygon, RwMaterial *material);

Description

Sets the polygons material to a reference to material material.
Arguments

polygon Pointer to the polygon.
material Pointer to the material.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

If the polygons previous materials only reference was the polygon itself then the
material will be destroyed by this function.

See Also
RwGetPolygonMaterial ()
RwSetPolygonAmbient ()
RwSetPolygonColor ()
RwSetPolygonColorStruct ()
RwSetPolygonDiffuse ()
RwSetPolygonGeometrySampling ()
RwSetPolygonLightSampling ()
RwSetPolygonOpacity ()
RwSetPolygonSpecular ()
RwSetPolygonSurface ()
RwSetPolygonTexture ()
RwSetPolygonTextureModes ()

RwPolygon3d *
RwSetPolygonOpacity(RwPolygon3d *polygon, RwReal opacity);

Description

Sets the opacity of the polygons material.
Arguments

polygon Pointer to the polygon.
opacity Opacity in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

An opacity of CREAL(1.0) yields an entirely opaque polygon. An opacity of
CREAL(0.0) yields an entirely transparent polygon.
RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialOpacity () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialOpacity(RwGetPolygonMaterial(polygon),
opacity);

See Also
RwGetPolygonOpacity ()
RwSetMaterialOpacity ()
RwSetSurfaceOpacity ()

RwPolygon3d *
RwSetPolygonSpecular(RwPolygon3d *polygon, RwReal ks);

Description

Sets the specular reflection coefficient of the polygons material.
Arguments

polygon Pointer to the polygon.
ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialSpecular () to change the
underlying polygon material. This change will then be propagated to all polygons
which use the material. The following line of code demonstrates how this is
achieved:

RwSetMaterialSpecular(RwGetPolygonMaterial(polygon), ks);
See Also

RwGetPolygonSpecular ()
RwSetMaterialSpecular ()
RwSetPolygonAmbient ()
RwSetPolygonDiffuse ()
RwSetPolygonMaterial ()
RwSetPolygonSurface ()
RwSetSurfaceSpecular ()

RwPolygon3d *
RwSetPolygonSurface(RwPolygon3d *polygon, RwReal ka, RwReal kd, RwReal ks);

Description

Sets the surface attributes (ambient, diffuse, and specular reflection coefficients) of
the polygons material.

Arguments

polygon Pointer to the polygon.
ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialSurface () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialSurface(RwGetPolygonMaterial(polygon),
ka, kd, ks);

See Also
RwGetPolygonAmbient ()
RwGetPolygonDiffuse ()
RwGetPolygonSpecular ()
RwSetMaterialSurface ()
RwSetPolygonAmbient ()
RwSetPolygonDiffuse ()
RwSetPolygonSpecular ()
RwSetSurface ()

RwPolygon3d *
RwSetPolygonTag(RwPolygon3d *polygon, RwInt32 tag);

Description

Sets the polygons tag.
Arguments

polygon Pointer to the polygon.
tag Integer tag value to set (only the least significant 16 bits are valid).

Return Value

The argument polygon if successful, and NULL otherwise.
See Also

RwFindTaggedPolygon ()
RwGetPolygonTag ()
RwPolygonExt ()
RwQuadExt ()
RwSetClumpTag ()
RwTriangleExt ()

RwPolygon3d *
RwSetPolygonTexture(RwPolygon3d *polygon, RwTexture *texture);

Description

Sets the texture of the polygons material.
Arguments

polygon Pointer to the polygon.
texture Pointer to the texture.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

NULL may be passed as the second argument to remove the polygons materials
texture.

Comments

RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialTexture () to change the underlying
polygon material. This change will then be propagated to all polygons which use the
material. The following line of code demonstrates how this is achieved:

RwSetMaterialTexture(RwGetPolygonMaterial(polygon),
texture);

See Also
RwCreateTexture ()
RwFindNamedTexture ()
RwGetNamedTexture ()
RwGetPolygonTexture ()
RwReadNamedTexture ()
RwReadTexture ()
RwSetMaterialTexture ()
RwSetSurfaceTexture ()

RwPolygon3d *
RwSetPolygonTextureModes(RwPolygon3d *polygon, RwTextureModes modes);

Description

Sets the texture modes of a polygons material. Texture modes permit fine grain
control over the rendering of textures.

Arguments

polygon Pointer to the polygon.
modes A bitfield representing a texture mode (or bitwise or of modes).

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.
Unlike RwAddTextureModeToPolygon () , which simply adds one or more texture
modes to a polygons materials set of modes, RwSetPolygonTextureModes ()
replaces a polygons materials entire set of modes with those specified.
RenderWare optimizes memory usage by sharing materials across multiple
polygons. Setting a polygon material property with this function will cause the
polygon to have its own copy of the material, not shared by any other polygons.
Unless this is the desired effect, it is more memory efficient to use the
corresponding material function RwSetMaterialTextureModes () to change the
underlying polygon material. This change will then be propagated to all polygons
which use the material. The following line of code demonstrates how this is
achieved:

RwSetMaterialTextureModes(RwGetPolygonMaterial(polygon),
modes);

See Also
RwAddTextureModeToPolygon ()
RwGetPolygonTextureModes ()
RwRemoveTextureModeFromPolygon ()
RwSetMaterialTextureModes ()
RwSetPolygonLightSampling ()
RwSetPolygonTexture ()
RwSetSurfaceTextureModes ()

RwPolygon3d *
RwSetPolygonUV(RwPolygon3d *polygon, RwUV *uvarray);

Description

Sets the texture (U, V) co-ordinates for the polygons vertices.
Arguments

polygon Pointer to the polygon.
uvarray Pointer to an array of RwUV structures.

Return Value

The argument polygon if successful, and NULL otherwise.
Comments

Note that the array uvarray must be large enough to accommodate the texture co-
ordinates of all of the polygons vertices.

See Also
RwCubicTexturizeClump ()
RwEnvMapClump ()
RwGetClumpVertexUV ()
RwGetPolygonNumSides ()
RwGetPolygonUV ()
RwSetClumpVertexUV ()
RwSphericalTexturizeClump ()
RwVertexExt ()

RwRaster *
RwSetRasterData(RwRaster *raster, void *data);

Description

Sets the rasters user data pointer.
Arguments

raster Pointer to the raster.
data User data pointer.

Return Value

The argument raster if successful, and NULL otherwise.
See Also

RwGetRasterData ()

RwScene *
RwSetSceneData(RwScene *scene, void *data);

Description

Sets the scenes user data pointer.
Arguments

scene Pointer to the scene.
data User data pointer.

Return Value

The argument scene if successful, and NULL otherwise.
See Also

RwGetSceneData ()

RwBool
RwSetShapePath(char *path, RwCombineOperation op);

Description

Modifies the shape path. The path may be prepended to (rwPRECONCAT), appended
to (rwPOSTCONCAT), or replaced (rwREPLACE).

Arguments

path Pointer to the new path string.
op Combination operator.

Return Value

TRUE if successful, and FALSE otherwise.
See Also

RwGetNamedTexture ()
RwGetShapePath ()
RwReadNamedTexture ()
RwReadRaster ()
RwReadMaskRaster ()
RwReadShape ()
RwReadTexture ()

RwSpline *
RwSetSplineData(RwSpline *spline, void *data);

Description

Sets the splines user data pointer.
Arguments

spline Pointer to the spline.
data User data pointer.

Return Value

The argument spline if successful, and NULL otherwise.
See Also

RwGetSplineData ()

RwSpline *
RwSetSplinePoint(RwSpline *spline, RwInt32 index, RwV3d *point);

Description

Sets the specified control point of the spline.
Arguments

spline Pointer to the spline.
index Index of the control point to set, in the range 1 £ index £ total number

of control points.
point Pointer to the new control point of the spline.

Return Value

The argument spline if successful, and NULL otherwise.
Comments

Note that passing 1 as the value of argument index will set the first control point.
See Also

RwCreateSpline ()
RwGetSplineNumPoints ()
RwGetSplinePoint ()

RwBool
RwSetSurface(RwReal ka, RwReal kd, RwReal ks);

Description

Sets the surface attributes (ambient, diffuse, and specular reflection coefficients) of
the current material.

Arguments

ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialSurface ()
RwSetPolygonSurface ()
RwSetSurfaceAmbient ()
RwSetSurfaceDiffuse ()
RwSetSurfaceSpecular ()

RwBool
RwSetSurfaceAmbient(RwReal ka);

Description

Sets the ambient reflection coefficient of the current material.
Arguments

ka Ambient reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialAmbient ()
RwSetPolygonAmbient ()
RwSetSurface ()
RwSetSurfaceDiffuse ()
RwSetSurfaceSpecular ()

RwBool
RwSetSurfaceColor(RwReal r, RwReal g, RwReal b);

Description

Sets the current materials color.
Arguments

r Red component of the color, in the range CREAL(0.0) to CREAL(1.0).
g Green component of the color, in the range CREAL(0.0) to CREAL(1.0).
b Blue component of the color, in the range CREAL(0.0) to CREAL(1.0).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialColor ()
RwSetMaterialColorStruct ()
RwSetPolygonColor ()
RwSetPolygonColorStruct ()

RwBool
RwSetSurfaceDiffuse(RwReal kd);

Description

Sets the current materials diffuse reflection coefficient.
Arguments

kd Diffuse reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialDiffuse ()
RwSetPolygonDiffuse ()
RwSetSurface ()

RwBool
RwSetSurfaceGeometrySampling(RwGeometrySampling type);

Description

Sets the geometry sampling type of the current material.
Arguments

type The geometry sampling type.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The geometry sampling types are:
rwPOINTCLOUD Render geometry as a cloud of points.
rwWIREFRAME Render geometry as a wireframe of polygon edges.
rwSOLID Render geometry as a solid bounded by filled polygons.

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialGeometrySampling ()
RwSetPolygonGeometrySampling ()
RwSetSurfaceLightSampling ()

RwBool
RwSetSurfaceLightSampling(RwLightSampling type);

Description

Sets the light sampling type of the current material.
Arguments

type The light sampling type.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The light sampling types are:
rwFACET Flat shading.
rwVERTEX Smooth shading.

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialLightSampling ()
RwSetPolygonLightSampling ()
RwSetSurfaceGeometrySampling ()

RwBool
RwSetSurfaceOpacity(RwReal opacity);

Description

Sets the opacity of the current material.
Arguments

opacity Opacity in the range CREAL(0.0) to CREAL(1.0).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

An opacity of CREAL(1.0) yields an entirely opaque polygon. An opacity of
CREAL(0.0) yields an entirely transparent polygon.
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialOpacity ()
RwSetPolygonOpacity ()

RwBool
RwSetSurfaceSpecular(RwReal ks);

Description

Sets the current materials specular reflection coefficient.
Arguments

ks Specular reflection coefficient in the range CREAL(0.0) to CREAL(1.0).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwModelBegin ()
RwModelEnd ()
RwSetMaterialSpecular ()
RwSetPolygonSpecular ()
RwSetSurface ()

RwBool
RwSetSurfaceTexture(char *name);

Description

Sets the current materials texture to the texture with the given name.
RwGetNamedTexture () is used to find the texture. If the named texture is found
(either in the dictionary stack or in the file system), the current materials texture is
set to the texture found.

Arguments

name Name of a texture.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

For more information on how the named texture is found, see the description of
RwGetNamedTexture () .
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwGetNamedTexture ()
RwModelBegin ()
RwModelEnd ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetSurfaceTextureExt ()

RwBool
RwSetSurfaceTextureExt(char *name, char *maskname);

Description

Sets the current materials texture to the texture with the given name, The mask
raster read from the file given by maskname is applied to the texture.
RwGetNamedTexture () is used to find the texture. If the named texture is found
(either in the dictionary stack or in the file system), the current materials texture is
set to the texture found.
RwReadMaskRaster () is used to read the mask raster and RwMaskTexture () is used
to apply the mask raster to the texture.

Arguments

name Name of a texture.
maskname Filename of the mask raster.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

The masking of a texture is a destructive operation. All existing and future
references to the texture will be affected by the masking operation.
For more information on how the named texture is searched for, see the description
of RwGetNamedTexture () . For information on how the mask raster is read see
RwReadMaskRaster () and for information on how the mask raster is applied see
RwMaskTexture () .
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwGetNamedTexture ()
RwMaskTexture ()
RwModelBegin ()
RwModelEnd ()
RwReadMaskRaster ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetSurfaceTexture ()

RwBool
RwSetSurfaceTextureModes(RwTextureModes modes);

Description

Sets the texture mode (or modes) of the current material. Texture modes permit fine
grain control over the rendering of textures.

Arguments

modes A bitfield representing a texture mode (or bitwise or of modes).
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The texture modes are:
rwLIT The texture will be lit according to the current light

sampling type of the material (rwFACET or rwVERTEX).
rwFORESHORTEN The texture will be foreshortened in a perspectively correct

manner.
rwFILTER A filter will be applied to the texture to reduce the effect of

pixelation due to aliasing.
For further information see the Texture Modes section in Chapter 2: Data Types.
Unlike RwAddTextureModeToSurface () , which simply adds one or more texture
modes to the current materials set of modes, RwSetSurfaceTextureModes ()
replaces the current materials entire set of modes with those specified.
This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwAddTextureModeToSurface ()
RwRemoveTextureModeFromSurface ()
RwSetMaterialTextureModes ()
RwSetPolygonTextureModes ()
RwSetSurfaceLightSampling ()
RwSetSurfaceTexture ()
RwSetSurfaceTextureExt ()

RwBool
RwSetTag(RwInt32 tag);

Description

Assigns an integer tag to the current clump under construction.
Arguments

tag The integer tag.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwFindTaggedClump ()
RwPolygonExt ()
RwQuadExt ()
RwSetClumpTag ()
RwSetPolygonTag ()
RwTriangleExt ()

RwTexture *
RwSetTextureData(RwTexture *texture, void *data);

Description

Sets the textures user data pointer.
Arguments

texture Pointer to the texture.
data User data pointer.

Return Value

The argument texture if successful, and NULL otherwise.
See Also

RwGetTextureData ()

RwBool
RwSetTextureDictSearchMode(RwSearchMode mode);

Description

Sets the mode for searching the texture dictionary stack.
Arguments

mode The texture dictionary stack search mode.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function affects how textures are searched for in the texture dictionary stack. In
particular, it affects the behavior of RwFindNamedTexture () , RwGetNamedTexture () ,
RwGetNumNamedTextures () and the RwForAllNamedTextures…() functions.
If the texture dictionary search mode is rwLOCAL, then only the current texture
dictionary (the top element of the texture dictionary stack) is searched. If the search
mode is rwGLOBAL, all dictionaries on the dictionary stack, from the current
dictionary down, are searched until the named texture is found or there are no more
dictionaries left to search.
The texture dictionary search modes are:

rwLOCAL Search only the top most dictionary in the texture
dictionary stack.

rwGLOBAL Search all the dictionaries in the texture dictionary stack.
See Also

RwFindNamedTexture ()
RwForAllNamedTextures ()
RwGetNamedTexture ()
RwGetNumNamedTextures ()
RwGetTextureDictSearchMode ()
RwTextureDictBegin ()
RwTextureDictEnd ()

RwBool
RwSetTextureDithering(RwTextureDitherMode mode);

Description

Sets the current global texture dithering mode to be applied to subsequently loaded
textures.

Arguments

mode The texture dithering mode.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The current texture dithering mode is a global parameter which controls whether
textures read from disk are dithered to increase perceived color resolution or not.
The following texture dither modes are supported:

rwDITHERON Activates dithering.
rwDITHEROFF Deactivates dithering.
rwAUTODITHER Adopts the auto-dithering mode of raster reading to decide

whether to dither textures.
The default mode is rwAUTODITHER.

See Also
RwGetNamedTexture ()
RwGetTextureDithering ()
RwGetTextureGammaCorrection ()
RwReadNamedTexture ()
RwReadRaster ()
RwReadTexture ()
RwSetTextureGammaCorrection ()

RwTexture *
RwSetTextureFrame(RwTexture *texture, RwInt32 index);

Description

Sets the current frame of the texture.
Arguments

texture Pointer to the texture.
index Frame number.

Return Value

The argument texture if successful, and NULL otherwise.
Comments

For those textures which consist of a sequence of frames this function will set the
current frame to be the one with the given sequence number. Sequence numbers
are in the range 0 … n - 1, where n is the number of frames in the texture.
The current frame of a texture is the one used in all rendering of polygons
associated with the texture.

See Also
RwGetTextureFrame ()
RwGetTextureNumFrames ()
RwTextureNextFrame ()

RwTexture *
RwSetTextureFrameStep(RwTexture *texture, RwInt32 step);

Description

Sets the textures current frame step size. This is the number of frames by which the
current frame index is incremented or decremented by a call to
RwTextureNextFrame () .

Arguments

texture Pointer to the texture.
step Number of frames to increment or decrement per call to

RwTextureNextFrame () .
Return Value

The argument texture if successful, and NULL otherwise.
Comments

A value of +1 (the default) will play the texture movie forward, one frame at a time.
A value of -1 will play the movie backwards. Other values will play the movie at
different speeds.

See Also
RwGetTextureFrame ()
RwGetTextureFrameStep ()
RwGetTextureNumFrames ()
RwSetTextureFrame ()
RwTextureNextFrame ()

RwBool
RwSetTextureGammaCorrection(RwState mode);

Description

Sets the current global texture gamma correction mode applied to subsequently
loaded textures.

Arguments

mode The gamma correction mode.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

The current texture gamma correction mode is a global parameter which controls
whether textures read from disk are gamma corrected or not.
The following texture gamma correction modes are supported:

rwON Gamma correct.
rwOFF Do not gamma correct.

The default mode is rwON.
See Also

RwGetNamedTexture ()
RwGetTextureDithering ()
RwGetTextureGammaCorrection ()
RwReadNamedTexture ()
RwReadRaster ()
RwReadTexture ()
RwSetTextureDithering ()

RwTexture *
RwSetTextureRaster(RwTexture *texture, RwRaster *raster);

Description

Sets the raster of the specified texture to raster.
Arguments

texture Pointer to the texture.
raster Pointer to the raster.

Return Value

The argument texture if successful, and NULL otherwise.
Comments

The raster selected into a texture provides the actual pixel values of the texture
map. RwSetTextureRaster () is used to dynamically generate textures from
platform specific bitmaps (via RwBitmapRaster ()) or the viewport of a RenderWare
camera (via RwGetCameraViewportRaster ()).
Rasters cannot be shared between textures. It is an error to specify a raster already
selected into a texture.
The textures existing raster will be destroyed by this function.
raster must be of the correct size - 128 by 128 pixels (or 128 by n*128 pixels for a
multi-frame texture). It is an error to call RwSetTextureRaster () with a raster that
is not of this size.

See Also
RwBitmapRaster ()
RwCreateRaster ()
RwCreateTexture ()
RwDestroyRaster ()
RwDuplicateRaster ()
RwGetCameraViewportRaster ()
RwReadRaster ()
RwSetTextureRaster ()

RwUserDraw *
RwSetUserDrawAlignment(RwUserDraw *userdraw,

RwUserDrawAlignmentTypes alignment);
Description

Sets the user-draws alignment flags. The user-draws alignment flags determine
which part of the user-draws bounding box is used for alignment.

Arguments

userdraw Pointer to the user-draw.
alignment A bitfield representing a set of alignment flags.

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

The alignment flags are:
0 Center the user-draw.
rwALIGNTOP Align with the top edge of the user-draw.
rwALIGNBOTTOM Align with the bottom edge of the user-draw.
rwALIGNLEFT Align with the left edge of the user-draw.
rwALIGNRIGHT Align with the right edge of the user-draw.

See Also
RwCreateUserDraw ()
RwGetUserDrawAlignment ()
RwSetUserDrawParentAlignment ()

RwUserDraw *
RwSetUserDrawCallback(RwUserDraw *userdraw,

void (*callback)(RwUserDraw *userdraw, void *camimage,
RwRect *rect, void *data));

Description

Sets the call-back function that renders the user-draw.
Arguments

userdraw Pointer to the user-draw.
callback Pointer to the call-back rendering function.

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

User-draw call-backs should be declared as follows:
void callback(RwUserDraw *userdraw, void *camimage,

 RwRect *rect, void *data);
Where the call-backs arguments are as follows:
userdraw Pointer to the user-draw to be rendered.
camimage The cameras image buffer as returned by RwGetCameraImage () for the

current camera. camimage is device dependent. For more information,
see Appendix B.

rect Pointer to a rectangle defining the area of the cameras image buffer into
which the call-back may render. This rectangle is specified in viewport
space co-ordinates, i.e., (0, 0) is the origin of the viewport.

data Pointer to the user data of the user-draw being drawn. This value can be
obtained by calling RwGetUserDrawData () with userdraw as an
argument. data is passed directly to the call-back function for the
convenience of the application developer.

Note that the call-back function is always called after all clumps in the scene have
been rendered, i.e., when RwEndCameraUpdate () is called. Therefore user-draw
rendering always appear in front of clump rendering. In the case of overlapping
user-draws, the order of rendering is not defined.

See Also
RwCreateUserDraw ()
RwGetCameraImage ()
RwGetUserDrawCallback ()
RwGetUserDrawData ()

RwUserDraw *
RwSetUserDrawData(RwUserDraw *userdraw, void *data);

Description

Sets the user-draws user data pointer.
Arguments

userdraw Pointer to the user-draw.
data User data pointer.

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

data is passed as the fourth parameter to the user-draws call-back function when
the user-draw is being rendered.

See Also
RwGetUserDrawData ()
RwSetUserDrawCallback ()

RwUserDraw *
RwSetUserDrawOffset(RwUserDraw *userdraw, RwInt32 x, RwInt32 y);

Description

Sets the X and Y offset in viewport space units relative to the alignment point of the
user-draw.

Arguments

userdraw Pointer to the user-draw.
x X offset from the alignment point of the user-draw (in viewport space

units).
y Y offset from the alignment point of the user-draw (in viewport space

units).
Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

x and y may be negative.
See Also

RwCreateUserDraw ()
RwGetUserDrawOffset ()

RwUserDraw *
RwSetUserDrawParentAlignment(RwUserDraw *userdraw, RwUserDrawAlignmentTypes

Dataalignment);
Description

Sets the alignment flags of the user-draws parent. A user-draws parent is either the
bounding box of the clump that owns the user-draw or the current cameras
viewport.
The alignment flags of the user-draws parent determine which part of the user-
draws parent rectangle is aligned with the user-draw. The actual point of alignment
between a user-draw and its parent is determined by the user-draws alignment flags
and the parents alignment flags.

Arguments

userdraw Pointer to the user-draw.
alignment A bitfield representing an alignment flag (or bitwise or of flags).

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

If the user-draws type is rwBBOXALIGN then the user-draws parent is the bounding
box of the clump to which the user-draw is attached. If the type is rwVPALIGN the
user-draws parent is the viewport of the current camera when the user-draw is
rendered. If the user-draws type is rwVERTEXALIGN or rwCLUMPALIGN then the user-
draw has no parent and the parent alignment bitfield is ignored.
The alignment flags are:

0 Align with the center of the parent.
rwALIGNTOP Align with the top edge of the parent.
rwALIGNBOTTOM Align with the bottom edge of the parent.
rwALIGNLEFT Align with the left edge of the parent.
rwALIGNRIGHT Align with the right edge of the parent.

See Also
RwGetUserDrawParentAlignment ()
RwSetUserDrawAlignment ()
RwSetUserDrawType ()

RwUserDraw *
RwSetUserDrawSize(RwUserDraw *userdraw, RwInt32 width,

 RwInt32 height);
Description

Sets the width and height (in viewport space units) of the user-draw.
Arguments

userdraw Pointer to the user-draw.
width Width of the user-draw (in viewport space units).
height Height of the user-draw (in viewport space units).

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

RenderWare does not clip the user-draws rendering to the specified area. If
rendering takes place outside of the designated area garbage may appear on the
display.

See Also
RwCreateUserDraw ()
RwGetUserDrawSize ()

RwUserDraw *
RwSetUserDrawType(RwUserDraw *userdraw, RwUserDrawType type);

Description

Sets the user-draws type.
Arguments

userdraw Pointer to the user-draw.
type Type of the user-draw.

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

The user-draw types are:
rwCLUMPALIGN Align with the origin of the owning clump.
rwVERTEXALIGN Align with a vertex of the owning clump.
rwBBOXALIGN Align with the viewport bounding box of the owning clump.
rwVPALIGN Align with the viewing cameras viewport.

See Also
RwCreateUserDraw ()
RwGetUserDrawType ()

RwUserDraw *
RwSetUserDrawVertexIndex(RwUserDraw *userdraw, RwInt32 index);

Description

Sets the index of the clump vertex with which the user-draw is aligned.
Arguments

userdraw Pointer to the user-draw.
index The index of the vertex with which the user-draw is aligned.

Return Value

The argument userdraw if successful, and NULL otherwise.
Comments

The vertex index is only used if the user-draws type is rwVERTEXALIGN, for all other
user-draw types it is ignored.
index is an index into the vertex list of the clump to which the user-draw is
attached.

See Also
RwCreateUserDraw ()
RwGetUserDrawType ()
RwGetUserDrawVertexIndex ()

void
RwSetUserError(void);

Description

Sets the error status to E_RW_USER.
Arguments

None.
Return Value

None.
Comments

RwSetUserError () is used when a call-back for RwForAll…() wishes to signal failure
and terminate iteration.

See Also
RwForAllClumpsInHierarchy ()
RwForAllClumpsInScene ()
RwForAllLightsInScene ()
RwForAllNamedTextures ()
RwForAllPolygonsInClump ()
RwForAllUserDrawsInClump ()
RwGetError ()

RwCamera *
RwShowCameraImage(RwCamera *camera, void *param);

Description

Copies the damaged regions of the cameras image buffer to the portion of the
display (screen or window) specified by the cameras viewport.

Arguments

camera Pointer to the camera.
param Device dependent parameter.

Return Value

The argument camera if successful, and NULL otherwise.
Comments

For a description of the device dependent parameter, param, see Appendix B.
This function often immediately follows an RwBeginCameraUpdate () …
RwEndCameraUpdate () block in order to copy the rendering performed within the
RwBeginCameraUpdate () … RwEndCameraUpdate () block to the display.
Note that the cameras image buffer is not automatically cleared after the call to
RwShowCameraImage () . To clear the image buffer, call RwClearCameraViewport () .
If a number of separate cameras are being used to provide different images
simultaneously, it is advisable to do the RwBeginCameraUpdate () …
RwEndCameraUpdate ()RwEndCameraUpdate block for each camera first, then perform
all the calls to RwShowCameraImage ()RwShowCameraImage afterwards.

See Also
RwBeginCameraUpdate ()
RwDamageCameraViewport ()
RwEndCameraUpdate ()
RwInvalidateCameraViewport ()
RwRenderClump ()
RwRenderScene ()
RwUndamageCameraViewport ()

RwBool
RwSphere(RwReal radius, RwInt32 density);

Description

Adds a sphere to the current clump under construction. The sphere is transformed
by the CTM, and the current material is assigned to its polygons. The sphere is
centered about the origin.

Arguments

radius Radius of the sphere.
density Density of facets in the sphere. A value of 0 results in a cube. Higher

values increase the number of facets exponentially.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

If the spheres radius is negative the polygons forming the sphere will face inward.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwBlock ()
RwClumpBegin ()
RwClumpEnd ()
RwCone ()
RwCylinder ()
RwDisc ()
RwHemisphere ()
RwProtoBegin ()
RwProtoEnd ()

RwClump *
RwSphericalTexturizeClump(RwClump *clump);

Description

Sets the texture co-ordinates for every polygon belonging to the clump using the
spherical projection method.
A spherical mapping results in the construction of a nominal sphere onto which the
texture is applied in a way similar to the projection of a two dimensional atlas map
onto the surface of a globe. The resulting sphere is then mapped to the clump by
shrink wrapping the clump with the sphere.

Arguments

clump Pointer to the clump.
Return Value

The argument clump if successful, and NULL otherwise.
Comments

This function need only be called the first time a clump is textured and not each
time the clump is rendered.
Note that this function does not set the textures associated with the clumps
polygons; this must be accomplished separately. The following code fragment
illustrates this procedure:

RwForAllPolygonsInClumpPointer(clump,
(RwPolygon3d*(*)())RwSetPolygonTexture, texture);

See Also
RwCubicTexturizeClump ()
RwForAllPolygonsInClump ()
RwGetClumpVertexUV ()
RwGetPolygonUV ()
RwSetClumpVertexUV ()
RwSetPolygonTexture ()
RwSetPolygonUV ()

RwV3d *
RwSplinePoint(RwSpline *spline, RwSplinePath path, RwReal where, RwV3d *point,

RwV3d *vector);
Description

Calculates a point and vector for a position on the spline specified by parameter
where.

Arguments

spline Pointer to the spline.
path Type of curve distribution.
where Relative distance along the spline in the range CREAL(0.0) to

CREAL(1.0).
point Pointer to the point that will receive the spline location point.
vector Pointer to the vector that will receive the spline tangent vector.

Return Value

The argument point if successful, and NULL otherwise.
Comments

Note that if a vector is not needed, NULL can be passed as the value of parameter
vector.

See Also
RwCreateSpline ()
RwSetSplinePoint ()

RwReal
RwSplineTransform(RwSpline *spline, RwSplinePath path, RwReal where, RwV3d

*up, RwMatrix4d *matrix);
Description

Calculates a Frenet transform matrix at a specified parameter position on a spline
and a returns measure of the paths anti-clockwise curvature at this point. This
matrix will transform a clump to the specified parameter position on the path with
its "Look At" direction pointing tangent to the path, "Look Up" pointing up and   
"Look At" pointing toward or away from the center of curvature.

Arguments

spline The spline curve.
path The type of spline path.
where The parameter position.
up An "up" vector. If up is NULL, RwSplineTransform () will produce a

transform which aligns a clumps "Look Up" Y vector with the local Y
vector of a Frenet frame. If up is non-NULL, RwSplineTransform () will
produce a transform which aligns a clumps "Look Up" Y vector so as
never to roll upside down with respect to this up vector.

matrix Pointer to the matrix the will receive the Frenet transform matrix.
Return Value

The curvature at the specified point if successful, and NULL otherwise.
Comments

If up is NULL, the returned matrix will always transform a clumps "Look Left" vector
to point toward the center of curvature - as though the clump were being swung on
a rod extending this direction from this point. Since the clumps "Look At" vector
always transforms to a forward tangent along the spline, when the center of
curvature lies to the right this can result in the clumps "Look Up" vector rolling
upside down since handedness is conserved. This behavior is not always desirable.
Such rolling can be suppressed by specifying an appropriate up vector.
RwSplineTransform () will suppress any roll relative to a specified up vector. For
example, when modeling the motion of a car over a hilly road circuit, an up vector of
[CREAL(0.0), CREAL(1.0), CREAL(0.0)] would give a transform in which the car
turns around corners and "tilts" over hills but does not roll - the wheels stay on the
ground. When specifying a non-NULL up vector, some restricted rolling or banking
may be reintroduced by pre-concatenating a local Z rotation whose angle is driven
by the anti-clockwise curvature value returned by RwSplineTransform () . When
large and positive, this indicates a sharp anti-clockwise turn in the plane normal to
the up vector; when zero this indicates no turn in the plane; when large and
negative this indicates a sharp clockwise turn in the plane. An appropriate bank
angle may be found with a function such as atan(curvature).

See Also
RwCreateSpline ()
RwDestroySpline ()
RwDuplicateSpline ()
RwSplinePoint ()

void
RwSRandom(RwUInt32 seed)

Description

Sets pseudo random number sequence start for RwRandom () .
Arguments

seed Value to seed pseudo random number sequence.
Return Value

None.
Comments

Unlike srand(), RwSRandom () does not return the old seed; the reason for this is
that the amount of state information used is much more than a single word. Like
rand(), however, RwRandom () will by default produce a sequence of numbers that
can be duplicated by calling RwSRandom () with 1 as the seed.

See Also

RwRandom ()RwRandom RwV3d *
RwSubtractVector(RwV3d *a, RwV3d *b, RwV3d *c);

Description

Subtracts two vectors.
Arguments

a Pointer to the first vector.
b Pointer to the second vector.
c Pointer to the vector that will receive the result.

Return Value

The argument c if successful, and NULL otherwise.
See Also

RwAddVector ()
RwCrossProduct ()
RwDotProduct ()
RwNormalize ()
RwScaleVector ()
RwTransformVector ()

RwBool
RwTextureDictBegin(void);

Description

Creates a new, empty texture dictionary and pushes it on the texture dictionary
stack. The newly created dictionary becomes the current texture dictionary.

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
See Also

RwFindNamedTexture ()
RwForAllNamedTextures ()
RwGetNamedTexture ()
RwGetTextureDictSearchMode ()
RwSetTextureDictSearchMode ()
RwReadNamedTexture ()
RwTextureDictEnd ()

RwBool
RwTextureDictEnd(void);

Description

Destroys the current texture dictionary and all the textures that it contains. The
texture dictionary stack is restored to its state at the time of the last
RwTextureDictBegin () .

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function must not be called if any of the textures in the current dictionary are
still in use. Use RwSetMaterialTexture () or RwSetPolygonTexture () with a
parameter of NULL to remove all textures in the dictionaries from their materials
before calling RwTextureDictEnd () .

See Also
RwDestroyTexture ()
RwFindNamedTexture ()
RwForAllNamedTextures ()
RwGetNamedTexture ()
RwGetTextureDictSearchMode ()
RwReadNamedTexture ()
RwSetMaterialTexture ()
RwSetPolygonTexture ()
RwSetTextureDictSearchMode ()
RwTextureDictBegin ()

RwTexture *
RwTextureNextFrame(RwTexture *texture);

Description

Increments or decrements the current frame index by the current frame step.
Arguments

texture Pointer to the texture.
Return Value

The argument texture if successful, and NULL otherwise.
Comments

Note that the current frame index will not go outside the range 0 … n-1 (where n is
the number of frames in the texture), instead the index will wrap around in either
direction.

See Also
RwSetTextureFrame ()
RwSetTextureFrameStep ()
RwTextureNextFrame ()

RwCamera *
RwTiltCamera(RwCamera *camera, RwReal angle);

Description

Rotates the camera about its X axis.
Arguments

camera Pointer to the camera.
angle Angle of rotation (in degrees).

Return Value

The argument camera if successful, and NULL otherwise.
Comments

A positive value for angle will cause the camera to tilt down.
See Also

RwGetCameraLookAt ()
RwGetCameraLookUp ()
RwPanCamera ()
RwPointCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwTransformCameraOrientation ()

RwBool
RwTransformBegin(void);

Description

Pushes a copy of the CTM onto the transformation stack.
Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwJointTransformBegin ()
RwModelBegin ()
RwModelEnd ()
RwProtoBegin ()
RwProtoEnd ()
RwTransformEnd ()

RwCamera *
RwTransformCamera(RwCamera *camera, RwMatrix4d *matrix,

RwCombineOperation op)
Description

Applies a transformation matrix to the cameras current position and orientation.
Arguments

camera Pointer to the camera.
matrix Pointer to the transformation matrix.
op Combination operator.

Return Value

The argument camera if successful and NULL otherwise.
Comments

This function may be used to align a camera with a clump or a light. The following
code fragment demonstrates this.

RwGetClumpLTM(Clump, RwScratchMatrix());
RwTransformCamera(Camera, RwScratchMatrix(), rwREPLACE);

See Also
RwCreateCamera ()
RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwGetCameraPosition ()
RwGetCameraLTM ()
RwGetClumpLTM ()
RwGetLightLTM ()
RwResetCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwSetCameraPosition ()
RwTransformClump ()
RwTransformLight ()

RwCamera *
RwTransformCameraOrientation(RwCamera *camera, RwMatrix4d *matrix);

Description

Applies a transformation matrix to the cameras current orientation (which is
determined by the Look At and Look Up vectors). This function does not affect the
cameras position.

Arguments

camera Pointer to the camera.
matrix Pointer to the transformation matrix.

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwGetCameraLookAt ()
RwGetCameraLookRight ()
RwGetCameraLookUp ()
RwPanCamera ()
RwPointCamera ()
RwResetCamera ()
RwRevolveCamera ()
RwSetCameraLookAt ()
RwSetCameraLookUp ()
RwTransformCamera ()

RwClump *
RwTransformClump(RwClump *clump, RwMatrix4d *matrix, RwCombineOperation op);

Description

Applies a transformation matrix to the clumps modeling matrix.
Arguments

clump Pointer to the clump.
matrix Pointer to the transformation matrix.
op Combination operator.

Return Value

The argument clump if successful, and NULL otherwise.
See Also

RwGetClumpLTM ()
RwGetClumpMatrix ()
RwTransformClumpJoint ()

RwClump *
RwTransformClumpJoint(RwClump *clump, RwMatrix4d *matrix, RwCombineOperation

op);
Description

Applies a transformation matrix to the clumps joint (articulation) matrix.
Arguments

clump Pointer to the clump.
matrix Pointer to the transformation matrix.
op Combination operator.

Return Value

The argument clump if successful, and NULL otherwise.
See Also

RwGetClumpJointMatrix ()
RwGetClumpLTM ()
RwTransformClump ()

RwBool
RwTransformCTM(RwMatrix4d *matrix);

Description

Replaces the CTM with the specified matrix.
Arguments

matrix Pointer to a transformation matrix.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityCTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateCTM ()
RwScaleCTM ()
RwTransformJointTM ()
RwTranslateCTM ()

RwBool
RwTransformEnd(void);

Description

Restores the previous value of the CTM. Also has the effect of restoring the
transformation stack to its state at the time of the last RwTransformBegin () .

Arguments

None.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwJointTransformEnd ()
RwModelBegin ()
RwModelEnd ()
RwPopScratchMatrix ()
RwProtoBegin ()
RwProtoEnd ()
RwTransformBegin ()

RwBool
RwTransformJointTM(RwMatrix4d *matrix);

Description

Replaces the current joint transformation matrix with the specified matrix.
Arguments

matrix Pointer to a transformation matrix.
Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityJointTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateJointTM ()
RwTransformCTM ()

RwLight *
RwTransformLight(RwLight *light, RwMatrix4d *matrix,

RwCombineOperation op)
Description

Applies a transformation matrix to the lights current position and direction vector (if
applicable)

Arguments

light Pointer to the light.
matrix Pointer to the transformation matrix.
op Combination operator.

Return Value

The argument light if successful and NULL otherwise.
See Also

RwCreateLight ()
RwGetClumpLTM ()
RwGetCameraLTM ()
RwGetLightLTM ()
RwGetLightPosition ()
RwGetLightVector ()
RwSetLightPosition ()
RwSetLightVector ()
RwTransformCamera ()
RwTransformClump ()

RwMatrix4d *
RwTransformMatrix(RwMatrix4d *dest, RwMatrix4d *source, RwCombineOperation

op);
Description

Applies the transformation matrix source to matrix dest.
Arguments

dest Pointer to the matrix to be transformed.
source Pointer to the transformation matrix.
op Combination operator.

Return Value

The argument dest if successful, and NULL otherwise.
Comments

If op is rwREPLACE, RwTransformMatrix () is equivalent to RwCopyMatrix ()
(although note that the order of the source and destination matrices is reversed).
Otherwise, it is equivalent to RwMultiplyMatrix () , but does not require an
intermediate matrix to hold the result.

See Also
RwCopyMatrix ()
RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTranslateMatrix ()

RwV3d *
RwTransformPoint(RwV3d *point, RwMatrix4d *matrix);

Description

Applies a transformation matrix to a point.
Arguments

point Pointer to the point.
matrix Pointer to the transformation matrix.

Return Value

The argument point if successful, and NULL otherwise.
See Also

RwTransformVector ()

RwV3d *
RwTransformVector(RwV3d *vector, RwMatrix4d *matrix);

Description

Applies a transformation matrix to a vector. However, since a vector does not have
a position in space, the translation component of the matrix is ignored.

Arguments

vector Pointer to the vector.
matrix Pointer to the transformation matrix.

Return Value

The argument vector if successful, and NULL otherwise.
See Also

RwAddVector ()
RwCrossProduct ()
RwDotProduct ()
RwNormalize ()
RwScaleVector ()
RwSubtractVector ()
RwTransformPoint ()

RwBool
RwTranslateCTM(RwReal tx, RwReal ty, RwReal tz);

Description

Pre-concatenates a translation matrix onto the CTM.
Arguments

tx Translation parallel to the X axis.
ty Translation parallel to the Y axis.
tz Translation parallel to the Z axis.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function can only be called within the context of an RwModelBegin () …
RwModelEnd () block.

See Also
RwIdentityCTM ()
RwModelBegin ()
RwModelEnd ()
RwRotateCTM ()
RwScaleCTM ()
RwTransformCTM ()

RwMatrix4d *
RwTranslateMatrix(RwMatrix4d *matrix, RwReal tx, RwReal ty,

RwReal tz, RwCombineOperation op);
Description

Builds a translation matrix and applies it to matrix. The operation may be a pre-
concatenation, post-concatenation, or replacement.

Arguments

matrix Pointer to the matrix.
tx Translation parallel to the X axis.
ty Translation parallel to the Y axis.
tz Translation parallel to the Z axis.
op Combination operator.

Return Value

The argument matrix if successful, and NULL otherwise.
See Also

RwIdentityMatrix ()
RwInvertMatrix ()
RwMultiplyMatrix ()
RwOrthoNormalizeMatrix ()
RwRotateMatrix ()
RwRotateMatrixCos ()
RwScaleMatrix ()
RwTransformMatrix ()
RwTranslateCTM ()

RwBool
RwTriangle(RwInt32 v1, RwInt32 v2, RwInt32 v3);

Description

Adds a triangle to the current clump under construction. The current material is
assigned to the triangle.

Arguments

v1 First vertex of the triangle.
v2 Second vertex of the triangle.
v3 Third vertex of the triangle.

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function is exactly equivalent to calling RwPolygon () with an array of three
vertex indices.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddPolygonToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwPolygon ()
RwPolygonExt ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwVertex ()
RwVertexExt ()

RwBool
RwTriangleExt(RwInt32 v1, RwInt32 v2, RwInt32 v3, RwInt32 tag);

Description

Adds a triangle with the specified integer tag to the clump under construction. The
current material is assigned to the triangle.

Arguments

v1 First vertex of the triangle.
v2 Second vertex of the triangle.
v3 Third vertex of the triangle.
tag Integer tag to set (only the least significant 16 bits are valid).

Return Value

TRUE if successful, and FALSE otherwise.
Comments

This function is exactly equivalent to calling RwPolygonExt () with an array of three
vertex indices.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddPolygonToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwFindTaggedPolygon ()
RwGetPolygonTag ()
RwPolygon ()
RwPolygonExt ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwSetPolygonTag ()
RwSetTag ()
RwTriangle ()
RwVertex ()
RwVertexExt ()

RwCamera *
RwUndamageCameraViewport(RwCamera *camera, RwInt32 x, RwInt32 y, RwInt32

width, RwInt32 height);
Description

Marks a rectangular area of the viewport as undamaged (not in need of updating).
Arguments

camera Pointer to the camera.
x X co-ordinate of the rectangles top left corner (in viewport space co-

ordinates).
y Y co-ordinate of the rectangles top left corner (in viewport space co-

ordinates).
width Width of the rectangle (in viewport space units).
height Height of the rectangle (in viewport space units).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwClearCameraViewport ()
RwDamageCameraViewport ()
RwGetClumpViewportRect ()
RwInvalidateCameraViewport ()
RwShowCameraImage ()

RwCamera *
RwVCMoveCamera(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Moves the camera position by the given delta (x, y, z) values (in camera space
units) with respect to the cameras orientation. For instance, a positive z value
moves the camera forward.

Arguments

camera Pointer to the camera.
x Amount to move the camera along its X axis (in camera space units).
y Amount to move the camera along its Y axis (in camera space units).
z Amount to move the camera along its Z axis (in camera space units).

Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwGetCameraPosition ()
RwResetCamera ()
RwSetCameraPosition ()
RwTransformCamera ()
RwWCMoveCamera ()

RwInt32
RwVertex(RwReal x, RwReal y, RwReal z);

Description

Adds a vertex, transformed by the CTM, to the current clump under construction.
Arguments

x X co-ordinate of the vertex.
y Y co-ordinate of the vertex.
z Z co-ordinate of the vertex.

Return Value

The index of the new vertex if successful, and 0 otherwise.
Comments

This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddVertexToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwPolygon ()
RwPolygonExt ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwTriangle ()
RwTriangleExt ()
RwVertexExt ()

RwInt32
RwVertexExt(RwReal x, RwReal y, RwReal z, RwUV *uv, RwV3d *normal);

Description

Adds a vertex, transformed by the CTM, to the clump under construction and
specifies the vertexs texture co-ordinates and normal vector.

Arguments

x X co-ordinate of the vertex.
y Y co-ordinate of the vertex.
z Z co-ordinate of the vertex.
uv Pointer to the RwUV structure holding the vertexs texture co-ordinates.
normal Pointer to the RwV3d structure holding the X, Y, and Z components of the

normal vector.
Return Value

The index of the new vertex if successful, and 0 otherwise.
Comments

NULL may be passed as the value of uv or normal if the application programmer
does not wish to set the value of either or both of these parameters.
This function can only be called within the context of an RwClumpBegin () …
RwClumpEnd () or RwProtoBegin () … RwProtoEnd () block.

See Also
RwAddVertexToClump ()
RwClumpBegin ()
RwClumpEnd ()
RwGetClumpVertexUV ()
RwGetClumpVertexNormal ()
RwPolygon ()
RwPolygonExt ()
RwProtoBegin ()
RwProtoEnd ()
RwQuad ()
RwQuadExt ()
RwSetClumpVertexUV ()
RwTriangle ()
RwTriangleExt ()
RwVertex ()

RwCamera *
RwWCMoveCamera(RwCamera *camera, RwReal x, RwReal y, RwReal z);

Description

Moves the camera position by the given delta (x, y, z) values, with respect to the
world space co-ordinate system.

Arguments

camera Pointer to the camera.
x Amount to move the camera parallel to the world X axis (in world space

units).
y Amount to move the camera parallel to the world Y axis (in world space

units).
z Amount to move the camera parallel to the world Z axis (in world space

units).
Return Value

The argument camera if successful, and NULL otherwise.
See Also

RwGetCameraPosition ()
RwResetCamera ()
RwSetCameraPosition ()
RwTransformCamera ()
RwVCMoveCamera ()

RwBool
RwWriteShape(char *path, RwClump *clump);

Description

Writes the clump as a script (.rwx) file with the given name.
Arguments

path Pointer to the filename.
clump Pointer to the clump.

Return Value

TRUE if successful, and FALSE otherwise.
Comment

When a clump read from a script file is written out, certain aspects of the structure
of the original input script file are not preserved. However, this does not affect the
appearance or the behavior of the clump.
It is recommended that the extension .rwx be used for script files. However, this is
not enforced by the library.

See Also
RwClumpBegin ()
RwClumpEnd ()
RwCreateClump ()

The Scripting Language

Related Topics
Script Keywords

Miscellaneous Notes

 Object Builder API Functions

Script Keywords
This section gives a brief summary of each scripting language keyword. For further information on the operation of
each keyword see the description of the keywords associated Object Builder API function.

Related Topics
AddHint <hint>

AddTextureMode <mode>

Ambient <ka>

AxisAlignment <alignment>

Block <width> <height> <depth>

ClumpBegin

ClumpEnd

Color <red> <green> <blue>

Cone <height> <radius> <nsides>

Cylinder <height> <baserad> <toprad> <nsides>

Diffuse <kd>

Disc <height> <radius> <nsides>

GeometrySampling <sampling>

Hemisphere <radius> <density>

Hints <hints>

Identity

IdentityJoint

Include <filename>

IncludeGeometry <filename>

JointTransformBegin

JointTransformEnd

LightSampling <sampling>

MaterialBegin

MaterialEnd

ModelBegin

ModelEnd

Opacity <opacity>

Polygon <nsides> <v1> ...

PolygonExt <nsides> <v1> ...

ProtoBegin <name>

ProtoEnd

ProtoInstance <name>

ProtoInstanceGeometry <name>

Quad <v1> <v2> <v3> <v4>

QuadExt <v1> <v2> <v3> <v4> [Tag <tag>]

RemoveHint <hint>

RemoveTextureMode <mode>

Rotate <x> <y> <z> <angle>

RotateJoint <x> <y> <z> <angle>

Scale <x> <y> <z>

Specular <ks>

Sphere <radius> <density>

Surface <ka> <kd> <ks>

Tag <tag>

Texture <name>

TextureDithering <mode>

TextureExt <name> [Mask <mask>]

TextureGammaCorrection <mode>

TextureModes <modes>

Trace <mode>

Transform      <elements>

TransformBegin

TransformEnd

TransformJoint <elements>

Translate <x> <y> <z>

Triangle <v1> <v2> <v3>

TriangleExt <v1> <v2> <v3> [Tag <tag>]

Vertex <x> <y> <z>

VertexExt <x> <y> <z> [Normal <i> <j> <k>]      [UV <u> <v>]

AddHint <hint>
Description

Adds the specified hint (or hints) to the set of hints of the current clump under construction.

Arguments

hint A space separated list of hints where each hint is one of Container, HS or Editable.

API Equivalent
RwAddHint ()

AddTextureMode <mode>
Description

Adds the specified texture mode (or modes) to the set of texture modes of the current material.

Arguments

mode A space separated list of texture modes where each texture mode is one of Lit ,
Foreshorten or Filter.

API Equivalent
RwAddTextureModeToSurface ()

Ambient <ka>
Description

Sets the ambient coefficient of reflectance of the current material.

Arguments

ka The ambient coefficient.

API Equivalent
RwSetSurfaceAmbient ()

AxisAlignment <alignment>
Description

Sets the axis alignment type of the current clump under construction.

Arguments

alignment The clump axis alignment. One of None, ZOrientX, ZOrientY or XYZ.

API Equivalent
RwSetAxisAlignment ()

Block <width> <height> <depth>
Description

Adds polygons representing a block of the given dimensions to the current clump under construction.

Arguments

width The width of the block.

height The height of the block.

depth The depth of the block.

Comments

The vertices of the block are transformed by the current transformation matrix (CTM). The current
material is applied to the polygons of the block.

It is not legal to specify a block dimension of zero.

API Equivalent
RwBlock ()

ClumpBegin
Description

Begins the construction of a new clump.

Arguments

None.

Comments

The clump begun with ClumpBegin will be the target of all operations on the current clump under
construction until a matching ClumpEnd is found.

If ClumpBegin is nested within another ClumpBegin or ProtoBegin block a new child clump
will be created.

API Equivalent
RwClumpBegin ()

ClumpEnd
Description

Ends the construction of the current clump.

Arguments

None.

API Equivalent
RwClumpEnd ()

Color <red> <green> <blue>
Description

Sets the color of the current material to the given color.

Arguments

red The red component of the color

green The green component of the color.

blue The blue component of the color.

API Equivalent
RwSetSurfaceColor ()

Cone <height> <radius> <nsides>
Description

Adds polygons representing a cone to the current clump under construction.

Arguments

height The height of the cone (up the Y axis).

radius The radius of the cone (in the X-Z plane).

nsides The number of sides.

Comments

The vertices of the cone are transformed by the current transformation matrix (CTM). The current
material is applied to the polygons of the cone.

If a negative radius is given, the polygons forming the cone will face towards the axis of the cone.

API Equivalent
RwCone ()

Cylinder <height> <baserad> <toprad> <nsides>
Description

Adds polygons representing a cylinder to the current clump under construction.

Arguments

height The height of the cylinder (up the Y axis).

baserad The radius of the cylinder base (in the X-Z plane).

toprad The radius of the cylinder top.

nsides The number of sides.

Comments

The vertices of the cylinder are transformed by the current transformation matrix (CTM). The current
material is applied to the polygons of the cylinder.

If a negative radius is given, the polygons forming the cylinder will face towards the axis of the cylinder.

API Equivalent
RwCylinder ()

Diffuse <kd>
Description

Sets the diffuse coefficient of reflectance of the current material.

Arguments

kd The diffuse coefficient.

API Equivalent
RwSetSurfaceDiffuse ()

Disc <height> <radius> <nsides>
Description

Adds polygons representing a disc to the current clump under construction.

Arguments

height The displacement (up the Y axis) of the disc.

radius The radius of the disc.

nsides The number of sides.

Comments

This keyword is normally used for capping cones and cylinders.

The vertices of the disc are transformed by the current transformation matrix (CTM). The current material
is applied to the polygons of the disc.

If a negative radius is given the polygons forming the disc will face downwards.

API Equivalent
RwDisc ()

GeometrySampling <sampling>
Description

Sets the geometry sampling type of the current material to the type specified.

Arguments

sampling The geometry sampling type. One of PointCloud, WireFrame or Solid.

API Equivalent
RwSetSurfaceGeometrySampling ()

Hemisphere <radius> <density>
Description

Adds polygons representing a hemisphere to the current clump under construction.

Arguments

radius The radius of the hemisphere.

density Controls the accuracy of the hemisphere.

Comments

The base of the hemisphere lies on the X-Z plane.

The density controls the number of polygons used to approximate the hemisphere. A density of 0 results
in a pyramid. The number of polygons used for the approximation varies exponentially with density.

The vertices of the hemisphere are transformed by the current transformation matrix (CTM). The current
material is applied to the polygons of the hemisphere.

If a negative radius is given the polygons forming the hemisphere will face inward.

API Equivalent
RwHemisphere ()

Hints <hints>
Description

Sets the set of hints of the current clump under construction to those specified.

Arguments

hints NULL or a space separated list of hints where each hint is one of Container, HS or
Editable.

API Equivalent
RwSetHints ()

Identity
Description

Sets the current transformation matrix (CTM) to the identity matrix.

Arguments

None.

API Equivalent
RwIdentityCTM ()

IdentityJoint
Description

Sets the current joint transformation matrix to the identity matrix.

Arguments

None.

API Equivalent
RwIdentityJointTM ()

Include <filename>
Description

Merges the clump constructed by reading the specified script file with the current clump under
construction.

Arguments

filename Filename of the script file to read.

Comments

Include does not create a new child clump. It merges the polygons of the clump read with the polygons of
the current clump under construction. If a new child clump is desired surround the Include keyword
with a ClumpBegin … ClumpEnd block.

The materials of the polygons read from the script file are preserved.

API Equivalent
RwInclude ()

IncludeGeometry <filename>
Description

Merges the clump constructed by reading the specified script file with the current clump under
construction. The materials of the merged polygons are replaced with the current material.

Arguments

filename Filename of the script file to read.

Comments

IncludeGeometry does not create a new child clump. It merges the polygons of the clump read with
the polygons of the current clump under construction. If a new child clump is desired surround the
IncludeGeometry keyword with a ClumpBegin … ClumpEnd block.

The materials of the polygons read from the script file are replaced with the current material.

API Equivalent
RwIncludeGeometry ()

JointTransformBegin
Description

Pushes a copy of the current joint transformation matrix onto the joint matrix stack in order that the
existing value may be restored at a later stage.

Arguments

None.

API Equivalent
RwJointTransformBegin ()

JointTransformEnd
Description

Restores the current joint transformation matrix from the last matrix pushed onto the joint matrix stack
with JointTransformBegin. This discards any modifications to the current joint transformation
matrix made since the last JointTransformBegin.

Arguments

None.

API Equivalent
RwJointTransformEnd ()

LightSampling <sampling>
Description

Sets the light sampling type of the current material to the type specified.

Arguments

sampling The light sampling type. One of Facet or Vertex.

API Equivalent
RwSetSurfaceLightSampling ()

MaterialBegin
Description

Pushes a copy of the current material onto the material stack in order that the existing value may be
restored at a later stage.

Arguments

None.

API Equivalent
RwMaterialBegin ()

MaterialEnd
Description

Restores the current material from the last material pushed onto the material stack with
MaterialBegin. This discards any modifications to the current material made since the last
MaterialBegin.

Arguments

None.

API Equivalent
RwMaterialEnd ()

ModelBegin
Description

Begins a new modeling context.

Arguments

None.

Comments

With the exception of the Trace keyword, ModelBegin must be the first keyword in a script file.

API Equivalent
RwModelBegin ()

ModelEnd
Description

Ends a modeling context.

Arguments

None.

Comments

ModelEnd must be the last keyword in a script file.

API Equivalent
RwModelEnd ()

Opacity <opacity>
Description

Sets the opacity of the current material.

Arguments

opacity The opacity of the material.

Comments

A value of 1.0 yields an entirely opaque material. A value of 0.0 yields an entirely transparent material.
Intermediate values yield varying degrees of semi-transparency.

API Equivalent
RwSetSurfaceOpacity ()

Polygon <nsides> <v1> ... <vn>
Description

Creates a new polygon with the given vertices and adds it to the current clump under construction.

Arguments

nsides The number of sides of the polygon.

v1 ... vn The indices of the polygons vertices.

Comments

v1 ... vn are indices into the vertex list of the current clump under construction. The number of indices
specified must be equal to nsides.

The current material is applied to the new polygon.

Polygon is a synonym of PolygonExt. The optional integer tag may also be specified when using the
Polygon keyword.

API Equivalent
RwPolygon ()

PolygonExt <nsides> <v1> ... <vn> [Tag <tag>]
Description

Creates a new polygon with the given vertices and adds it to the current clump under construction. An
integer tag may be specified in order to mark the polygon.

Arguments

nsides The number of sides of the polygon.

v1 ... vn The indices of the polygons vertices.

tag An optional integer tag to assign to the polygon.

Comments

v1 ... vn are indices into the vertex list of the current clump under construction. The number of indices
specified must be equal to nsides.

The current material is applied to the new polygon.

The integer tag is optional. To specify a tag use the optional keyword modifier Tag followed by an
integer.

API Equivalent
RwPolygonExt ()

ProtoBegin <name>
Description

Begins the definition of a prototype.

Arguments

name The name of the prototype.

Comments

The prototype begun with ProtoBegin will be the target of all operation on the current clump under
construction until a matching ProtoEnd is found.

ProtoBegin must not be nested within a ClumpBegin … ClumpEnd or ProtoBegin …
ProtoEnd block.

The new prototype will override the definition of any existing prototype with the same name.

API Equivalent
RwProtoBegin ()

ProtoEnd
Description

Ends the definition of the current prototype.

Arguments

None.

API Equivalent
RwProtoEnd ()

ProtoInstance <name>
Description

Merges the prototype of the given name with the current clump under construction.

Arguments

name The name of the prototype to merge.

Comments

ProtoInstance does not create a new child clump. It merges the polygons of the prototype with the
polygons of the current clump under construction. If a new child clump is desired, surround the
ProtoInstance keyword with a ClumpBegin … ClumpEnd block.

The materials of the polygons of the prototype are preserved.

API Equivalent
RwProtoInstance ()

ProtoInstanceGeometry <name>
Description

Merges the prototype of the specified name with the current clump under construction. The materials of
the merged polygons are replaced with the current material.

Arguments

name The name of the prototype to merge.

Comments

ProtoInstanceGeometry does not create a new child clump. It merges the polygons of the
prototype with the polygons of the current clump under construction. If a new child clump is desired,
surround the ProtoInstanceGeometry keyword with a ClumpBegin … ClumpEnd block.

The materials of the polygons of the prototype are replaced with the current material.

API Equivalent
RwProtoInstanceGeometry ()

Quad <v1> <v2> <v3> <v4>
Description

Creates a new quadrilateral with the given vertices and adds it to the current clump under construction.

Arguments

v1 The first vertex index of the quadrilateral.

v2 The second vertex index of the quadrilateral.

v3 The third vertex index of the quadrilateral.

v4 The fourth vertex index of the quadrilateral.

Comments

v1, v2, v3 and v4 are indices into the vertex list of the current clump under construction.

The current material is applied to the new quadrilateral.

Quad is a synonym of QuadExt. The optional integer tag may also be specified when using the Quad
keyword.

This keyword is semantically identical to Polygon 4 <v1> <v2> <v3> <v4>

API Equivalent
RwQuad ()

QuadExt <v1> <v2> <v3> <v4> [Tag <tag>]
Description

Creates a new quadrilateral with the given vertices and adds it to the current clump under construction. An
integer tag may be specified in order to mark the polygon.

Arguments

v1 The first vertex index of the quadrilateral.

v2 The second vertex index of the quadrilateral.

v3 The third vertex index of the quadrilateral.

v4 The fourth vertex index of the quadrilateral.

tag An optional integer tag to assign to the quadrilateral.

Comments

v1, v2, v3 and v4 are indices into the vertex list of the current clump under construction.

The current material is applied to the new quadrilateral.

The integer tag is optional. To specify a tag use the optional keyword modifier Tag followed by an
integer.

This keyword is semantically identical to PolygonExt 4 <v1> <v2> <v3> <v4> Tag <tag>
API Equivalent

RwQuadExt ()

RemoveHint <hint>
Description

Removes the specified hint (or hints) from the set of hints of the current clump under construction.

Arguments

hint A space separated list of hints where each hint is one of Container, HS or Editable.

API Equivalent
RwRemoveHint ()

RemoveTextureMode <mode>
Description

Removes the texture mode (or modes) specified from the set of texture modes of the current material.

Arguments

mode A space separated list of texture modes where each texture mode is one of Lit,
Foreshorten or Filter.

API Equivalent
RwRemoveTextureModeFromSurface ()

Rotate <x> <y> <z> <angle>
Description

Build a transformation matrix representing a rotation of angle degrees about the specified vector and pre-
concatenate it onto the current transformation matrix (CTM).

Arguments

x The X component of the vector to rotate about.

y The Y component of the vector to rotate about.

z The Z component of the vector to rotate about.

angle The angle of rotation (in degrees).

API Equivalent
RwRotateCTM ()

RotateJoint <x> <y> <z> <angle>
Description

Builds a transformation matrix representing a rotation of angle degrees about the specified vector and pre-
concatenate it onto the current joint transformation matrix.

Arguments

x The X component of the vector to rotate about.

y The Y component of the vector to rotate about.

z The Z component of the vector to rotate about.

angle The angle (in degrees) of rotation.

API Equivalent
RwRotateJointTM ()

Scale <x> <y> <z>
Description

Builds a scale matrix and pre-concatenates it onto the current transformation matrix (CTM).

Arguments

x The scale factor along the X axis.

y The scale factor along the Y axis.

z The scale factor along the Z axis.

API Equivalent
RwScaleCTM ()

Specular <ks>
Description

Sets the specular coefficient of reflectance of the current material.

Arguments

ks The specular coefficient.

API Equivalent
RwSetSurfaceSpecular ()

Sphere <radius> <density>
Description

Adds polygons representing a sphere to the current clump under construction.

Arguments

radius The radius of the sphere.

density Controls the accuracy of the sphere.

Comments

The density controls the number of polygons used to approximate the sphere. A density of zero results in a
cube. The number of polygons used for the approximation varies exponentially with density.

The vertices of the sphere are transformed by the current transformation matrix (CTM). The current
material is applied to the polygons of the sphere.

If a negative radius is given the polygons forming the sphere will face inward.

API Equivalent
RwSphere ()

Surface <ka> <kd> <ks>
Description

Sets the ambient, diffuse and specular coefficients of reflectance of the current material.

Arguments

ka The ambient coefficient.

kd The diffuse coefficient.

ks The specular coefficient.

API Equivalent
RwSetSurface ()

Tag <tag>
Description

Sets the integer tag of the current clump under construction to the specified value.

Arguments

tag The integer tag.

API Equivalent
RwSetTag ()

Texture <name>
Description

Sets the texture of the current material to the texture with the name specified. The current materials
texture can be removed by specifying a texture name of NULL.

Arguments

name The texture name (or NULL).

Comments

The texture is found by searching the current texture dictionary stack and shape path. For a discussion of
the algorithm used to find the texture see the description of RwGetNamedTexture () .

Texture is a synonym of TextureExt. A mask may be also be specified (using the Mask keyword
modifier) with the Texture keyword.

API Equivalent
RwSetSurfaceTexture ()

TextureDithering <mode>
Description

Sets the global texture dithering mode applied to all subsequently loaded textures.

Arguments

mode The texture dithering mode. One of Auto, On or Off.

API Equivalent
RwSetTextureDithering ()

TextureExt <name> [Mask <mask>]
Description

Sets the texture of the current material to the texture with the name specified. The texture is masked by
the mask raster with the given filename.

Arguments

name The texture name.

mask The filename of the mask raster.

Comments

The texture is found by searching the current texture dictionary stack and search path. For a discussion of
the algorithm used to find the texture see the description of RwGetNamedTexture () .

The raster is found by searching the current shape path. For a discussion of method used to find the mask
raster and to apply it to the texture see the descriptions of RwReadMaskRaster () and
RwMaskTexture () respectively.

API Equivalent
RwSetSurfaceTextureExt ()

TextureGammaCorrection <mode>
Description

Sets the global texture gamma correction mode applied to all subsequently loaded textures.

Arguments

mode The texture gamma correction mode. One of On or Off.

API Equivalent
RwSetTextureGammaCorrection ()

TextureModes <modes>
Description

Sets the current materials set of texture modes to the modes specified.

Arguments

modes NULL or a space separated list of texture modes where each texture modes is one of Lit,
Foreshorten or Filter.

API Equivalent
RwSetSurfaceTextureModes ()

Trace <mode>
Description

Sets the script tracing mode.

Arguments

mode The script tracing mode. One of On or Off.

Comments

Script tracing is only available under debugging versions of the RenderWare library. This keyword has no
effect under retail versions of the library.

The Trace keyword is the only keyword permitted in a file before ModelBegin.

API Equivalent

None.

Transform      <elements>
Description

Replaces the elements of the current transformation matrix (CTM) with the specified matrix elements.

Arguments

elements A space separated list of sixteen real matrix elements.

API Equivalent
RwTransformCTM ()

TransformBegin
Description

Pushes a copy of the current transformation matrix (CTM) onto the matrix stack in order that the existing
value may be restored at a later stage.

Arguments

None.

API Equivalent
RwTransformBegin ()

TransformEnd
Description

Restores the current transformation matrix (CTM) from the last transformation pushed onto the matrix
stack with TransformBegin. This discards any modifications to the current transformation matrix
(CTM) made since the last TransformBegin.

Arguments

None.

API Equivalent
RwTransformEnd ()

TransformJoint <elements>
Description

Replaces the elements of the current joint transformation matrix with the specified matrix elements.

Arguments

elements A space separated list of sixteen real matrix elements.

API Equivalent
RwTransformJointTM ()

Translate <x> <y> <z>
Description

Builds a translation matrix and pre-concatenates it onto the current transformation matrix (CTM).

Arguments

x The translation along the X axis.

y The translation along the Y axis.

z The translation along the Z axis.

API Equivalent
RwTranslateCTM ()

Triangle <v1> <v2> <v3>
Description

Creates a new triangle with the given vertices and adds it to the current clump under construction.

Arguments

v1 The first vertex index of the triangle.

v2 The second vertex index of the triangle.

v3 The third vertex index of the triangle.

Comments

v1, v2 and v3 are indices into the vertex list of the current clump under construction.

The current material is applied to the new triangle.

Triangle is a synonym of TriangleExt. The integer tag may also be specified when using the
Triangle keyword.

API Equivalent
RwTriangle ()

TriangleExt <v1> <v2> <v3> [Tag <tag>]
Description

Creates a new triangle with the given vertices and adds it to the current clump under construction. An
integer tag may be specified in order to mark the polygon.

Arguments

v1 The first vertex index of the triangle.

v2 The second vertex index of the triangle.

v3 The third vertex index of the triangle.

tag An optional integer tag to assign to the triangle.

Comments

v1, v2 and v3 are indices into the vertex list of the current clump under construction.

The current material is applied to the new triangle.

The integer tag is optional. To specify a tag use the optional keyword modifier Tag followed by an
integer.

API Equivalent
RwTriangleExt ()

Vertex <x> <y> <z>
Description

Creates a new vertex and adds it to the current clump under construction.

Arguments

x The X coordinate of the vertex.

y The Y coordinate of the vertex.

z The Z coordinate of the vertex.

Comments

The vertex is transformed by the current transformation matrix (CTM).

Vertex is a synonym of VertexExt. The texture coordinates and unit shading normal may also be
specified (with the optional keyword modifiers UV and Normal respectively) with the Vertex keyword.

API Equivalent
RwVertex ()

VertexExt <x> <y> <z> [Normal <i> <j> <k>]      [UV <u> <v>]
Description

Creates a new vertex and adds it to the current clump under construction. The unit shading normal and
texture coordinates are set to the specified values.

Arguments

x The X coordinate of the vertex.

y The Y coordinate of the vertex.

z The Z coordinate of the vertex.

i The X component of the optional unit shading normal.

j The Y component of the optional unit shading normal.

k The Z component of the optional unit shading normal.

u The U coordinate of the optional texture coordinates.

v The V coordinate of the optional texture coordinates.

Comments

The vertex is transformed by the current transformation matrix (CTM).

The unit shading normal and texture coordinates are optional. To specify a normal use the optional
keyword modifier Normal.To specify texture coordinates use the optional keyword modifier UV.

API Equivalent
RwVertexExt ()

Miscellaneous Notes
This section contains certain important notes concerning the use of the scripting language.

· Scripts are read using the RenderWare API function RwReadShape () which returns a pointer to the clump built by the script.· All of the scripting keywords are case-insensitive, i.e., upper and lower case may be freely mixed. Keywordvalues are also case-insensitive with the exception of filename. The case sensitivity of filenames is dependent upon the host operating system.· Every script file should have exactly one top-level ModelBegin … ModelEnd block. Within such a block, zero or more ProtoBegin … ProtoEnd blocks followed by one top-level ClumpBegin … ClumpEnd block are expected. The ProtoBegin … ProtoEnd blocks are prototype declarations, andthe top-level ClumpBegin … ClumpEnd block is an actual clump being constructed by the script.· The keywords Vertex and VertexExt are exactly equivalent. Both may be used to specify a vertex withtexture coordinates and a unit shading normal. This is in contrast to the API level object builder functions where only RwVertexExt () may be used to specify a vertex with texture coordinates and unit shading normal.· The keywords Polygon and PolygonExt are exactly equivalent. Both may be used to specify a polygonwith an integer tag. This is in contrast to the API level object builder functions where only RwPolygonExt () may be used to specify a polygon with an integer tag. This also applies to Quad and QuadExt and Triangle and TriangleExt.
· Scripting keywords which take vertices as arguments, such as Triangle, require a vertex to be identified

by its vertex number. Vertex numbers start at one and each time that the Vertex (or VertexExt)
keyword is used within a script, they are incremented by one. The number of the first vertex created by the
Vertex (or VertexExt) keyword is one, the second is two, and so on. Note that the vertex numbering is
not affected by any scripting keywords which add vertices (such as Include or Sphere) other than
Vertex (or VertexExt).

· Scripting keyword that take a 4 x 4 transformation matrix as an argument, e.g., Transform, require the matrix to be specified by a sequence of sixteen real numbers (separated by spaces) representing its elements.The Transform and TransformJoint scripting keywords expect the matrix elements to be specified in row-major order, i.e., the first four elements specify the first row of the matrix, and so on.· Rotation, translation and scaling are performed by pre-concatenation. · The Tag keyword is mainly useful for identifying parts of a hierarchical model so that they may be located and manipulated in an application program. A RenderWare application can then locate a particular clump within a clump hierarchy by using the RwFindTaggedClump () function.· PolygonExt, QuadExt and TriangleExt allow an optional integer tag to be specified using the keyword modifier Tag. This tagging of polygons serves a similar purpose as the tagging of clumps. Application clumps can use the tags to identify and modify particular polygons in a script. The API functionRwFindTaggedPolygon () searches for a polygon with a particular tag in the polygon list of a clump.
· The Texture keyword accepts NULL as its argument, in which case any texture associated with the

current material is removed. From that point on, no texture is applied to the geometry created.

The following is a simple, example script which builds a clump that consists of a red cube:

ModelBegin
ClumpBegin

Surface 0.2 0.3 0.7 # shiny
Color 1.0 0.0 0.0 # red
Block 0.5 0.5 0.5

ClumpEnd
ModelEnd

The Surface keyword sets ambient, diffuse, and specular reflection coefficients of the current material to 0.2, 0.3
and 0.7 respectively.

The current materials color is set to red using the Color keyword.

The Block keyword adds a block (whose width, height, and depth are all 0.5) to the current clump under
construction. The current transformation (in this case the identity) is applied to the polygons being added and the
materials of these polygons are set to the current material.

Object Builder API Functions
The following table summarizes the Object Builder API functions which mirror each script keyword. For a detailed
description of each Object Builder API function see the Function Reference section of this manual.

Script Keyword API Function

AddHint RwAddHint()
AddTextureMode RwAddTextureModeToSurface()
Ambient RwSetSurfaceAmbient()
AxisAlignment RwSetAxisAlignment()
Block RwBlock()
ClumpBegin RwClumpBegin()
ClumpEnd RwClumpEnd()
Color RwSetSurfaceColor()
Cone RwCone()
Cylinder RwCylinder()
Diffuse RwSetSurfaceDiffuse()
Disc RwDisc()
GeometrySampling RwSetSurfaceGeometrySampling()
Hemisphere RwHemisphere()
Hints RwSetHints()
Identity RwIdentityCTM()
IdentityJoint RwIdentityJointTM()
Include RwInclude()
IncludeGeometry RwIncludeGeometry()
JointTransformBegin RwJointTransformBegin()
JointTransformEnd RwJointTransformEnd()
LightSampling RwSetSurfaceLightSampling()
MaterialBegin RwMaterialBegin()
MaterialEnd RwMaterialEnd()
ModelBegin RwModelBegin()
ModelEnd RwModelEnd()

Opacity RwSetSurfaceOpacity()
Polygon RwPolygon()
PolygonExt RwPolygonExt()
ProtoBegin RwProtoBegin()
ProtoEnd RwProtoEnd()
ProtoInstance RwProtoInstance()
ProtoInstanceGeometry RwProtoInstanceGeometry()
Quad RwQuad()
QuadExt RwQuadExt()
RemoveHint RwRemoveHint()
RemoveTextureMode RwRemoveTextureModeFromSurface()
Rotate RwRotateCTM()
RotateJoint RwRotateJointTM()
Scale RwScaleCTM()
Specular RwSetSurfaceSpecular()
Sphere RwSphere()
Surface RwSetSurface()
Tag RwSetTag()
Texture RwSetSurfaceTexture()
TextureDithering RwSetTextureDithering()
TextureExt RwSetSurfaceTextureExt()
TextureGammaCorrection RwSetTextureGammaCorrection()
TextureModes RwSetSurfaceTextureModes()
Trace None
Transform RwTransformCTM()
TransformBegin RwTransformBegin()
TransformEnd RwTransformEnd()
TransformJoint RwTransformJointTM()
Translate RwTranslateCTM()
Triangle RwTriangle()

TriangleExt RwTriangleExt()
Vertex RwVertex()
VertexExt RwVertexExt()

 Trace has no direct Object Builder equivalent. However, the API function RwSetDebugScriptState() performs a
similar function.

Platform Specific Information

Related Topics
MS Windows Specific Information
MS Dos Specific Information
Other Platforms

MS Windows Specific Information

Related Topics
Requirements
Environment Variables
RenderWare Library Configuration
RenderWare Dynamic Link Libraries (DLLs)
Compilers
Libraries and Include Files
Watcom C/386 Compiler
Microsoft Visual C++ V1.5
Borland C++ V4.0
Microsoft Visual C++ V2.0
RenderWare and Windows Bitmap Types
RenderWare and Windows Palettes
Device-Specific API Parameters

Requirements
The fixed-point RenderWare library requires an IBM PC compatible with an Intel Pentium,
80486DX, 80486SX, 80386DX or 80386SX CPU (or equivalent), 4Mb of memory, and a color
VGA or SuperVGA display adapter.
The recommended minimum configuration for the fixed-point RenderWare library is an Intel
80486SX/25 with 8Mb of memory. For highest performance rendering a display adapter
running in 8-bit (256 color) mode is recommended. For highest quality rendering a display
adapter running in 16-bit (65536 color) mode is recommended.
The floating-point RenderWare library requires an IBM PC compatible with an Intel Pentium,
80486DX or 80386 and 387 math co-processor (or equivalent), 4Mb of memory, and a color
VGA or SuperVGA display adapter.
The recommended minimum configuration for the floating-point RenderWare library is an
Intel 80486DX/25 with 8Mb of memory. For highest performance rendering a display adapter
running in 8-bit (256 color) mode is recommended. For highest quality rendering a display
adapter running in 16-bit (65536 color) mode is recommended.For optimum performance, choose a CPU with a fast external clock speed over a clock-doubled CPU (e.g., 486DX/50 rather than 486DX2/66), 256K external cache, 70ns memoryand a fast PCI or VESA-Local Bus display adapter.RenderWare also requires one of the following versions of the Windows operating system.· Windows or Windows for Workgroups Version 3.1 or 3.11· Windows 95
· Windows NT Version 3.5.
In order to build programs with RenderWare you will need one of the compilers detailed in
the compilers section of this Appendix.

Environment Variables
The RenderWare library makes use of several environment variables,    RWSHAPEPATH,
RWDEBUGSTREAM etc. These environment variables are optional. The library will operate
correctly if they are not set.
However, if the environment variables are to be employed they must be set before entering
Windows. Setting the environment variable from a DOS window running under Windows will
not work. It is strongly recommended that the necessary environment variables be set in the
host machines AUTOEXEC.BAT.

RenderWare Library Configuration
Support for the RenderWare Windows initialization file winrw.ini has been removed from
this version of RenderWare. All library configuration is now accomplished through the API
function RwOpenExt () .

RenderWare Dynamic Link Libraries (DLLs)RenderWare for Windows is available in both static and dynamic link library (DLL) form. When using 16-bit Visual C++ or 16-bit Borland C++ under Windows 3.1 the DLL version of RenderWare must be used. 32-bit Watcom C under Windows 3.1 can make use of either the static of DLL versions of RenderWare.Four RenderWare DLLs are supplied with the RenderWare SDK;· rwx.dll Fixed-point, retail RenderWare DLL.· rwl.dll Floating-point, retail RenderWare DLL.· rwxd.dll Fixed-point, debugging RenderWare DLL.
· rwld.dll Floating-point, debugging RenderWare DLL.In addition to the DLLs, RenderWare provides, for each of the supported compilers, two static import libraries. These libraries provide the glue which enables the calling program to invoke functions in the DLL. The static import libraries are as follows;· rwxv.lib Fixed-point, Visual C++ import library.· rwlv.lib Floating-point, Visual C++ import library.· rwxb.lib Fixed-point, Borland C++ import library.· rwlb.lib Floating-point, Borland C++ import library.· rwxw.lib Fixed-point, Watcom C import library.
· rwlw.lib Floating-point, Watcom C import library.

Applications wishing to use the DLL must link against the appropriate static library.
The static libraries load the appropriate DLLs using the standard Windows LoadLibrary()
function. Hence, the DLLs can be placed anywhere on the LoadLibrary() search path.
However, the recommended location for the DLLs is in the Windows System directory (this
will normally be c:\windows\system). The RenderWare setup program will install the retail
DLLs in the Windows System directory at installation time.

Related Topics
The Debugging DLLs
Limitations of the DLL
Troubleshooting the DLL

The Debugging DLLs
The mechanism for utilizing the debugging kernel of the RenderWare library is different
depending on whether static or dynamic linking is to be employed. For statically linked
programs special static debugging libraries are supplied with RenderWare. To switch from
using the retail to debugging libraries the program must be relinked against a different
library. When using the DLL, no such relinking is necessary. The static import libraries
provided by RenderWare are suitable for either retail of debugging versions of RenderWare.
The static import libraries always attempt to load the same DLL (the fixed-point import
libraries load rwx.dll and the floating-point libraries load rwl.dll). Therefore, to switch
from using the retail DLL to the debugging DLL simply overwrite the existing retail DLL in
c:\windows\system with the debugging DLL. For example, for fixed-point applications,
switching from retail to debugging RenderWare kernels is achieved as follows;

copy c:\rwwin\lib\rwxd.dll c:\windows\system\rwx.dll
(assuming RenderWare for windows was installed in c:\rwwin and the Window System
directory is c:\windows\system).
Switching back to retail libraries simply involves overwriting the debugging DLL with the
retail one;

copy c:\rwwin\lib\rwx.dll c:\windows\system\rwx.dll
To simplify this process, RenderWare provides two simple batch files (rwn2d.bat and
rwd2n.bat) which will switch between retail and debugging DLLs and back again. These
batch files are located in the lib directory of the RenderWare distribution. For example, to
switch to debugging DLLs;

cd c:\rwwin\lib
rwn2d

To switch back;
cd c:\rwwin\lib
rwd2n

(assuming RenderWare for Windows was installed in c:\rwwin).
Please note, these batch files assume that the RenderWare DLLs are installed in the
Windows System directory and that the Windows System directory is c:\windows\system.

Limitations of the DLL
Currently the DLL supports the vast majority of the RenderWare API. However, the DLL does
not support RenderWares user-draw functionality and the debugging function
RwSetDebugStream () . The unsupported API calls are as follows;

RwAddUserDrawToClump ()
RwCreateUserDraw ()
RwDestroyUserDraw ()
RwDuplicateUserDraw ()
RwForAllUserDrawsInClump () (and its variants)
RwGetClumpNumUserDraws ()
RwGetUserDrawAlignment ()
RwGetUserDrawCallback ()
RwGetUserDrawData ()
RwGetUserDrawOffset ()
RwGetUserDrawOwner ()
RwGetUserDrawParentAlignment ()
RwGetUserDrawSize ()
RwGetUserDrawType ()
RwGetUserDrawVertexIndex ()
RwRemoveUserDrawFromClump ()
RwSetDebugStream ()
RwSetUserDrawAlignment ()
RwSetUserDrawCallback ()
RwSetUserDrawData ()
RwSetUserDrawOffset ()
RwSetUserDrawParentAlignment ()
RwSetUserDrawSize ()
RwSetUserDrawType ()
RwSetUserDrawVertexIndex ()

Furthermore, the RenderWare DLLs currently allow access to a single client application only.
Once one application using the DLL has successfully opened the RenderWare library other
applications will not be permitted to open the library. A dialog box will be displayed stating
that the RenderWare DLL is already in use and RwOpen () (or RwOpenExt ())will fail.

Troubleshooting the DLL
· During the development process my application crashed. I have fixed the problem but

each time I try to run the application I get a dialog box stating that RenderWare is
already in use and RwOpen() fails
When an application crashes it will, almost certainly leave RenderWare open and in an
unstable state. All future requests to open the library will be refused. The only safe
solution to this problem is to restart Windows. However, as this can be laborious when
debugging applications the DLL version of RenderWare provides an additional
function, _rwResetReferenceCount() which will let an application connect to the
RenderWare DLL after a crash. Although _rwResetReferenceCount() lets an
application connect to the RenderWare DLL, the DLL may be in an unstable state and
so the connecting application may still crash. Hence, _rwResetReferenceCount()
must be used with caution and it should never be used in a shipping product.
_rwResetReferenceCount() is not a formal part of the RenderWare API is not
exported by the RenderWare include files. The recommended way of using
_rwResetReferenceCount() is as follows;#if defined(_DEBUG)extern _rwResetReferenceCount(void);#endif...#if defined(_DEBUG)_rwResetReferenceCount();#endifif (!RwOpen(MSWindows, NULL)){ ...

· I have used rwn2d.bat to switch to the debugging versions of the RenderWare DLLs
and yet I still dont get any debugging information
If you are using a file sharing mechanism such as share.exe and you have a
RenderWare application running or a RenderWare application has crashed leaving the
DLL in memory then the DLL file will be locked and it will not be possible to overwrite
it. For this reason it is often better to exit Windows before switch to the debugging
DLLs.

· I am using Watcom C and the DLL. The function RwGetRasterPixels() does not return
a valid pointer
When using Watcom C with the DLL, RwGetRasterPixels () returns a 16-bit far
pointer to the raster pixels. To use this pointer from Watcom C it is necessary to
convert the pointer to a 32-bit far pointer using the Watcom supplied macro
MK_FP32(). Furthermore, when releasing these pixels back to RenderWare with
RwReleaseRasterPixels () it is necessary to convert this pointer back to a 16-bit far
pointer using the macro MK_FP16().    For example;
BYTE far *pixels;

pixels = (BYTE far *)MK_FP32(RwGetRasterPixels(raster));
...
/* Use the pointer. */
...
RwReleaseRasterPixels(raster, MK_FP16(pixels));

Compilers
The following table shows the compilers and versions of the Windows operating system that
are currently supported by RenderWare. Your choice of compiler and RenderWare library will
depend on both the preferred development environment and the target application
environment. These need not be the same.

Compilers
Development
Platforms

Target Platforms

Watcom C/386 (V9.5 or V10.0)
Libraries are provided for both
static linking or binding to the 32
bit RenderWare DLL.

Windows 3.1x
Windows 3.1x
Windows 95
 (using WinG or DIBs)
Windows NT 3.5
 (using WinG or DIBs)

Microsoft Visual C++ V1.5 (16 bit)
16 bit bindings are provided for
linking to the 32 bit RenderWare
DLL

Windows 3.1x
Windows 3.1x
Windows 95
 (using WinG or DIBs)
Windows NT 3.5
 (using WinG or DIBs)

Microsoft Visual C++ V2.0 (32 bit)
Static libraries are provided

Windows 95
Windows NT 3.5

Windows 3.1x
 (using Win32s and
WinG or DIBs)
Windows 95
Windows NT 3.5

Borland C++ V4.0 (16 bit)
16 bit bindings are provided for
linking to the 32 bit RenderWare
DLL

Windows 3.1x
Windows 3.1x
Windows 95
 (using WinG or DIBs)
Windows NT 3.5
(using WinG or DIBs)

Libraries and Include FilesFor the purposes of describing how to build programs, the following assumptions are made:· the RenderWare include files are installed in \rwwin\include.
· the RenderWare library files are installed in \rwwin\lib.
Source files must include the RenderWare include file:

#include <rwlib.h>
If your application use the platform specific RwOpenExt () options or RwGetDeviceInfo ()
information types then the application will also need to include the Windows specific header
file rwwin.h. However, it is recommended that, to ensure future compatibility, all source files
which use RenderWare API functions include rwwin.h after including the standard
RenderWare include file:

#include <rwlib.h>
#include <rwwin.h>

The following RenderWare libraries are provided for building Windows applications using
RenderWare.

RenderWare Libraries
Watcom C/386 Libraries

rwwrlp.lib
rwwrld.lib
rwwrxp.lib
rwwrxd.lib
rwwslp.lib
rwwsld.lib
rwwsxp.lib
rwwsxd.lib
rwxw.lib
rwlw.lib

Register passing, floating point, production
library.
Register passing, floating point, debugging
library.
Register passing, fixed point, production
library.
Register passing, fixed point, debugging
library.
Stack passing, floating point, production
library.
Stack passing, floating point, debugging
library.
Stack passing, fixed point, production
library.
Stack passing, fixed point, debugging
library.
Fixed point DLL binding library
Floating point DLL binding library

Microsoft Visual C++ V1.5 Libraries
rwxv.lib
rwlv.lib

Fixed point DLL binding library
Floating point DLL binding library

Borland C++ V4.0 Libraries
rwxb.lib
rwlb.lib

Fixed point DLL binding library
Floating point DLL binding library

Microsoft Visual C++ V2.0 Libraries
rwnlp.lib
rwnld.lib
rwnxp.lib
rwnxd.lib

Floating point, production library.
Floating point, debugging library.
Fixed point, production library.
Fixed point, debugging library.

Watcom C/386 Compiler
There are two versions of the Watcom compiler currently in popular use. These are V9.5 and
V10.0. Both of these compilers require patches to their base release to work with
RenderWare. The minimum patch levels required for RenderWare are V9.5c and V10.0a.
However, it should be noted that there is a bug in the Watcom 10.0a compiler which
prevents its use with the stack based libraries.
Both of the Watcom compilers use the same options for building RenderWare applications.Under Windows 3.1x, RenderWare V1.4 includes fixed and floating-point libraries with both register and stack based calling conventions. It is essential that the correct compiler options are specified for the library being linked against. Key Points when Building Programs· If you are building a fixed-point program you must define the symbol RWFIXED in all modules which make RenderWare function calls or manipulate RenderWare real numbers. You must also link against one of the fixed-point static libraries rwwrxp.lib, rwwrxd.lib, rwwsxp.lib, rwwsxd.lib    or rwxw.lib.
· If you are building a floating-point program you must define the symbol RWFLOAT in all

modules which make RenderWare function calls or manipulate RenderWare real numbers.
You must also link against one of the static libraries rwwrlp.lib, rwwrld.lib,
rwwslp.lib, rwwsld.lib    or rwlw.lib.

The following table gives the compiler options which are mandatory when building
RenderWare applications:

Mandatory Watcom Compiler Options
Fixed-Point Floating-Point

Register
Based

/zW
/5r, /4r or
/3r
/mf
/fpc
/DRWFIXED

/zW
/5r, /4r or /3r
/mf
/DRWFLOAT

Stack Based /zW
/5s, /4s or
/3s
/mf
/fpc
/DRWFIXED

/zW
/5s, /4s or /3s
/mf
/DRWFLOAT

The following table gives the compiler options which are recommended but not mandatory
when building RenderWare applications:

Recommended Watcom Compiler Options
Fixed-Point Floating-Point

Register
Based

/s
/j
/ei
/oneatx

/7
/s
/j
/ei
/oneatx

Stack Based /s
/j
/ei
/oneatx

/7
/s
/j
/ei
/oneatx

The following linker flags are mandatory:
option stack=32768 (A 32k stack is the minimum required)
system win386

For example, when using the fixed-point, register based version of the RenderWare library,
the command line to compile the file foo.c to the object file foo.obj is:

wcc386p /I=\rwwin\include /zW /4r /mf /fpc
/DRWFIXED /s /j /ei /s /oneatx /fo=foo.obj foo.c

The command line to link foo.obj with the fixed-point, register based Windows 3.1x version
of the RenderWare library (rwwrxp.lib) to produce foo.exe is:

wlink option stack=32768 system win386 name foo
file foo.obj, \rwwin\lib\rwwrxp.lib

The command line to bind foo.exe with its resources, producing the final executable
foo.exe, is:

wbind foo -R foo.res
For programs with no resources, use the -n option:

wbind foo -n

Microsoft Visual C++ V1.516 bit Microsoft Visual C++ applications are linked to the 32 bit RenderWare DLL via a static linked library. Under Windows 3.1x, RenderWare V1.4 includes both fixed and floating-point libraries. It is essential that the correct compiler options are specified for the library being linked against. Key Points when Building Programs
· If you are building a fixed-point program you must define the symbol RWFIXED in all

modules which make RenderWare function calls or manipulate RenderWare real numbers.
You must also link against the static library rwxv.lib. Furthermore, in order that you may
run on machines without a floating-point unit you must select a "Floating-Point Calls"
options which does not assume the presence of an x87 coprocessor. We recommend you
use the "Emulate" option.

· If you are building a floating-point program you must define the symbol RWFLOAT in all
modules which make RenderWare function calls or manipulate RenderWare real numbers.
You must also link against the static library rwlv.lib. To get the best speed in your
floating-point application we recommend you use the    "Inline 80x87 Instructions"
(/FPi87) option.

The following table gives the compiler options which are mandatory when building
RenderWare applications with Microsoft Visual C++ V1.5. All of these options can be
accessed through the Options/Project menu in Visual C++.

Mandatory Microsoft Visual C++ V1.5 Compiler Options
Value Command Line
Fixed
Point

Floating
Point

Fixed Point Floating Point

Compiler
Options
Code Generation

Calling
Convention

C/C++ /Gd

Memory Model
Model

Large /AL

Preprocessor
Symbols and

Macros

RWFIXED RWFLOAT /DRWFIXED /DRWFLOAT

Preprocessor
Include Path

\rwwin\include /I\rwwin\include

Linker Options
Input

Libraries ,\rwwin\
lib\
rwxv.lib

,\rwwin\
lib\
rwlv.lib

/LIB:\rwwin\
lib\rwxv.lib

/LIB:\rwwin\
lib\rwlv.lib

The following table gives the compiler options which are recommended but not mandatory
when building RenderWare applications with Microsoft Visual C++ V1.5. All of these options
can be accessed through the Options/Project menu in Visual C++.

Recommended Microsoft Visual C++ V1.5 Compiler Options
Value Command Line

Fixed Point Floating Point Fixed Point Floating Point
Compiler
Options
Code Generation

CPU
80386 /G3

Code Generation
Code Generator

Optimizing /f-

Code Generation
Floating Point

Calls

Use
Emulator

Inline 8087
Instructions

default /FPi87

Custom Options
Warning Level

Level 4 /W4

Borland C++ V4.016 bit Borland C++ applications are linked to the 32 bit RenderWare DLL via a static linked library. Under Windows 3.1x, RenderWare V1.4 includes both fixed and floating-point libraries. It is essential that the correct compiler options are specified for the library being linked against. Key Points when Building Programs· If you are building a fixed-point program you must define the symbol RWFIXED in all modules which make RenderWare function calls or manipulate RenderWare real numbers. You must also link against the static library rwxb.lib.
· If you are building a floating-point program you must define the symbol RWFLOAT in all

modules which make RenderWare function calls or manipulate RenderWare real numbers.
You must also link against the static library rwlb.lib.

The following table gives the compiler options which are mandatory when building
RenderWare applications with Borland C++ V4.0. The menu that is used to access the
options is show as XX:YY, this means the YY option on menu XX.

Mandatory Borland C++ V4.0 Compiler Options
Value Command Line
Fixed Point Floating

Point
Fixed Point Floating Point

Project: New
Project
Target Type

Platform
Windows 3.x (16)

Target Type
Target Model

Large -ml

Options: Project
Directories

Include
...;\rwwin\include -I\rwwin\include

Compiler
Defines

...;
RWFIXED

...;
RWFLOAT

-DRWFIXED -DRWFLOAT

Compiler
Code Generation

Allocate Enums as Ints -b

16 bit Compiler
Calling

Convention

C -pc

Other
Add the following
node to your
project .

\rwwin\
lib\
rwxb.lib

\rwwin\
lib\
rwlb.lib

The following table gives the compiler options which are recommended but not mandatory
when building RenderWare applications with Borland C++ V4.0. The menu that is used to
access the options is show as XX:YY, this means the YY option on menu XX.

Recommended Borland C++ V4.0 Compiler Options
Options: Project Value Command Line

Compiler
Floating Point

Fast floating point -ff

16 bit Compiler
Instruction Set

80386 (or i486) -3/-4

Optimizations
 Specific

Select Code In Favor
Of Executable Speed

-O2

Optimizations
 Specific

Common Sub-expressions -Og

Optimize Globally
Optimizations

Speed
Inline intrinsic
functions
Invariant code motion
Copy Propagation
Induction variables

-Oi

-Om
-Op
-Ov

Messages All -w

Microsoft Visual C++ V2.032 bit Microsoft Visual C++ applications are linked to a 32 bit static RenderWare library. Under Windows, RenderWare V1.4 includes both fixed and floating-point libraries. It is essential that the correct compiler options are specified for the library being linked against. Key Points when Building Programs· If you are building a fixed-point program you must define the symbol RWFIXED in all modules which make RenderWare function calls or manipulate RenderWare real numbers. You must also link against one of the fixed point static libraries rwnxp.lib or rwnxd.lib.
· If you are building a floating-point program you must define the symbol RWFLOAT in all

modules which make RenderWare function calls or manipulate RenderWare real numbers.
You must also link against one of the floating point static libraries rwnlp.lib or
rwnld.lib.

The following table gives the compiler options which are mandatory when building
RenderWare applications with Microsoft Visual C++ V2.0. All of these options can be
accessed through the Project/Settings menu in Visual C++ V2.0.

Mandatory Microsoft Visual C++ V2.0 Compiler Options
Value Command Line
Fixed Point Floating

Point
Fixed Point Floating Point

Compiler Options
Code Generation

Calling Convention _cdecl default
Code Generation

Use Run-time
Library

Multithreaded /MT

Preprocessor
Preprocessor

Definitions
...,

RWFIXED
...,

RWFLOAT
/DRWFIXED /DRWFLOAT

Preprocessor
Include Directories \rwwin\include /I\rwwin\include

Link Options
Input

Object/Library
Modules

\rwwin\
lib\
rwnxp.lib

\rwwin\
lib\
rwnlp.lib

\rwwin\
lib\
rwnxp.lib

\rwwin\lib\
rwnlp.lib

The following table gives the compiler options which are recommended but not mandatory
when building RenderWare applications with Microsoft Visual C++ V2.0. All of these options
can be    accessed through the Project/Settings menu in Visual C++.

Recommended Microsoft Visual C++ V2.0 Compiler Options
Value Command Line

Compiler
Options
Code Generation

Processor Pentium /G5
General

Optimizations Maximize Speed /O2
General

Warning Level Level 4 /W4

RenderWare and Windows Bitmap Types
When RenderWare is operating as a software only rendering service it makes extensive use
of the bitmap handling facilities of the underlying operating system. These operating system
bitmaps are used to store the results of RenderWares rendering and, when software double
buffering, to copy this rendering to the output display.
The Microsoft Windows operating system family provide several different bitmap types
namely; Device Dependent Bitmaps (HBITMAPs), Device Independent Bitmaps (DIBs), WinG
bitmaps and DIB Sections. These bitmap types vary widely in the facilities they offer and in
the speed of the operations which act upon them. Furthermore, not all of these bitmap types
are available on all versions of Windows and those that are provide different capabilities and
performance on different hardware configurations. Therefore, there is not a single best
bitmap type. The decision on which bitmap type must be taken at run-time on the basis of a
number of factors including the host operating system and the color resolution of the display
device.
RenderWare V1.4 provides an intelligent mechanism for selecting the fastest bitmap type
available when a RenderWare executable is run. This mechanism allows, for example, a
Win32 executable built under Windows NT 3.5 to run efficiently under Windows 3.1x.
For the majority of applications the selection of bitmap type will be entirely transparent to
the application developer. However, for those developers who need to interact with
RenderWare at a low-level to achieve special effects this section discusses the algorithm
used to select the bitmap type. The means by which a developer can fine tune this process
and enquire about the chosen bitmap type are also discussed. Initially a short description of
each bitmap type will be given.

· Device Dependent Bitmaps (HBITMAPs)HBITMAPs are a very fast bitmap type. However, due to their device dependent nature, they are only available to Win16/Win386 RenderWare applications running under Windows 3.1 with an 8 or 16-bit display driver. When these conditions are met, however, this is the fastest bitmap handling mechanism for Windows 3.1x.
· Device Independent Bitmaps (DIBs)DIBs are available on all operating system platforms. They are, however, by far the slowest bitmap type and are to be avoided. They are provided only as last resort fallback when other bitmap types are not available.
· DIB SectionsDIB Sections are an enhanced form of DIBs provided by Microsofts advanced Windows95 and Windows NT 3.5 operating systems. As DIB Sections are not part of the Win16 API they are not available to any Win16/Win386 application. Furthermore, DIB Sections are not implemented by Win32s and are, hence, not available to Win32 applications running on Windows 3.1x. However, for Win32 applications running on Windows 95 or Windows NT 3.5 they are by far the best bitmap type.
· WinG bitmaps

WinG is a fast bitmap handling mechanism designed for Windows 3.1x (but also
available for Windows 95 and Windows NT 3.5). Although available on all Windows
operating systems, WinG is not a core part of any of the operating systems and so
may not be present on a target machine (although WinG is freely redistributable and can
be included with a shipping product). Also, WinG only supports 8-bit bitmaps so it cannot
be used when RenderWare is performing 16-bit rendering.
On Windows 95 and Windows NT 3.5 WinG is simply a reduced functionality front-end to
DIB Sections and hence DIB Sections should be used in preference to WinG for
Win32 applications running under Windows 95 or Windows NT 3.5. Furthermore, on
Windows 3.1 HBITMAPs are faster and are normally preferred. WinG does have one
significant advantage over HBITMAPs in that it supports fast bitmap stretching. See the
section    on page - for details.

Related Topics
How the Bitmap Type is Chosen
Overriding the Choice of Bitmap Type
Determining the Choice of Bitmap Type
Bitmap Stretching

How the Bitmap Type is ChosenThe choice of bitmap handling mechanism is based on three factors:· Executable type (Win16/Win386 or Win32)· Run-time operating system (Windows 3.1x or Windows95/Windows NT 3.5)
· Depth of the output device (normally 4, 8, 16 or 24-bit)

The following table summarizes the choice of bitmap type for each combination of the above
factors. Whenever the bitmap type is given as WinG or DIBs WinG will be used if it has been
installed, otherwise RenderWare will fail over to using DIBs.

Running under Windows
3.1x

Running under Windows 95
or Windows NT 3.5

8 or 16-bit
output device

4 or 24-bit
output device

4 or 8-bit
output device

16 or 24-bit
output device

Win16/
Win386
Executable
s

HBITMAPs
(8 and 16-bit
rendering)

WinG or DIBs
(8-bit
rendering
only)

WinG or DIBs
(8-bit rendering only)

Win32
Executable
s

WinG or DIBs
(8-bit rendering only)

DIB Sections
(8-bit
rendering)

DIB Sections
(16-bit
rendering)

Overriding the Choice of Bitmap Type
In certain circumstances it may be desirable to override RenderWares default choice of
bitmap type. For example, if you wish to print or save the results of RenderWares rendering
it may be more convenient to use DIBs than the other bitmap types. Furthermore, WinGs fast
bitmap stretching can give a significant performance boost when rendering to a large
viewport (see the section    on page -).
RenderWare allows the application developer to specify that they wish to favor either WinG
or DIBs over RenderWares default choice of bitmap type. This is done by supplying additional
arguments (rwWINUSEDIBS or    rwWINUSEWING) when opening the library with the API call
RwOpenExt () .
To specify DIBs, rwWINUSEDIBS should be given as one of the additional arguments to
RwOpenExt () . For example;

RwOpenArgument arg;

arg.option = rwWINUSEDIBS;
arg.value = 0L; /* This value is ignored for rwWINUSEDIBS */
if (!RwOpenExt(MSWindows, NULL, 1, &arg))
{

...
To specify WinG, rwWINUSEWING should be given as one of the additional arguments to
RwOpenExt () . For example;

RwOpenArgument arg;

arg.option = rwWINUSEWING;
arg.value = 0L; /* This value if ignored for rwWINUSEWING */
if (!RwOpenExt(MSWindows, NULL, 1, &arg))
{

...
It is important to note that if rwWINUSEWING is specified and WinG has not been installed on
the host machine, RwOpenExt () will not fail. RenderWare will, instead, attempt to find a
bitmap type using the default mechanism. If it is essential that an application use WinG (and
no other bitmap type), the application should specify rwWINUSEWING and, after the library
has been opened, check to see if WinG has been selected. If it has not, the application can
then close RenderWare, display an error message and exit. The next section describes how
to determine which bitmap type has been selected.

Determining the Choice of Bitmap Type
It is sometimes important to determine which bitmap type RenderWare has chosen. This can
be done using the API function RwGetDeviceInfo () and the device information types
rwWINUSINGDIBS and rwWINUSINGWING.
To determine whether RenderWare is using DIBs the following code fragment would be used;

RwBool usingDIBs;

RwGetDeviceInfo(rwWINUSINGDIBS, &usingDIBs, sizeof(usingDIBs));
if (usingDIBs)
{

/* RenderWare is using DIBs... */
To determine whether RenderWare is using WinG the following code fragment would be
used;

RwBool usingWinG;

RwGetDeviceInfo(rwWINUSINGWING, &usingWinG, sizeof(usingWinG));
if (usingWinG)
{

/* RenderWare is using WinG... */
If neither rwWINUSINGDIBS or rwWINUSINGWING yields a non-zero result then the default
bitmap type is being used. For a Win16/Win386 executable the default type is HBITMAPs and
for a Win32 executable the default type is DIB Sections.

Bitmap Stretching
When performing software only rendering, the size of viewport to which RenderWare renders
can have a significant impact on performance, particularly if a high per-pixel cost rendering
mode is employed (such as lit, smooth shaded, foreshortened texture mapping). One
approach to improving performance is bitmap stretching where RenderWare renders to a
small viewport and the rendering is then stretched up to fill a significantly larger rectangle
on the output device.
In RenderWare control over bitmap stretching is provided by the rwWINSETOUTPUTSIZE
device control. This device control specifies the width and height of the rectangle on the
output device that the viewport will be stretched to fill (control over rendering resolution is
still achieved through the function call RwSetCameraViewport ()).
When specifying stretching, the arguments to RwDeviceControl () are as follows:

action rwWINSETOUTPUTSIZE
param1 Not used (pass 0)
param2 A pointer to an RwWinOutputSize structure as described below;

typedef struct
{

RwInt32 width; /* Width of the output */
RwInt32 height; /* Height of the output */
RwCamera *camera; /* Camera whose output is

 to be stretched */
} RwWinOutputSize;

size The size of RwWinOutputSize (i.e., sizeof(RwWinOutputSize)).
This control specifies the actual output width and height desired for the given camera. For
example, the following sets the output size of the camera Camera to 640 by 480 pixels;

RwWinOutputSize winOutputSize;

winOutputSize.width = (RwInt32)640;
winOutputSize.height = (RwInt32)480;
winOutputSize.camera = Camera;
RwDeviceControl(rwWINSETOUTPUTSIZE, 0, &winOutputSize,

sizeof(winOutputSize));
RenderWare's rendering resolution is set by the viewport width and height specified by a call
to RwSetCameraViewport () . For example, the following code fragment sets the rendering
resolution to 320 by 240 pixels:

RwSetCameraViewport(Camera, 0, 0, 320, 240);
The above code fragments will result in RenderWare rendering at a resolution of 320 by 240
and stretching the result to a rectangle of size 640 by 480 (offset at (0, 0) from the output
devices origin).
The stretching is actually perfomed when RwShowCameraImage () is called to perform
software double buffering. The offset from the origin of the device context passed to
RwShowCameraImage () of the output is given by the viewport offset specified in the call to
RwSetCameraViewport () .There are several important points to consider when bitmap stretching:· All bitmap types support bitmap stretching. However, only WinG and DIB Sections canperforms bitmap stretching quickly enough to provide a significant performance advantage. Therefore, it is recommended that bitmap stretching only be employed when using WinG or DIB Sections.

· Bitmap stretching operates much more quickly when the bitmap is stretched by a
power of 2. Therefore, it is best to set the viewport width and height of the camera to
half the width and height of the output window. For example, when setting
RenderWare's viewport in response to a WM_SIZE message:case WM_SIZE:RwSetCameraViewport(Camera, 0, 0, LOWORD(lParam) / 2, HIWORD(lParam) / 2);winOutputSize.width = LOWORD(lParam);winOutputSize.height = HIWORD(lParam); winOutputSize.camera = Camera;RwDeviceControl(rwWINSETOUTPUTSIZE, 0, &winOutputSize, sizeof(winOutputSize));

· The output size specified by RwDeviceControl () only effects the very last stage of
bitmap copying performed by RwShowCameraImage () . The stretching specified by
RwDeviceControl () is not taken into account by any other RenderWare API functions
which take viewport coordinates as arguments. This is particularly important to
remember when picking using the API functions RwPickScene ()RwPickScene and

RwPickClump () . The mouse coordinates passed to an application by Windows will be
in device (client window) coordinates. If a RenderWare application is making use of
bitmap stretching the mouse coordinates must be transformed into the cameras
viewport space before being passed to RenderWare. For example (when output is
being stretched by a factor of 2) picking would be performed as follows:

case WM_LBUTTONDOWN:
{

#if defined(WIN32)
POINTS pos;
pos = MAKEPOINTS(lParam);

#else
POINT pos;
pos = MAKEPOINT(lParam);

#endif
RwPickScene(Scene, pos.x / 2, pos.y / 2,

 Camera, &pick);

RenderWare and Windows Palettes
RenderWare maintains its own Windows palette object (HPALETTE). Each time
RwShowCameraImage () is called this palette is selected into the specified device context and
realized. By default, RenderWare realizes its palette as a foreground palette, i.e., FALSE is
passed as the third parameter of SelectPalette(). With RenderWare V1.4 it is possible to
change this default and have RenderWare realize its palette as a background palette. This is
useful when building applications where RenderWare has to co-exist with other windows
which also have their own palettes (particularly MDI applications). In such situations it is not
acceptable for the RenderWare window to realize its palette as a foreground palette on each
call to RwShowCameraImage () . Instead, RenderWare should realize its palette as a
background palette and the application must take responsibility for realizing the RenderWare
palette as a foreground palette at the appropriate time, i.e., in response to a
WM_QUERYNEWPALETTE message.
To following code instructs RenderWare to realize its palette as a background palette;

RwDeviceControl(rwWINBACKGROUNDPALETTE, TRUE, NULL, 0L);
If an application uses the above control it is essential that it take responsibility for realizing
the RenderWare palette as a foreground palette when the RenderWare window receives the
WM_QUERYNEWPALETTE message.
The following code fragment demonstrates this process;

case WM_QUERYNEWPALETTE:
{

HPALETTE rwPalette;
HPALETTE oldPalette;
HDC dc;
int numChanges;

RwGetDeviceInfo(rwPALETTE, &rwPalette,
 sizeof(rwPalette));
dc = GetDC(window);
oldPalette = SelectPalette(dc, rwPalette, TRUE);
numChanges = RealizePalette(dc);
SelectPalette(dc, oldPalette, FALSE);
ReleaseDC(window, dc);
if (numChanges > 0)

InvalidateRect(window, NULL, FALSE);
}
break;

The following code fragment switches RenderWare back to realizing its palette as a
foreground palette;

RwDeviceControl(rwWINBACKGROUNDPALETTE, FALSE, NULL, 0L);
It is possible to determine whether RenderWare is realizing its palette in the foreground and
background using the rwWINISBACKGROUNDPALETTE device information type. For example;

RwBool isBackPal;

RwGetDeviceInfo(rwWINISBACKGROUNDPALETTE, &isBackPal,
sizeof(isBackPal));

if (isBackPal)
{

/* Background palette realization... */
}
else
{

/* Foreground palette realization... */
}

Device-Specific API Parameters
A small number of RenderWare API functions have device dependent parameters or return
values. This section describes these device dependent parameters and return values under
Windows.
RwCamera *
RwBeginCameraUpdate(RwCamera *cam, void *param);

Arguments

param A handle to the output window (if any). If the results of the rendering
operations following RwBeginCameraUpdate () are to be displayed in an
output window by RwShowCameraImage () the handle of the output
window must be passed as the argument param. If the rendering is not to
be displayed in a window (for example, if it is to be printed) pass param
as NULL. Note, it is also necessary pass a DC associated with the output
window when RwShowCameraImage () is called.
For example;

RwBeginCameraUpdate(camera, (void *)window);

RwRaster *
RwBitmapRaster(void *bitmap, RwRasterOptions options);

Arguments

bitmap A pointer to a structure of type RwWinBitmapRaster as described below.
typedef struct {

HDC hdc;
HBITMAP hBitmap;

} RwWinBitmapRaster;
The device dependent bitmap can be of any size but should have a
depth equal to the depth of display adapter on which Windows is
running.
If running on an 8-bit display, the device context must have a palette
object selected into it. The palette object provides the color table of the
device dependent bitmap.
It is essential that the device dependent bitmap is not selected into the
device context when RwBitmapRaster () is invoked.

RwCamera *
RwCreateCamera(RwInt32 maxwidth, RwInt32 maxheight, void *param);

Arguments

param Under Windows, camera image buffer sharing is not currently supported.
This parameter should always be NULL.

RwInt32
RwDeviceControl(RwDeviceAction action, RwInt32 param1, void *param2, RwInt32

size);
Arguments

action Under Windows, RenderWare provides the following device controls actions:
· rwWINSETOUTPUTSIZE
This action is used to control the stretching of a cameras viewport. param1 is ignored, param2 should be a pointer to an RwWinOutputSize structure and size should be the size of an RwWinOutputSize structure. This control returns TRUE if successful, and FALSE otherwise. For a detailed discussion of the use of this control and bitmap stretching in general see the section    on page - of this Appendix.
· rwWINBACKGROUNDPALETTE

This action is used to control how RenderWare realizes its Windows
palette. To make RenderWare realize its palette as a background palette
pass a non-zero value for param1. To make RenderWare realize its palette
as a foreground palette pass zero for param1. In either case param2 and
size are ignored. This control returns TRUE if successful, and FALSE
otherwise. See the section    on page - for further details.

Comments

Please note, these control actions are highly device dependent and, as such, may be
significantly modified or even dropped from future releases of RenderWare.

RwCamera *
RwDuplicateCamera(RwCamera *cam, void *param);

Arguments

param Under Windows, camera image buffer sharing is not currently supported.
This parameter should always be NULL.

void *
RwGetCameraImage(RwCamera *cam);

Return Value

The image buffer of a RenderWare camera can be either a memory device context
with a memory bitmap selected into it or a device independent bitmap (DIB).
To determine whether RwGetCameraImage () returns a memory device context or DIB
use RwGetDeviceInfo () as follows:

RwCamera *cam;
RwInt32 usingDIBs;
HDC hdc;
BITMAPINFOHEADER *dib;

RwGetDeviceInfo(rwWINUSINGDIBs, &usingDIBs, sizeof(usingDIBs));
if (usingDIBs)

dib = (BITMAPINFOHEADER *)RwGetCameraImage(cam);
else

hdc = (HDC)RwGetCameraImage(cam);

RwBool
RwGetDeviceInfo(RwDeviceInfo info, void *value, RwInt32 size);

Comments

The Windows specific aspects of each device information type are as follows:
 rwRENDERDEPTH The current render depth. See the section    on page - for a

description of how the render depth is derived.
 rwINDEXEDRENDERING As the generic RwGetDeviceInfo () .
 rwPALETTEBASED Rendering is palette based if and only if the video adapter

on which Windows is running is palette based. This will
normally be the case if the video adapter is in 8-bit (256)
color mode. In other modes rendering will not be palette
based.

The following options apply when the output device is palette based:
 rwPALETTE Returns the GDI palette object RenderWare selects into the

output device context. value should point to a variable of
type HPALETTE. On return from RwGetDeviceInfo () this
variable will contain the handle of the GDI palette object.
Applications should not modify this palette object using the
Windows API function SetPaletteEntries(). Instead the
RenderWare V1.4 API function RwSetPaletteEntries ()
should be used to modify the RenderWare palette.

 rwPALETTESIZE As the generic RwGetDeviceInfo () .
 rwFIRSTPALETTEENTRY As the generic RwGetDeviceInfo () .
 rwLASTPALETTEENTRY As the generic RwGetDeviceInfo () .
RenderWare V1.4 support the following Windows specific information types:
 rwWINIMAGEISDIB A pointer to a boolean (RwBool) which will be non-zero if

RwGetCameraImage () returns a device independent bitmap
(DIB) and zero if a memory device context is returned. See
the description of   
RwGetCameraImage ()RwGetCameraImage in this section for
further details. rwWINIMAGEISDIB is synonymous with
rwWINUSINGDIBS. rwWINIMAGEISDIB is obsolete and will be
removed from future versions of RenderWare.
rwWINUSINGDIBS should be used in its place.

 rwWINISBACKGROUNDPALETTE
A pointer to a boolean (RwBool) which will be non-zero if
RenderWare realizes its palette as a background palette
and zero if it realizes its palette as a foreground palette.
See the section    on page - for further details.

 rwWINUSINGDIBS A pointer to a boolean (RwBool) which will be non-zero if
RenderWare is using device independent bitmaps (DIBs)
and zero otherwise. See the section    on page - in this
Appendix for a detailed description of this information
type. rwWINUSINGDIBS is synonymous with       
rwWINIMAGEISDIB. rwWINIMAGEISDIB is obsolete and will
be removed from future versions of RenderWare.
rwWINUSINGDIBS should be used in its place.

 rwWINUSINGWING A pointer to a boolean (RwBool) which will be non-zero if
RenderWare is using WinG and zero otherwise See the
section    on page - in this Appendix for a detailed
description of this information type.

RwBool
RwOpen(char *devname, void *param);

Arguments

devname The device name as a null-terminated string. Names currently supported
under Windows are:

 MSWindows
 MSWindowsWinG
 NullDevice

MSWindowsWinG is identical to MSWindows except that it will attempt to
use WinG as RenderWares bitmap type (see the section    on page - for a
discussion of the different bitmap types). However, MSWindowsWinG is
obsolete and the RwOpenExt () option rwWINUSEWING should be used in
its place.
The NullDevice driver allows the library to be used when output to a
display is not required (for instance, when reading from or writing to
files).

param For Windows platforms, this parameter should be NULL.
Comments

The RenderWare Windows initialization file winrw.ini has been removed from this
release of RenderWare. Therefore, all library configuration must be achieved using
the API function RwOpenExt ()

RwBool
RwOpenExt(char *devname, void *param, RwInt32 numargs,

RwOpenArgument *args);
Arguments

devname The device name as a null-terminated string. Names currently supported
under Windows are:

 MSWindows
 MSWindowsWinG
 NullDevice

MSWindowsWinG is identical to MSWindows except that it will attempt to
use WinG as RenderWares bitmap type (see the section    on page - for a
discussion of the different bitmap types). However, MSWindowsWinG is
obsolete and the RwOpenExt () option rwWINUSEWING should be used in
its place.
The NullDevice driver allows the library to be used when output to a
display is not required (for instance, when reading from or writing to
files).

param For Windows platforms, this parameter should be NULL.
numargs The number of optional arguments specified.
args An array of optional open arguments.

Comments

RwOpenExt () takes a pointer to an array of RwOpenArgument structures.
RwOpenArgument is defined as follows:

typedef struct
{

RwOpenOption option;
void *value;

} RwOpenArgument;
option is one of the identifiers defined below and value is a parameter specific to
the option type. If the parameter type is integer, the integer value should be cast to
a void *. For example;

args[0].value = (void *)10;
The configuration options supported under Windows are:
 rwGAMMACORRECT Controls whether RenderWare performs gamma correction

on its color palette. value should be non-zero to enable
gamma correction and zero to disable gamma correction.

 rwWINUSEDIBS If this option is specified RenderWare will use DIBs to
handle its bitmaps. value is ignored. See the section    on
page - for a full discussion of this option.

 rwWINUSEWING If this option is specified RenderWare will use WinG to
handle its bitmaps. value is ignored. If WinG is not
installed on the target system RenderWare will attempt to
fail over to an alternative bitmap type. See the section    on
page - for a full discussion of this option.

 rwWINSETWINGDIBORIENT Conventionally Device Independent Bitmaps (DIBs) have

a bottom-up orientation, i.e., pixel (0, 0) is at the bottom
left of the bitmap rather than the top left. This is not only
inconsistent with the rest of Windows but can also slow
bitmap operations greatly. For this reason, WinG DIBs can
have either bottom-up or top-down orientation. Normally,
RenderWare uses the orientation recommended by WinG
at run time and the choice of orientation is entirely
transparent to the application programmer. However, if it
is necessary to integrate an existing 2D rendering package
with RenderWare, problems may arise if that package
makes assumptions about the orientation of DIBs. For this
reason, this option allows the application programmer to
override WinGs recommended DIB orientation. If you wish
to force a bottom-up orientation pass value as a positive
(non-zero) integer. If you wish to force a top-down
orientation pass value as a negative integer. Please note
that although this option may make integration with
RenderWare easier it may adversely effect performance.
Furthermore, this option is only relevant when using WinG.
All other bitmap types ignore it.

The following example demonstrates opening the RenderWare library to use WinG
with a top-down DIB orientation and with gamma correction enabled:

RwOpenArgument args[3];

args[0].option = rwGAMMACORRECT;
args[0].value = (void *)TRUE;
args[1].option = rwWINUSEWING;
args[2].option = rwWINSETWINGDIBORIENT;
args[2].value = (void *)-1;
RwOpenExt(MSWindows, NULL, 2, args);

RwBool
RwOpenDebugStream(char *filename);

 Arguments

filename Specifying DEBUG: as the name of a debugging stream will result in
debugging output being issued by the Windows API function
OutputDebugString().

Note that when linking against the debugging version of the library, the default
debugging stream is    \rw.log.

RwCamera *
RwShowCameraImage(RwCamera *cam, void *param);

Arguments

param A handle to the output device context. For example;
hdc = GetDC(hwnd);
RwShowCameraImage(cam, (void *)hdc);
ReleaseDC(hwnd, hdc);

MS Dos Specific Information

Related Topics
Requirements
Environment Variables
RenderWare Library Configuration
Include Files
Building Programs: Watcom C/386 Compiler
Device-Specific API Parameters

Requirements
The fixed-point RenderWare library requires an IBM PC compatible with an Intel Pentium,
80486DX, 80486SX, 80386DX or 80386SX CPU (or equivalent), 4Mb of memory, and a color
VGA or SuperVGA display adapter.
The recommended minimum configuration for the fixed-point RenderWare library is an Intel
80486SX/25 with 4Mb of memory. For highest performance rendering a display adapter
running in 8-bit (256 color) mode is recommended. For highest quality rendering a display
adapter running in 16-bit (65536 color) mode is recommended.
The floating-point RenderWare library requires an IBM PC compatible with an Intel Pentium,
80486DX or 80386 and 80387 math co-processor (or equivalent), 4Mb of memory and a
color VGA or SuperVGA display adapter.
The recommended minimum configuration for the floating-point RenderWare library is an
Intel 80486DX/25 with 4Mb of memory. For highest performance rendering a display adapter
running in 8-bit (256 color) mode is recommended. For highest quality rendering a display
adapter running in 16-bit (65536 color) mode is recommended.
For optimum performance, choose a CPU with a fast external clock speed over a clock-
doubled CPU (e.g., 486DX/50 rather then 486DX2/66), 256K external cache, 70ns memory
and a fast PCI or VESA-Local Bus display adapter.
Version 9.5c or 10.0a of the Watcom C/386 compiler are required to build programs.

Environment Variables
The RenderWare library makes use of several environment variables, RWDEBUGSTREAM,
RWSHAPEPATH etc. These environment variables are optional. The library will operate
correctly if they are not set. It is strongly recommended that the necessary environment
variables be set in the host machine's AUTOEXEC.BAT.

RenderWare Library ConfigurationPrevious versions of RenderWare provided control over certain aspects of library configuration, such as gamma correction, by reading an initialization file, dosrw.ini. Although this did allow the modification of library configuration without application recompilation there were two main problems with the approach:· It was difficult to run two different RenderWare applications, requiring different configurations, simultaneously.
· As the initialization file was plain ASCII text, it was possible for an end user to modify the

file and, hence, adversely effect the operation of the RenderWare application.
RenderWare V1.3 addressed these problems by providing API level control over the library
configuration with the new RwOpenExt () function. This function, an alternative to RwOpen () ,
supports the specification of additional, optional arguments controlling library configuration.
However, to ensure backwards compatibility and continued ease of configuration, the
function RwOpen () still parses the RenderWare configuration file.
RenderWare looks for its configuration file, dosrw.ini in the directory pointed to by the
RWHOME environment variable. (If RWHOME is not defined, RenderWare will look in the current
working directory for the initialization file dosrw.ini). The format of the configuration file is as
follows:

[general]
Width = <width>
Height = <height>
Depth = <depth>
Gamma = yes | no

The Gamma keyword specifies whether RenderWare is to produce a gamma corrected palette.
The default value is no.
The Width, Height and Depth keywords are used to set the resolution that the video card is
going to be placed. The width, height and depth values must be defined and together must
specify a resolution that the card can achieve.    Supported resolutions are:

Type Width Height Depth
VGA 320 200 8
VESA 640 400 8
VESA 640 480 8
VESA 800 600 8
VESA 1024 768 8
VESA 1280 1024 8
VESA 320 200 16
VESA 640 400 16
VESA 640 480 16
VESA 800 600 16
VESA 1024 768 16
VESA 1280 1024 16
VESA 320 200 15
VESA 640 400 15
VESA 640 480 15
VESA 800 600 15
VESA 1024 768 15
VESA 1280 1024 15

Note that 15 bit modes are a form of 16 bit mode except the color is in the 1:5:5:5 format.

That is one bit unused and 5 bits of color for red, green and blue. Note that RenderWare
renders internally to 5:6:5 format and so a fairly costly color conversion process is required
in the DOS device driver. 16 bit modes should always be used where possible instead of 15
bit modes for optimal performance.
VGA modes (320 by 200, 8-bit) are    available on all VGA cards. The availability of the other
resolutions depends on the kind of card installed, and what kind of VESA driver is present.
The VESA modes will not function without a VESA driver being installed (V1.0 or later). If
your card does not have a VESA BIOS built in it is likely that there is a VESA TSR (terminate
and stay resident) driver to make it appear as if it has a VESA BIOS. Install the TSR and
RenderWare for DOS should function correctly.
UNIVBE is a universal VESA TSR package and comes as part of the RenderWare package. The
program supports a wide range of video cards. If your card is supported then it is best to use
the UNIVBE TSR driver as often it allows more VESA resolutions than a cards native VESA
BIOS.   
UNIVBE is shareware and no registration is required for its use by RenderWare customers. If
UNIVBE is bundled with a product then an agreement must be made with SciTech. See the
UNIVBE documentation for details.
RenderWare V1.4 for DOS has been extensively tested with the UNIVBE package, and thus is
likely to provide the best performance and stability in this configuration. To find if your card
is supported by UNIVBE look in the UNIVBE documentation.
The default mode is a width of 320, height of 200 and depth of 8 (as this mode is available
on all VGA cards with or without a VESA driver).

Include FilesFor the purposes of describing how to build programs, the following assumptions are made:· the RenderWare include files are installed in \rwdos\include
· the RenderWare library files are installed in \rwdos\lib
Source files must include the RenderWare include file:
 #include <rwlib.h>
Version 1.3 of RenderWare introduced a new, MS DOS specific include file rwdos.h. This
include file is only necessary if your application uses platform specific RwOpenExt () options   
or RwGetDeviceInfo () information types. However it is recommended that, to ensure future
compatibility, all source files which use the RenderWare API functions include rwdos.h after
including the standard RenderWare include file:

#include <rwlib.h>
#include <rwdos.h>

Also included is the header file doswrap.h which provides simpler access to DOS specific
device controls. If you wish to use these functions include doswrap.h after rwlib.h and
rwdos.h.

Building Programs: Watcom C/386 Compiler
There are two versions of the Watcom compiler currently in popular use. These are V9.5 and
V10.0. Both of these compilers require patches to their base release to work with
RenderWare. The minimum    patch levels required by RenderWare are 9.5c and 10.0a.
However, it should be noted that there is a bug in the Watcom 10.0a compiler which
prevents its use with the stack based libraries.
Both of the Watcom compilers use the same options for building RenderWare applications.
Under MS DOS, RenderWare V1.4 includes fixed and floating-point libraries with both register
and stack based calling conventions. It is essential that the correct compiler options are
specified for the library being linked against.
The following table gives the compiler options which are mandatory when building
RenderWare applications:

Mandatory Watcom Compiler Options
Fixed-Point Floating-Point

Register
Based

/5r, /4r or
/3r
/mf
/fpc
/DRWFIXED

/5r, /4r or /3r
/mf
/DRWFLOAT

Stack Based /5s, /4s or
/3s
/mf
/fpc
/DRWFIXED

/5s, /4s or /3s
/mf
/DRWFLOAT

The following table gives the compiler options which are recommended but not mandatory
when building RenderWare applications:

Recommended Watcom Compiler Options
Fixed-Point Floating-Point

Register
Based

/s
/j
/ei
/oneatx

/7
/s
/j
/ei
/oneatx

Stack Based /s
/j
/ei
/oneatx

/7
/s
/j
/ei
/oneatx

The following linker flags are mandatory:
option stack=32768 (A 32k stack is the minimum required)

For example, when using the fixed-point, register based version of the RenderWare library,
the command line to compile the file foo.c to the object file foo.obj is:

wcc386p /I=\rwdos\include /4r /mf /fpc /DRWFIXED /s /j
/ei /s /oneatx /fo=foo.obj foo.c

The command line to link foo.obj with the fixed-point, register based MS DOS version of the
RenderWare library (rwdrxp.lib) to produce foo.exe is:

wlink option stack=32768 name foo file foo.obj,
 \rwdos\lib\rwdrxp.lib

Device-Specific API Parameters
A small number of RenderWare API functions have device dependent parameters or return
values. This section describes these device dependent parameters and return values under
MS DOS.
RwCamera *
RwBeginCameraUpdate(RwCamera *cam, void *param);

Arguments

param param is ignored. It should be passed as NULL.
For example;

RwBeginCameraUpdate(camera, NULL);

RwCamera *
RwCreateCamera(RwInt32 maxwidth, RwInt32 maxheight, void *param)

Arguments

param Must be either NULL or the image buffer of an existing camera (as
returned by RwGetCameraImage ()).
If param is NULL the new camera will allocate its own image buffer of the
given width and height. For example in the typical case of output to the
full screen, the following code fragment could be used:

RwInt32 scrheight, scrwidth;

RwGetDeviceInfo(rwSCRHEIGHT, &scrheight);
RwGetDeviceInfo(rwSCRWIDTH, &scrwidth);
cam = RwCreateCamera(scrwidth, scrheight, NULL);

If param is the value returned by calling RwGetCameraImage () with an
existing camera as an argument, then the new camera will not allocate
its own image buffer but will share the image buffer of the existing
camera. The existing camera must have exactly the same maximum
width and height as those specified in the call to RwCreateCamera () . For
example, to create a new camera (cam2) sharing the image buffer of the
camera (cam) created above the following code fragment could be used:

cam2 = RwCreateCamera(scrwidth, scrheight,
RwGetCameraImage(cam));

Sharing image buffers can reduce resource (particularly memory)
consumption considerably when multiple cameras are employed.
However , it does incur additional application housekeeping. Specifically,
each time the shared image buffer is to be used for a different camera
the entire viewport must be invalidated to prevent data from the
previous camera persisting. Furthermore, it is essential that the camera
which created the image buffer, i.e., the camera that was created by a
call to RwCreateCamera () with NULL passed as param, is destroyed after
all other cameras sharing the image buffer are destroyed.
It is strongly recommended, therefore, that except in exceptional
circumstances, each camera should create its own image buffer.

RwInt32
RwDeviceControl(RwDeviceAction action, RwInt32 param1,

 void *param2, RwInt32 size);
Arguments

 action Under MS DOS, RenderWare provides the followingdevice control actions.
· rwSCRGETCOLOR

This device control is used for resolution independent selection of colors
from the colors available. On being given a color specified as an array of
three numbers denoting the red green and blue components of the color,
this control returns the device dependent color value, which when copied
directly to the screen will display the correct color. param1 is ignored
(pass 0L). param2 should be a pointer of three RwReals specifying the
color. A red component value of CREAL(1.0) means the maximum
amount of red. A red component of CREAL(0.0) means no red. size
should be the size of the data pointed to by param2 (i.e.,
sizeof(RwReal) * 3).
For example, the following;

RwReal red[]={CREAL(1.0), CREAL(0.0), CREAL(0.0)};
RwInt32 colorred;

colorred = RwDeviceControl(rwSCRGETCOLOR, 0L, red,
sizeof(RwReal) * 3);

sets colorred to be the device dependent color value for red whatever resolution the video adapter is in.
· rwPRINTCHAR

This device control provides a simple way of displaying a character in
any resolution. param1 is ignored (passed as 0L) and param2 should point
to a structure RwPrintChar (as described below) and size should be the
size of an RwPrintChar structure (i.e., sizeof(RwPrintChar)).

typedef struct
{

RwInt32 x;
RwInt32 y;
char c;
RwInt32 color;

} RwPrintChar;
x is the x coordinate of the character in pixels (0 is the left of the
screen.). y is the y coordinate of the character in pixels (0 is the top of
the screen.). c is that character you wish to display. color is the device
dependent color you wish the character to be displayed in. Thus in an 8-
bit mode it is the index of the color you require. In a 16 bit mode, the
color is encoded into the low 16 bits of color. The simplest way of finding
a color via (R, G, B) (red, green, blue) values is via the rwSCRGETCOLOR
device control.
The (x, y) coordinate specifies where the top left corner of the characters
image will appear.
For example

RwPrintChar print;
RwReal white[]=

{CREAL(1.0),CREAL(1.0),CREAL(1.0)};
print.x = 10;
print.y = 30;
print.color =

RwDeviceControl(rwSCRGETCOLOR, 0L, white,
sizeof(RwReal) * 3);

print.c = 'A';
RwDeviceControl(rwPRINTCHAR, 0L, &print, sizeof(print));

Will print the character 'A' at (10, 30) in white. Note that all characters in the character set are 8 by 8, and will remove anything underneath their 8 by 8 square with color zero (usually black).This control returns TRUE if successful and FALSE otherwise.
· rwPOINTERREMOVE

This device control removes the mouse pointer from the display. param1
and param2 and size are all ignored (pass 0L, NULL and 0L respectively).
For example;

RwDeviceControl(rwPOINTERREMOVE, 0L, NULL, 0L);
will remove the mouse pointer from the display.This control returns TRUE if successful and FALSE otherwise.

· rwPOINTERDISPLAY
This device control displays the mouse pointer. param1 is ignored (pass
as 0L), param2 should point to an    RwMousePointer structure (as
described below) and size should be the size of an RwMousePointer
structure (i.e., sizeof(RwMousePointer)).

typedef struct
{

RwInt32 x;
RwInt32 y;
RwInt32 buttons;

} RwMousePointer;
This will display the mouse pointer at the current mouse position
(removing the mouse pointer at its previous position if necessary). The
structure is filled with the position and the current button status of the
mouse. For the mouse button, bit 1 will be set if the left button is
pressed and bit 3 will be set if the right button is pressed (for three
button mice, bit 5 will be set if the middle button is pressed). The x and y
co-ordinates are the screen coordinates of the hotspot of the mouse
pointer.
For example:

RwMousePointer mouse;
RwDeviceControl(rwPOINTERDISPLAY, 0L, &mouse,

sizeof(mouse));
Will display the mouse at its current coordinates and fill the mouse structure withthe current mouse status.This control returns TRUE if successful and FALSE otherwise.

· rwPOINTERSETREGION
This device control sets the rectangle in which the mouse can be used. It
also has the ability to control the mouse movement speed. Initially when
the library is opened the mouse is allowed to move over the entire
screen area.    This device control can restrict this area.    param1 is
ignored (pass 0L), for normal mouse movement. Setting param1 to a
positive value will mean that for a pixel movement the mouse requires
2^param1 mouse events (or mickeys), i.e., if param1 is set to 3 then 8
mickeys    are required for each pixel movement. If param1 is set to a

negative number then the speed of the pointer is accelerated by 2^-
param1, i.e., if param1 is set to -4 for each mickey the mouse pointer will
move 16 pixels. param2 should point to an RwRect structure and size
should be the size of an RwRect structure (i.e., sizeof(RwRect)). This
defines the area the hot spot of the mouse can traverse.
For example;

RwRect area;

area.x = 20;
area.y = 50;
area.w = 100;
area.h = 10;
RwDeviceControl(rwPOINTERSETREGION, -1L, &area,

sizeof(area));
only allows the mouse pointer hotspot to occupy the region 20 to 120 for the x coordinate and 50 to 60 in the y co-ordinate. The mouse will now move 2 pixels for every mickey    (mouse event).This control returns TRUE if successful and FALSE otherwise.

· rwPOINTERSETCLIPREGION
This device control sets he clipping region for the mouse sprite image.
param1 is ignored (pass 0L). param2 should point to an RwRect structure
and size should be the size of an RwRect structure (i.e.,
sizeof(RwRect)). This defines the area the mouse sprite image should
be clipped to.
For example;

RwRect clip;

clip.x = 40;
clip.y = 80;
clip.w = 40;
clip.h = 90;
RwDeviceControl(rwPOINTERSETCLIPREGION, 0L, &clip,

sizeof(clip));
sets the clipping region to be between 40 and 80 for the x co-ordinate and 80 and 170 in the y co-ordinate.This control returns TRUE if successful and FALSE otherwise.

· rwPOINTERSETIMAGE
This device control changes the mouse pointer image. param1 is ignored
(pass 0L), param2 should point to an RwPointerImage structure (as
described below) and size should be the size of an RwPointerImage
structure (i.e., sizeof(RwPointerImage)) .

typedef struct PointerImage
{

RwInt32 hotx;
RwInt32 hoty;
RwInt32 w;
RwInt32 h;
void *image;

} RwPointerImage;
hotx and hoty define the hot spot on the image. What this    means is
that this point becomes origin of the mouse image. w and h are the
images width and height respectively. image points to an raw pixmap
image (device dependent) which can be created by the rwBITMAPTORAW
and rwCHARMAPTORAW device controls. If image is set to NULL then the
pointer image is set to the default image pointer with its outline color
stored in w and its remaining color stored in h.

For example to change an image to a 5 by 5 image with its origin at the
center;

RwPointerImage pimage;

pimage.hotx = 2;
pimage.hoty = 2;
pimage.w = 5;
pimage.h = 5;
pimage.image = rawpixmap;
RwDeviceControl(rwPOINTERIMAGE, 0L, &pimage,

sizeof(pimage));
This control returns TRUE if successful and FALSE otherwise.

· rwBITMAPTORAW
The device control converts a bitmap into a form that can be used for as
a pointer sprite. param1 is ignored (pass 0L). param2 should be set to
point to an RwImageConvert structure (as described below) and size
should be the size of an RwImageConvert structure (i.e.,
sizeof(RwImageConvert)).

typedef struct
{

void *inimage;
RwInt32 w;
RwInt32 h;
RwInt32 colora;
RwInt32 colorb;
void *outstorage;

} RwImageConvert;
inimage should be set to point at the pixmap you wish to convert. Note
that the inimage pixmap is rounded horizontally to 8 pixels. That is each
raster line in the source is always made up of an integer number of
bytes. This means if an image is 15 pixels wide and one pixel high the
bitmap will take 2 whole bytes. w and h are set to the images width and
height respectively. colora is the color bits set to 1 are set to. Bits set to
0 will be transparent. colorb should be set to 0. outstorage should be
set to NULL if you wish RenderWare to allocate memory for the
transformed image. Otherwise it should be set to the area where the
image should be written. On exit outstorage will always point to where
the translated image was stored.
For example;

charimage[] =
 {0xff, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0xff};
RwReal white[] =

{CREAL(1.0), CREAL(1.0),CREAL(1.0)};
RwImageConvert cimage;
void *rawimage;
cimage.inimage = image;
cimage.w = 8;
cimage.h = 8;
cimage.colora =

RwDeviceControl(rwSCRGETCOLOR, 0L, white,
sizeof(RwReal) * 3);

cimage.outstorage = NULL;
RwDeviceControl(rwBITMAPTORAW, 0L, &cimage,

sizeof(cimage));
rawimage = cimage.outstorage;

creates a white square imageThis control returns TRUE if successful and FALSE otherwise.
· rwCHARMAPTORAW

This device control works in a similar way to the rwBITMAPTORAW device
control explained above. Here the image consists of characters where
spaces denote 'transparent' areas, 'a' denotes a pixel set to color a and
'b' denotes a pixel set to color b.
For example, to create an outlined square raw image;

char image[]="\
aaaaaa \
abbbbbba\
abaaaaba\
aba aba\
aba aba\
abaaaaba\
abbbbbba\
aaaaaa ";

RwReal white[]=
{CREAL(1.0), CREAL(1.0),CREAL(1.0)};

RwReal black[]=
{CREAL(0.0), CREAL(0.0), CREAL(0.0)};

RwImageConvert cimage;
void *rawimage;

cimage.inimage = image;
cimage.w = 8;
cimage.h = 8;
cimage.colora =

RwDeviceControl(rwSCRGETCOLOR, 0L, black,
sizeof(RwReal) * 3);

cimage.colorb =
RwDeviceControl(rwSCRGETCOLOR, 0L, white,
sizeof(RwReal) * 3);

cimage.outstorage = NULL;

RwDeviceControl(rwBITMAPTORAW, 0L, &cimage,
sizeof(cimage));

rawimage = cimage.outstorage;
creates a white square outlined in black.This control returns TRUE if successful and FALSE otherwise.

· rwPOINTERDISPLAYAT
This action displays the pointer image at a specified position on the
screen. param1 is ignored, param2 should be a pointer to an
RwMousePointer structure and size should be the size of an
RwMousePointer structure.
The x field of the RwMousePointer structure is the screen X coordinate
that the pointer image is to be placed at. The y field is the screen Y
coordinate that the pointer image is to be placed at.
If the image is currently displayed at another position on the display it is
removed before the image is displayed at the new position. The pointer
clipping rectangle applies to the newly displayed image. The mouse
bounding region will not have any affect on the positioning. The mouse
pointer will remain at the new position until,
1) rwPOINTERDISPLAY is used - then the pointer image will move to the
current mouse position.
2) rwPOINTERDISPLAYAT is used - the pointer image at the previous
position is removed and the pointer image is displayed at the new
position.

3) rwPOINTERREMOVE is used - the pointer is removed from the display.This control returns TRUE if successful and FALSE otherwise.
· rwSETPOINTERPOSITION

This action sets the internal mouse absolute position (as read by
rwPOINTERGETPOSITION or rwPOINTERDISPLAY). param1 is ignored,
param2 should be a pointer to an RwMousePointer structure and size
should be the size of an RwMousePointer structure.
The x field of the RwMousePointer structure is the screen X coordinate
that the mouse is to be placed at. The y field is the screen Y coordinate
that the mouse is to be placed at.

The mouse bounding region is not taken into account when the position is set. Note that this control will not redisplay the pointer at the new position.    The pointer will be displayed at its new position on the next rwDISPLAYPOINTER call.This control returns TRUE if successful and FALSE otherwise.
· rwGETPOINTERPOSITION

This action returns the current absolute position of the mouse along with
the mouse button status. param1 is ignored, param2 should be a pointer
to an RwMousePointer structure and size should be the size of an
RwMousePointer structure. This structure will be filled in with the current
absolute position of the mouse as well as the current mouse button
status. This will have no effect on any currently displayed pointer image.
This control returns TRUE if successful and FALSE otherwise.

· rwGETPOINTERRELATIVE
This action returns the current relative position of the mouse along with
the mouse button status. param1 is ignored, param2 should be a pointer
to an RwMousePointer structure and size should be the size of an
RwMousePointer structure.
The structure is filled with the number of 'mickeys' that have occurred
between the previous call to this function (or the start of the application)
and the current call. The x field in the structure holds the number of
mickeys moved, since the last call, in the X direction. The y field holds
the number of mickeys moved, since the last call, in the Y direction. The
button entry will hold the current mouse button status.
A 'mickey' is the highest resolution value of change given by the mouse.

It is a relative value - positive values mean right or down, negative
values mean left or up. The larger the mickey value the greater the
distance the mouse has moved.
Note: The mickey values can used to produce the 'absolute' position of
the mouse if, after the first call, the corresponding relative mickey values
are added to a running total of mickeys in the X and Y directions. The
running totals are then the 'absolute' position of the mouse.
This control returns TRUE if successful and FALSE otherwise.

RwCamera *
RwDuplicateCamera(RwCamera *cam, void *param)

Arguments

param NULL or the image buffer of an existing camera (as returned by calling
RwGetCameraImage ()).
The duplicated camera will not share the image buffer of the camera
being duplicated unless the image buffer of the existing camera is
passed as param. If NULL is passed as param the new camera will create
its own image buffer.
For an example of how to specify param, see the discussion of
RwCreateCamera () in this section.

void *
RwGetCameraImage(RwCamera *cam);

Return value

The image buffer of a RenderWare camera under MS DOS is always an
RwRaster object. It can therefore be queried via the RwRaster access
functions.

RwBool
RwGetDeviceInfo(RwDeviceInfo info, void *value, RwInt32 size)

Comments

The MS DOS specific aspects of each device information type are as follows;
 rwSCRDEPTH The depth (in bits) of the resolution that the VGA adapter

is in.
 rwSCRWIDTH The width (in pixels) of the resolution the VGA adapter is

in.
 rwSCRHEIGHT The height (in pixels) of the resolution the VGA adapter is

in.
 rwINDEXEDRENDERING As the generic RwGetDeviceInfo () .
 rwPALETTEBASED Rendering is palette based if and only if the video adapter

is running in a palette based mode. This will normally be
the case if the video adapter is in 8-bit (256) color mode.
In other modes rendering will not be palette based.

The following options apply when the output device is palette based:
 rwPALETTE Returns a pointer to a table of 256*3 characters. Each set

of consecutive three characters constitutes a color in the
form (red, green, blue). That is the first character is the red
intensity of the color, the second green and the third blue.
The first triple is for color zero. The next for color one etc.

 rwPALETTESIZE As the generic RwGetDeviceInfo () .
 rwLASTPALETTEENTRY As the generic RwGetDeviceInfo () .
 rwFIRSTPALETTEENTRY As the generic RwGetDeviceInfo () .

RwBool
RwOpen(char *devname, void *param);

Arguments

devname The device name is a null-terminated string. Names currently supported
under MS DOS are :

"DOS",
"DOSMOUSE"
"NullDevice"

The "NullDevice" driver allows the library to be used when output to a
display is not required (for instance, when reading from or to files).
"DOSMOUSE" will open the library with the    mouse driver active. This will
mean that the library can only be accessed if a Microsoft compatible
mouse driver is not required.
"DOS" performs the same function as "DOSMOUSE" except the mouse is not
accessed, and so a mouse driver is not required.

param param should be set to a pointer to a RwInt32. If the library does not
open, then the RwInt32 pointed to will be set to one of the following
symbols;
E_RW_DOS_MODE_UNAVAILABLE
Unable to access the video mode requested.
E_RW_DOS_NO_VESA_BIOS
No VESA BIOS is available, install a VESA TSR for your video card.
E_RW_INCOMPATIBLE_BIOS
The VESA BIOS is not a recent enough release to be usable. (must be

1.0 or greater).
E_RW_NO_MOUSE
No Microsoft mouse driver found.

These symbols are located in rwdos.h header file.
Comments

RwOpen () parses the RenderWare initialization file dosrw.ini as described in
"RenderWare Library Configuration" on page -

RwBool
RwOpenExt(char *devname, void *param, RwInt32 numargs,

RwOpenArgument *args);
Arguments

devname The device name as a null-terminated string. Names currently supported
under MS DOS are:

"DOS"
"DOSMOUSE"
"NullDevice"

The "NullDevice" driver allows the library to be used when output to a
display is not required (for instance, when reading from or writing to
files).
"DOSMOUSE" will open the library with the    mouse driver active. This will
mean that the library can only be accessed if a Microsoft compatible
mouse driver is not required.
"DOS" performs the same function as "DOSMOUSE" except the mouse is not
accessed, and so a mouse driver is not required.

param param should be set to a pointer to an RwInt32. The long will be set to an
error code if the library cannot be opened. See RwOpen () for details.

numargs The number of optional arguments specified.
args An array of optional open arguments.

Comments

As discussed in "RenderWare Library Configuration" on page -, RwOpenExt () does
not read the RenderWare initialization file dosrw.ini. Library configuration control is
achieved by specifying a number of additional arguments to RwOpenExt () .
RwOpenExt () takes a pointer to an array of RwOpenArgument structures.
RwOpenArgument is defined as follows:

typedef struct
{

RwOpenOption option;
void *value;

} RwOpenArgument;
option is one of the identifiers defined below and value is a parameter specific to
the option type. If the parameter type is integer,    the integer value should be cast
to a void *.
For example:

args[0].value = (void *)10;
The configuration options supported under MS DOS are:
 rwGAMMACORRECT Controls whether RenderWare performs gamma correction

on its color palette. value should be non-zero to enable
gamma correction, and zero to disable gamma correction.

 rwSCRWIDTH Requests a video mode of the graphics adapter with a
width of value.

 rwSCRHEIGHT Requests a video mode of the graphics adapter with a

height of value.
 rwSCRDEPTH Requests a video mode of the graphics adapter with a

depth of value.
The following example demonstrates opening the RenderWare library with a
resolution of 640 by 480 in 8-bit color.

RwOpenArgument args[3];
LONG nERROR;

args[0].option = rwSCRWIDTH;
args[0].value = (void *)640;
args[1].option = rwSCRHEIGHT;
args[1].value = (void *)480;
args[2].option = rwSCRDEPTH;
args[2].value = (void *)8;
RwOpenExt("DOSMOUSE", &nERROR, 3, args);

RwBool
RwOpenDebugStream(char *filename)

Arguments

filename Specifying "MONO:" as the name of a debugging stream will result in
debugging output being issued to a monochrome display adapter
(assuming a configuration with both a VGA card and monochrome
display adapter).
Note that when linking against the debugging version of the library, the
default debugging stream is \rw.log.

RwCamera *
RwShowCameraImage(RwCamera *cam, void *param);

Arguments

param param is ignored. It should be passed as NULL.
For example;

RwShowCameraImage(cam, NULL);

Other Platforms
If you are using an SDK for a platform other than MS Windows or MS DOS please see the
Release Notes supplied with that SDK.

Error Codes

Related Topics
Error Descriptions
Error Identifiers and Codes

Error Descriptions
Note that in the discussion of the following error codes, the comments involving Object
Builder functions RwModelBegin(), RwModelEnd(), RwProtoBegin(), RwProtoEnd(),
RwClumpBegin(), RwClumpEnd(), RwTransformBegin() and RwTransformEnd() also apply to
their script keyword counterparts.

E_RW_BADOPEN
An error occurred while opening the specified file.

E_RW_COMPLEXPOLYGON
The specified polygon has too many sides. The maximum number of sides a polygon can
have in RenderWare V1.4 is 255.

E_RW_DEFSCENE
An attempt was made to destroy the default scene or explicitly remove a clump or light from
it.

E_RW_DEGEN
An attempt was made to create a degenerate clump (a clump with no children and no
geometry).

E_RW_DEGENPOLYGON
A degenerate polygon (one with less than three sides) was specified.

E_RW_INTERNAL
An internal (library) error has occurred. Contact RenderWare technical support.

E_RW_INVAXISALIGNMENT
An invalid clump axis alignment type was specified. The legal values are
rwNOAXISALIGNMENT, rwALIGNAXISZORIENTX, rwALIGNAXISZORIENTY and rwALIGNAXISXYZ.

E_RW_INVCAMERAPROJECTION
An invalid camera projection type was specified. The legal values are rwPERSPECTIVE and
rwPARALLEL.

E_RW_INVCOP
An invalid RwCombineOperation was specified. The legal values are rwREPLACE,
rwPRECONCAT and rwPOSTCONCAT.

E_RW_INVDEVICE
An invalid device name was specified in a call to RwOpen() or RwOpenExt().

E_RW_INVDEVICEACTION
An invalid action was specified in a call to RwDeviceControl(). For a description of legal
actions see Appendix B.

E_RW_INVDEVICEINFO
An invalid information type was specified in a call to RwGetDeviceInfo(). For a description
of legal information types see the description of RwGetDeviceInfo() and Appendix B.

E_RW_INVFRAME
An invalid texture frame number was specified. A valid frame index is greater than or equal
to zero and less than the number of frames in the texture.

E_RW_INVFRAMESTEP
An invalid texture frame step was specified. A valid step size is less than the absolute
number of frames in the texture.

E_RW_INVGEOMETRYSAMPLING
An invalid geometry sampling type was specified. The legal values are rwPOINTCLOUD,
rwWIREFRAME and rwSOLID.

E_RW_INVHINT
An invalid clump hint was specified. The legal values are rwCONTAINER, rwHS and
rwEDITABLE.

E_RW_INVIMAGEFILE
An image file (MS Windows bitmap file or Sun Rasterfile) being read by RwReadRaster(),
RwReadMaskRaster(), RwReadTexture() or RwReadNamedTexture() was not valid. This code
indicates an error in the image data in the file.

E_RW_INVLIGHT
An invalid light type was specified. The legal values are rwDIRECTIONAL, rwPOINT and
rwCONICAL.

E_RW_INVLIGHTSAMPLING
An invalid light sampling type was specified. The legal values are rwFACET and rwVERTEX.

E_RW_INVMATERIAL
An attempt was made to destroy a material whose handle was not obtained by calling
RwCreateMaterial(), e.g., a material obtained by calling RwGetPolygonMaterial()
E_RW_INVOPENOPTION
An invalid option was specified in a call to RwOpenExt(). For a description of legal options
see Appendix B.

E_RW_INVPROTOTYPE
A prototype attempted to create an instance of itself.

E_RW_INVRASTEROPTIONS
An invalid raster processing option (or combination of options) was specified. The valid
options are rwGAMMARASTER, rwDITHERRASTER and rwFITRASTER.

E_RW_RASTERSIZE
A raster of an invalid size was specified. If the raster was being selected into a texture with
RwSetTextureRaster() the raster must have a width of 128 and a height of n * 128 where n
is the number of frames in a multi-frame texture. If the raster is receiving a copy of a
cameras viewport via RwGetCameraViewportRaster() the raster must be the same size as
the cameras viewport.

E_RW_INVBUFFERSIZE
A buffer passed in to a RenderWare function was not large enough
E_RW_INVSEARCHMODE
An invalid search mode was specified. The legal values are rwLOCAL and rwGLOBAL.

E_RW_INVSPP
An invalid spline path type was specified. The legal values are rwSMOOTH and rwNICEENDS.

E_RW_INVSPT
An invalid spline type was specified. The legal values are rwOPENLOOP and rwCLOSEDLOOP.

E_RW_INVSTATE
An invalid state was specified. The legal values are rwON and rwOFF.

E_RW_INVSYSTEMINFO
An invalid system parameter was specified. The legal values are rwVERSIONSTRING,
rwVERSIONMAJOR, rwVERSIONMINOR, rwVERSIONRELEASE, rwFIXEDPOINTLIB and
rwDEBUGGINGLIB.

E_RW_INVTEXTUREDITHERMODE
An invalid texture dithering mode was specified. The legal values are rwAUTODITHER,
rwDITHERON and rwDITHEROFF.

E_RW_INVTEXTUREHEIGHT
A texture with an invalid height was specified.

E_RW_INVTEXTUREMODE
An invalid texture mode was specified. The legal values are rwLIT, rwFORESHORTEN and
rwFILTER.

E_RW_INVTEXTURENAME
An invalid texture name was specified.

E_RW_INVTEXTUREWIDTH
A texture with an invalid width was specified.

E_RW_INVUSERDRAWALIGN
An invalid user-draw alignment type was specified. The legal values are rwALIGNTOP,
rwALIGNBOTTOM, rwALIGNLEFT and rwALIGNRIGHT. For convenience rwALIGNTOPLEFT and
rwALIGNBOTTOMRIGHT are also defined.

E_RW_INVUSERDRAWTYPE
An invalid user-draw type was specified. The legal values are rwCLUMPALIGN,
rwVERTEXALIGN, rwBBOXALIGN and rwVPALIGN.

E_RW_INVVERTEXINDEX
An invalid vertex index was found. A valid index for a vertex is greater than or equal to one
and less than or equal to the number of vertices in the clump to which it belongs.

E_RW_NESTEDMODEL
A nested RwModelBegin() was found in an RwModelBegin() … RwModelEnd() block or an
RwClumpBegin() … RwClumpEnd() or RwProtoBegin() … RwProtoEnd() block. Nested
modeling contexts are not allowed.

E_RW_NESTEDPROTOTYPE
A nested RwProtoBegin() was found in an RwProtoBegin() … RwProtoEnd() block or an
RwClumpBegin() … RwClumpEnd() block. Nested prototype declarations are not allowed.

E_RW_NOCLUMP
No clump is currently under construction. Note that the current clump is an implicit
argument of some Object Builder functions, e.g., RwSphere().

E_RW_NOCLUMPBUILT
The parsing of a script file resulted in no clump being created, i.e., the top-level ClumpBegin
… ClumpEnd was missing from the script.

E_RW_NOERROR
No error has been set. This code indicates that no error has been detected.

E_RW_NOFILE
The specified file does not exist.

E_RW_NOMATCHBEGIN
No matching Begin was found for an End. For example, this error would occur if there was no
matching RwTransformBegin() for an RwTransformEnd().

E_RW_NOMATCHEND
No matching End was found for a Begin. For example, this error would occur if there was no
matching RwModelEnd() for an RwModelBegin().

E_RW_NOMEM
The library was unable to perform the specified operation due to insufficient memory.

E_RW_NOMODELBEGIN
An attempt was made to declare a prototype outside of an RwModelBegin() …
RwModelEnd() block.

E_RW_NOPROTOTYPEFOUND
No prototype with the specified name was found.

E_RW_NOTROOT
An attempt was made to add to a scene or remove from a scene a clump that is not the root
of its hierarchy.

E_RW_NULLP
A NULL pointer was used as an argument to a library function where a non-NULL object
pointer was expected.

E_RW_RANGE
A numeric range error occurred.

E_RW_RASTERINUSE
An attempt was made to select a raster already owned by a texture into a different texture
or to destroy a raster owned by a texture.

E_RW_READ
An error occurred while reading from an input stream.

E_RW_RSINVAXISALIGNMENT
An invalid clump axis alignment type was specified in a script file. The legal values are None,
ZOrientX, ZOrientY and XYZ.

E_RW_RSINVDITHERMODE
An invalid texture dithering mode was specified in a script file. The legal values are On, Off
and Auto.

E_RW_RSINVGAMMAMODE
An invalid texture gamma correction mode was specified in a script file. The legal values are
On and Off.

E_RW_RSINVGEOMETRYSAMPLING
An invalid geometry sampling type was specified in a script file. The legal values are
PointCloud, Solid and WireFrame.

E_RW_RSINVHINT
An invalid clump hint was specified in a script file. The legal values are NULL, Container, HS
and Editable.

E_RW_RSINVLIGHTSAMPLING
An invalid light sampling type was specified in a script file. The legal values are Facet and
Vertex.

E_RW_RSINVTEXTUREMODE
An invalid texture mode was specified in a script file. The legal values are NULL, Lit,
Foreshorten and Filter.

E_RW_RSINVTRACESTATE
A invalid tracing state was specified in a script file. The legal values are On and Off.

E_RW_RSNOHINTS
No hints were specified as arguments for a scripting command that adds, removes, or sets
hints. The legal values are NULL, Container, HS and Editable.

E_RW_RSNOTEXTUREMODES
No texture modes were specified as arguments for a scripting command that adds, removes
or sets texture modes. The legal values are Null, Lit, Foreshorten and Filter.

E_RW_RSPARSE
An invalid keyword was found in a script file.

E_RW_RSREAD
An I/O error occurred while reading from a script file.

E_RW_SHPPATH
The shape path is too long (greater than 1024 characters).

E_RW_TEXTURENOTFOUND
The specified texture was not found.

E_RW_USER
A call to RwSetUserError() generated this error.

E_RW_WRITE
An error occurred while writing to an output stream.

E_RW_WSWRITE
An error occurred while writing a script to an output stream.

E_RW_ZEROVEC
A zero length vector was specified.

Error Identifiers and Codes
Errors Sorted Alphabetically By Identifier
Errors Sorted Numerically By Code

Errors Sorted Alphabetically By Identifier
Identifier Numeric Code

E_RW_BADOPEN 14
E_RW_COMPLEXPOLYGON 41
E_RW_DEFSCENE 25
E_RW_DEGEN 7
E_RW_DEGENPOLYGON 40
E_RW_INTERNAL 71
E_RW_INVAXISALIGNMENT 49
E_RW_INVBUFFERSIZE 70
E_RW_INVCAMERAPROJECTION 44
E_RW_INVCOP 2
E_RW_INVDEVICE 18
E_RW_INVDEVICEACTION 64
E_RW_INVDEVICEINFO 63
E_RW_INVFRAME 20
E_RW_INVFRAMESTEP 21
E_RW_INVGEOMETRYSAMPLING 26
E_RW_INVHINT 47
E_RW_INVIMAGEFILE 69
E_RW_INVLIGHT 8
E_RW_INVLIGHTSAMPLING 28
E_RW_INVMATERIAL 19
E_RW_INVOPENOPTION 65
E_RW_INVPROTOTYPE 37
E_RW_INVRASTEROPTIONS 60
E_RW_INVRASTERSIZE 62
E_RW_INVSEARCHMODE 46
E_RW_INVSPP 16
E_RW_INVSPT 17
E_RW_INVSTATE 45
E_RW_INVSYSTEMINFO 55
E_RW_INVTEXTUREDITHERMODE 61
E_RW_INVTEXTUREHEIGHT 23
E_RW_INVTEXTUREMODE 56
E_RW_INVTEXTURENAME 43
E_RW_INVTEXTUREWIDTH 22
E_RW_INVUSERDRAWALIGN 51
E_RW_INVUSERDRAWTYPE 50
E_RW_INVVERTEXINDEX 24
E_RW_NESTEDMODEL 32
E_RW_NESTEDPROTOTYPE 35
E_RW_NOCLUMP 38
E_RW_NOCLUMPBUILT 39
E_RW_NOERROR 0
E_RW_NOFILE 13
E_RW_NOMATCHBEGIN 33
E_RW_NOMATCHEND 34
E_RW_NOMEM 3
E_RW_NOMODELBEGIN 36
E_RW_NOPROTOTYPEFOUND 30
E_RW_NOTROOT 15
E_RW_NULLP 1
E_RW_RANGE 11

E_RW_RASTERINUSE 66
E_RW_READ 10
E_RW_RSINVAXISALIGNMENT 54
E_RW_RSINVDITHERMODE 67
E_RW_RSINVGAMMAMODE 68
E_RW_RSINVGEOMETRYSAMPLING 27
E_RW_RSINVHINT 53
E_RW_RSINVLIGHTSAMPLING 29
E_RW_RSINVTEXTUREMODE 57
E_RW_RSINVTRACESTATE 52
E_RW_RSNOHINTS 58
E_RW_RSNOTEXTUREMODES 59
E_RW_RSPARSE 4
E_RW_RSREAD 5
E_RW_SHPPATH 9
E_RW_TEXTURENOTFOUND 42
E_RW_USER 48
E_RW_WRITE 12
E_RW_WSWRITE 6
E_RW_ZEROVEC 31

Errors Sorted Numerically By Code
Numeric Code Identifier

0 E_RW_NOERROR
1 E_RW_NULLP
2 E_RW_INVCOP
3 E_RW_NOMEM
4 E_RW_RSPARSE
5 E_RW_RSREAD
6 E_RW_WSWRITE
7 E_RW_DEGEN
8 E_RW_INVLIGHT
9 E_RW_SHPPATH
10 E_RW_READ
11 E_RW_RANGE
12 E_RW_WRITE
13 E_RW_NOFILE
14 E_RW_BADOPEN
15 E_RW_NOTROOT
16 E_RW_INVSPP
17 E_RW_INVSPT
18 E_RW_INVDEVICE
19 E_RW_INVMATERIAL
20 E_RW_INVFRAME
21 E_RW_INVFRAMESTEP
22 E_RW_INVTEXTUREWIDTH
23 E_RW_INVTEXTUREHEIGHT
24 E_RW_INVVERTEXINDEX
25 E_RW_DEFSCENE
26 E_RW_INVGEOMETRYSAMPLING
27 E_RW_RSINVEGEOMETRYSAMPLING
28 E_RW_INVLIGHTSAMPLING
29 E_RW_RSINVLIGHTSAMPLING
30 E_RW_NOPROTOTYPEFOUND
31 E_RW_ZEROVEC
32 E_RW_NESTEDMODEL
33 E_RW_NOMATCHBEGIN
34 E_RW_NOMATCHEND
35 E_RW_NESTEDPROTOTYPE
36 E_RW_NOMODELBEGIN
37 E_RW_INVPROTOTYPE
38 E_RW_NOCLUMP
39 E_RW_NOCLUMPBUILT
40 E_RW_DEGENPOLYGON
41 E_RW_COMPLEXPOLYGON
42 E_RW_TEXTURENOTFOUND
43 E_RW_INVTEXTURENAME
44 E_RW_INVCAMERAPROJECTION
45 E_RW_INVSTATE
46 E_RW_INVSEARCHMODE
47 E_RW_INVHINT
48 E_RW_USER
49 E_RW_INVAXISALIGNMENT
50 E_RW_INVUSERDRAWTYPE
51 E_RW_INVUSERDRAWALIGN

52 E_RW_RSINVTRACESTATE
53 E_RW_RSINVHINT
54 E_RW_RSINVAXISALIGNMENT
55 E_RW_INVSYSTEMINFO
56 E_RW_INVTEXTUREMODE
57 E_RW_RSINVTEXTUREMODE
58 E_RW_RSNOHINTS
59 E_RW_RSNOTEXTUREMODES
60 E_RW_INVRASTEROPTIONS
61 E_RW_INVTEXTUREDITHERMODE
62 E_RW_INVRASTERSIZE
63 E_RW_INVDEVICEINFO
64 E_RW_INVDEVICEACTION
65 E_RW_INVOPENOPTION
66 E_RW_RASTERINUSE
67 E_RW_RSINVDITHERMODE
68 E_RW_RSINVGAMMAMODE
69 E_RW_INVIMAGEFILE
70 E_RW_INVBUFFERSIZE
71 E_RW_INTERNAL

The Texture File Formats
Textures in RenderWare V1.4 are 128 x 128, 8 or 16 bit deep bitmaps. However, RenderWare
can read bitmaps of sizes other than 128 x 128 pixels and depths other than 8 or 16 bits.
Such bitmaps are converted automatically to RenderWares internal raster format.
Furthermore, RenderWare can read textures from MS Windows and OS/2 bitmap (.bmp) files
in addition to RenderWares own texture file format (.ras).
In the case of RenderWares own texture file format (.ras) the following are supported:· Bitmaps of any width and height.· Bitmaps with depths of 1, 8, 24 or 32 bits.

· Uncompressed or run length encoded bitmaps.For MS Windows and OS/2 bitmap (.bmp) files the following are supported:· Bitmaps of any width and height.· Bitmaps with depths of 1, 4, 8 or 24 bits.
· Uncompressed or run length encoded bitmaps.Bitmaps of sizes other than 128 x 128 and depths other than 8 bits will be filtered and quantized to RenderWares internal texture format. It is important to note the followingwhen using textures of sizes and depths different from the internal format:· Files that contain bitmaps which are already in the internal format, i.e., 128 x 128 by 8 bits deep will load more quickly. However, such textures are likely to be less visuallypleasing than larger, deeper textures which are filtered and quantized to size.
· Texture movies (multi-frame textures) must be stored as bitmaps which are 128 pixels

wide and a whole multiple of 128 pixels high.
RenderWares own texture file format is based on the format used for Sun Microsystemss
rasterfiles. RenderWare will read any legal Sun Rasterfile. For a description of Suns Rasterfile
format see:
[1] Rasterfile (5) in Sun Microsystems, Sun OS 4.0 Programmers Manual, 1990
[2] Pat McGee, Format for byte encoded rasterfiles in Sun-Spots Digest, Volume 6, Issue
84.
[3] David. C. Kay and John R. Levine, Graphics File Formats, Windcrest/McGraw-Hill, 1992.

For a description of MS Windows bitmap (.bmp) file format see:
[4] Bitmap-File Formats, Microsoft Windows 3.1 Programmers Reference Volume 4:
Resources, Microsoft, 1987-1992. Part Number: 30211.
[5] David. C. Kay and John R. Levine, Graphics File Formats, Windcrest/McGraw-Hill, 1992.

 Textures are, in fact, based on RenderWares own bitmap object type, RwRaster. The
depth of RwRaster objects is always equal to the current RenderWare rendering depth.
Therefore, textures will be either 8 or 16 bits deep, the actual depth being decided at run-
time.

 Currently RenderWare does not support any 16 bit texture file formats. Therefore,
when rendering at 16 bits all texture files undergo color conversion.

Library Defaults
This appendix details the various default values found in the RenderWare library. This
includes the default values of global library parameters and the default values of
RenderWare objects when first created.

Related Topics
Camera Object Defaults
Clump Object Defaults
Debugging Defaults
Device Information Defaults
Error Status Defaults
Library Global Defaults
Light Object Defaults
Material Object Defaults
Matrix Object Defaults
Polygon Object Defaults
Raster Object Defaults
Scene Object Defaults
Spline Object Defaults
System Information Defaults
Texture Object Defaults
Texture Dictionary Defaults
UserDraw Object Defaults
Vertex Defaults

Camera Object Defaults
Attribute Default

Position [CREAL(0.0), CREAL(0.0), CREAL(0.0)]
 in world coordinates

Look At [CREAL(0.0), CREAL(0.0), CREAL(-1.0)]
Look Right [CREAL(1.0), CREAL(0.0), CREAL(0.0)]
Look Up [CREAL(0.0), CREAL(1.0), CREAL(0.0)]
Viewport Position = [0, 0] Size = [0, 0]
Viewwindow [CREAL(1.0), CREAL(1.0)]
View Offset [CREAL(0.0), CREAL(0.0)]
Near Clipping CREAL(0.05)
Projection rwPERSPECTIVE
Back Color [CREAL(0.0), CREAL(0.0), CREAL(0.0)]

(Black)
Backdrop NULL
Backdrop Offset [0, 0]
Backdrop Viewport
Rectangle

Position = [0, 0] Size = [0, 0]

Data NULL
Image Device dependent

Clump Object Defaults
Attribute Default

Origin [CREAL(0.0), CREAL(0.0),
CREAL(0.0)] in world coordinates

Matrix Identity
Joint Matrix Identity
LTM Identity
Owner The default scene

 (as returned by RwDefaultScene())
Parent NULL
Root The clump itself
Data NULL
First Child NULL
Next Clump NULL
Number of Vertices Defined at creation time
Number of Polygons Defined at creation time
Number of Children 0
Number of UserDraws 0
Tag 0
Hints rwHS
Axis Alignment rwNOAXISALIGNMENT
State rwON
Bounding Box Computed
Viewport Rectangle Computed

Debugging Defaults
Attribute Default

Stream stderr on Unix
\rw.log on DOS and MS Windows
stderr on the Macintosh

Assertion State rwON
Message State rwON
Script State rwOFF
Severity rwINFORM
Trace State rwOFF

Device Information Defaults
Attribute Default
rwRENDERDEPTH 8 or 16. Actual value is device specific
rwINDEXEDRENDERING Non-zero if the current render depth is

8
Zero if the current render depth is 16

rwPALETTEBASED Non-zero if the output device is palette
based
Zero if the output device is not palette
based

rwPALETTE Device dependent
rwPALETTESIZE Device dependent
rwFIRSTPALETTEENTRY Device dependent
rwLASTPALETTEENTRY Device dependent

Error Status Defaults
Attribute Default

Status E_RW_NOERROR
Internal Error Undefined

Library Global Defaults
Attribute Default

Current Camera NULL
Shape Path Value of environment variable

RWSHAPEPATH or    if the environment
variable is not set on DOS, MS Windows
and Unix
 on the Macintosh

Scenes One. The default scene
 (as returned by RwDefaultScene())

Lights None
Clumps None
Cameras None
Textures None
Texture Dictionaries One on the Texture Dictionary stack.
Rasters None
Splines None
UserDraws None
Matrices One on the Scratch matrix stack, one on

the Current Matrix stack and one on the
Joint Matrix stack

Materials One on the Material stack
Texture Dithering rwAUTODITHER
Texture Gamma
Correction

rwON

Light Object Defaults
Attribute Default

Type Defined at creation time
Brightness Defined at creation time
Color Defined at creation time (each of the red,

green and blue components of the color are
equal to the specified brightness)

Position Defined at creation time for point and conical
lights

Vector Defined at creation time for directional lights.
[CREAL(0.0), CREAL(-1.0), CREAL(0.0)]
 for conical lights

Owner The default scene (as returned by
RwDefaultScene())

Cone Angle CREAL(30.0) for conical lights
CREAL(180.0) for point lights

State rwON
Data NULL

Material Object Defaults
Attribute Default

Ambient CREAL(0.0)
Diffuse CREAL(0.0)
Specular CREAL(0.0)
Light Sampling rwFACET
Geometry Sampling rwSOLID
Color [CREAL(0.0), CREAL(0.0), CREAL(0.0)]

(Black)
Opacity CREAL(1.0)
Texture NULL
Texture Modes rwLIT

Matrix Object Defaults
Attribute Default

Elements Identity

Polygon Object Defaults
Attribute Default

Material Defined at creation time by the Current
Material
(as returned by RwCurrentMaterial())

Vertices Defined at creation time
Center Computed
Normal Computed
Number of Sides Defined at creation time
Owner Defined at creation time
UV [CREAL(0.5), CREAL(0.5)] for all vertices
Tag 0
Data NULL

Raster Object Defaults
Attribute Default

Width Defined at creation time (either explicitly
or by source image)

Height Defined at creation time (either explicitly
or by source image)

Depth Equal to the current RenderWare render
depth

Stride Computed from the width
Pixel Pointer Defined at creation time
Pixel Values Undefined if created with

RwCreateRaster()
Derived from the source image if created
by RwBitmapRaster(), RwReadRaster()
or RwReadMaskRaster()

Data NULL

Scene Object Defaults
Attribute Default

Number of Clumps 0
Number of Lights 0
Data NULL

Spline Object Defaults
Attribute Default

Type Defined at creation time
Points Defined at creation time
Number of Points Defined at creation time
Data NULL

System Information Defaults
Attribute Default
rwVERSIONSTRING Library dependent
rwVERSIONMAJOR Library dependent
rwVERSIONMINOR Library dependent
rwVERSIONRELEASE Library dependent
rwFIXEDPOINTLIB Non-zero for fixed point library

Zero for floating point library
rwDEBUGGINGLIB Non-zero for debugging library

Zero for production library

Texture Object Defaults
Attribute Default

Name Computed for named textures
NULL for other textures

Frame 0
Frame Step +1
Number of Frames Defined at creation time
Raster Defined at creation time
Mask Unmasked
Dithering Defined by the global dithering mode for a

texture read by RwReadTexture() or
RwReadNamedTexture()
Defined by the specified raster options for a
texture created from a raster created by
RwReadRaster() or RwBitmapRaster().

Gamma Correction Defined by the global gamma correction
mode for a texture read by
RwReadTexture() or
RwReadNamedTexture()
Defined by the specified raster options for a
texture created from a raster created by
RwReadRaster() or RwBitmapRaster()

Data NULL

Texture Dictionary Defaults
Attribute Default

Textures None
Search Mode rwGLOBAL

UserDraw Object Defaults
Attribute Default

Alignment Defined at creation time
Call-back Defined at creation time
Offset Defined at creation time
Size Defined at creation time
Type Defined at creation time
Owner NULL
Data NULL
Vertex Index Undefined
Parent Alignment Undefined

Vertex Defaults
Attribute Default

Coordinates Defined at creation time
Texture coordinates [CREAL(0.5), CREAL(0.5)]
Normal Computed
Viewport Position Computed

