Fundus Interpretation Made Real

Mary B. Glaze, DVM, MS, DACVO Gulf Coast Animal Eye Clinic Houston, Texas

Ocular Fundus

- Posterior portion of eye examined with ophthalmoscope
- Composite structure
 - Retina
 - Choroid/tapetum
 - Sclera
 - Optic disc

Fundus Examination

- Direct ophthalmoscopy
- Indirect ophthalmoscopy
 - Monocular indirect scope (PanOptic)
 - Hand-held lens/focal light source
 - Binocular indirect ophthalmoscope

- 15X magnification
- Upright image
- Least expensive

- Limited field of view
- Poor penetration through opaque media
- Time consuming technique
- No stereopsis
- Risk of injury due to proximity to patient

- Select 0 diopter setting
- View tapetal reflection from 25cm
- Move toward eye, observing clarity of media
- Examine from a distance of 2-3 cm, assessing optic disc, retinal blood vessels, and general variations in fundus color and reflectivity

Monocular Indirect: Welch-Allyn PanOptic®

- Easiest to use
- Upright image
- 3x magnification, giving larger field of view than direct
- Safer working distance than direct

Monocular Indirect: Welch-Allyn PanOptic®

- More expensive than direct
- Smaller field of view than indirect

Binocular Indirect

- 3-dimensional image (stereopsis)
- Safest working distance
- Penetrates opaque media
- 2x magnification provides largest field of view

Indirect Lens

- Less magnification provides greater field of view
- 30 D magnifies 2x
- 20 D magnifies 4x
- 14 D magnifies 8x

Binocular Indirect

- Most expensive
- Proficiency requires practice!
- Inverted, reversed image

"Poor Man's" Indirect

 Combines handheld light source with indirect lens

"Poor Man's" Indirect

- Advantages
 - Least expensive
 - Quick screening tool

- Disadvantages
 - Occupies both hands
 - Inverted, reversed image

Indirect Technique

- Examine at eye-level and arm's length
- Direct light to obtain tapetal reflection
- Place lens in path of light, 2-4cm in front of eye, adjusting slightly back and forth to give best virtual image
- Maintain alignment of your eye with light source and lens but change angle of view to examine other fundus areas

Fields of View

Ocular Fundus

- General features
 - Tapetal region
 - Non-tapetal region
 - Area centralis
 - Optic disc or papilla
 - Retinal vessels

Canine Fundus

- Optic disc
 - Shape
 - Location
 - Associated vessels
- Retinal vessels
- Tapetum
- Tapetal junction
- Non-tapetum

Feline Fundus

- Optic disc
 - Shape
 - Location
 - Associated vessels
- Retinal vessels
- Tapetum
- Tapetal junction
- Non-tapetum

Ophthalmoscopic Lesions

- Changes in one or more of the layers that create the composite fundus
- Each layer has a limited repertoire of responses
- Successful interpretation = recognizing the effect of these limited changes on the composite picture

Fundus Model

- Sclera
- Choroid
 - Vessels
 - Pigment
 - Tapetum
- Retina
 - RPE
 - Neurosensory retina
 - Vessels
- Optic disc

Patient #1

- 5 yr old F/S DSH
- Retinal "hemorrhage" diagnosed at yearly exam
- No vision change
- No health concerns

◆ Nontapetal Pigmentation

Patient #2

- 2 yr old M/N Beagle
- Coincidental finding at yearly health maintenance exam
- No history of ocular disease or vision change

AAHA2007:MBGlaze

↓ Tapetal Development

↓ Tapetal Development

Patient #3

- 3 yr old F/S DSH
- Recent history of tearing OS
- No change in vision

AAHA2007:MBGlaze

Patient #4

- 1 yr old intact maleWalker Hound
- Poor hunting performance
- Weight loss, fever, lymphadenopathy

AAHA2007:MBGlaze

AAHA2007:MBGlaze

AAHA2007:MBGlaze

Active Chorioretinitis

Patient #5

- 4 yr old M/N Golden retriever, routine health maintenance
- Eyes examined each year, with no prior abnormalities
- Medical history unremarkable

AAHA2007:MBGlaze

Inactive Chorioretinitis

Patient #6

- 3 yr old M/N Shih tzu
- No previous eye problems
- Poor PLR noted in one eye at annual exam
- Fundus detail poor

AAHA2007:MBGlaze

Retinal Detachment

Patient #7

- 2 yr old F/SAbyssinian
- Gradual vision loss
- Dilated pupils
- No pain/discharge

AAHA2007:MBGlaze

Retinal Atrophy

Patient #8

- 2 yr old M Golden retriever
- Routine prebreeding exam

Sensory Retina

- Thinner
- Thicker
 - Edema and cells
 - Folds
- Separation from RPE
- Vascular changes

Retinal Pigmented Epithelium (RPE)

- Increased pigmentation
- Decreased pigmentation

Tapetum

- "Reflects" changes in surrounding layers
 - Increased reflectivity
 - Decreased reflectivity

Choroid

- Thinning
- Thickening

Sclera

- Visibility depends on overlying pigment and tapetum
- Abnormalities rare
- Pathology
 - Congenital thinning
 - Inflammatory thickening

Optic Disc

- Changes in size
 - Too small
 - Too large
- Changes in color
 - Hyperemic
 - Pale

Collie Eye Anomaly

- 80-85% of breed in U.S. is affected
- Also affects Shelties, Border collies, Australian shepherds infrequently
- Congenital, non-progressive disease
- Recessive trait
- Blinding in most severe form

Collie Eye Anomaly

- Vessel tortuosity
- Choroidal hypoplasia
- Disc coloboma
- Scleral ectasia
- Retinal detachment

Collie Eye Anomaly

- Affects Labrador retrievers, Springer spaniels, others
- Congenital, non-progressive disease
- Recessive trait in most; incomplete dominant trait theorized in Labrador
- Blinding in most severe form

Multifocal folds

 Geographic dysplasia: large, irregular area of disorganized retina

- Congenital retinal "non-attachment"
- Blind puppy if bilaterally affected

Skeletal Dysplasia

Skeletal deformities in Labradors

Progressive Retinal Atrophy

- Generalized retinal degeneration
- Ultimately blinding
- Affects many breeds of dog, few cats
- Varying mechanisms determine age of onset
- Recessive trait in almost all cases

Progressive Retinal Atrophy

- Night blindness, progressing to total loss of vision
- Retinal thinning,
 with tapetal hyperreflectivity
- Retinal vessel attenuation

Progressive Retinal Atrophy

