
Chapter 5

Dense Matrix Factorisation

Operations

The following routines are described in the following pages:

BKPfactor, BKPsolve Bunch–Kaufman–Parlett factor and solve 71
(stable symmetric factorisation)

CHfactor, MCHfactor, CHsolve Cholesky, LDLT factor and solve 73
LDLfactor, LDLsolve

LUfactor, LUsolve, LUTsolve LU factor (Gaussian elimination) and solve 75
LUcondest, m inverse

QRfactor, QRsolve, QRTsolve QR factor and solve 77
QRCPfactor, QRCPsolve with/out column pivoting
QRcondest

makeQ, makeR extract matrices from compact form 79
(QR only)

givens, rot cols compute and apply Givens’ rotations 80
rot rows, rot vec

hhvec, hhtrvec Householder transformations 82
hhtrrows, hhtrcols

Dsolve, Lsolve, LTsolve solve for diagonal and triangular matrices 84
Usolve, UTsolve

LDLupdate, QRupdate update routines for LDLT and 86
QR factorisations

schur, symmeig, trieig eigenvalue routines 88
schur evals, schur vecs eigenvalue/vector extraction routines 90
svd, bisvd singular value decomposition 91
fft, ifft Fast Fourier Transform 93

To use these routines use the include statements

#include "matrix.h"

#include "matrix2.h"

70

71

NAME

BKPfactor, BKPsolve – Bunch–Kaufman–Parlett symmetric indefinite factorise and solve

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *BKPfactor(A,pivot,blocks)

MAT *A;

PERM *pivot, *blocks;

VEC *BKPsolve(A,pivot,blocks,b,x)

MAT *A;

PERM *pivot, *blocks;

VEC *b, *x;

DESCRIPTION

The routine BKPfactor() forms in situ a symmetric indefinite factorisation of the matrix A of the form

PTAP = MDMT

where P is a permutation matrix, M is lower triangular, and D is block diagonal, with 1 × 1 or 2 × 2
blocks. The matrix P is represented by the permutation pivot and Dii is a 1 × 1 block if and only if
blocks->pe[i] == i; otherwise blocks->pe[i] is the index of the other row/column in the 2 × 2 block.
After the routine the D and M factors are stored in A in compact form. This avoids the requirement for
additional vectors or matrices for storage.

Note that pivot and blocksmust both be non–NULL and different for both BKPfactor() and BKPsolve().

The routine BKPsolve() solves the equation Ax = b for x. The solve routine BKPsolve() is designed
specifically to work with BKPfactor() as they operate on the same compact storage scheme. Note that the
factorisation may succeed when the matrix A passed is singular, and that the solve routine may then fail,
raising an E_SING error. The solve routine may be used in situ with b == x. If x is NULL or too small to
hold the result, then a new vector is created of the appropriate size for storing the result. In either case the
resulting solution vector is returned.

This factorisation routine, and the accompanying solve routine are derived from “Decomposition of a
Symmetric Matrix” by J. Bunch, L. Kaufman and B. Parlett, Numerische Mathematik 27, 95–109 (1976).

Errors will be raised if A or pivot or blocks are NULL, or if A is not square, or if the sizes of A, pivot
or blocks are not compatible.

EXAMPLE

MAT *A;

PERM *pivot, *blocks;

VEC *x, *b;

......

A = in_mat(MNULL);

b = in_vec(VNULL);

pivot = get_perm(A->m);

blocks = get_perm(A->m);

/* assuming A symmetric */

BKPfactor(A,pivot,blocks);

x = BKPsolve(A,pivot,blocks,b,VNULL);

72 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

SEE ALSO

CHfactor() and CHsolve()

SOURCE FILE: BKPfactor.c

73

NAME

CHfactor, MCHfactor, CHsolve, LDLfactor, LDLsolve – Cholesky factor and solve

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *CHfactor(A)

MAT *A;

MAT *MCHfactor(A,tol)

MAT *A;

double tol;

VEC *CHsolve(A,b,x)

MAT *A;

VEC *b, *x;

MAT *LDLfactor(A)

MAT *A;

VEC *LDLsolve(A,b,x)

MAT *A;

VEC *b, *x;

DESCRIPTION

Both CHfactor() and LDLfactor() factor the matrix A in situ and returns the factored matrix (in
compact form). The Cholesky factorisation routine and the LDLT routines both use only the lower triangular
part of A, but the Cholesky factorisation routine fills the upper triangular part of A also.

These routines require that A is square. The Cholesky factorisation, in particular, requires that A be
sufficiently positive definite (e.g. lowest eigenvalue of A is at least machine epsilon away from zero). If non–
positive definiteness is detected during factorisation, then an E_POSDEF error will be raised. If you wish to
catch such an error, see information on the catch() macro. If your matrix is indefinite, then it would be
best to use the BKPfactor() and BKPsolve() routines.

The routine MCHfactor() computes a modified Cholesky factorisation. This is not a true Cholesky
factorisation, but rather the Cholesky factorisation of A+D where D is a diagonal matrix with non-negative
entries. Whether the A matrix is modified in this way is determined by the tol parameter; the diagonal
entry of the Cholesky factorisation is ensured to be ≥

√
tol. The D matrix is guaranteed to be zero in

exact arithmetic if uTAu ≥ toluTu for all u.

EXAMPLE

MAT *A, *LLT, *LDL;

VEC *b, *x;

double tol;

......

A = in_mat(MNULL);

b = in_vec(VNULL);

input("Input tol for modified Cholesky: ", "%lf", &tol);

LLT = cp_mat(A,MNULL);

74 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

/* If A positive definite... */

CHfactor(LLT);

x = CHsolve(LLT,b,VNULL);

/* ...otherwise, get approximate solution... */

LLT = cp_mat(A,MNULL);

MCHfactor(LLT,tol); /* LLT now has factors of A + D */

MCHsolve(LLT,b,x);

/* ...or use LDL factorisation */

LDL = cp_mat(A,MNULL);

LDLfactor(LDL);

LDLsolve(LDL,b,x);

SEE ALSO

catch() and BKPfactor()

SOURCE FILE: CHfactor.c

75

NAME

LUfactor, LUsolve, LUTsolve, LUcondest, m inverse – LU factorisation (Gaussian elimination) and
solve

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *LUfactor(A,pivot)

MAT *A;

PERM *pivot;

VEC *LUsolve(A,pivot,b,x)

MAT *A;

PERM *pivot;

VEC *b, *x;

VEC *LUTsolve(A,pivot,b,x)

MAT *A;

PERM *pivot;

VEC *b, *x;

double LUcondest(LU,pivot)

MAT *LU;

PERM *pivot;

MAT *m_inverse(A,out)

MAT *A, *out;

DESCRIPTION

The routine LUfactor() performs LU factorisation, which is otherwise known as Gaussian elimination
with implicit scaled partial pivoting. The LU factors of A are stored in A in compact form. Once this is
done, the routine LUsolve() can be used to solve equations of the form Ax = b for x by forward and back
substitution. The system ATx = b can be solved by using LUTsolve(). The code for a full factorise and
solving Ax = b and AT y = b is:

/* set up A and b */

......

pivot = get_perm(A->m);

x = get_vec(A->n);

y = get_vec(A->m);

LU = cp_mat(A,MNULL);

LUfactor(LU,pivot);

x = LUsolve(LU,pivot,b,x);

y = LUTsolve(LU,pivot,b,y);

condition = LUcondest(LU,pivot);

A full description of Gaussian elimination with partial pivoting and its numerical behaviour can be found
in a number of books, though we refer the reader specifically to Matrix Computations by G.H. Golub and
C. van Loan, North Oxford Academic, §§3.2–3.4, pp. 92–122, 2nd Edition (1989). The variant here is that
scaling is used implicitly. That is, scaling is only used to decide which rows to swap during the partial
pivoting process.

76 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

Note that the factorisation routine LUfactor() may succeed where the solve routine LUsolve() fails if,
for example, A is singular. Also note that LU factorisation also succeeds when A is not even square, though
this is a requirement for the success of LUsolve(). Errors are raised by LUfactor() if A or pivot is NULL,
if the size of pivot is less than the number of rows of A. Errors are raised by LUsolve if these conditions
occur, if b is NULL, if A is not square. Then if x is NULL or too small to contain the result a new vector of
the appropriate size is created. In either case the solution of Ax = b, x, is returned. The routines LUsolve()
and LUTsolve() may not be used in situ; that is, with b == x. This is because of the permutation of the
vector.

The condition number (relative to the infinity norm) can be estimated using the routine LUcondest().
This estimate is not guaranteed to under- or over-estimate the true condition number; however, it can usually
be relied on to give an estimate correct to within an order of magnitude, which is usually all that is required.

The routine m_inverse() computes the inverse of A and returns it in out. This is carried out using the
LU factorisation routines. As is usually noted in numerical analysis texts, inverse matrices should rarely be
computed. If a system of equations need to be solved, use the above code calling LUfactor() and LUsolve()

directly.

SOURCE FILE: LUfactor.c

77

NAME

QRfactor, QRCPfactor, QRsolve, QRTsolve, QRcondest – QR factorisation and solve

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *QRfactor(A,diag)

MAT *A;

VEC *diag;

MAT *QRCPfactor(A,diag,pivot)

MAT *A;

VEC *diag;

PERM *pivot;

VEC *QRsolve(A,diag,b,x)

MAT *A;

VEC *diag;

VEC *b, *x;

VEC *QRTsolve(A,diag,b,x)

MAT *A;

VEC *diag;

VEC *b, *x;

VEC *QRCPsolve(A,diag,pivot,b,x)

MAT *A;

VEC *diag;

VEC *b, *x;

double QRcondest(QR)

MAT *QR;

DESCRIPTION

The routine QRfactor() performs a straightforward QR factorisation of A. For those unfamiliar with the
terminology, the QR factorisation of A is a factorisation of the form

A = QR

where Q is orthogonal and R is upper triangular. This factorisation exists whether or not A is singular or
even square. The QR factorisation is performed using Householder transformations. (These are orthogonal
matrices of the form Pi = I − αiviv

T
i

where αi = 2/vT
i
vi.)

The routine QRCPfactor() performs a QR factorisation with column pivoting, which is a factorisation
of the form

AΠT = QR

where additionally, Π is a permutation matrix. The Π matrix is represented by pivot. This is done exactly
as for QRfactor() except for the pivoting.

Both of these factorisations are performed in situ, and store the Q and R factors compactly in A and
diag. This compact form is used consistently within this package, and is essentially that of Golub and

78 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

van Loan’s Matrix Computations, §5.2, p. 212, 2nd edition, (1989) except that the v’s are not normalised in
this package. The dimensions of both diag must be at least as large as the minimum of the number of rows
and columns of A.

Once A, diag contain this compact representation of the QR factors of A, we can use QRsolve() to
solve systems of linear equations, and indeed, find least square error solutions to overdetermined systems of
equations. See Matrix Computations, §1.4, p. 11 for an example. Indeed, the code

MAT *QR;

......

QR = cp_mat(A,MNULL);

QRfactor(QR,diag);

QRsolve(QR,diag,b,x);

finds the least squares solution x to
Ax ≈ b.

Similarly, if QRCPfactor() is to be used to factor A, then QRCPsolve() can be used to solve the least squares
problem Ax ≈ b. The code to do this is:

QR = cp_mat(A,MNULL);

QRCPfactor(QR,diag,pivot);

QRCPsolve(QR,diag,pivot,b,x);

Note that QRTsolve(QR,diag,b,x) solves the underdetermined problem Ax = b; that is, it computes
the minimum 2-norm x that satisfies Ax = b for m ≤ n.

The condition number of a matrix factored using either QRfactor() or QRCPfactor() can be estimated
using QRcondest():

printf("2-norm condition number approx. = %g\n", QRcondest(QR));

The function QRcondest() returns a lower bound for the least squares condition number of the factored
matrix A

κLS(A) = ‖A‖2‖A+‖2
provided A has full rank. If A is square, then this is exactly equal to the 2-norm condition number

κ2(A) = ‖A‖2‖A−1‖2.
If the QR factors are exactly singular, then QRcondest() will return HUGE (HUGE_VAL for ANSI C).

The estimate is obtained by obtaining estimates for ‖R‖2 and ‖R−1‖2. Note that Q and Π do not affect
the 2-norm or least squares condition numbers. The estimate of ‖R−1‖2 is found using the techniques of
LUcondest() to obtain a vector y with unit ∞-norm such that ‖R−1y‖∞ is quite small. This is described
in Golub and van Loan, 2nd Edition pp. 128–130, (1989). Then the power method is applied to the matrix
(RTR)−1 a total of three times with initial vector y. The corresponding estimate of ‖R‖2 is obtained by
a related method of finding a vector y with unit ∞-norm and ‖Ry‖∞ quite large. The power method is
applied to the matrix RTR. Taking square root of the estimated eigenvalues gives a lower bound to the
2-norm condition number of R.

A simple, and usually reliable, estimate of the rank of a matrix is to factor the matrix A using QRCPfactor(),
and then to count the number of diagonal entries of A greater than a certain tolerance in magnitude. A more
reliable approach is to use the Singular Value Decomposition. See svd().

SEE ALSO

Householder routines hhvec(), hhtrvec(), hhtrrows() and hhtrcols(); svd().

SOURCE FILE: QRfactor.c

79

NAME

makeQ, makeR – explicitly form Q and R factors

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *makeQ(QR,diag,Qout)

MAT *QR;

VEC *diag;

MAT *Qout;

MAT *makeR(QR,Rout)

MAT *QR, *Rout;

DESCRIPTION

The routine makeQ() explicitly forms the orthogonal Q matrix of the QR factorisation from the compact
representation in QR, diag. The result is stored in Qout. This routine may not be used to form Qout in situ.

The routine makeR() explicitly forms the upper triangular R matrix of the QR factorisation. The result
is stored in Rout. This routine may be used in situ; that is, with QR == Rout. (Actually the routine just
zeros the strictly lower triangular half of QR.)

If Qout or Rout is NULL or too small to contain the result then a new matrix is created and returned.

EXAMPLE

MAT *A, *QR, *Q, *R;

VEC *diag;

......

diag = get_vec(A->m);

QR = cp_mat(A,MNULL);

QRfactor(QR,diag);

Q = makeQ(QR,diag,MNULL);

R = makeR(QR,MNULL);

/* makeR(QR,QR); replaces QR with the R matrix */

SOURCE FILE: QRfactor.c

80 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

givens, rot cols, rot rows, rot vec – Givens’ rotations routines

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

void givens(x,y,c,s)

double x, y;

double *c, *s;

MAT *rot_cols(A,i,k,c,s,out)

MAT *A, *out;

int i, k;

double c, s;

MAT *rot_rows(A,i,k,c,s,out)

MAT *A, *out;

int i, k;

double c, s;

VEC *rot_vec(x,i,k,c,s,out)

VEC *x, *out;

int i, k;

double c, s;

DESCRIPTION

The routine givens() computes a pair (c, s) such that
[

c s
−s c

] [

x
y

]

=

[

∗
0

]

(5.1)

where c2 + s2 = 1. The matrix formed from the (c, s) pair is an orthogonal matrix, and is often referred to
as a Givens’ rotation. The other routines apply such an orthogonal matrix to vectors and matrices. The
actual orthogonal matrix that is applied to vectors and matrices is the matrix

Jik(c, s) =

1
. . .

c . . . s
...

. . .
...

−s . . . c
. . .

1

(5.2)

The routine rot_cols() forms AJik(c, s)
T and stores the result in out.

The routine rot_rows() forms Jik(c, s)A and stores the result in out.

The routine rot_vec() forms Jik(c, s)x and stores the result in out.

All of the rot_...() routines may be used in situ and create a new vector or matrix if the out parameter
is NULL or is too small to contain the result. The result of the application of the Givens’ rotation is returned
by each of the rot_...() routines.

81

Note that Jik(c, s)
T = Jik(c,−s). This makes pre- and post-multiplying by transposes of Jik(c, s) easy.

EXAMPLE

int i, k;

VEC *x;

MAT *A;

double c, s;

......

/* get Givens transformation */

givens(x->ve[i],x->ve[k],&c,&s);

/* apply to x */

rot_vec(x,i,k,c,s);

/* apply symmetrically to A */

rot_cols(A,i,k,c,s);

rot_rows(A,i,k,c,s);

BUGS

The givens() routine may result in overflow if the x and/or y parameters are of size greater than
√
HUGE.

SOURCE FILE: givens.c

82 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

hhvec, hhtrcols, hhtrrows, hhtrvec – Householder transformation operations

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

VEC *hhvec(x,i0,beta,out,newval)

VEC *x, *out;

unsigned i0;

double *beta, *newval;

MAT *hhtrcols(A,i0,j0,hh,beta)

MAT *A;

unsigned i0, j0;

VEC *hh;

double beta;

MAT *hhtrrows(A,i0,j0,hh,beta)

MAT *A;

unsigned i0, j0;

VEC *hh;

double beta;

VEC *hhtrvec(hh,beta,i0,x,out)

VEC *hh;

double beta;

unsigned i0;

VEC *x, *out;

DESCRIPTION

The routine hhvec() computes the parameters for a Householder transformation. In particular, given
a vector x, a vector v (== out) and two real numbers β (== beta) and newval where the Householder
transformation P = I − βvvT satisfies

Px =

[

newval

0

]

.(5.3)

The x parameter is not modified. The formulae used are taken from Matrix Computations by G. Golub
and C. van Loan, p. 40, 1st Edition, (1983), §5.1, pp. 196–196, 2nd Edition, (1989).

If out is NULL or too small to hold the v vector, then a new vector is created to store the result. In
either case, the result is returned. An error are raised if the x vector is NULL.

The routine hhtrcols() forms the product APT where P is the Householder transformation defined by
hh and β (== beta). (That is, P = I − βhh hhT .) All rows i with i < i0 and columns j with j < j0 are
ignored. The operations is performed in situ in A.

The routine hhtrrows() forms the product PA where P is the Householder transformation defined by
hh and β. Again, all rows i with i < i0 and columns j with j < j0 are ignored. The operations is performed
in situ in A.

Finally, the routine hhtrvec() forms the vector Px where P is the Householder transformation defined
by hh and β. The result is stored in out. If out is NULL or too small to hold the results of the operation,
then a new vector is created of the appropriate size. In either case the result is returned.

83

SOURCE FILE: hsehldr.c

84 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

Dsolve, Lsolve, LTsolve, Usolve, UTsolve – basic solve routines

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

VEC *Dsolve(A,b,x)

MAT *A;

VEC *b, *x;

VEC *Lsolve(A,b,x,diag)

MAT *A;

VEC *b, *x;

double diag;

VEC *LTsolve(A,b,x,diag)

MAT *A;

VEC *b, *x;

double diag;

VEC *Usolve(A,b,x,diag)

MAT *A;

VEC *b, *x;

double diag;

VEC *UTsolve(A,b,x,diag)

MAT *A;

VEC *b, *x;

double diag;

DESCRIPTION

The routine Dsolve() finds and returns the solution x of Dx = b where D is the diagonal part of the
matrix A (== A).

The routine Lsolve() finds and returns the solution x of Lx = b where L is the lower triangular part of
A if diag is zero; L is the strictly lower triangular part of A with diag on the diagonal if diag is not zero.
This routine uses forward substitution.

The routine LTsolve() finds and returns the solutions x of LTx = b where L is the lower triangular part
of A if diag is zero; L is the strictly upper triangular part of A with diag on the diagonal if diag is not
zero.

The routine Usolve() finds and returns the solution x of Ux = b where U is the upper triangular part of
A if diag is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag is not zero.
This routine uses back substitution.

The routine UTsolve() finds and returns the solution x of UTx = b where U is the upper triangular part
of A if diag is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag is not
zero. This routine uses back substitution.

All of these routines may be used in situ; that is, they can be used with b == x.

If x is too small to contain the result then a new vector is created of the appropriate dimension. In either
case the solution of the equations is returned.

85

The rationale behind the use of the diag parameter is that often, as in LU factorisation or LDLT

factorisation, the diagonal entry for L is implicit (usually one). The diag parameter enables these routines
to be used generally, including for the results of QR factorisation, for example.

EXAMPLE

For solving Ax = b using Cholesky factorisation, with only L:

MAT *L;

VEC *b, *x;

......

Lsolve(L,b,x,0.0); /* use L’s diagonal entries */

LTsolve(L,x,x,0.0);

For solving Ax = b using LU factorisation with L unit lower triangular and no pivoting:

MAT *L, *U;

VEC *b, *x;

......

Lsolve(L,b,x,1.0); /* L unit lower triangular */

Usolve(U,b,x,0.0);

SEE ALSO

LUsolve(), CHsolve(), LDLsolve(), QRsolve()

SOURCE FILE: solve.c

86 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

LDLupdate, QRupdate – factorisation update routines

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *LDLupdate(LDL,w,alpha)

MAT *LDL;

VEC *w;

double alpha;

MAT *QRupdate(Q,R,u,v)

MAT *Q, *R;

VEC *u, *v;

DESCRIPTION

The routine LDLupdate() modifies the matrix LDL which is assumed to contain (in compact form) the
LDLT factorisation of a matrix A. The L matrix is the strictly lower triangular part of LDL, except with
ones on the diagonal, while D is the diagonal of LDL, so that A = LDLT . The matrix LDL is modified in situ

so that if L+ and D+ denote the factors described by LDL after the routine, then

L+D+L
T

+ = A+ αwwT

where α is the value of alpha and w is w. The modified LDL matrix is returned.

The method used for updating the factorisation is given in “Methods for modifying matrix factorisations”
by P. Gill, G. Golub, W. Murray and M. Saunders, Mathematics of Computations, 28, pp. 505–535 (1974).
The particular algorithm used is algorithm C1 of their paper.

This routine may fail if A + αwwT is not sufficiently positive definite; if this failure occurs, then an
E_POSDEF error is raised.

The routine QRupdate() updates the QR factorisation of a matrix A = QR. Unlike the previous routine,
this routine requires the explicit factors Q and R of A. These can be obtained from the compact form by
means of the routines makeQ() and makeR(). If the matrices Q and R after the routine are denoted Q+ and
R+ respectively, then

Q+R+ = Q(R+ uvT) = A+ (Qu)vT .

Setting u = QTw gives Q+R+ = A+ wvT .

If Q is NULL, then only the R matrix is modified. The R matrix is returned.

The routine is based on one given in Matrix Computations by G. Golub and C. van Loan, pp. 437–443,
1st Edition (1983), pp. 593–594, 2nd Edition (1989).

EXAMPLE

Updating LDLT factorisation:

MAT *A, *LDL;

VEC *u;

double alpha;

......

LDL = cp_mat(A,MNULL);

LDLfactor(LDL);

......

87

/* A <- A + alpha.u.u^T */

LDLupdate(LDL,u,alpha);

Updating QR factorisation:

MAT *A, *QR, *Q, *R;

VEC *diag, *beta, *u, *v, *w;

......

QR = cp_mat(A,MNULL);

QRfactor(QR,diag,beta);

Q = makeQ(QR,diag,beta,MNULL);

R = makeR(QR,MNULL);

......

/* A <- A + w.v^T */

u = get_vec(Q->m);

u = vm_mlt(Q,w,u);

QRupdate(Q,R,u,v);

SOURCE FILE: update.c

88 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

schur, symmeig, trieig – eigenvalue routines

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

MAT *schur(A,Q)

MAT *A, *Q;

VEC *symmeig(A,Q,out)

MAT *A, *Q;

VEC *out;

VEC *trieig(a,b,Q)

VEC *a, *b;

MAT *Q;

DESCRIPTION

The routine schur() computes the Real Schur decomposition of the matrix A. That is, it computes a
block upper triangular matrix T and an orthogonal matrix Q such that

QTAQ = T.

The matrix T has diagonal blocks of sizes 1 × 1 and 2 × 2. The eigenvalues of these diagonal blocks are
the eigenvalues of the original A matrix. The algorithm used to find the eigenvalues of A is the Francis QR
algorithm. This algorithm is described in Matrix Computations by G. Golub and C. van Loan, pp. 231–236,
1st Edition (1983), pp. 377–381, 2nd Edition (1989).

The matrix A is overwritten with T , and if Q is not NULL and the correct size, then the Q matrix is
stored in it.

The routine symmeig() computes the eigenvalues of a symmetric matrix. It also computes an orthogonal
matrix Q such that

QTAQ = Λ

where Λ is the diagonal matrix of eigenvalues. The algorithm used to find the eigenvalues of A consists of
conversion to symmetric Hessenberg (symmetric tridiagonal) form, and then applying trieig() to obtain
the eigenvalues of the tridiagonal matrix.

The eigenvalues are stored in out provided it is not NULL and is sufficiently large to contain all the
eigenvalues. The vector containing the eigenvalues is returned. The matrix A is not overwritten.

The routine trieig() computes the eigenvalues of the symmetric tridiagonal matrix

T =

a0 b0
b0 a1 b1

b1 a2
. . .

. . .
. . . bn−2

bn−2 an−1

.(5.4)

The algorithm used is a “chasing” technique described in Matrix Computations, pp. 278–281, 1st Edition,
pp. 421–424, 2nd Edition. It also accumulates the matrix Q such that QTTQ is diagonal. To compute the
correct Q matrix, Q should be initialised to the identity matrix on entry to trieig(). (See id_mat().)

89

The values in the a and b vectors are overwritten. At the end of the routine, a contains the eigenvalues,
and the b vector is zero.

In all of the above routines, if the matrix Q is NULL on entry, then no calculation of the Q matrices is
performed. This should speed up the routines somewhat if only the eigenvalues are needed.

EXAMPLE

Computing real Schur decomposition of (possibly) nonsymmetric A:

MAT *A, *S, *Q, *X_re, *X_im;

VEC *evals_re, *evals_im;

......

S = cp_mat(A,MNULL);

Q = get_mat(A->m,A->m);

schur(S,Q);

/* get eigenvalues (real, imaginary parts) */

evals_re = get_vec(A->m);

evals_im = get_vec(A->m);

schur_evals(S,evals_re,evals_im);

/* get eigenvectors (real, imaginary parts) */

X_re = get_mat(A->m,A->m);

X_im = get_mat(A->m,A->m);

schur_evecs(S,Q,X_re,X_im);

Computing eigenvalues and eigenvectors of a real symmetric matrix:

MAT *A, *Q;

VEC *evals;

......

evals = get_vec(A->m);

evals = symmeig(A,Q,evals);

The Q matrix contains the eigenvectors.

Computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix defined by the vectors a
(the diagonal entries) and b (the off-diagonal entries):

MAT *Q;

VEC *a, *b;

......

Q = get_mat(a->dim,a->dim);

id_mat(Q); /* must initialise Q */

trieig(a,b,Q);

/* a is now the vector of eigenvalues */

SEE ALSO

The Hessenberg routines in hessen.c.

BUGS

It is up to the caller of symmeig() to ensure that the A matrix is symmetric. Symmetry of A is neither
checked nor enforced in symmeig().

SOURCE FILE: symmeig.c, schur.c

90 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

schur evals, schur vecs – Extracting eigenvalues and eigenvectors from the Schur form

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

void schur_evals(T,re_evals,im_evals)

MAT *T;

VEC *re_evals, *im_evals;

MAT *schur_vecs(T,Q,X_re,X_im)

MAT *T, *Q;

MAT *X_re, *X_im;

DESCRIPTION

Both of these routines assume that T is the matrix computed by the schur() routine; Q is the orthogonal
matrix computed by schur().

The routine schur_evals() compute the eigenvalues of a matrix T in Schur form (block diagonal with
1 × 1 or 2 × 2 blocks). The kth eigenvalue of A = QTQT is re_evals->ve[k]+ iim_evals->ve[k]. At
worst this requires solving a series of quadratics; however, it does simplify the task of computing eigenvalues.
Complex eigenvalues come in complex conjugate pairs.

The routine schur_vecs() computes the matrix X = X re + i X im such that X−1AX is the diagonal
matrix of eigenvalues where T = QTAQ as computed by the schur() routine. The columns of X are
computed by means of one step of inverse iteration using the eigenvalues as computed from the Schur form.
This method is usually accurate provided the eigenvalues are not too close together. The computed kth
column of X is real if the computed kth eigenvalue is real. The ordering of the columns is consistent with
the ordering of the eigenvalues generated by schur_evals().

EXAMPLE

See example for schur() above.

BUGS

It is a bit difficult to check that the computed X is correct if it is complex.

SEE ALSO

schur()

SOURCE FILE: schur.c

91

NAME

svd, bisvd – Singular Value Decomposition routines

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

VEC *svd(A,U,V,out)

MAT *A, *U, *V;

VEC *out;

VEC *bisvd(d,f,U,V)

VEC *d, *f;

MAT *U, *V;

DESCRIPTION

The routine svd() performs a complete Singular Value Decomposition (SVD) on the matrix A. That is,
it computes orthogonal matrices U and V such that UAV T is diagonal and the diagonal entries are called
the singular values of the matrix A. The first min(m,n) singular values are stored in the out matrix which
is also returned. Note that the SVD is defined for nonsquare as well as square matrices.

If NULLs are passed for either or both U and V, then that orthogonal matrix will not be accumulated.
This saves both time and space, if just the singular values are desired and not the U or V matrices. If out is
NULL on entry to svd(), then a vector of the appropriate size is created to store the singular values, which
is returned.

The SVD is computed by first transforming the matrix into a bidiagonal matrix (c.f. schur() where a
matrix is transformed into Hessenberg form for eigenvalue calculations) and then applying bisvd(). If a
matrix is already in bidiagonal form, then bisvd() can be called directly. The vector d contains the diagonal
entries and f contains the super-diagonal entries. As for svd(), if NULLs are passed for either or both U

and V, then that (or both) orthogonal matrix will not be accumulated. For correct results using bisvd(),
you should initialise U and V to be identity matrices using id_mat() before calling bisvd().

The rank of a matrix can be estimated by counting the number of singular values whose magnitude
exceeds a specified tolerance. This tolerance for accurately computed matrices should probably be about
100 times MACHEPS; otherwise it should about an order of magnitude larger than the errors in the matrix.

The algorithm used follows Matrix Computations by Golub and van Loan, pp. 430–435, 2nd Edition
(1989).

EXAMPLE

For computing the SVD of A:

MAT *A, *U, *V;

VEC *svdvals;

......

U = get_mat(A->m,A->m);

V = get_mat(A->n,A->n);

svdvals = svd(A,U,V,VNULL);

For computing the SVD of the bidiagonal matrix defined by d (the diagonal entries) and f (the super-
diagonal entries):

MAT *U, *V;

92 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

VEC *d, *f;

......

U = get_mat(d->dim,d->dim);

V = get_mat(d->dim,d->dim);

id_mat(U); /* must initialise U and V */

id_mat(V);

bisvd(d,f,U,V)

/* d now contains the singular values */

SOURCE FILE: svd.c

93

NAME

fft, ifft – Fast Fourier Transform and inverse

SYNOPSIS

#include "matrix.h"

#include "matrix2.h"

void fft(x_re, x_im)

VEC *x_re, *x_im;

void ifft(x_re, x_im)

VEC *x_re, *x_im;

DESCRIPTION

The routine fft() performs a fast Fourier transform on the vector x = x_re+ ix_im. The transform is
computed in situ. It does require that the dimension of x is a power of two.

The routine ifft() performs the inverse fast Fourier transform of x = x_re+ ix_im. As with fft() it
is computed in situ, and the dimension of x must be a power of two.

SOURCE FILE: fft.c

94 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

Contents

5 Dense Matrix Factorisation Operations 70

95

