Find

Find

] COLLABORATORS
TITLE :
Find
ACTION NAME DATE SIGNATURE
WRITTEN BY August 24, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Find iii

Contents

1 Find 1
1.1 Find V2.3 Documentationt e e e e e 1
1.2 Copyright e 1
1.3 Introduction L e e 2
1.4 Starting Find L e e 3
1.5 FindCommands L e e e e 7
1.6 Usage Examples e e 8
1.7 Problems 9
1.8 Things ToDo e e 9
1.9 Program History L 10
1.10 Compiling Find o o e 10

1.11 Contacting the Author. e e e e 10

Find 1710

Chapter 1

Find

1.1 Find V2.3 Documentation

Find V2.3 Dec 1993 Copyright (C) 1989-93
Andrew Kemmis - All Rights Reserved

TABLE OF CONTENTS

Copyright
Introduction
Starting Find
Find Commands
Usage Examples
Problems

Things To Do
Program History
Compiling Find

Contacting the Author

1.2 Copyright

Find V2.3 Dec 1993 Copyright (C) 1989-93
Andrew Kemmis - All Rights Reserved

Find is supplied free of charge for personal use only. Commercial use
or commercial distribution is prohibited without the direct consent of
the author. Non-commercial distribution must include all files listed

Find 2/10

below and they must not be modified. Appropriate x.info files may be
added and/or modified to suit the distribution.

The files in this distribution are:

Find - executable

Find.guide - program documentation (this file)

Find.c - main source code

Find.qgl - qualifier parser input (Find.gi source)

Find.qgi - qualifier parser output (helps reading C source)
makefile - Aztec 'C’ 3.6 makefile (for Find and others)

Find comes with NO WARRANTIES WHATSOEVER. The author is not responsible
for any loss or damage arising from the use of this program; the user takes
all such responsibility.

The source provided is also Copyright (C) 1989-93 Andrew Kemmis - All Rights
Reserved. It is provided to the user purely and for no other purpose than
to show how some of the program was written.

In a non-commercial distribution no charge may be made for Find WHATSOEVER.

However, permission is expressly granted to Fred Fish to distribute this
on the Fish and Aminet CD collection disks that they sell.

Although Find is free to non-commercial users, any donations would
be gladly accepted, preferably programs that you yourself have written and
find useful. See

Contacting the Author

for more information.

1.3 Introduction

Find is a tool for searching disk partitions. It SHOULD ONLY read your disk
(i.e you can have it write-protected)

It should work with any 512 byte block structured virtual or physical disk
partition i.e. it should work with any device that allows you to do any
CMD_READ of 512 bytes at multiples of 512 byte Offsets - sequentially from
any start block to any end block.

Find by-passes the FileSystem running on the device and does direct I/0 to
the device itself.

I wrote this program to help with another program of mine called Val. It
should probably be distributed with this program as well. Find can be useful
on its own as well.

Find allows you to search a partition for strings, bytes and also
filesystem related information (e.g. all other blocks pointing at a
a block in a certain manner)

Val related information:
When Val is run on an FFS partition it does not store the owner of every
data block in the partition, just a bitmap table to say if a block has been

Find 3/10

used before or not. When it finds a pointer to a block already used it
prints a message stating that the block is already in use and if Val is

run in SEEK mode (see Val documentaion) or the block pointed to is any of
the three types: Data, Unknown or Invalid (gave an error on reading) it does
not know the block that originally pointed to the block already used. This
is where Find comes in. Using the ANYRANGEDATA or ANYDATABLOCK qualifiers

as documented below you can find the duplicate pointers to the block and
thus take the appropriate action to fix the problem.

1.4 Starting Find

You can run Find on any disk (or partition) simply by typing:

Find /dev=disk: /options

However,
e.g. DFO:

disk: must be the Dos internal name for the partition
may be valid but Workbenchl.3: is not if that is DFO0:’s name.

Find has a number of options available at runtime. The options do not
work in the standard way as yet (it’s just a library function - that can
and should be changed in the future) You specify options by typing a '/’
followed by at least the unique letters for that option (case is ignored)
(shown in uppercase further down) and if it is a value option using an
"=" followed by the value e.g. to run Find searching for all blocks that
point to data blocks 50 to 100 displaying a count every 100 blocks read
you could enter any of the following:

Find /Dev=hd0:/AnyRangeData=(50,100) /ShowReads/Count=100
Find /anyr=(50,100)/sh/c=100 /d=hd0:

Find /dEVICE=HDO: /aNYR=(50,100) /Show /c0=100

This does bring about the following problem

(feature) you cannot do:

Find /d=/hdO0: (if the value contains a /')

The following is the default output if you specify an invalid command
line:

usAge: Find /Qualifiers

Qual Def Min Max Incl Excl List Atts
a Quiet false

b Device Mandatory 2 77 1

c Showreads false e

d Count 1000 1 10000000 c e
e Tracks false cd

f Name " 1 30

g Ignorecase true

h Parent Oxffffffff Ox0 OxT7Tfffffff

i Key Oxffffffff Ox0 Ox7fffffff

j Hashchain Oxffffffff Ox0 OxTEfffffff

k Extension Oxffffffff O0x0 Ox7fffffff

1 SEquencenum Oxffffffff Ox0 Ox7fffffff

m Bytesize Oxffffffff Ox0 Ox7fffffff

n BLockcount Oxffffffff Ox0 OxTfffffff

o Firstdatablk Oxffffffff 0x0 Ox7fffffff

Find 4/10

p Anydatablk 0x0 0x0 OxT7fffffff 999
g ANYRangedata 0x0 0x0 Ox7fffffff 98
r NExtdatablk Oxffffffff 0x0 Ox7fffffff

s Ulong 0x0 O0x0 Oxffffffff 999
t STring " 1 80

u CAche 88 1 10000

v CHecksum false

w FILenames true

x FRomblock 0x0 0x0 OxT7fffffff

y TOblock Ox7fffffff 0x0 Ox7fffffff

z Validonly true

{ Once true

Def is the default value (a highlighted ’'Mandatory’ means no default - you
must supply a value) The value shown above may change if some command
line processing has been successful before displaying the usAge

Min & Max are the minimum and maximum for numbers

Incl shows the qualifiers that must be specifed if this one is

Excl shows the qualifiers that musn’t be specified if this one is

List with a value means that the qualifier accepts a list of up to the
number of specified elements or a file containing a comma or line
separated list using: /Qualifier=Q@filename

Atts shows the special attributes (’1’ means the value is converted to
lowercase)

Numbers can be entered in Hex, (with a leading "0x’), Octal

(with a leading "0’) or Decimal

The options are as follows:

QUIET
if set true, don’t display startup message at runtime.
/QUIET or /!QUIET

DEVICE
this qualifier is mandatory - you must specify it. It is Jjust
the device name of the partition you wish to search e.g.
/DEVICE=hd0O: It cannot be just an ASSIGN to the partition or
the name for the partition specified in the root block

SHOWREADS
if true, every Count blocks read displays a line showing how many
have been read. /SHOWREADS or /!SHOWREADS

COUNT
the Count value used in SHOWREADS e.g /COUNT=100 (N.B. this
requires that you also specify /SHOWREADS)

TRACKS
display a line showing how many blocks required have been read
every time a track boundary is about to be crossed. /TRACKS or
/!TRACKS (N.B. you cannot specify this with SHOWREADS or COUNT)

NAME
match any block that has the name specified (see IGNORECASE as well)
e.g. /NAME=Fubar (see also STRING for special character translations
that are also allowed here)

Find 5/10

IGNORECASE
if true, /NAME and /STRING are not case sensitive. /IGNORECASE or
/| IGNORECASE

PARENT
match any block whose Parent pointer is the value specified
e.g. /PARENT=1234

KEY
match any block whose Key is the value specified e.g. /KEY=2345

HASHCHAIN
match any block whose Hash Chain is the value specified
e.g. /HASHCHAIN=3456

EXTENSION
match any block whose Extension is the value specified
e.g. /EXTENSION=4567

SEQUENCENUM
match any block whose Sequence Number is the value specified
e.g. /SEQUENCENUM=5

BYTESIZE
match any block whose Byte Size is the value specified
e.g. /BYTESIZE=67890

BLOCKCOUNT
match any block whose Block Count is the value specified
e.g. /BLOCKCOUNT=78

FIRSTDATABLK
match any block whose First Data Block pointer (either of the 2)
is the value specified e.g. /FIRSTDATABLOCK=8901

ANYDATABLK
match any block that points to any block specified in the list
e.g. /ANYDATABLK=(90,100,105)

ANYRANGEDATA
match any block that points to any block specified in the ranges
given in the list e.g. /ANYRANGEDATA=(86,198,250,307) means
anything in tha range 86 <= x <= 198 or 250 <= x <= 307. If you
specify an uneven number of values the last one is ignored

NEXTDATABLK
match any block whose Next Data Block is the value specified
e.g. /NEXTDATABLK=6534

ULONG
match any block that contains any of the values specified in the
list anywhere in the block e.g. /ULONG=(0xffffffff,0x444£5300)
(only on 4 byte boundaries)

STRING
match any block that wholly contains the string specified

Find

6/10

e.g. /STRING=#define N.B. the string can contain any of the
following which will be translated as follows:

\ a single \
\b a back space

\f a form feed

\n a newline character
\r a carriage return
\t a tab

\xmm the hex value mm
\nnn the octal value nnn

a \ followed by any other character will produce exactly the same
2 characters. If you wish to search for a '/’ you will have to
use \x5C or \134

CACHE
this specifies how many blocks to read in advance each time a
block is required e.g. if /CACHE=5 and you are searching from
the beginning of the partition, the first read will read in all the
first 5 blocks and the next 4 reads will just return a pointer to
the cache buffer matching the appropriate block. Up to some limit
this will speed up the Find program the larger the CACHE is,
however beyond some point (maybe a few hundred) it should make very
little difference. This should be of no use if you are using a good
disk cache program on your system.

CHECKSUM
if true, whenever a match is found, check that the block’s Checksum
is valid. If it is not wvalid, do not display the match. Don’t use
this if you are searching for FFS datablocks (i.e. the blocks
themselves, not pointers to them) because they do not have a
checksum and will usually always fail this check e.g. /CHECKSUM
or /!CHECKSUM

FILENAMES
if true, attempt to determine the full directory/file specification
for a block if it gives an error or warning. /FILENAMES or
/ !'FILENAMES

FROMBLOCK
the block to start searching at e.g. /FROMBLOCK=1000. If it is
greater than the end of the partition, it will be set to the end

TOBLOCK
the block to finish searching e.g. /TOBLOCK=2200. If it is
greater than the end of the partition, it will be set to the end
(the default guarantees it will be the end)

VALIDONLY
this modifies the behaviour of the search for ANYDATABLK, ULONG
and ANYRANGEDATA. The default of true means that the block type
must be either Control, Extension or OFS Data before the block
will be considered as a candidate. If set false, every single
block will be searched. I suppose this should also work with
all the other search qualifiers - maybe in the next version (if
anyone wants it?) e.g. /VALIDONLY or /!VALIDONLY

Find

7/10

ONCE
if true, and the qualifiers ANYDATABLK, ANYRANGEDATA or ULONG are
specified with a list, the search will display the first match
and then skip to the next block.
With the case of ANYRANGEDATA and ANYDATABLK, if both are
specified, ANYRANGEDATA is checked first. If it succeeds
ANYDATABLK is not checked e.g. /ONCE or /!ONCE
If set false, and you are using ULONG with a list of wvalues,
if the block contains the same value more than once or the block

contains more than one of the values - then for each match the
block will give a message. The default of /ONCE is best suited
for most searches - read the source code for more help

1.5 Find Commands

Find will read the disk from FromBlock (or Beginning) to ToBlock
(or End) (whichever is smaller)

Find does not do a detailed check of each block it reads, it Jjust
looks at the Block Type and the Secondary Block type if Block Type is
Control (2.) If you specify VALIDONLY it will only check blocks of type
Control, Extension or OFS Data (this is the default action). If you specify
CHECKSUM, it will check each matching block’s checksum and output the match
only if the Checksum is valid.

Find will search the disk and output a message for each block that
matches any criteria specified e.g. if you specify /Parent=555 and
/Extension=777 then it will match either (both do not have to be true)

Thus the current version of Find is a logical OR of all given search values

A brief explanation of a match message follows:
An example:

Match: ULong 0x00000000 Block Offset: 0x00000063, (98) Type: File
Workbench:DPointVII

N.B. there is no forced line-break

All message start with "Match:"

The next 9 characters is the right Jjustified name of the match parameter
This is followed by the fixed length hex actual value of the match
parameter found in the block

Then follows the words: "Block Offset:"

Then follows the fixed length hex value of the block that matched the wvalue
The rest is varying in length:

Next follows a comma and the decimal value of the block in curved brackes

If the FILENAMES qualifier is false the message ends there otherwise:

If the type of the block is unknown the message ends with
" (Unknown block type)"

If the type of the block is not totally unknown then follows "Type:" and

Find

8/10

a string defining the type. One of "Root", "Directory", "File",

"Soft Link", "Hard Dir Link", "Hard File Link", "Extension", "Data" or
"Control???" - the last meaning the block type is Control but the
secondary type is unknown

If known, next it attempts to display the [[Device:]Directory]/Filename
pointing to the block starting at the block and working its way back up
the directory structure. If the full name is more than 2048 bytes it will
just show the end preceded by ".../" If any errors are encountered while
getting the name the search will stop and an error message will be
displayed at the front of the name - error messages start and end with
the ’*’ character - 3 ’'x’s in a row means the back-tracking of the
filename has been aborted, just one ’'x’ means that it hasn’t. The mesages
and descriptions are:

*xxInvalidBlock*** The block to get this part of the name is outside
the area of the partition (i.e. invalid)

x*BadBlock* The block gave an error on reading

xxInvalidNamex The first byte of the name is the length of the
name - in this case it was invalid i.e. 0 or > 30

*NameContainsNullx The file name has a null in it so was not displayed

1.6 Usage Examples

Most of these examples assume your partition is called dhO:
and they all use the minimum required letters for each option

Example: Find /d=dh0:/s/p=0xf00/ch
Meaning: Search device dh0O:, displaying a block count every 1000 blocks

searched, for any block that has block 0xf00 as it’s parent
block

Only match blocks which have a valid checksum
Example: Find /d=dh0:/t/n=Foo/!'fil
Meaning: Search device dhO:, displaying a block count every track read,
for any block containing a name that starts with ’'Foo’ ignoring
the case (e.g. directory or file)
Don’t bother to display the full directory path of the block.
Example: Find /d=dh0:/u=@list.dat/fr=0x2/to=0x1000/"'o
Where: list.dat is a file in the current directory containing:

Oxfefefefe, 0x12121212, 0x12345678

Meaning: Search device dhO: from block number hex 0x2 to block number
hex 0x1000 for any block containing any of the 3 hex wvalues

Find 9/10

Oxfefefefe, 0x12121212 or 0x12345678 (only on 4 byte

boundaries)

If any block contains any of the above 3 values more than once
list it again for each time another one of the 3 values is found
within the block

1.7 Problems

I have not tried this program on many different device types. Below is the
list which I have tried (and all have worked)

Standard 880K low density drives

A Meager Mega Ram Card with WD1002-05 and hard disks (on A1000)
A590 SCSI hard-disk devices (on A1000)

A1200 internal IDE device

I know you cannot use this program on the RAM: device or other same devices.

I have been using this program for a few years now so most parts of it
should be pretty reliable.

1.8 Things To Do

Any suggestions would be very welcome.

OK it really does need some nice icons (send me suggestions and if I like
and use them I’11 put your name in the docs)

Find does not yet handle Directory Cache Blocks under the extended FFS.

There are plenty of other types of block information worth searching for -
I just add them as I need them (or people request them :-)

See the VALIDONLY qualifier for another suggestion of something to do

I have tried to keep the program 1.3 compatible (especially since my main
hard-disk is actually connected to an A1000) so don’t suggest anything that
is above 1.3 that cannot be optional.

Also need to tidy up and release a whole collection of disk utilities I have
written (in times of dire need and have used to solve the problems.)
Look out for a few more, hopefully in the near future (like this one :-)

I have absolutely no idea what would be necessary to make this program work
with disk blocks that were not 512 bytes in size (assuming that a full
Root/Directory/FileHeader/etc. block is not just 512 bytes on this type of
device spread over multiple blocks if <512 bytes or part of a block if >512)

Maybe the ability to do a logical AND of search requirements is needed
(e.g. /AND overiding the default OR)

Find 10/10

1.9 Program History

OK there isn’t much here - but maybe I’11 be able to add to it as
time goes on :-)

V2.3
First public release
(Added more FFS support to match changes in Val 2.3)

V2.2 and below:
Pre-release

1.10 Compiling Find

Find has been written to compile under Aztec C V3.6a, however not all

of my include files or library objects have been provided in the
distribution thus you should not (will not be able to) compile the program
yourself from the distribution.

1.11 Contacting the Author

I can be reached with comments, suggestions, bug reports etc.
at the following address:

Andrew Kemmis Smith
7 Fleet Street
Carlton NSW 2218
Australia

or by email:

and@praxa.com.au

	Find
	Find V2.3 Documentation
	Copyright
	Introduction
	Starting Find
	Find Commands
	Usage Examples
	Problems
	Things To Do
	Program History
	Compiling Find
	Contacting the Author

