
Chapter 4

Basic Dense Matrix Operations

The following routines are described in the following pages:

catch, catchall, catch FPE, catch errors 34
tracecatch

cp ivec, cp perm, cp mat, cp vec copy objects 36
error, ev err, set err flag error handlers 37
ERREXIT, ERRABORT error handling style 39
fin ivec, fin mat, fin perm, fin vec input object from file 40
fout ivec, fout mat, fout perm,

fout vec

output to file 42

input, finput general input/output 43
freeivec, freemat, destroy objects 44

freeperm, freevec

get ivec, get mat, create and initialise objects 45
get perm, get vec

get row, get col extract column/row from matrix 46
id mat, ones mat, ones vec initialisation routines 47

rand mat, rand vec

zero mat, zero vec

mrand, smrand, mrandlist

in ivec, in mat, in perm, in vec input object from stdin 40
in prod inner product 49
iv add, iv sub operations on integer vectors 50
iv resize, m resize, resize data structures 51

px resize, v resize

MACHEPS machine epsilon 53
m add, m mlt, m sub, sm mlt matrix addition and multiplication 54
m load, m save, v save, d save MATLAB save/load 55
m transp, mmtr mlt, mtrm mlt matrix transposes and multiplication 57
m norm1, m norm inf, m norm frob matrix norms 58
mv mlt, vm mlt, matrix–vector multiplication 59

mv mltadd, vm mltadd

32

33

out ivec, out mat, out perm, out vec output object to stdout 42
px id, px mlt, px inv permutation identity, multiplication 60

& inversion
px cols, px rows permute columns/rows 61

px vec, px invvec & permute vectors
set col, set row set column/row of matrix 63
sv mlt, v mltadd, v add, v sub scalar–vector multiplication/addition 64
v map, v max, v min, componentwise operations 65

v star, v slash, v sort, v sum

v lincomb, v linlist linear combinations 67
v norm1, v norm2, v norm inf vector norms 68
add , ip , mltadd , core routines 69

smlt , sub , zero

To use these routines use the include statement

#include "matrix.h"

34 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

catch, catchall, catch FPE, tracecatch – catch errors

SYNOPSIS

#include "matrix.h"

catch(err_num,normal_code_to_execute,

code_to_execute_if_error)

int err_num;

catchall(normal_code_to_execute,

code_to_exectue_if_error)

tracecatch(normal_code_to_execute,fn_name)

char *fn_name;

catch_FPE()

DESCRIPTION

The catch() macro provides a way of interposing your own error-handling routines and code in the
usual error-handling procedures. The catch() macro works is like this: The old restart jmp_buf is saved.
Then the code normal_code_to_execute is executed. If an error with error number err_num is raised, then
code_to_execute_if_error is executed. If an error with another error number is raised, an error will be
raised with the same error number as the original error, but will appear to have come from the catch()

macro. If no error is raised then the macro will exit.

The catchall() macro works just like the catch() macro except that
code_to_execute_if_error is executed if any error is raised.

The tracecatch() macro is really a specialised version of the catchall() macro that sets the error-
handling flag to print out the underlying error when it is raised.

In every case the old error handling status will be restored on exiting the macro.

The routine catch_FPE() sets up a signal handler so that if a SIGFPE signal is raised, it is caught and
error() is called as appropriate. The error raised by error() is an E_SIGNAL error.

EXAMPLE

main()

{

MAT *A;

PERM *pivot;

VEC *x, *b;

......

tracecatch(

LUfactor(A,pivot);

LUsolve(A,pivot,b,x);

, "main");

......

would result in the error messages

"lufactor.c", line 28: NULL objects passed in function LUfactor()

"junk.c", line 20: NULL objects passed in function main()

Sorry, exiting program

35

being printed to stdout if one of A or pivot or b were NULL. These messages would also be printed out to
stderr if stdout is not a terminal.

On the other hand,

catch(E_NULL,

LUfactor(A,pi);

LUsolve(A,pi,b,x);

, printf("Ooops, found a NULL object\n"));

simply produces the message Ooops, found a NULL object in this case.

However, if another error occurs (say, b is the wrong size) then

"junk.c", line 22: sizes of objects don’t match in function catch()

Sorry, exiting program

is printed out.

SEE ALSO

signal(), error(), set_err_flag(), ERREXIT() etc.

BUGS

If a different error to the one caught in catch() is raised, then the file and line numbers of the original
error are lost.

In an if–then–else statement, tracecatch() needs to be enclosed by braces ({...}).

SOURCE FILE: matrix.h

36 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

cp ivec, cp perm, cp mat, cp vec – copy objects

SYNOPSIS

#include "matrix.h"

IVEC *cp_ivec(in,out)

IVEC *in, *out;

MAT *cp_mat(in,out)

MAT *in, *out;

PERM *cp_perm(in,out)

PERM *in, *out;

VEC *cp_vec(in,out)

VEC *in, *out;

DESCRIPTION

All the routines cp_ivec(), cp_mat(), cp_perm() and cp_vec() copy all of the data from one data
structure to another, creating a new object if necessary (i.e. a NULL object is passed or out is not sufficiently
big), by means of a call to get_mat(), get_perm() or get_vec() as appropriate.

For cp_mat(), cp_vec() and cp_ivec(), if in is smaller than the object out, then it is copied into a
region in out of the same size. If the sizes of the permutations differ in cp_perm() then a new permutation
is created and returned.

There are also “raw” copy routines _cp_mat(in,out,i0,j0) and _cp_vec(in,out,i0). Here (i0,j0)

is the position where the (0, 0) element of the in matrix is copied to; in is copied into a block of out.
Similarly, for _cp_vec(), i0 is the position of out where the zero element of in is copied to; in is copied to
a block of components of out.

The cp_...() routines all work in situ with in == out, however, the _cp_...() routines will only work
in situ if i0 (and also j0 if this is also passed) is zero.

EXAMPLE

/* copy x to y */

cp_vec(x,y);

/* create a new vector z = x */

z = cp_vec(x,VNULL);

/* copy A to the block in B with top-left corner (3,5) */

_cp_mat(A,B,3,5);

SEE ALSO

get_ivec(), get_mat(), get_perm(), get_vec()

SOURCE FILE: copy.h, ivecop.h

37

NAME

error – raise an error

SYNOPSIS

#include "matrix.h"

error(err_num,func_name)

int err_num;

char *func_name;

int set_err_flag(new_flag)

int new_flag;

DESCRIPTION

This is where errors are flagged in the system. The call error(err_num,func_name) is in fact a macro
which expands to

ev_err(__FILE__,err_num,__LINE__,func_name);

This call does not return.

The call to ev_err() prints out a message to stderr indicating that an error has occurred, and where in
which function it occurred. For example, it could look like:

"tut1.c", line 79: sizes of objects don’t match in function f()

which indicates that an error was flagged in file “tut1.c” at line 79, function “f” where the sizes of two
objects (vectors in this case) were incompatible.

Once this information is printed out, control is passed to the the address saved in the buffer called
restart by the last associated call to setjmp. The most convenient way of setting up restart is to use
ERREXIT() or ERRABORT().

If you wish to do something particular if a certain error occurs, then you could include a code fragment
into main() such as the following:

if ((code=setjmp(restart)) != 0)

{

if (code = E_MEM) /* memory error, say */

/* something particular */

{ }

else

exit(0);

}

else

/* make sure that error handler does jump */

set_err_flag(EF_JUMP);

The list of standard error numbers is given below:

E_UNKNOWN 0 /* unknown error (unused) */

E_SIZES 1 /* incompatible sizes */

E_BOUNDS 2 /* index out of bounds */

38 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

E_MEM 3 /* memory (de)allocation error */

E_SING 4 /* singular matrix */

E_POSDEF 5 /* matrix not positive definite */

E_FORMAT 6 /* incorrect format input */

E_INPUT 7 /* bad input file/device */

E_NULL 8 /* NULL object passed */

E_SQUARE 9 /* matrix not square */

E_RANGE 10 /* object out of range */

E_INSITU2 11 /* only in-situ for square matrices */

E_INSITU 12 /* can’t do operation in-situ */

E_ITER 13 /* too many iterations */

E_CONV 14 /* convergence criterion failed */

E_START 15 /* bad starting value */

E_SIGNAL 16 /* floating exception */

E_INTERN 17 /* some internal error */

E_EOF 18 /* unexpected end-of-file */

The set_err_flag() routine sets a flag which controls the behaviour of the error handling routine. The
old value of this flag is returned, so that it can be restored if necessary.

The list of values of this flag are given below:

EF_EXIT 0 /* exit on error -- this is the default */

EF_ABORT 1 /* abort on error -- dump core for debugging */

EF_JUMP 2 /* do longjmp() -- see above code */

EF_SILENT 3 /* do not report error, but do longjmp() */

EXAMPLE

if (! A)

error(E_NULL,"my_function");

if (A->m != A->n)

error(E_SQUARE,"my_function");

if (i < 0 || i >= A->m)

error(E_BOUNDS,"my_function");

/* this should never happen */

if (panic && something_really_bad)

error(E_INTERN,"my_function");

SEE ALSO

ERREXIT(), ERRABORT(), setjmp() and longjmp().

BUGS

Not many routines use tracecatch(), so that the trace is far from complete. Debuggers are needed in
this case, if only to obtain a backtrace.

SOURCE FILE: err.c

39

NAME

ERREXIT, ERRABORT, ON ERROR – what to do on error

SYNOPSIS

#include "matrix.h"

ERREXIT();

ERRABORT();

ON_ERROR();

DESCRIPTION

If ERREXIT() is called, then the program exits once the error occurs, and the error message is printed.
This is the default.

If ERRABORT() is called, then the program aborts once the error occurs, and the error message is printed.
Aborting in Unix systems means that a core file is dumped and can be analysed, for example, by (symbolic)
debuggers. Behaviour on non-Unix systems is undefined.

If ON_ERROR() is called, the current place is set as the default return point if an error is raised, though
this can be modified by the catch() macro. The ON_ERROR() call can be put at the beginning of a main
program so that control always returns to the start. One way of using it is as follows:

main()

{

......

ON_ERROR();

printf("At start of program; restarts on error\n");

/* initialisation stuff here */

......

/* real work here */

......

}

This is a slightly dangerous way of doing things, but may be useful for implementing matrix calculator type
programs.

Other, more sophisticated, things can be done with error handlers and error handling, though the topic
is too advanced to be treated in detail here.

SEE ALSO

error() and ev_err().

BUGS

With all of these routines, care must be taken not to use them inside called functions, unless the calling
function immediately re-sets the restart buffer after the called function returns. Otherwise the restart

buffer will reference a point on the stack which will be overwritten by subsequent calculations and function
calls. This is a problem inherent in the use of setjmp() and longjmp(). The only way around this problem
is through the implementation of co-routines.

With ON_ERROR(), infinite loops can occur very easily.

SOURCE FILE: matrix.h

40 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

fin ivec, fin mat, fin perm, fin vec – input object from a file

SYNOPSIS

#include <stdio.h>

#include "matrix.h"

MAT *fin_mat(fp,A)

FILE *fp;

MAT *A;

A = fin_mat(fp,MNULL);

PERM *fin_vec(fp,v)

FILE *fp;

VEC *v;

v = fin_vec(fp,VNULL);

PERM *fin_perm(fp,pi)

FILE *fp;

PERM *pi;

pi = fin_perm(fp,PNULL);

DESCRIPTION

These functions read in objects from the specified file. These functions first determine if fp is a file pointer
for a “tty” (i.e. keyboard/terminal). There are also the macros in_mat(A), in_perm(pi) and in_vec(x),
which are equivalent to fin_mat(stdin,A), fin_perm(stdin,pi) and fin_vec(stdin,x) respectively. If
so, then an interactive version of the input functions is called; if not, then a “file” version of the input
functions is called.

The interactive input prompts the user for input for the various entries of an object; the file input simply
reads input from the file (or pipe, or device etc.) and parses it as necessary.

Note that the format for file input is essentially the same as the output produced by the fout_...() and
out_...() functions. This means that if the output is sent to a file, then it can be read in again without
modification. Note also that for file input, that lines before the start of the data that begin with a “#” are
treated as comments and ignored. For example, this might be the contents of a file my.dat:

this is an example

of a matrix input

Matrix: 3 by 4

row 0: 0 1 -2 -1

row 1:-2 0 1.5 2

row 2: 5 -4 0.5 0

#

this is an example

a vector input

Vector: dim: 4

2 7 -1.372 3.4

#

this is an example

of a permutation input

Permutation: size: 4

0->1 1->3 2->0 3->2

41

Interactive input is read line by line. This means that only one data item can be entered at a time.
A user can also go backwards and forwards through a matrix or vector by entering “b” or “f” instead of
entering data. Entering invalid data (such as hitting the return key) is not accepted; you must enter valid
data before going on to the next entry. When permutations are entered, the value given is checked to see if
lies within the acceptable range, and if that value had been given previously.

If the input routines are passed a NULL object, they create a new object of the size determined by the
input. Otherwise, for interactive input, the size of the object passed must have the same size as the object
being read, and the data is entered into the object passed to the input routine. For file input, if the object
passed to the input routine has a different size to that read in, a new object is created and data entered in
it, which is then returned.

EXAMPLE

The above input file can be read in from stdin using:

MAT *A;

VEC *b;

PERM *pi;

......

A = in_mat(MNULL);

b = in_vec(VNULL);

pi = in_perm(PNULL);

If you know that a vector must have dimension m for interactive input, use:

b = get_vec(m);

in_vec(b); /* use b’s allocated memory */

SEE ALSO

fout_...() entries, in_...() entries

BUGS

Memory can be lost forever; objects should be resize’d.

On end-of-file, an “unexpected end-of-file” error (E_EOF) is raised.

Note that the test for whether the input is an interactive device is made by isatty(fileno(fp)). This
may not be portable to some systems.

SOURCE FILE: matrixio.c

42 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

fout ivec, fout mat, fout perm, fout vec – output to a file

SYNOPSIS

#include "matrix.h"

fout_mat(fp,A)

FILE *fp;

MAT *A;

fout_perm(fp,pi)

FILE *fp;

PERM *pi;

fout_vec(fp,v)

FILE *fp;

VEC *v;

DESCRIPTION

These output a representation of the respective objects to the file (or device, or pipe etc.) designated by
the file pointer fp. The format in which data is printed out is meant to be both human and machine readable;
that is, there is sufficient information for people to understand what is printed out, and furthermore, the
format can be read in by the fin_...() and in_...() routines.

An example of the format for matrices is given in the entry for the fin_...() routines.

There are also the routines out_mat(A), out_perm(pi) and out_vec(x) which are equivalent to
fout_mat(stdout,A), fout_perm(stdout,pi) and fout_vec(stdout,x).

Note that the in_...() routines are in fact just macros which translate into calls of these fin_...()

routines with “fp = stdin”.

In addition there are a number of routines for dumping the data structures in their entirety for debugging
purposes. These routines are dump_mat(fp,A), dump_perm(fp,px) and dump_vec(fp,x) where fp is a
FILE *, A is a MAT *, px is a PERM * and x is a VEC *. These print out pointers (as hex numbers), the
maximum values of various quantities (such as max_dim for a vector), as well as all the quantities normally
printed out. The output from these routines is not machine readable, and can be quite verbose.

EXAMPLE

/* output A to stdout */

out_mat(A);

/* ...or to file junk.out */

if ((fp = fopen("junk.out","w")) == NULL)

error(E_EOF,"my_function");

fout_mat(fp,A);

/* ...but for debugging, you may need... */

dump_mat(stdout,A);

SEE ALSO

in_...(), fin_...()

SOURCE FILE: matrixio.c

43

NAME

finput, input, fprompter, prompter – general input/output routines

SYNOPSIS

#include <stdio.h>

#include "matrix.h"

int finput(fp,prompt,fmt,var)

FILE *fp;

char *prompt, *fmt;

???? *var;

int input(prompt,fmt,var)

char *prompt, *fmt;

???? *var;

int fprompter(fp,prompt)

FILE fp;

char *prompt;

int prompter(prompt)

char *prompt;

DESCRIPTION

The macros finput() and input() are for general input, allowing for comments as accepted by the
fin_..() routines. That is, if input is from a file, then comments (text following a ‘#’ until the end of the
line) are skipped, and if input is from a terminal, then the string prompt is printed to stderr. The input is
read for the file/stream fp by finput() and by stdin by input(). The fmt argument is a string containing
the scanf() format, and var is the argument expected by scanf() according to the format string fmt.

For example, to read in a file name of no more than 30 characters from stdin, use

char fname[31];

......

input("Input file name: ","%30s",fname);

The macros fprompter() and prompter() send the prompt string to stderr if the input file/stream (fp
in the case of fprompter(), stdin for prompter()) is a terminal; otherwise any comments are skipped over.

SEE ALSO

scanf(), fin_..()

SOURCE FILE: matrix.h

44 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

freeivec, freemat, freeperm, freevec – destroy objects and free up memory

SYNOPSIS

#include "matrix.h"

freeivec(iv)

IVEC *iv;

freemat(A)

MAT *A;

freeperm(pi)

PERM *pi;

freevec(v)

VEC *v;

DESCRIPTION

These are in fact all macros which result in calls to iv_free(), m_free(), px_free() and v_free()

respectively. The effect of calling ..._free() is to release all the memory associated with the object passed.
The effect of the macros free...(object) is to firstly release all the memory associated with the object
passed, and to then set object to have the value NULL. The reason for using macros is to avoid the “dangling
pointer” problem.

The problems of dangling pointers cannot be entirely overcome within a conventional language, such as
‘C’, as the following code illustrates:

VEC *x, *y;

....

x = get_vec(10);

y = x; /* y and x now point to the same place */

freevec(x); /* x is now VNULL */

/* y now "dangles" -- using y can be dangerous */

y->ve[9] = 1.0; /* overwriting malloc area! */

freevec(y); /* program will probably crash here! */

SEE ALSO

get_...() routines

BUGS

Dangling pointer problem neither fixed, nor fixable.

SOURCE FILE: memory.c

45

NAME

get ivec, get mat, get perm, get vec – create and initialise objects

SYNOPSIS

#include "matrix.h"

IVEC *get_ivec(dim)

unsigned dim;

MAT *get_mat(m, n)

unsigned m, n;

PERM *get_perm(size)

unsigned size;

VEC *get_vec(dim)

unsigned dim;

DESCRIPTION

All these routines create and initialise data structures for the associated type of object. Any extra
memory needed is obtained from malloc() and its related routines.

Also note that zero relative indexing is used; that is, the vector x returned by x = get_vec(10) can
have indexes x->ve[i] for i equal to 0, 1, 2, . . . , 9, not 1, 2, . . . , 9, 10. This also applies for both the rows
and columns of a matrix.

The get_ivec(dim) routine creates an integer vector of dimension dim. Its entries are initialised to be
zero. The get_mat(m, n) routine creates a matrix of size m × n. That is, it has m rows and n columns.
The matrix elements are all initialised to being zero. The get_perm(size) routine creates and returns a
permutation of size size. Its entries are initialised to being those of an identity permutation. Consistent with
C’s array index conventions, a permutation of the given size is a permutation on the set {0,1, . . . ,size-1}.
The get_vec(dim) routine creates and returns a vector of dimension dim. Its entries are all initialised to
zero.

EXAMPLE

MAT *A;

......

/* allocate 10 x 15 matrix */

A = get_mat(10,15);

SEE ALSO

free...() routines, iv_resize(), m_resize(), px_resize() and v_resize().

BUGS

As dynamic memory allocation is used, and it is not possible to build garbage collection into C, memory
can be lost. It is the programmer’s responsibility to free allocated memory when it is no longer needed.

SOURCE FILE: memory.c

46 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

get col, get row – extract columns or rows from matrices

SYNOPSIS

#include "matrix.h"

VEC *get_col(A, col_num, v)

MAT *A;

int col_num;

VEC *v;

VEC *get_row(A, row_num, v)

MAT *A;

int row_num;

VEC *v;

DESCRIPTION

These put the designated column or row of the matrix A and puts it into the vector v. If v is NULL or
too small, then a new vector object is created and returned by get_col() and get_row(). Otherwise, v is
filled with the necessary data and is then returned. If v is larger than necessary, then the additional entries
of v are unchanged.

EXAMPLE

MAT *A;

VEC *row, *col;

int row_num, col_num;

......

row = get_vec(A->n);

col = get_vec(A->m);

get_row(A, row_num, row);

get_col(A, col_num, col);

SEE ALSO

set_col() and set_row().

SOURCE FILE: matop.c

47

NAME

id mat, ones mat, ones vec, rand mat, rand vec, zero mat, zero vec,

mrand, smrand, mrandlist – initialisation routines

SYNOPSIS

#include "matrix.h"

MAT *id_mat(A)

MAT *ones_mat(A)

VEC *ones_vec(x)

MAT *rand_mat(A)

VEC *rand_vec(x)

MAT *zero_mat(A)

VEC *zero_vec(x)

MAT *A;

VEC *x;

double mrand()

void smrand(seed)

int seed;

void mrandlist(a, len)

double a[];

int len

DESCRIPTION

The routine id_mat() sets the matrix A to be the identity matrix. That is, the diagonal entries are set
to 1, and the off-diagonal entries to 0.

The routines ones_mat() and ones_vec() respectively fill A and x with ones.

The routines rand_vec() and rand_mat() respectively fill A and x with random entries between zero
and one as determined by the rand() function.

The routines zero_mat() and zero_vec() respectively fill A and x with zeros.

These routines will raise an E_NULL error if A is NULL.

The routine mrand() returns a pseudo-random number in the range [0, 1) using an algorithm based on
Knuth’s lagged Fibonacci method in Seminumerical Algorithms: The Art of Computer Programming, vol. 2
§§3.2–3.3. The implementation is based on that in Numerical Recipes in C, pp. 212–213, §7.1. Note that
the seeds for mrand() are initialised using smrand() with a fixed seed. Thus mrand() will produce the
same pseudo-random sequence (unless smrand() is called) in different runs, different programs, and but for
differences in floating point systems, on different machines.

The routine smrand() allows the user to re-set the seed values based on a user-specified seed. Thus
mrand() can produce a wide variety of reproducible pseudo-random numbers.

The routine mrandlist() fills an array with pseudo-random numbers using the same algorithm as
mrand(), but is somewhat faster for reasonably long vectors.

48 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

EXAMPLE

Let e = [1, 1, . . . , 1]T .

MAT *A;

VEC *x;

PERM *pi;

......

zero_mat(A); /* A == zero matrix */

id_mat(A); /* A == identity matrix */

ones_mat(A); /* A == e.e^T */

rand_mat(A); /* A[i][j] is random in interval [0,1) */

zero_vec(x); /* x == zero vector */

ones_vec(x); /* x == e */

rand_vec(x); /* x[i] is random in interval [0,1) */

BUGS

The routine id_mat() “works” even if A is not square.

There is also the observation of von Neumann, Various techniques used in connection with random digits,
National Bureau of Standards (1951), p. 36:

“Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.”

SOURCE FILE: matop.c

49

NAME

in prod – inner product

SYNOPSIS

#include "matrix.h"

double in_prod(x,y)

VEC *x, *y;

DESCRIPTION

The inner product of x and y is returned by in_prod. This will fail if x or y is NULL.

EXAMPLE

VEC *x, *y;

double x_dot_y;

......

x_dot_y = in_prod(x,y);

SEE ALSO

__ip__() and the core routines.

BUGS

The accumulation is not guaranteed to be done in a higher precision than double. To guarantee more
than this, we would either need an explicit extended precision long double type or force the accumulation
to be done in a single register. While this is in principle possible on IEEE standard hardware, the routines
to ensure this are not standard, even for IEEE arithmetic.

SOURCE FILE: vecop.c

50 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

iv add, iv sub – Integer vector operations

SYNOPSIS

#include "matrix.h"

IVEC *iv_add(iv1,iv2,out)

IVEC *iv1, *iv2, *out;

IVEC *iv_sub(iv1,iv2,out)

IVEC *iv1, *iv2, *out;

DESCRIPTION

The two arithmetic operations implemented for integer vectors are addition (iv_add()) and subtraction
(iv_sub()). In each of these routines, out is resized to be of the correct size if it does not have the same
dimension as iv1 and iv2.

This dearth of operations is because it is envisaged that the main purpose for using integer vectors is to
hold indexes or to represent combinatorial objects.

EXAMPLE

IVEC *x, *y, *z;

......

x = ...;

y = ...;

/* z = x+y, allocate z */

z = iv_add(x,y,IVNULL);

/* z = x-y, z already allocated */

iv_sub(x,y,z);

SEE ALSO

Vector operations v_...() and iv_resize().

SOURCE FILE: ivecop.c

51

NAME

iv resize, m resize, px resize, v resize – Resizing data structures

SYNOPSIS

#include "matrix.h"

IVEC *iv_resize(iv,new_dim)

IVEC *iv;

int new_dim;

MAT *m_resize(A,new_m,new_n)

MAT *A;

int new_m, new_n;

PERM *px_resize(px,new_size)

PERM *px;

int new_size;

VEC *v_resize(x,new_dim)

VEC *x;

int new_dim;

DESCRIPTION

Each of these routines sets the (apparent) size of data structure to be identical to that obtained by using
get_...(new_...). Thus the VEC * returned by v_resize(x,new_dim) has x->dim equal to new_dim. The
MAT * returned by m_resize(A,new_m,new_n) is a new_m× new_n matrix.

The following rules hold for all of the above functions except for px_resize(). Whenever there is overlap
between the object passed and the re-sized data structure, the entries of the new data structure are identical,
and elsewhere the entries are zero. So if A is a 5× 2 matrix and
new_A = m_resize(A,2,5), then new_A->me[1][0] is identical to the old A->me[1][0].
However, new_A->me[1][3] is zero.

For px_resize() the rules are somewhat different because permutations do not remain permutations
under such arbitrary operations. Instead, if the size is reduced, then the returned permutation is an
identity permutation. If size is increased, then new_px->pe[i] == i for i greater than or equal to the old
size.

Allocation or reallocation and copying of data structure entries is avoided if possible (except, to some
extent, in m_resize()). There is a “high-water mark” field contained within each data structure; for the VEC
and IVEC data structures it is max_dim, which contains the actual amount of memory that has been allocated
(at some time) for this data structure. Thus resizing does not deallocate memory! To actually free up
memory, use one of the free...() routines.

You should not rely on the values of entries outside the apparent size of the data structures but inside the
maximum allocated area. These areas may be zeroed or overwritten, especially by the m_resize() routine.

EXAMPLE

/* an alternative to workspace arrays */

... my_function(...)

{

static VEC *x = VNULL;

......

52 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

x = v_resize(x,new_size);

......

cp_vec(..., x);

......

}

BUGS

Note the above comment: resizing does not deallocate memory! To free up the actual memory
allocated you will need to use the free..() macros or the ... free() function calls.

SEE ALSO

get_...() routines.

SOURCE FILE: memory.c and ivecop.c

53

NAME

MACHEPS – machine epsilon

SYNOPSIS

#include "matrix.h"

double macheps = MACHEPS;

DESCRIPTION

The quantity MACHEPS is a #define’d quantity which is the “machine epsilon” or “unit roundoff” for a
given machine. For more information on this concept, see, e.g., Introduction to Numerical Analysis by K.
Atkinson, or Matrix Computations by G. Golub and C. van Loan. The value given is for double precision
only.

For ANSI C implementations, this is set to the value of the DBL_EPSILON macro defined in <float.h>.

EXAMPLE

while (residual > 100*MACHEPS)

{ /* iterate */ }

BUGS

The value of MACHEPS has to be modified in the source whenever moving to another machine if the floating
point processing is different.

SOURCE FILE: machine.h

54 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

m add, m mlt, m sub, sm mlt – matrix addition and multiplication

SYNOPSIS

#include "matrix.h"

MAT *m_add(A,B,C)

MAT *A, *B, *C;

MAT *m_mlt(A,B,C)

MAT *A, *B, *C;

MAT *m_sub(A,B,C)

MAT *A, *B, *C;

MAT *sm_mlt(s,A,OUT)

double s;

MAT *A, *OUT;

DESCRIPTION

The function m_add() adds the matrices A and B and puts the result in C. If C is NULL, or is too small to
contain the sum of A and B, then the matrix is resized to the correct size, which is then returned. Otherwise
the matrix C is returned.

The function m_sub() subtracts the matrix B from A and puts the result in C. If C is NULL, or is too
small to contain the sum of A and B, then the matrix is resized to the correct size, which is then returned.
Otherwise the matrix C is returned. Similarly, m_mlt() multiplies the matrices A and B and puts the result
in C. Again, if C is NULL or too small, then a matrix of the correct size is created which is returned.

The routine sm_mlt() above puts the results of multiplying the matrix A by the scalar s in the matrix
OUT. If, on entry, OUT is NULL, or is too small to contain the results of this operation, then OUT is resized
to have the correct size. The result of the operation is returned. This operation may be performed in situ.
That is, you may use A == OUT.

The routines m_add(), m_sub() and sm_mlt() routines can work in situ; that is, C need not be different
to either A or B. However, m_mlt() will raise an E_INSITU error if A == C or B == C.

These routines avoid thrashing on virtual memory machines.

EXAMPLE

MAT *A, *B, *C;

double alpha;

......

C = m_add(A,B,MNULL); /* C = A+B */

m_sub(A,B,C); /* C = A-B */

sm_mlt(alpha,A,C); /* C = alpha.A */

m_mlt(A,B,C); /* C = A.B */

SEE ALSO

v_add(), mv_mlt(), sv_mlt()

SOURCE FILE: matop.c

55

NAME

m load, m save, v save – MATLAB save/load to file

SYNOPSIS

#include "matrix.h"

MAT *m_load(fp,name)

FILE *fp;

char **name;

MAT *m_save(fp,A,name)

FILE *fp;

MAT *A;

char *name;

VEC *v_save(fp,x,name)

FILE *fp;

VEC *x;

char *name;

double d_save(fp,d,name)

FILE *fp;

double d;

char *name;

DESCRIPTION

These routines read and write MATLABTM load/save files. This enables results to be transported
between MATLABTM and Meschach. The routine m_load() loads in a matrix from file fp in MATLABTM

save format. The matrix read from the file is returned, and name is set to point to the saved MATLAB
variable name of the matrix. Both the matrix returned and name are allocated memory as needed. An
example of the use of the routine to load a matrix A and a vector x is

MAT *A, *Xmat;

VEC *x;

FILE *fp;

char *name1, *name2;

......

if ((fp=fopen("fred.mat","r")) != NULL)

{

A = m_load(fp,&name1);

Xmat = m_load(fp,&name2);

if (Xmat->n != 1)

{ printf("Incorrect size matrix read in\n");

exit(0); }

x = get_vec(Xmat->m);

for (i = 0; i < Xmat->m; i++)

x->ve[i] = Xmat->me[i][0];

}

The m_save() routine saves the matrix A to the file/stream fp in MATLAB save format. The MATLAB
variable name is name.

56 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The v_save() routine saves the vector x to the file/stream fp as an x->dim× 1 matrix (i.e. as a column
vector) in MATLAB save format. The MATLAB variable name is name.

The d_save() routine saves the double precision number d to the file/stream fp in MATLAB save format.
The MATLAB variable name is name.

The MATLAB save format can depend in subtle ways on the type of machine used, so you may need to
set the machine type in machine.h. This should usually just mean adding a line to machine.h to be one of

#define MACH_ID INTEL /* 80x87 format */

#define MACH_ID MOTOROLA /* 6888x format */

#define MACH_ID VAX_D /* VAX D format */

#define MACH_ID VAX_G /* VAX G format */

to be the appropriate machine. The machine dependence involves both whether IEEE or non IEEE format
floating point numbers are used, but also whether or not the machine is a “little-endian” or a “big-endian”
machine.

BUGS

The m_load() routine will only read in the real part of a complex matrix.

The routines are machine-dependent as described above.

SOURCE FILE: matlab.c

57

NAME

m transp, mmtr mlt, mtrm mlt – matrix transposes and multiplication

SYNOPSIS

#include "matrix.h"

MAT *m_transp(A,OUT)

MAT *A, *OUT;

MAT *mmtr_mlt(A,B,OUT)

MAT *A, *B, *OUT;

MAT *mtrm_mlt(A,B,OUT)

MAT *A, *B, *OUT;

DESCRIPTION

The routine m_transp() transposes the matrix A and stores the result in OUT. This routine may be in

situ (i.e. A == OUT) only if A is square.

The routine mmtr_mlt() forms the product ABT , which is stored in OUT. The routine mtrm_mlt() forms
the product ATB, which is stored in OUT. Neither of these routines can form the product in situ. This means
that they must be used with A != OUT and B != OUT. However, you can still use A == B.

For all the above routines, if OUT is NULL or too small to contain the result, then it is resized to the
correct size, and can then be returned.

EXAMPLE

MAT *A, *B, *C;

......

C = m_transp(A,MNULL); /* C = A^T */

mmtr_mlt(A,B,C); /* C = A.B^T */

mtrm_mlt(A,B,C); /* C = A^T.B */

SOURCE FILE: matop.c

58 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

m norm1, m norm inf, m norm frob – matrix norms

SYNOPSIS

#include "matrix.h"

double m_norm1(A)

MAT *A;

double m_norm_inf(A)

MAT *A;

double m_norm_frob(A)

MAT *A;

DESCRIPTION

These routines compute matrix norms. The routine m_norm1() computes the matrix norm of A in the
matrix 1–norm;
m_norm_inf() computes the matrix norm of A in the matrix ∞–norm; m_norm_frob() computes the Frobe-
nius norm of A. All of these routines are unscaled; that is, there is no scaling vector for weighting the elements
of A.

These norms are defined through the following formulae:

‖A‖1 = max
j

∑

i

|aij |, ‖A‖∞ = max
i

∑

j

|aij |,(4.1)

‖A‖F =

√

∑

ij

|aij |2.(4.2)

The matrix 2–norm is not included as it requires the calculation of eigenvalues or singular values.

EXAMPLE

MAT *A;

......

printf("||A||_1 = %g\n", m_norm1(A));

printf("||A||_inf = %g\n", m_norm_inf(A));

printf("||A||_F = %g\n", m_norm_frob(A));

SEE ALSO

v_norm1(), v_norm_inf()

BUGS

The Frobenius norm calculations may overflow if the elements of A are of order
√
HUGE.

SOURCE FILE: norm.c

59

NAME

mv mlt, vm mlt, mv mltadd, vm mltadd – matrix–vector multiplication

SYNOPSIS

#include "matrix.h"

VEC *mv_mlt(A,x,out)

MAT *A;

VEC *x, *out;

VEC *vm_mlt(A,x,out)

MAT *A;

VEC *x, *out;

VEC *mv_mltadd(v1,v2,A,alpha,out)

VEC *v1, *v2, *out;

MAT *A;

double alpha;

VEC *vm_mltadd(v1,v2,A,alpha,out)

VEC *v1, *v2, *out;

MAT *A;

double alpha;

DESCRIPTION

The routines mv_mlt() and vm_mlt() form Ax and ATx = (xTA)T and store it in out. The routines
mv_mltadd() and vm_mltadd() form v1 + αAv2 and vT

1
+ αvT

2
A respectively, and stores the result in out.

If out is NULL or too small to contain the product, then it is resized to the correct size.

These routines do not work in situ; that is, out must be different to x for mv_mlt() and vm_mlt(), and
in the case of mv_mltadd() and vm_mltadd(), out must be different to v2.

These routines avoid thrashing virtual memory machines.

EXAMPLE

MAT *A;

VEC *x, *y, *out;

double alpha;

......

out = mv_mlt(A,x,VNULL); /* out = A.x */

vm_mlt(A,x,out); /* out = A^T.x */

mv_mltadd(x,y,A,out); /* out = x + A.y */

vm_mltadd(x,y,A,out); /* out = x + A^T.y */

SOURCE FILE: matop.c

60 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

px id, px inv, px mlt – permutation identity, inverse and multiplication

SYNOPSIS

#include "matrix.h"

PERM *px_id(pi)

PERM *pi;

PERM *px_mlt(pi1,pi2,out)

PERM *pi1, *pi2, *out;

PERM *px_inv(pi,out)

PERM *pi, *out;

PERM *trans_px(pi,i,j)

PERM *pi;

int i, j;

DESCRIPTION

The routine px_id() initialises pi to be the identity permutation of the size of pi on entry. The
permutation pi is returned. If pi is NULL then an error is generated.

The routine px_mlt()multiplies pi1 by pi2 to give out. If out is NULL or too small, then out is resized
to be a permutation of the correct size. This cannot be done in situ.

The routine px_inv() computes the inverse of the permutation pi. The result is stored in out. If out is
NULL or is too small, a permutation of the correct size is created, which is returned. This can be done in

situ if pi == out.

The routine trans_px() swaps pi->pe[i] and pi->pe[j]; it is a multiplication by the transposition
i ↔ j.

EXAMPLE

PERM *pi1, pi2, pi3;

......

pi1 = get_perm(10);

px_id(pi1); /* sets pi1 to identity */

trans_px(pi1,3,5); /* pi1 is now a transposition */

px_inv(pi1,pi1); /* invert pi1 -- in situ */

px_mlt(pi1,pi2,pi3); /* pi3 = pi1.pi2 */

SOURCE FILE: pxop.c

61

NAME

px cols, px rows, px vec, px invvec – permute rows or columns of a matrix, or permute a vector

SYNOPSIS

#include "matrix.h"

MAT *px_rows(pi,A,OUT)

PERM *pi;

MAT *A, *OUT;

MAT *px_cols(pi,A,OUT)

PERM *pi;

MAT *A, *OUT;

VEC *px_vec(pi,x,out)

PERM *pi;

VEC *x, *out;

VEC *px_invvec(pi,x,out)

PERM *pi;

VEC *x, *out;

DESCRIPTION

The routines px_rows() and px_cols() are for permuting matrices, permuting respectively the rows
and columns of the matrix A. In particular, for px_rows() the i-th row of OUT is the pi->pe[i]-th row of
A. Thus OUT = PA where P is the permutation matrix described by pi. The routine px_cols() computes
OUT = AP .

The result is stored in OUT provide it has sufficient space for the result. If OUT is NULL or too small to
contain the result then it is replaced by a matrix of the appropriate size. In either case the result is returned.

Similarly, px_vec() permutes the entries of the vector x into the vector out by the rule that the i-th
entry of out is the pi->pe[i]-th entry of x. Conversely, px_invvec() permutes x into out by the rule that
the pi->pe[i]-th entry of out is the i-th entry of x. This is equivalent to inverting the permutation pi and
then applying px_vec().

If out is NULL or too small to contain the result, then a new vector is created and the result stored in
it. In either case the result is returned.

EXAMPLE

PERM *pi;

VEC *x, *tmp;

MAT *A, *B;

......

/* permute x to give tmp */

tmp = px_vec(pi,x,tmp);

/* restore x */

x = px_invvec(pi,tmp,x);

/* symmetric permutation */

B = px_rows(A,MNULL);

A = px_cols(B,A);

62 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

SEE ALSO

The px_...() operations; in particular px_inv()

SOURCE FILE: pxop.c

63

NAME

set col, set row – set rows and columns of matrices

SYNOPSIS

#include "matrix.h"

MAT *set_col(A,k,out)

MAT *A;

int k;

VEC *out;

MAT *set_row(A,k,out)

MAT *A;

int k;

VEC *out;

DESCRIPTION

The routine set_col() above sets the value of the kth column of A to be the values of out. The A matrix
so modified is returned.

The routine set_row() above sets the value of the kth row of A to be the values of out. The A matrix
so modified is returned.

If out is NULL, then an E_NULL error is raised. If k is negative or greater than or equal to the number
of columns or rows respectively, an E_BOUNDS error is raised.

As the MAT data structure is a row-oriented data structure, the set_row() routine is faster than the
set_col() routine.

EXAMPLE

MAT *A;

VEC *tmp;

......

/* scale row 3 of A by 2.0 */

tmp = get_row(A,3,VNULL);

sv_mlt(2.0,tmp,tmp);

set_row(A,3,tmp);

SEE ALSO

get_col() and get_row()

SOURCE FILE: matop.c

64 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

sv mlt, v add, v mltadd, v sub – scalar–vector multiplication and addition

SYNOPSIS

#include "matrix.h"

VEC *sv_mlt(s,x,out)

double s;

VEC *x, *out;

VEC *v_add(v1,v2,out)

VEC *v1, *v2;

VEC *out;

VEC *v_mltadd(v1,v2,s,out)

VEC *v1, *v2, *out;

double s;

VEC *v_sub(v1,v2,out)

VEC *v1, *v2;

VEC *out;

DESCRIPTION

The sv_mlt() routine performs the scalar multiplication of the scalar s and the vector x and the results
are placed in out.

The routine v_add() adds the vectors v1 and v2, and the result is returned in out.

The v_mltadd() routine sets out to be the linear combination v1+s.v2.

The routine v_sub() subtracts v2 from v1, and the result is returned in out.

For all of the above routines, if out is NULL, then a new vector of the appropriate size is created. For
all routines the result (whether newly allocated or not) is returned. All these operations may be performed
in situ. Errors are raised if v1 or v2 are NULL, or if v1 and v2 have different dimensions.

EXAMPLE

VEC *x, *y, *z, *tmp;

double alpha;

......

tmp = get_vec(x->dim);

z = get_vec(x->dim);

printf("# 2-Norm of x - y = %g\n",

v_norm2(v_sub(x,y,tmp)));

/* z = x + alpha.y */

v_mltadd(x,y,alpha,z);

/* ...or equivalently */

sv_mlt(alpha,y,z);

v_add(x,z,z);

SOURCE FILE: vecop.c

65

NAME

v map, v max, v min, v star, v slash, v sort, v sum – componentwise operations

SYNOPSIS

#include "matrix.h"

VEC *v_map(fn, x, out)

double (*fn)();

VEC *x, *out;

double v_max(x, index)

VEC *x;

int *index;

double v_min(x, index)

VEC *x;

int *index;

VEC *v_star(x, y, out)

VEC *x, *y, *out;

VEC *v_slash(x, y, out)

VEC *x, *y, *out;

VEC *v_sort(x, order)

VEC *x;

PERM *order;

double v_sum(x)

VEC *x;

DESCRIPTION

The routine v_map() applies the function (*fn)() to the components of x to give the vector out. That
is, out->ve[i] = (*fn)(x->ve[i]). There is also a version

VEC *_v_map(double (*fn)(void *,double), void *fn_params,

VEC *x, VEC *out)

where out->ve[i] = (*fn)(fn_params,x->ve[i]). This enables more flexible use of this function. Both
of these functions may be used in situ with x == out.

The routine v_max() returns the maximum entry of the vector x, and sets index to be the index
of this maximum value in x. Note that index is the index for the first entry with this value. Thus
max_x = v_max(x, &i) means that x->ve[i] == max_x.

The routine v_min() returns the minimum entry of the vector x, and sets index to be the index of this
minimum value similarly to v_max().

The routine v_star() computes the componentwise, or Hadamard, product of x and y. That is,
out->ve[i] = x->ve[i]*y->ve[i] for all i. Note that v_star() is equivalent to multiplying y by a di-
agonal matrix whose diagonal entries are given by the entries of x. This routine may be used in situ with
x == out.

66 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The routine v_slash() computes the componentwise ratio of entries of y and x. (Note the order!) That
is, out->ve[i] = y->ve[i]/x->ve[i] for all i. Note that this is equivalent to multiplying y by the inverse
of the diagonal matrix described in the previous paragraph. This could be useful for preconditioning, for
example. This routine may be used in situ with x == out and/or y == out. The routine v_slash() raises
an E_SING error if x has a zero entry (the rationale being that it is really solving the system of equations
Xz = y where z is out).

The routine v_sort() sorts the entries of the vector x in situ, and sets order to be the permutation
that achieves this. Note that the old ordering of x can be obtained by using pxinv_vec() as illustrated in
the example below. The algorithm used is a version of quicksort based on that given in Algorithms in C, by
R. Sedgewick, pp. 116–124 (1990).

The routine v_sum() returns the sum of the entries of x.

EXAMPLE

An alternative way of computing ‖x‖∞ (but slower):

VEC *x, *y, *z;

PERM *order;

double norm;

int i;

......

y = v_map(fabs,x,VNULL);

norm = v_max(y,&i);

Sorting a vector:

v_sort(x,order);

/* x now sorted */

y = pxinv_vec(order,x,VNULL);

/* y is now the original x */

Using the Hadamard product for setting yi = wixi:

VEC *weights;

......

for (i = 0; i < weights->dim; i++)

weights->ve[i] = ...;

......

v_star(weights,x,y);

SEE ALSO

Other componentwise operations: v_add(), v_sub(), sv_mlt().

Iterative routines benefiting from diagonal preconditioning pccg(), cgs(), lsqr().

SOURCE FILE: vecop.c

67

NAME

v lincomb, v linlist – linear combinations

SYNOPSIS

#include "matrix.h"

VEC *v_lincomb(n,v_list,a_list,out)

int n;

VEC *v_list[];

double a_list[];

VEC *out;

VEC *v_linlist(out,v1,a1,v2,a2,...,VNULL)

VEC *out;

VEC *v1, *v2, ...;

double a1, a2, ...;

DESCRIPTION

The routine v_lincomb() computes the linear combination
∑n−1

i=0
aivi where vi is identified with

v_list[i] and ai is identified with a_list[i]. The result is stored in out, which is created or resized as
necessary. Note that n is the length of the lists.

An E_INSITU error will be raised if out == v_list[i] for any i other than i == 0.

The routine v_linlist() is a variant of the above which does not require setting up an array before
hand. This returns

∑

i aivi where the sum is over i = 1, 2, . . . until a VNULL is reached, which should take
the place of one of the vk’s.

An E_INSITU error will be raised if out == v2, v3, v4,....

EXAMPLE

VEC *x[10], *v1, *v2, *v3, *v4, *out;

double a[10], h;

......

for (i = 0; i < 10; i++)

{ x[i] = ...; a[i] = ...; }

out = v_lincomb(10,x,a,VNULL)

/* for Runge--Kutta code:

out = h/6*(v1+2*v2+2*v3+v4) */

zero_vec(out);

out = v_linlist(out, v1, h/6.0, v2, h/3.0,

v3, h/3.0, v4, h/6.0,

VNULL);

SEE ALSO

v_smlt(), v_mltadd()

BUGS

The routine v_linlist() is implemented as having arguments out, v1, a1, v2, a2, v2, a2,

v3, a3, v4, a4, v5, a5, v6, a6, v7, a7, v8, a8, v9, a9, v10, a10. There is therefore a limit of
10 vectors. This routine should be implemented using va_args().

SOURCE FILE: vecop.c

68 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

v norm1, v norm2, v norm inf – vector norms

SYNOPSIS

#include "matrix.h"

double v_norm1(x)

VEC *x;

double v_norm2(x)

VEC *x;

double v_norm_inf(x)

VEC *x;

DESCRIPTION

These functions compute vector norms. In particular, v_norm1() gives the 1–norm,
v_norm2() gives the 2–norm or Euclidean norm, and v_norm_inf() computes the ∞–norm. These are
defined by the following formulae:

‖x‖1 =
∑

i

|xi|(4.3)

‖x‖∞ = max
i

|xi|(4.4)

‖x‖2 =

√

∑

i

|xi|2.(4.5)

There are also scaled versions of these vector norms: _v_norm1(), _v_norm2() and _v_norm_inf(). These
take a vector x whose norm is to be computed, and a scaling vector. Each component of the x vector is
divided by the corresponding component of the scale vector, and the norm is computed for the “scaled”
version of x. If the corresponding component of scale is zero, or if scale is NULL, then no scaling is done.
(In fact, v_norm1(x) is a macro that expands to _v_norm1(x,VNULL).)

For example, _v_norm1(x,scale) returns
∑

i

|xi/scalei|

provided scale is not NULL, and no element of scale is zero. The behaviour of _v_norm2() and
_v_norm_inf() is similar.

EXAMPLE

VEC *x, *scale;

......

printf("# 2-Norm of x = %g\n", v_norm2(x));

printf("# Scaled 2-norm of x = %g\n",

_v_norm2(x,scale));

SEE ALSO

m_norm1(), m_norm_inf()

BUGS

There is the possibility that v_norm2() may overflow if x has components with size of order
√
HUGE.

SOURCE FILE: norm.c

69

NAME

add , ip , mltadd , smlt , sub , zero – core routines

SYNOPSIS

#include "machine.h"

void __add__(dp1,dp2,out,len)

double dp1[], dp2[], out[];

int len;

double __ip__(dp1,dp2,len)

double dp1[], dp2[];

int len;

void __mltadd__(dp1,dp2,s,len)

double dp1[], dp2[], s;

int len;

void __smlt__(dp,s,out,len)

double dp[], s, out[];

int len;

void __sub__(dp1,dp2,out,len)

double dp1[], dp2[], out[];

int len;

void __zero__(dp,len)

double dp[];

int len;

DESCRIPTION

These routines are the underlying routines for all almost all dense matrix routines. Unlike the other
routines in this library they do not take pointers to structures as arguments. Instead they work directly with
arrays of double’s. It is intended that these routines should be fast. If you wish to take full advantage

of a particular architecture, it is suggested that you modify these routines.

The current implementation does not use any special techniques for boosting speed, such as loop unrolling
or assembly code, in the interests of simplicity and portability.

The routine __add__() sets out[i] = dp1[i]+dp2[i] for i ranging from zero to len-1.

The routine __ip__() returns the sum of dp1[i]*dp2[i] for i ranging from zero to len-1.

The routine __mltadd__() sets dp1[i] = dp1[i]+s*dp2[i] for i ranging from zero to len-1.

The routine __smlt__() sets out[i] = s*dp[i] for i ranging from zero to len-1.

The routine __sub__() sets out[i] = dp1[i]-dp2[i] for i ranging from zero to len-1.

The routine __zero__() sets out[i] = 0.0 for i ranging from zero to len-1. This routine should be
used instead of the macro mem_zero() or the ANSI C routine memset() for portability, in case the double
precision zero is not represented by a bit string of zeros.

EXAMPLE

MAT *A, *B;

70 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

double alpha;

......

/* set A = A + alpha.B */

for (i = 0; i < m; i++)

__mltadd__(A->me[i],B->me[i],alpha,A->n);

/* zero row 3 of A */

__zero__(A->me[3],A->n);

SOURCE FILE: machine.c

Contents

4 Basic Dense Matrix Operations 32

71

