SOLVITMEDIA MEMO

----- (1)

To:Taehwan WeonFrom:KyungTae HwangSubject:Relationship between balance and volumeUpdateDate:CC:Manjai Lee, Hyun Je Park

Mathmatical description of the relationship between balance and physical volume in SoundIt[®]

Denotation of Volume, V = (V_L , V_R), where V_L is the left volume and V_R is the right one.

For V, it holds the following:

- 1. $V_L^2 + V_R^2 = R^2$, where R is constant. That is, Volume V can be thought that it goes through real-imaginary coordinate with radious of R.
- 2. Denoting the angle between $~~V_L$ -axis, (V_L , 0) and volume vector V, (V_L , V_R) as $\theta_{,}$

 $V_{L} = X(\theta)$ and $V_{R} = Y(\theta)$, where X and Y are functions on angle θ .

3. [Boundary condition] V_L and V_R exist between 0 and R, which means that θ ranges from 0 to $\pi/2$.

Thinking from the conditions above, we can choose the angle θ as balance variable so that we can calcurate new Volume V' when given new θ' :

 $V_{I} = R \cos \theta^{i} \text{ and } V_{B} = R \sin \theta^{i}$

Reversly, we can also determine the angle θ from given vector, V.

 $\theta = tan^{-1}(V_{\rm R}/V_{\rm L}) \tag{2}$

