
RCS-Docs

Walter F. al and AmigaGuide translation JBHR

RCS-Docs ii

COLLABORATORS

TITLE :

RCS-Docs

ACTION NAME DATE SIGNATURE

WRITTEN BY Walter F. al and
AmigaGuide

translation JBHR

September 19, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

RCS-Docs iii

Contents

1 RCS-Docs 1

1.1 Revision Control System . 1

1.2 RCSINTRO . 2

1.3 CI . 6

1.4 CO . 13

1.5 IDENT . 20

1.6 MERGE . 21

1.7 RCS . 22

1.8 RCSCLEAN . 26

1.9 RCSDIFF . 29

1.10 RCSFREEZE . 30

1.11 RCSMERGE . 32

1.12 RLOG . 34

1.13 RCSFILE . 37

RCS-Docs 1 / 40

Chapter 1

RCS-Docs

1.1 Revision Control System

RCS 5.6.0.1 - Revision Control System 5.6.0.1 for the Amiga

RCSINTRO
introduction to RCS commands

Commands:

CI
check in RCS revisions

CO
check out RCS revisions

IDENT
identify files

MERGE
three-way file merge

RCS
change RCS file attributes

RCSCLEAN
clean up working files

RCSDIFF
compare RCS revisions

RCSFREEZE
freeze a configuration of sources checked in under RCS

RCSMERGE
merge RCS revisions

RCS-Docs 2 / 40

RLOG
print log messages and other information about RCS files

File format:

RCSFILE
format of RCS file

1.2 RCSINTRO

NAME
rcsintro - introduction to RCS commands

DESCRIPTION
The Revision Control System (RCS) manages multiple revisions
of files. RCS automates the storing, retrieval, logging,
identification, and merging of revisions. RCS is useful for
text that is revised frequently, for example programs, docu-
mentation, graphics, papers, and form letters.

The basic user interface is extremely simple. The novice
only needs to learn two commands:

ci
and

co
. ci, short

for "check in", deposits the contents of a file into an ar-
chival file called an RCS file. An RCS file contains all
revisions of a particular file. co, short for "check out",
retrieves revisions from an RCS file.

Functions of RCS
· Store and retrieve multiple revisions of text. RCS

saves all old revisions in a space efficient way.
Changes no longer destroy the original, because the
previous revisions remain accessible. Revisions can be
retrieved according to ranges of revision numbers, sym-
bolic names, dates, authors, and states.

· Maintain a complete history of changes. RCS logs all
changes automatically. Besides the text of each revi-
sion, RCS stores the author, the date and time of
check-in, and a log message summarizing the change.
The logging makes it easy to find out what happened to
a module, without having to compare source listings or
having to track down colleagues.

· Resolve access conflicts. When two or more programmers
wish to modify the same revision, RCS alerts the pro-
grammers and prevents one modification from corrupting
the other.

RCS-Docs 3 / 40

· Maintain a tree of revisions. RCS can maintain
separate lines of development for each module. It
stores a tree structure that represents the ancestral
relationships among revisions.

· Merge revisions and resolve conflicts. Two separate
lines of development of a module can be coalesced by
merging. If the revisions to be merged affect the same
sections of code, RCS alerts the user about the over-
lapping changes.

· Control releases and configurations. Revisions can be
assigned symbolic names and marked as released, stable,
experimental, etc. With these facilities,
configurations of modules can be described simply and
directly.

· Automatically identify each revision with name, revi-
sion number, creation time, author, etc. The identifi-
cation is like a stamp that can be embedded at an
appropriate place in the text of a revision. The iden-
tification makes it simple to determine which revisions
of which modules make up a given configuration.

· Minimize secondary storage. RCS needs little extra
space for the revisions (only the differences). If
intermediate revisions are deleted, the corresponding
deltas are compressed accordingly.

Getting Started with RCS
Suppose you have a file f.c that you wish to put under con-
trol of RCS. If you have not already done so, make an RCS
directory with the command

mkdir RCS

Then invoke the check-in command

ci f.c

This command creates an RCS file in the RCS directory,
stores f.c into it as revision 1.1, and deletes f.c. It
also asks you for a description. The description should be
a synopsis of the contents of the file. All later check-in
commands will ask you for a log entry, which should summar-
ize the changes that you made.

Files in the RCS directory are called RCS files; the others
are called working files. To get back the working file f.c
in the previous example, use the check-out command

co f.c

This command extracts the latest revision from the RCS file
and writes it into f.c. If you want to edit f.c, you must
lock it as you check it out with the command

RCS-Docs 4 / 40

co -l f.c

You can now edit f.c.

Suppose after some editing you want to know what changes
that you have made. The command

rcsdiff f.c

tells you the difference between the most recently checked-
in version and the working file. You can check the file
back in by invoking

ci f.c

This increments the revision number properly.

If ci complains with the message

ci error: no lock set by your name

then you have tried to check in a file even though you did
not lock it when you checked it out. Of course, it is too
late now to do the check-out with locking, because another
check-out would overwrite your modifications. Instead,
invoke

rcs -l f.c

This command will lock the latest revision for you, unless
somebody else got ahead of you already. In this case,
you’ll have to negotiate with that person.

Locking assures that you, and only you, can check in the
next update, and avoids nasty problems if several people
work on the same file. Even if a revision is locked, it can
still be checked out for reading, compiling, etc. All that
locking prevents is a check-in by anybody but the locker.

If your RCS file is private, i.e., if you are the only per-
son who is going to deposit revisions into it, strict lock-
ing is not needed and you can turn it off. If strict lock-
ing is turned off, the owner of the RCS file need not have a
lock for check-in; all others still do. Turning strict
locking off and on is done with the commands

rcs -U f.c and rcs -L f.c

If you don’t want to clutter your working directory with RCS
files, create a subdirectory called RCS in your working
directory, and move all your RCS files there. RCS commands
will look first into that directory to find needed files.
All the commands discussed above will still work, without
any modification. (Actually, pairs of RCS and working files
can be specified in three ways: (a) both are given, (b) only
the working file is given, (c) only the RCS file is given.
Both RCS and working files may have arbitrary path prefixes;

RCS-Docs 5 / 40

RCS commands pair them up intelligently.)

To avoid the deletion of the working file during check-in
(in case you want to continue editing or compiling), invoke

ci -l f.c or ci -u f.c

These commands check in f.c as usual, but perform an impli-
cit check-out. The first form also locks the checked in
revision, the second one doesn’t. Thus, these options save
you one check-out operation. The first form is useful if
you want to continue editing, the second one if you just
want to read the file. Both update the identification mark-
ers in your working file (see below).

You can give ci the number you want assigned to a checked in
revision. Assume all your revisions were numbered 1.1, 1.2,
1.3, etc., and you would like to start release 2. The com-
mand

ci -r2 f.c or ci -r2.1 f.c

assigns the number 2.1 to the new revision. From then on,
ci will number the subsequent revisions with 2.2, 2.3, etc.
The corresponding co commands

co -r2 f.c and co -r2.1 f.c

retrieve the latest revision numbered 2.x and the revision
2.1, respectively. co without a revision number selects the
latest revision on the trunk, i.e. the highest revision with
a number consisting of two fields. Numbers with more than
two fields are needed for branches. For example, to start a
branch at revision 1.3, invoke

ci -r1.3.1 f.c

This command starts a branch numbered 1 at revision 1.3, and
assigns the number 1.3.1.1 to the new revision. For more
information about branches, see

rcsfile
.

Automatic Identification
RCS can put special strings for identification into your
source and object code. To obtain such identification,
place the marker

Id

into your text, for instance inside a comment. RCS will
replace this marker with a string of the form

$Id: filename revision date time author state $

With such a marker on the first page of each module, you can
always see with which revision you are working. RCS keeps

RCS-Docs 6 / 40

the markers up to date automatically. To propagate the
markers into your object code, simply put them into literal
character strings. In C, this is done as follows:

static char rcsid[] = "Id";

The command ident extracts such markers from any file, even
object code and dumps. Thus, ident lets you find out which
revisions of which modules were used in a given program.

You may also find it useful to put the marker Log into
your text, inside a comment. This marker accumulates the
log messages that are requested during check-in. Thus, you
can maintain the complete history of your file directly
inside it. There are several additional identification
markers; see

co
for details.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.1; Release Date: 1991/04/21.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,
rcs
,
rcsdiff
,
rcsintro
,

rcsmerge
,
rlog

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

1.3 CI

NAME
ci - check in RCS revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION

RCS-Docs 7 / 40

ci stores new revisions into RCS files. Each pathname
matching an RCS suffix is taken to be an RCS file. All oth-
ers are assumed to be working files containing new revi-
sions. ci deposits the contents of each working file into
the corresponding RCS file. If only a working file is
given, ci tries to find the corresponding RCS file in an RCS
subdirectory and then in the working file’s directory. For
more details, see FILE NAMING below.

For ci to work, the caller’s login must be on the access
list, except if the access list is empty or the caller is
the superuser or the owner of the file. To append a new
revision to an existing branch, the tip revision on that
branch must be locked by the caller. Otherwise, only a new
branch can be created. This restriction is not enforced for
the owner of the file if non-strict locking is used (see

rcs
). A lock held by someone else may be broken with the

rcs command.

Unless the -f option is given, ci checks whether the revi-
sion to be deposited differs from the preceding one. If
not, instead of creating a new revision ci reverts to the
preceding one. To revert, ordinary ci removes the working
file and any lock; ci -l keeps and ci -u removes any lock,
and then they both generate a new working file much as if
co -l or co -u had been applied to the preceding revision.
When reverting, any -n and -s options apply to the preceding
revision.

For each revision deposited, ci prompts for a log message.
The log message should summarize the change and must be ter-
minated by end-of-file or by a line containing . by itself.
If several files are checked in ci asks whether to reuse the
previous log message. If the standard input is not a termi-
nal, ci suppresses the prompt and uses the same log message
for all files. See also -m.

If the RCS file does not exist, ci creates it and deposits
the contents of the working file as the initial revision
(default number: 1.1). The access list is initialized to
empty. Instead of the log message, ci requests descriptive
text (see -t below).

The number rev of the deposited revision can be given by any
of the options -f, -I, -k, -l, -M, -q, -r, or -u. rev may
be symbolic, numeric, or mixed. If rev is $, ci determines
the revision number from keyword values in the working file.

If rev is a revision number, it must be higher than the
latest one on the branch to which rev belongs, or must start
a new branch.

If rev is a branch rather than a revision number, the new
revision is appended to that branch. The level number is
obtained by incrementing the tip revision number of that

RCS-Docs 8 / 40

branch. If rev indicates a non-existing branch, that branch
is created with the initial revision numbered rev.1.

If rev is omitted, ci tries to derive the new revision
number from the caller’s last lock. If the caller has
locked the tip revision of a branch, the new revision is
appended to that branch. The new revision number is
obtained by incrementing the tip revision number. If the
caller locked a non-tip revision, a new branch is started at
that revision by incrementing the highest branch number at
that revision. The default initial branch and level numbers
are 1.

If rev is omitted and the caller has no lock, but owns the
file and locking is not set to strict, then the revision is
appended to the default branch (normally the trunk; see the
-b option of

rcs
).

Exception: On the trunk, revisions can be appended to the
end, but not inserted.

OPTIONS
-r[rev]

checks in a revision, releases the corresponding lock,
and removes the working file. This is the default.

The -r option has an unusual meaning in ci. In other
RCS commands, -r merely specifies a revision number,
but in ci it also releases a lock and removes the work-
ing file. See -u for a tricky example.

-l[rev]
works like -r, except it performs an additional co -l
for the deposited revision. Thus, the deposited revi-
sion is immediately checked out again and locked. This
is useful for saving a revision although one wants to
continue editing it after the checkin.

-u[rev]
works like -l, except that the deposited revision is
not locked. This lets one read the working file
immediately after checkin.

The -l, -r, and -u options are mutually exclusive and
silently override each other. For example, ci -u -r is
equivalent to ci -r because -r overrides -u.

-f[rev]
forces a deposit; the new revision is deposited even it
is not different from the preceding one.

-k[rev]
searches the working file for keyword values to deter-
mine its revision number, creation date, state, and
author (see

RCS-Docs 9 / 40

co
), and assigns these values to the

deposited revision, rather than computing them locally.
It also generates a default login message noting the
login of the caller and the actual checkin date. This
option is useful for software distribution. A revision
that is sent to several sites should be checked in with
the -k option at these sites to preserve the original
number, date, author, and state. The extracted keyword
values and the default log message may be overridden
with the options -d, -m, -s, -w, and any option that
carries a revision number.

-q[rev]
quiet mode; diagnostic output is not printed. A revi-
sion that is not different from the preceding one is
not deposited, unless -f is given.

-I[rev]
interactive mode; the user is prompted and questioned
even if the standard input is not a terminal.

-d[date]
uses date for the checkin date and time. The date is
specified in free format as explained in

co
. This is

useful for lying about the checkin date, and for -k if
no date is available. If date is empty, the working
file’s time of last modification is used.

-M[rev]
Set the modification time on any new working file to be
the date of the retrieved revision. For example,
ci -d -M -u f does not alter f’s modification time,
even if f’s contents change due to keyword substitu-
tion. Use this option with care; it can confuse
make.

-mmsg
uses the string msg as the log message for all revi-
sions checked in.

-nname
assigns the symbolic name name to the number of the
checked-in revision. ci prints an error message if
name is already assigned to another number.

-Nname
same as -n, except that it overrides a previous assign-
ment of name.

-sstate
sets the state of the checked-in revision to the iden-
tifier state. The default state is Exp.

-tfile

RCS-Docs 10 / 40

writes descriptive text from the contents of the named
file into the RCS file, deleting the existing text.
The file may not begin with -.

-t-string
Write descriptive text from the string into the RCS
file, deleting the existing text.

The -t option, in both its forms, has effect only dur-
ing an initial checkin; it is silently ignored other-
wise.

During the initial checkin, if -t is not given, ci
obtains the text from standard input, terminated by
end-of-file or by a line containing . by itself. The
user is prompted for the text if interaction is possi-
ble; see -I.

For backward compatibility with older versions of RCS,
a bare -t option is ignored.

-wlogin
uses login for the author field of the deposited revi-
sion. Useful for lying about the author, and for -k if
no author is available.

-Vn Emulate RCS version n. See
co
for details.

-xsuffixes
specifies the suffixes for RCS files. A nonempty suf-
fix matches any pathname ending in the suffix. An
empty suffix matches any pathname of the form RCS/file
or path/RCS/file. The -x option can specify a list of
suffixes separated by /. For example, -x,v/ specifies
two suffixes: ,v and the empty suffix. If two or more
suffixes are specified, they are tried in order when
looking for an RCS file; the first one that works is
used for that file. If no RCS file is found but an RCS
file can be created, the suffixes are tried in order to
determine the new RCS file’s name. The default for
suffixes is installation-dependent; normally it is ,v/
for hosts like Unix that permit commas in file names,
and is empty (i.e. just the empty suffix) for other
hosts.

FILE NAMING
Pairs of RCS files and working files may be specified in
three ways (see also the example section).

1) Both the RCS file and the working file are given. The
RCS pathname is of the form path1/workfileX and the working
pathname is of the form path2/workfile where path1/ and
path2/ are (possibly different or empty) paths, workfile is
a filename, and X is an RCS suffix. If X is empty, path1/
must be RCS/ or must end in /RCS/.

RCS-Docs 11 / 40

2) Only the RCS file is given. Then the working file is
created in the current directory and its name is derived
from the name of the RCS file by removing path1/ and the
suffix X.

3) Only the working file is given. Then ci considers each
RCS suffix X in turn, looking for an RCS file of the form
path2/RCS/workfileX or (if the former is not found and X is
nonempty) path2/workfileX.

If the RCS file is specified without a path in 1) and 2), ci
looks for the RCS file first in the directory ./RCS and then
in the current directory.

ci reports an error if an attempt to open an RCS file fails
for an unusual reason, even if the RCS file’s pathname is
just one of several possibilities. For example, to suppress
use of RCS commands in a directory d, create a regular file
named d/RCS so that casual attempts to use RCS commands in d
fail because d/RCS is not a directory.

EXAMPLES
Suppose ,v is an RCS suffix and the current directory con-
tains a subdirectory RCS with an RCS file io.c,v. Then each
of the following commands check in a copy of io.c into
RCS/io.c,v as the latest revision, removing io.c.

ci io.c; ci RCS/io.c,v; ci io.c,v;
ci io.c RCS/io.c,v; ci io.c io.c,v;
ci RCS/io.c,v io.c; ci io.c,v io.c;

Suppose instead that the empty suffix is an RCS suffix and
the current directory contains a subdirectory RCS with an
RCS file io.c. The each of the following commands checks in
a new revision.

FILE MODES
An RCS file created by ci inherits the read and execute per-
missions from the working file. If the RCS file exists
already, ci preserves its read and execute permissions. ci
always turns off all write permissions of RCS files.

FILES
Several temporary files may be created in the directory con-
taining the working file, and also in the temporary direc-
tory (see TMPDIR under ENVIRONMENT). A semaphore file or
files are created in the directory containing the RCS file.
With a nonempty suffix, the semaphore names begin with the
first character of the suffix; therefore, do not specify an
suffix whose first character could be that of a working
filename. With an empty suffix, the semaphore names end
with _ so working filenames should not end in _.

ci never changes an RCS or working file. Normally, ci
unlinks the file and creates a new one; but instead of
breaking a chain of one or more symbolic links to an RCS

RCS-Docs 12 / 40

file, it unlinks the destination file instead. Therefore,
ci breaks any hard or symbolic links to any working file it
changes; and hard links to RCS files are ineffective, but
symbolic links to RCS files are preserved.

The effective user must be able to search and write the
directory containing the RCS file. Normally, the real user
must be able to read the RCS and working files and to search
and write the directory containing the working file; how-
ever, some older hosts cannot easily switch between real and
effective users, so on these hosts the effective user is
used for all accesses. The effective user is the same as
the real user unless your copies of ci and co have setuid
privileges. As described in the next section, these
privileges yield extra security if the effective user owns
all RCS files and directories, and if only the effective
user can write RCS directories.

Users can control access to RCS files by setting the permis-
sions of the directory containing the files; only users with
write access to the directory can use RCS commands to change
its RCS files. For example, in hosts that allow a user to
belong to several groups, one can make a group’s RCS direc-
tories writable to that group only. This approach suffices
for informal projects, but it means that any group member
can arbitrarily change the group’s RCS files, and can even
remove them entirely. Hence more formal projects sometimes
distinguish between an RCS administrator, who can change the
RCS files at will, and other project members, who can check
in new revisions but cannot otherwise change the RCS files.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. A backslash escapes spaces within an option.
The RCSINIT options are prepended to the argument lists
of most RCS commands. Useful RCSINIT options include
-q, -V, and -x.

TMPDIR
Name of the temporary directory. If not set, the
environment variables TMP and TEMP are inspected
instead and the first value found is taken; if none of
them are set, a host-dependent default is used, typi-
cally /tmp.

DIAGNOSTICS
For each revision, ci prints the RCS file, the working file,
and the number of both the deposited and the preceding revi-
sion. The exit status is zero if and only if all operations
were successful.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.9; Release Date: 1991/10/07.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

RCS-Docs 13 / 40

SEE ALSO

co
,
ident
, make,
rcs
,
rcsclean
,
rcsdiff
,

rcsintro
,
rcsmerge
,
rlog
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

1.4 CO

NAME
co - check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
co retrieves a revision from each RCS file and stores it
into the corresponding working file.

Pathnames matching an RCS suffix denote RCS files; all oth-
ers denote working files. Names are paired as explained in

ci
.

Revisions of an RCS file may be checked out locked or
unlocked. Locking a revision prevents overlapping updates.
A revision checked out for reading or processing (e.g., com-
piling) need not be locked. A revision checked out for
editing and later checkin must normally be locked. Checkout
with locking fails if the revision to be checked out is
currently locked by another user. (A lock may be broken
with

rcs
.) Checkout with locking also requires the caller

to be on the access list of the RCS file, unless he is the
owner of the file or the superuser, or the access list is

RCS-Docs 14 / 40

empty. Checkout without locking is not subject to access-
list restrictions, and is not affected by the presence of
locks.

A revision is selected by options for revision or branch
number, checkin date/time, author, or state. When the
selection options are applied in combination, co retrieves
the latest revision that satisfies all of them. If none of
the selection options is specified, co retrieves the latest
revision on the default branch (normally the trunk, see the
-b option of

rcs
). A revision or branch number may be

attached to any of the options -f, -I, -l, -M, -p, -q, -r,
or -u. The options -d (date), -s (state), and -w (author)
retrieve from a single branch, the selected branch, which is
either specified by one of -f, ..., -u, or the default
branch.

A co command applied to an RCS file with no revisions
creates a zero-length working file. co always performs key-
word substitution (see below).

OPTIONS
-r[rev]

retrieves the latest revision whose number is less than
or equal to rev. If rev indicates a branch rather than
a revision, the latest revision on that branch is
retrieved. If rev is omitted, the latest revision on
the default branch (see the -b option of

rcs
) is

retrieved. If rev is $, co determines the revision
number from keyword values in the working file. Other-
wise, a revision is composed of one or more numeric or
symbolic fields separated by periods. The numeric
equivalent of a symbolic field is specified with the -n
option of the commands

ci
and

rcs
.

-l[rev]
same as -r, except that it also locks the retrieved
revision for the caller.

-u[rev]
same as -r, except that it unlocks the retrieved revi-
sion if it was locked by the caller. If rev is omit-
ted, -u retrieves the revision locked by the caller, if
there is one; otherwise, it retrieves the latest revi-
sion on the default branch.

-f[rev]
forces the overwriting of the working file; useful in
connection with -q. See also FILE MODES below.

RCS-Docs 15 / 40

-kkv Generate keyword strings using the default form, e.g.
$Revision: 5.7 $ for the Revision keyword. A locker’s
name is inserted in the value of the Header, Id, and
Locker keyword strings only as a file is being locked,
i.e. by ci -l and co -l. This is the default.

-kkvl
Like -kkv, except that a locker’s name is always
inserted if the given revision is currently locked.

-kk Generate only keyword names in keyword strings; omit
their values. See KEYWORD SUBSTITUTION below. For
example, for the Revision keyword, generate the string
$Revision$ instead of $Revision: 5.7 $. This option is
useful to ignore differences due to keyword substitu-
tion when comparing different revisions of a file.

-ko Generate the old keyword string, present in the working
file just before it was checked in. For example, for
the Revision keyword, generate the string $Revision:
1.1 $ instead of $Revision: 5.7 $ if that is how the
string appeared when the file was checked in. This can
be useful for binary file formats that cannot tolerate
any changes to substrings that happen to take the form
of keyword strings.

-kv Generate only keyword values for keyword strings. For
example, for the Revision keyword, generate the string
5.7 instead of $Revision: 5.7 $. This can help gen-
erate files in programming languages where it is hard
to strip keyword delimiters like $Revision: $ from a
string. However, further keyword substitution cannot
be performed once the keyword names are removed, so
this option should be used with care. Because of this
danger of losing keywords, this option cannot be com-
bined with -l, and the owner write permission of the
working file is turned off; to edit the file later,
check it out again without -kv.

-p[rev]
prints the retrieved revision on the standard output
rather than storing it in the working file. This
option is useful when co is part of a pipe.

-q[rev]
quiet mode; diagnostics are not printed.

-I[rev]
interactive mode; the user is prompted and questioned
even if the standard input is not a terminal.

-ddate
retrieves the latest revision on the selected branch
whose checkin date/time is less than or equal to date.
The date and time may be given in free format. The
time zone LT stands for local time; other common time

RCS-Docs 16 / 40

zone names are understood. For example, the following
dates are equivalent if local time is January 11, 1990,
8pm Pacific Standard Time, eight hours west of Coordi-
nated Universal Time (UTC):

8:00 pm lt
4:00 AM, Jan. 12, 1990 note: default is UTC
1990/01/12 04:00:00 RCS date format
Thu Jan 11 20:00:00 1990 LT output of ctime + LT
Thu Jan 11 20:00:00 PST 1990 output of date
Fri Jan 12 04:00:00 GMT 1990
Thu, 11 Jan 1990 20:00:00 -0800
Fri-JST, 1990, 1pm Jan 12
12-January-1990, 04:00-WET

Most fields in the date and time may be defaulted. The
default time zone is UTC. The other defaults are
determined in the order year, month, day, hour, minute,
and second (most to least significant). At least one
of these fields must be provided. For omitted fields
that are of higher significance than the highest pro-
vided field, the time zone’s current values are
assumed. For all other omitted fields, the lowest pos-
sible values are assumed. For example, the date 20,
10:30 defaults to 10:30:00 UTC of the 20th of the UTC
time zone’s current month and year. The date/time must
be quoted if it contains spaces.

-M[rev]
Set the modification time on the new working file to be
the date of the retrieved revision. Use this option
with care; it can confuse make.

-sstate
retrieves the latest revision on the selected branch
whose state is set to state.

-w[login]
retrieves the latest revision on the selected branch
which was checked in by the user with login name login.
If the argument login is omitted, the caller’s login is
assumed.

-jjoinlist
generates a new revision which is the join of the revi-
sions on joinlist. This option is largely obsoleted by

rcsmerge
but is retained for backwards compatibility.

The joinlist is a comma-separated list of pairs of the
form rev2:rev3, where rev2 and rev3 are (symbolic or
numeric) revision numbers. For the initial such pair,
rev1 denotes the revision selected by the above options
-f, ..., -w. For all other pairs, rev1 denotes the
revision generated by the previous pair. (Thus, the
output of one join becomes the input to the next.)

RCS-Docs 17 / 40

For each pair, co joins revisions rev1 and rev3 with
respect to rev2. This means that all changes that
transform rev2 into rev1 are applied to a copy of rev3.
This is particularly useful if rev1 and rev3 are the
ends of two branches that have rev2 as a common ances-
tor. If rev1<rev2<rev3 on the same branch, joining
generates a new revision which is like rev3, but with
all changes that lead from rev1 to rev2 undone. If
changes from rev2 to rev1 overlap with changes from
rev2 to rev3, co reports overlaps as described in

merge
.

For the initial pair, rev2 may be omitted. The default
is the common ancestor. If any of the arguments indi-
cate branches, the latest revisions on those branches
are assumed. The options -l and -u lock or unlock
rev1.

-Vn Emulate RCS version n, where n may be 3, 4, or 5. This
may be useful when interchanging RCS files with others
who are running older versions of RCS. To see which
version of RCS your correspondents are running, have
them invoke rlog on an RCS file; if none of the first
few lines of output contain the string branch: it is
version 3; if the dates’ years have just two digits, it
is version 4; otherwise, it is version 5. An RCS file
generated while emulating version 3 will lose its
default branch. An RCS revision generated while emu-
lating version 4 or earlier will have a timestamp that
is off by up to 13 hours. A revision extracted while
emulating version 4 or earlier will contain dates of
the form yy/mm/dd instead of yyyy/mm/dd and may also
contain different white space in the substitution for
Log.

-xsuffixes
Use suffixes to characterize RCS files. See

ci
for de-

tails.

KEYWORD SUBSTITUTION
Strings of the form $keyword$ and $keyword:...$ embedded in
the text are replaced with strings of the form
$keyword:value$ where keyword and value are pairs listed
below. Keywords may be embedded in literal strings or com-
ments to identify a revision.

Initially, the user enters strings of the form $keyword$.
On checkout, co replaces these strings with strings of the
form $keyword:value$. If a revision containing strings of
the latter form is checked back in, the value fields will be
replaced during the next checkout. Thus, the keyword values
are automatically updated on checkout. This automatic sub-

RCS-Docs 18 / 40

stitution can be modified by the -k options.

Keywords and their corresponding values:

$Author$
The login name of the user who checked in the revision.

$Date$
The date and time (UTC) the revision was checked in.

$Header$
A standard header containing the full pathname of the
RCS file, the revision number, the date (UTC), the
author, the state, and the locker (if locked).

Id Same as $Header$, except that the RCS filename is
without a path.

$Locker$
The login name of the user who locked the revision
(empty if not locked).

Log
The log message supplied during checkin, preceded by a
header containing the RCS filename, the revision
number, the author, and the date (UTC). Existing log
messages are not replaced. Instead, the new log mes-
sage is inserted after $Log:...$. This is useful for
accumulating a complete change log in a source file.

$RCSfile$
The name of the RCS file without a path.

$Revision$
The revision number assigned to the revision.

$Source$
The full pathname of the RCS file.

$State$
The state assigned to the revision with the -s option
of

rcs
or

ci
.

FILE MODES
The working file inherits the read and execute permissions
from the RCS file. In addition, the owner write permission
is turned on, unless -kv is set or the file is checked out
unlocked and locking is set to strict (see

rcs
).

If a file with the name of the working file exists already
and has write permission, co aborts the checkout, asking

RCS-Docs 19 / 40

beforehand if possible. If the existing working file is not
writable or -f is given, the working file is deleted without
asking.

FILES
co accesses files much as

ci
does, except that it does not

need to read the working file.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. See

ci
for details.

DIAGNOSTICS
The RCS pathname, the working pathname, and the revision
number retrieved are written to the diagnostic output. The
exit status is zero if and only if all operations were suc-
cessful.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.7; Release Date: 1991/08/19.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

ci
, ctime,
ident
, make,
rcs
,

rcsdiff
,
rcsintro
,
rcsmerge
,
rlog
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

LIMITS
Links to the RCS and working files are not preserved.

There is no way to selectively suppress the expansion of
keywords, except by writing them differently. In nroff and
troff, this is done by embedding the null-character \& into
the keyword.

RCS-Docs 20 / 40

BUGS
The -d option sometimes gets confused, and accepts no date
before 1970.

1.5 IDENT

NAME
ident - identify files

SYNOPSIS
ident [-q] [file ...]

DESCRIPTION
ident searches for all occurrences of the pattern $key-
word:...$ in the named files or, if no file name appears,
the standard input.

These patterns are normally inserted automatically by the
RCS command

co
, but can also be inserted manually. The opt-

ion -q suppresses the warning given if there are no patterns
in a file.

ident works on text files as well as object files and dumps.
For example, if the C program in f.c contains

char rcsid[] = "$Id: f.c,v 5.0 1990/08/22 09:09:36
eggert Exp $";

and f.c is compiled into f.o, then the command

ident f.c f.o

will output

f.c:
$Id: f.c,v 5.0 1990/08/22 09:09:36 eggert Exp $

f.o:
$Id: f.c,v 5.0 1990/08/22 09:09:36 eggert Exp $

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.0; Release Date: 1990/08/22.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990 by Paul Eggert.

SEE ALSO

ci
,
co
,
rcs

RCS-Docs 21 / 40

,
rcsdiff
,
rcsintro
,

rcsmerge
,
rlog
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

1.6 MERGE

NAME
merge - three-way file merge

SYNOPSIS
merge [-L label1 [-L label3]] [-p] [-q] file1 file2
file3

DESCRIPTION
merge incorporates all changes that lead from file2 to file3
into file1. The result goes to standard output if -p is
present, into file1 otherwise. merge is useful for combin-
ing separate changes to an original. Suppose file2 is the
original, and both file1 and file3 are modifications of
file2. Then merge combines both changes.

An overlap occurs if both file1 and file3 have changes in a
common segment of lines. On a few older hosts where diff3
does not support the -E option, merge does not detect over-
laps, and merely supplies the changed lines from file3. On
most hosts, if overlaps occur, merge outputs a message
(unless the -q option is given), and includes both alterna-
tives in the result. The alternatives are delimited as fol-
lows:

<<<<<<< file1
lines in file1
=======
lines in file3
>>>>>>> file3

If there are overlaps, the user should edit the result and
delete one of the alternatives. If the -L label1 and
-L label3 options are given, the labels are output in place
of the names file1 and file3 in overlap reports.

DIAGNOSTICS
Exit status is 0 for no overlaps, 1 for some overlaps, 2 for
trouble.

RCS-Docs 22 / 40

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.3; Release Date: 1991/02/28.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO
diff3, diff,

rcsmerge
,
co
.

1.7 RCS

NAME
rcs - change RCS file attributes

SYNOPSIS
rcs [options] file ...

DESCRIPTION
rcs creates new RCS files or changes attributes of existing
ones. An RCS file contains multiple revisions of text, an
access list, a change log, descriptive text, and some con-
trol attributes. For rcs to work, the caller’s login name
must be on the access list, except if the access list is
empty, the caller is the owner of the file or the superuser,
or the -i option is present.

Pathnames matching an RCS suffix denote RCS files; all oth-
ers denote working files. Names are paired as explained in

ci
. Revision numbers use the syntax described in
ci
.

OPTIONS
-i Create and initialize a new RCS file, but do not depo-

sit any revision. If the RCS file has no path prefix,
try to place it first into the subdirectory ./RCS, and
then into the current directory. If the RCS file
already exists, print an error message.

-alogins
Append the login names appearing in the comma-separated
list logins to the access list of the RCS file.

-Aoldfile
Append the access list of oldfile to the access list of
the RCS file.

-e[logins]
Erase the login names appearing in the comma-separated

RCS-Docs 23 / 40

list logins from the access list of the RCS file. If
logins is omitted, erase the entire access list.

-b[rev]
Set the default branch to rev. If rev is omitted, the
default branch is reset to the (dynamically) highest
branch on the trunk.

-cstring
sets the comment leader to string. The comment leader
is printed before every log message line generated by
the keyword Log during checkout (see

co
). This is

useful for programming languages without multi-line
comments. An initial ci , or an rcs -i without -c,
guesses the comment leader from the suffix of the work-
ing file.

-ksubst
Set the default keyword substitution to subst. The
effect of keyword substitution is described in

co
.

Giving an explicit -k option to co, rcsdiff, and
rcsmerge overrides this default. Beware rcs -kv,
because -kv is incompatible with co -l. Use rcs -kkv
to restore the normal default keyword substitution.

-l[rev]
Lock the revision with number rev. If a branch is
given, lock the latest revision on that branch. If rev
is omitted, lock the latest revision on the default
branch. Locking prevents overlapping changes. A lock
is removed with ci or rcs -u (see below).

-u[rev]
Unlock the revision with number rev. If a branch is
given, unlock the latest revision on that branch. If
rev is omitted, remove the latest lock held by the
caller. Normally, only the locker of a revision may
unlock it. Somebody else unlocking a revision breaks
the lock. This causes a mail message to be sent to the
original locker. The message contains a commentary
solicited from the breaker. The commentary is ter-
minated by end-of-file or by a line containing . by
itself.

-L Set locking to strict. Strict locking means that the
owner of an RCS file is not exempt from locking for
checkin. This option should be used for files that are
shared.

-U Set locking to non-strict. Non-strict locking means
that the owner of a file need not lock a revision for
checkin. This option should not be used for files that
are shared. Whether default locking is strict is

RCS-Docs 24 / 40

determined by your system administrator, but it is nor-
mally strict.

-mrev:msg
Replace revision rev’s log message with msg.

-nname[:[rev]]
Associate the symbolic name name with the branch or
revision rev. Delete the symbolic name if both : and
rev are omitted; otherwise, print an error message if
name is already associated with another number. If rev
is symbolic, it is expanded before association. A rev
consisting of a branch number followed by a . stands
for the current latest revision in the branch. A :
with an empty rev stands for the current latest revi-
sion on the default branch, normally the trunk. For
example, rcs -nname: RCS/#? associates name with the
current latest revision of all the named RCS files;
this contrasts with rcs -nname:$ RCS/#? which associ-
ates name with the revision numbers extracted from key-
word strings in the corresponding working files.

-Nname[:[rev]]
Act like -n, except override any previous assignment of
name.

-orange
deletes ("outdates") the revisions given by range. A
range consisting of a single revision number means that
revision. A range consisting of a branch number means
the latest revision on that branch. A range of the
form rev1:rev2 means revisions rev1 to rev2 on the same
branch, :rev means from the beginning of the branch
containing rev up to and including rev, and rev: means
from revision rev to the end of the branch containing
rev. None of the outdated revisions may have branches
or locks.

-q Run quietly; do not print diagnostics.

-I Run interactively, even if the standard input is not a
terminal.

-sstate[:rev]
Set the state attribute of the revision rev to state .
If rev is a branch number, assume the latest revision
on that branch. If rev is omitted, assume the latest
revision on the default branch. Any identifier is
acceptable for state. A useful set of states is Exp
(for experimental), Stab (for stable), and Rel (for
released). By default,

ci
sets the state of a revision

to Exp.

RCS-Docs 25 / 40

-t[file]
Write descriptive text from the contents of the named
file into the RCS file, deleting the existing text.
The file pathname may not begin with -. If file is
omitted, obtain the text from standard input, ter-
minated by end-of-file or by a line containing . by
itself. Prompt for the text if interaction is possi-
ble; see -I. With -i, descriptive text is obtained
even if -t is not given.

-t-string
Write descriptive text from the string into the RCS
file, deleting the existing text.

-Vn Emulate RCS version n. See
co
for details.

-xsuffixes
Use suffixes to characterize RCS files. See

ci
for de-

tails.

COMPATIBILITY
The -brev option generates an RCS file that cannot be parsed
by RCS version 3 or earlier.

The -ksubst options (except -kkv) generate an RCS file that
cannot be parsed by RCS version 4 or earlier.

Use rcs -Vn to make an RCS file acceptable to RCS version n
by discarding information that would confuse version n.

RCS version 5.5 and earlier does not support the -x option,
and requires a ,v suffix on an RCS pathname.

FILES
rcs accesses files much as

ci
does, except that it uses the

effective user for all accesses, it does not write the wor-
king file or its directory, and it does not even read the
working file unless a revision number of $ is specified.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. See

ci
for details.

DIAGNOSTICS
The RCS pathname and the revisions outdated are written to
the diagnostic output. The exit status is zero if and only
if all operations were successful.

RCS-Docs 26 / 40

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.6; Release Date: 1991/09/26.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,
rcsdiff
,
rcsintro
,

rcsmerge
,
rlog
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

BUGS
The separator for revision ranges in the -o option used to
be - instead of :, but this leads to confusion when symbolic
names contain -. For backwards compatibility rcs -o still
supports the old - separator, but it warns about this
obsolete use.

Symbolic names need not refer to existing revisions or
branches. For example, the -o option does not remove sym-
bolic names for the outdated revisions; you must use -n to
remove the names.

1.8 RCSCLEAN

NAME
rcsclean - clean up working files

SYNOPSIS
rcsclean [options] [file ...]

DESCRIPTION
rcsclean removes working files that were checked out and
never modified. For each file given, rcsclean compares the
working file and a revision in the corresponding RCS file.
If it finds a difference, it does nothing. Otherwise, it
first unlocks the revision if the -u option is given, and
then removes the working file unless the working file is
writable and the revision is locked. It logs its actions by

RCS-Docs 27 / 40

outputting the corresponding rcs -u and rm -f commands on
the standard output.

If no file is given, all working files in the current direc-
tory are cleaned. Pathnames matching an RCS suffix denote
RCS files; all others denote working files. Names are
paired as explained in

ci
.

The number of the revision to which the working file is com-
pared may be attached to any of the options -n, -q, -r, or
-u. If no revision number is specified, then if the -u
option is given and the caller has one revision locked,
rcsclean uses that revision; otherwise rcsclean uses the
latest revision on the default branch, normally the root.

rcsclean is useful for clean targets in Makefiles. See also

rcsdiff
, which prints out the differences, and
ci
, which

normally asks whether to check in a file if it was not chan-
ged.

OPTIONS
-ksubst

Use subst style keyword substitution when retrieving
the revision for comparison. See

co
for details.

-n[rev]
Do not actually remove any files or unlock any revi-
sions. Using this option will tell you what rcsclean
would do without actually doing it.

-q[rev]
Do not log the actions taken on standard output.

-r[rev]
This option has no effect other than specifying the
revision for comparison.

-u[rev]
Unlock the revision if it is locked and no difference
is found.

-Vn Emulate RCS version n. See
co
for details.

-xsuffixes
Use suffixes to characterize RCS files. See

ci
for de-

RCS-Docs 28 / 40

tails.

EXAMPLES
rcsclean #?.c #?.h

removes all working files ending in .c or .h that were not
changed since their checkout.

rcsclean

removes all working files in the current directory that were
not changed since their checkout.

FILES
rcsclean accesses files much as

ci
does.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. A backslash escapes spaces within an option.
The RCSINIT options are prepended to the argument lists
of most RCS commands. Useful RCSINIT options include
-q, -V, and -x.

DIAGNOSTICS
The exit status is zero if and only if all operations were
successful. Missing working files and RCS files are
silently ignored.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 1.8; Release Date: 1991/11/03.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,
rcs
,
rcsdiff
,
rcsintro
,

rcsmerge
,
rlog
,
rcsfile

RCS-Docs 29 / 40

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

BUGS
At least one file must be given in older Unix versions that
do not provide the needed directory scanning operations.

1.9 RCSDIFF

NAME
rcsdiff - compare RCS revisions

SYNOPSIS
rcsdiff [-ksubst] [-q] [-rrev1 [-rrev2]] [-Vn] [
-xsuffixes] [diff options] file ...

DESCRIPTION
rcsdiff runs diff to compare two revisions of each RCS file
given.

Pathnames matching an RCS suffix denote RCS files; all oth-
ers denote working files. Names are paired as explained in

ci
.

The option -q suppresses diagnostic output. Zero, one, or
two revisions may be specified with -r. The option -ksubst
affects keyword substitution when extracting revisions, as
described in

co
; for example, -kk -r1.1 -r1.2 ignores

differences in keyword values when comparing revisions 1.1
and 1.2. To avoid excess output from locker name substitu-
tion, -kkvl is assumed if (1) at most one revision option is
given, (2) no -k option is given, (3) -kkv is the default
keyword substitution, and (4) the working file’s mode would
be produced by co -l. See

co
for details about -V and -x.

Otherwise, all options of diff that apply to regular files
are accepted, with the same meaning as for diff.

If both rev1 and rev2 are omitted, rcsdiff compares the
latest revision on the default branch (by default the trunk)
with the contents of the corresponding working file. This
is useful for determining what you changed since the last
checkin.

If rev1 is given, but rev2 is omitted, rcsdiff compares
revision rev1 of the RCS file with the contents of the
corresponding working file.

If both rev1 and rev2 are given, rcsdiff compares revisions
rev1 and rev2 of the RCS file.

RCS-Docs 30 / 40

Both rev1 and rev2 may be given numerically or symbolically.

EXAMPLE
The command

rcsdiff f.c

compares the latest revision on the default branch of the
RCS file to the contents of the working file f.c.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. See

ci
for details.

DIAGNOSTICS
Exit status is 0 for no differences during any comparison, 1
for some differences, 2 for trouble.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.3; Release Date: 1991/04/21.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
, diff,
ident
,
rcs
,
rcsintro
,

rcsmerge
,
rlog

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

1.10 RCSFREEZE

NAME
rcsfreeze - freeze a configuration of sources checked in
under RCS

SYNOPSIS
rcsfreeze [name]

RCS-Docs 31 / 40

DESCRIPTION
rcsfreeze assigns a symbolic revision number to a set of RCS
files that form a valid configuration.

The idea is to run rcsfreeze each time a new version is
checked in. A unique symbolic name (C_number, where number
is increased each time rcsfreeze is run) is then assigned to
the most recent revision of each RCS file of the main trunk.

An optional name argument to rcsfreeze gives a symbolic name
to the configuration. The unique identifier is still gen-
erated and is listed in the log file but it will not appear
as part of the symbolic revision name in the actual RCS
files.

A log message is requested from the user for future refer-
ence.

The shell script works only on all RCS files at one time.
All changed files must be checked in already. Run

rcsclean
first and see whether any sources remain in the

current directory.

FILES
RCS/.rcsfreeze.ver

version number

RCS/.rcsfreeze.log
log messages, most recent first

AUTHOR
Stephan v. Bechtolsheim

SEE ALSO

co
,
rcs
,
rcsclean
,
rlog
BUGS

rcsfreeze does not check whether any sources are checked out
and modified.

Although both source file names and RCS file names are
accepted, they are not paired as usual with RCS commands.

Error checking is rudimentary.
rcsfreeze is just an optional example shell script, and
should not be taken too seriously. See CVS for a more com-
plete solution.

RCS-Docs 32 / 40

1.11 RCSMERGE

NAME
rcsmerge - merge RCS revisions

SYNOPSIS
rcsmerge [options] file

DESCRIPTION
rcsmerge incorporates the changes between two revisions of
an RCS file into the corresponding working file.

Pathnames matching an RCS suffix denote RCS files; all oth-
ers denote working files. Names are paired as explained in

ci
.

At least one revision must be specified with one of the
options described below, usually -r. At most two revisions
may be specified. If only one revision is specified, the
latest revision on the default branch (normally the highest
branch on the trunk) is assumed for the second revision.
Revisions may be specified numerically or symbolically.

rcsmerge prints a warning if there are overlaps, and delim-
its the overlapping regions as explained in

merge
. The

command is useful for incorporating changes into a checked-
out revision.

OPTIONS
-ksubst

Use subst style keyword substitution. See
co
for de-

tails. For example, -kk -r1.1 -r1.2 ignores differences
in keyword values when merging the changes from 1.1 to
1.2.

-p[rev]
Send the result to standard output instead of overwrit-
ing the working file.

-q[rev]
Run quietly; do not print diagnostics.

-r[rev]
Merge with respect to revision rev. Here an empty rev
stands for the latest revision on the default branch,
normally the head.

-Vn Emulate RCS version n. See
co
for details.

RCS-Docs 33 / 40

-xsuffixes
Use suffixes to characterize RCS files. See

ci
for de-

tails.

EXAMPLES
Suppose you have released revision 2.8 of f.c. Assume
furthermore that after you complete an unreleased revision
3.4, you receive updates to release 2.8 from someone else.
To combine the updates to 2.8 and your changes between 2.8
and 3.4, put the updates to 2.8 into file f.c and execute

rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save
the updates to 2.8 in the RCS file, check them in as revi-
sion 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes
between revision 2.4 and 2.8 in your currently checked out
revision in f.c.

rcsmerge -r2.8 -r2.4 f.c

Note the order of the arguments, and that f.c will be
overwritten.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. See

ci
for details.

DIAGNOSTICS
Exit status is 0 for no overlaps, 1 for some overlaps, 2 for
trouble.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.3; Release Date: 1991/08/19.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,

RCS-Docs 34 / 40

merge
,
rcs
,
rcsdiff
,

rcsintro
,
rlog
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

1.12 RLOG

NAME
rlog - print log messages and other information about RCS
files

SYNOPSIS
rlog [options] file ...

DESCRIPTION
rlog prints information about RCS files.

Pathnames matching an RCS suffix denote RCS files; all oth-
ers denote working files. Names are paired as explained in

ci
.

rlog prints the following information for each RCS file: RCS
pathname, working pathname, head (i.e., the number of the
latest revision on the trunk), default branch, access list,
locks, symbolic names, suffix, total number of revisions,
number of revisions selected for printing, and descriptive
text. This is followed by entries for the selected revi-
sions in reverse chronological order for each branch. For
each revision, rlog prints revision number, author,
date/time, state, number of lines added/deleted (with
respect to the previous revision), locker of the revision
(if any), and log message. All times are displayed in Coor-
dinated Universal Time (UTC). Without options, rlog prints
complete information. The options below restrict this out-
put.

-L Ignore RCS files that have no locks set. This is con-
venient in combination with -h, -l, and -R.

-R Print only the name of the RCS file. This is convenient
for translating a working pathname into an RCS pathname.

-h Print only the RCS pathname, working pathname, head,

RCS-Docs 35 / 40

default branch, access list, locks, symbolic names, and
suffix.

-t Print the same as -h, plus the descriptive text.

-b Print information about the revisions on the default
branch, normally the highest branch on the trunk.

-ddates
Print information about revisions with a checkin
date/time in the ranges given by the semicolon-separated
list of dates. A range of the form d1<d2 or d2>d1
selects the revisions that were deposited between d1 and
d2 inclusive. A range of the form <d or d> selects all
revisions dated d or earlier. A range of the form d< or
>d selects all revisions dated d or later. A range of
the form d selects the single, latest revision dated d
or earlier. The date/time strings d, d1, and d2 are in
the free format explained in

co
. Quoting is normally

necessary, especially for < and >. Note that the
separator is a semicolon.

-l[lockers]
Print information about locked revisions only. In addi-
tion, if the comma-separated list lockers of login names
is given, ignore all locks other than those held by the
lockers. For example, rlog -L -R -lwft RCS/#? prints the
name of RCS files locked by the user wft.

-r[revisions]
prints information about revisions given in the comma-
separated list revisions of revisions and ranges. A
range rev1:rev2 means revisions rev1 to rev2 on the same
branch, :rev means revisions from the beginning of the
branch up to and including rev, and rev: means revisions
starting with rev to the end of the branch containing
rev. An argument that is a branch means all revisions
on that branch. A range of branches means all revisions
on the branches in that range. A branch followed by a .
means the latest revision in that branch. A bare -r
with no revisions means the latest revision on the
default branch, normally the trunk.

-sstates
prints information about revisions whose state attri-
butes match one of the states given in the comma-
separated list states.

-w[logins]
prints information about revisions checked in by users
with login names appearing in the comma-separated list
logins. If logins is omitted, the user’s login is
assumed.

-Vn Emulate RCS version n when generating logs. See

RCS-Docs 36 / 40

co
for

more.

-xsuffixes
Use suffixes to characterize RCS files. See

ci
for det-

ails.

rlog prints the intersection of the revisions selected with
the options -d, -l, -s, and -w, intersected with the union
of the revisions selected by -b and -r.

EXAMPLES
rlog -L -R RCS/#?
rlog -L -h RCS/#?
rlog -L -l RCS/#?
rlog RCS/#?

The first command prints the names of all RCS files in the
subdirectory RCS that have locks. The second command prints
the headers of those files, and the third prints the headers
plus the log messages of the locked revisions. The last
command prints complete information.

ENVIRONMENT
RCSINIT

options prepended to the argument list, separated by
spaces. See

ci
for details.

DIAGNOSTICS
The exit status is zero if and only if all operations were
successful.

IDENTIFICATION
Author: Walter F. Tichy.
Revision Number: 5.3; Release Date: 1991/08/22.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,
rcs
,
rcsdiff
,

rcsintro

RCS-Docs 37 / 40

,
rcsmerge
,
rcsfile

Walter F. Tichy, RCS--A System for Version Control,
Software--Practice & Experience 15, 7 (July 1985), 637-654.

BUGS
The separator for revision ranges in the -r option used to
be - instead of :, but this leads to confusion when symbolic
names contain -. For backwards compatibility rlog -r still
supports the old - separator, but it warns about this
obsolete use.

1.13 RCSFILE

NAME
rcsfile - format of RCS file

DESCRIPTION
An RCS file’s contents are described by the grammar below.

The text is free format: space, backspace, tab, newline,
vertical tab, form feed, and carriage return (collectively,
white space) have no significance except in strings. How-
ever, an RCS file must end in a newline character.

Strings are enclosed by @. If a string contains a @, it
must be doubled; otherwise, strings may contain arbitrary
binary data.

The meta syntax uses the following conventions: ‘|’ (bar)
separates alternatives; ‘{’ and ‘}’ enclose optional
phrases; ‘{’ and ‘}*’ enclose phrases that may be repeated
zero or more times; ‘{’ and ’}+’ enclose phrases that must
appear at least once and may be repeated; Terminal symbols
are in boldface; nonterminal symbols are in italics.

rcstext ::= admin {delta}* desc {deltatext}*

admin ::= head {num};
{ branch {num}; }
access {id}*;
symbols {id : num}*;
locks {id : num}*; {strict ;}
{ comment {string}; }
{ expand {string}; }
{ newphrase }*

delta ::= num
date num;
author id;
state {id};
branches {num}*;
next {num};

RCS-Docs 38 / 40

{ newphrase }*

desc ::= desc string

deltatext ::= num
log string
{ newphrase }*
text string

num ::= {digit{.}}+

digit ::= 0 | 1 | ... | 9

id ::= letter{idchar}*

letter ::= any letter

idchar ::= any visible graphic character except special

special ::= $ | , | . | : | ; | @

string ::= @{any character, with @ doubled}*@

newphrase ::= id word* ;

word ::= id | num | string | :

Identifiers are case sensitive. Keywords are in lower case
only. The sets of keywords and identifiers may overlap. In
most environments RCS uses the ISO 8859/1 encoding: letters
are octal codes 101-132, 141-172, 300-326, 330-366 and 370-
377, visible graphic characters are codes 041-176 and
240-377, and white space characters are codes 010-015 and
040.

The newphrase productions in the grammar are reserved for
future extensions to the format of RCS files. No newphrase
will begin with any keyword already in use.

The delta nodes form a tree. All nodes whose numbers con-
sist of a single pair (e.g., 2.3, 2.1, 1.3, etc.) are on the
trunk, and are linked through the next field in order of
decreasing numbers. The head field in the admin node points
to the head of that sequence (i.e., contains the highest
pair). The branch node in the admin node indicates the
default branch (or revision) for most RCS operations. If
empty, the default branch is the highest branch on the
trunk.

All delta nodes whose numbers consist of 2n fields (n)
(e.g., 3.1.1.1, 2.1.2.2, etc.) are linked as follows. All
nodes whose first 2n-1 number fields are identical are
linked through the next field in order of increasing
numbers. For each such sequence, the delta node whose
number is identical to the first 2n-2 number fields of the
deltas on that sequence is called the branchpoint. The
branches field of a node contains a list of the numbers of

RCS-Docs 39 / 40

the first nodes of all sequences for which it is a bran-
chpoint. This list is ordered in increasing numbers.

Example:

Head
|
|
v / \

--------- / \
/ \ / \ | | / \ / \

/ \ / \ | 2.1 | / \ / \
/ \ / \ | | / \ / \

/1.2.1.3\ /1.3.1.1\ | | /1.2.2.2\ /1.2.2.1.1.1\
--------- --------- --------- --------- -------------

^ ^ | ^ ^
| | | | |
| | v | |

/ \ | --------- / \ |
/ \ | \ 1.3 / / \ |
/ \ ---------\ / / \-----------

/1.2.1.1\ \ / /1.2.2.1\
--------- \ / ---------

^ | ^
| | |
v
\ 1.2 /
----------------------\ /---------

\ /
\ /
|
|
v

\ 1.1 /
\ /
\ /
\ /

Fig. 1: A revision tree

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette,
IN, 47907.
Revision Number: 5.1; Release Date: 1991/08/19.
Copyright © 1982, 1988, 1989 by Walter F. Tichy.
Copyright © 1990, 1991 by Paul Eggert.

SEE ALSO

co
,
ci
,
ident
,

RCS-Docs 40 / 40

rcs
,
rcsdiff
,
rcsintro
,

rlog
Walter F. Tichy, RCS--A System for Version Control,

Software--Practice & Experience 15, 7 (July 1985), 637-654.

	RCS-Docs
	Revision Control System
	RCSINTRO
	CI
	CO
	IDENT
	MERGE
	RCS
	RCSCLEAN
	RCSDIFF
	RCSFREEZE
	RCSMERGE
	RLOG
	RCSFILE

