
scout

scout ii

COLLABORATORS

TITLE :

scout

ACTION NAME DATE SIGNATURE

WRITTEN BY September 19, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

scout iii

Contents

1 scout 1

1.1 scout.guide . 1

1.2 scout.guide/Introduction . 2

1.3 scout.guide/Copyright . 2

1.4 scout.guide/Disclaimer . 3

1.5 scout.guide/Giftware . 3

1.6 scout.guide/System Requirements . 3

1.7 scout.guide/MUI . 4

1.8 scout.guide/AmiTCP . 4

1.9 scout.guide/Installation . 4

1.10 scout.guide/Using Scout . 4

1.11 scout.guide/Assigns . 6

1.12 scout.guide/Devices . 7

1.13 scout.guide/Expansions . 8

1.14 scout.guide/Fonts . 9

1.15 scout.guide/InputHandlers . 10

1.16 scout.guide/Interrupts . 11

1.17 scout.guide/Libraries . 12

1.18 scout.guide/Locks . 14

1.19 scout.guide/Memory . 14

1.20 scout.guide/Mounted Devs . 15

1.21 scout.guide/Ports . 16

1.22 scout.guide/Resident Cmds . 17

1.23 scout.guide/Residents . 18

1.24 scout.guide/Resources . 19

1.25 scout.guide/Semaphores . 20

1.26 scout.guide/Tasks . 21

1.27 scout.guide/Vectors . 23

1.28 scout.guide/Windows . 24

1.29 scout.guide/Scout and AmiTCP . 25

scout iv

1.30 scout.guide/Scout without MUI . 26

1.31 scout.guide/Options . 26

1.32 scout.guide/Commands . 28

1.33 scout.guide/Updates . 34

1.34 scout.guide/Credits . 35

1.35 scout.guide/Author Info . 35

1.36 scout.guide/Index . 36

scout 1 / 39

Chapter 1

scout

1.1 scout.guide

Scout 37.105
Release 2.2

User’s Manual
Copyright (C) 1994 Andreas Gelhausen

Introduction
What is ‘Scout’?

Copyright
What you should know for distributing

Disclaimer
NO WARRANTY

Giftware
‘Scout’ is giftware

System Requirements
What your system should have

Installation
Installing ‘Scout’

Using Scout
How to use ‘Scout’

Scout and AmiTCP
‘Scout’ as ‘AmiTCP’ service

Scout without MUI
‘MUI’ is not necessary!

scout 2 / 39

Options
You can set some variables.

Commands
ARexx and shell commands

Updates
How to get updates

Credits
Thanks are going to...

Author Info
How to reach the author

Index
Contents index

1.2 scout.guide/Introduction

What is Scout?
==============

‘Scout’ is a tool that allows you to monitor your computer system.
It displays many different things -- like tasks, ports, assigns,
expansion boards, resident commands, interrupts, etc. -- and you can
perform some certain actions on them.

For example you can freeze tasks, close windows and screens, release
semaphores or remove locks, ports and interrupts.

Through ‘AmiTCP’ it’s also possible to use ‘Scout’ as an TCP/IP service.

Since version 2.0 of ‘Scout’ you can use nearly all implemented
functions through shell parameters. Therefore it’s not necessary to
install ‘MUI’ for using ‘Scout’, but you will need ‘MUI’, if you want
to use ‘Scout’ with its graphical user interface.

1.3 scout.guide/Copyright

Copyright
=========

Scout 37.105 (Release 2.2) - Copyright (C) 1994 by Andreas Gelhausen,
all rights reserved.

‘Scout’ is a giftware program and you are only allowed to freely

scout 3 / 39

distribute it, if you let this archive unchanged. No part of this
archive is allowed to be distributed with commercial software without a
written permission of the author.

1.4 scout.guide/Disclaimer

Disclaimer
==========

No warranties are made for this program. All use is at your own risk.
No liability or responsibility is assumed for any damages occured
during the usage of ‘Scout’. You have been warned.

1.5 scout.guide/Giftware

Giftware
========

‘Scout’ 37.105 is giftware. If you like and use this program, you
are welcome to appreciate my programming efforts by sending me a little
present -- thanks a lot in advance! =:^)

1.6 scout.guide/System Requirements

System Requirements
===================

‘Scout’ only requires Amiga operating system version 2.04.

If you want to use ‘Scout’s’ graphical user interface, you also have
to install ‘MUI’ version 2.1 or higher. See also

MUI and where you can get it
.

The TCP/IP features of ‘Scout’ are only available, if you have
installed the version 4.0 of ‘AmiTCP’. See also

AmiTCP and where you can get it
.

scout 4 / 39

1.7 scout.guide/MUI

MUI - MagicUserInterface
========================

(C) Copyright 1993/94 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces.
With the aid of a preferences program, the user of an application has
the ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package
containing lots of examples and more information about registration
please look for a file called ‘muiXXusr.lha’ (XX means the latest
version number) on your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send DM 30.- or US$
20.- to

Stefan Stuntz
Eduard-Spranger-Straße 7

80935 München
GERMANY

1.8 scout.guide/AmiTCP

AmiTCP
======

‘AmiTCP’ is a TCP/IP protocol stack for the Amiga. The demo version
4.0 (or higher) should be available in greater public domain
collections or on the AmiNet. Ask your preferred Amiga dealer. =:^)

1.9 scout.guide/Installation

Installing Scout
================

You only have to copy the program ‘scout’ and the data file
‘scout.data’ to your favourite directory and then you can start it. The
file ‘scout.data’ includes data of expansion boards.

1.10 scout.guide/Using Scout

How to use Scout

scout 5 / 39

This chapter describes the usage of ‘Scout’ through its graphical
user interface. This graphical user interface is based on the ‘Magic
User Interface’ (‘MUI’) and ‘MUI’ have to be installed in your system,
if you want to use ‘Scout’ trough windows and so on.

If you don’t like ‘MUI’, you should see
Scout without MUI
.

If you start the program, you will get following window:

·--·
|

Libraries

Devices

Resources
|

|
Tasks

Ports

Resident Cmds
|

|
Expansions

Memory

Residents
|

|
Assigns

Locks

Mounted Devs
|

|
InputHandlers

Interrupts

Vectors
|

|
Fonts

Semaphores

Windows
|

·--·

scout 6 / 39

Every gadget you see represents a certain kind of system structures.

Click one of these gadgets and another window will be opened with a
list of the structure type that is indicated on the pressed gadget.

Example: Press the task gadget and you will get a window with
the list of tasks and processes.

You can also select these functions by pressing the underlined key
you see on each gadget or by using the right mousebutton menu.

If you wish to handle/remove a given structure, you should know what
you do.

Warning: Wrong handling of the showed structures can crash your
system. At the worst you will lose your data.

Please note: You should not be surprised, if you don’t find a certain
detail information in this manual, because it’s to much work to explain
each element of all the structures you could see in this program.

Many books are written about these things and if you want to have
more information about them, you should have a look in the specialized
literature.

1.11 scout.guide/Assigns

Assigns
=======

This type of structure assigns a logical name to a directory.

If you assign the directory ‘dh0:data/documents’ the logical name
‘texts:’, you will also be able to choose a file FILENAME in that
directory with the path ‘texts:FILENAME’.

Column items

‘Address’
Address of the assign structure.

‘Name’
Logical name of a directory

‘Path’
Here you will find the path of the directory.

Actions

‘Update’
Selecting this gadget updates the list of assigns.

scout 7 / 39

‘Print’
This function allows you to send the list of ‘Assigns’ to printer
or a selected file.

‘Remove’
The selected assign will be removed with this function.

‘Exit’
The ‘Assigns’ window will be closed.

1.12 scout.guide/Devices

Devices
=======

A device is -- like a library (see
Libraries
) -- a collection of

functions/procedures, which have to do certain jobs.

E.g. the ‘trackdisk.device’ includes functions for the floppy disk
handling.

Column items

‘Address’
Address of the device structure

‘ln_Name’
Name of a device

‘ln_Pri’
Priority of a device

‘OpenC’
This element shows how often the device was opened.

‘RPC’
‘RPC’ means ‘RAM Pointer Count’ and shows how many jump addresses
of the device point into RAM. In this way many programs -- like
the ‘setpatch’ command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the device is located in RAM, you will
find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’
Type of this structure (usually ‘device’)

scout 8 / 39

Actions

‘Update’
If you select this gadget, the list of devices will be updated.

‘Print’
This function allows you to send the list of ‘Devices’ to printer
or a selected file.

‘Remove’
The selected device will be removed with this function provided
that no program uses this device anymore and the ‘OpenC’ is zero.

‘Priority’
Herewith the priority of the device can be changed. A little
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the device gets a new place in
the device list.

‘More’
Another window will be opened and you will see more informations
about the selected device.

You will have the same effect, if you doubleclick an element of the
device list.

‘Exit’
The ‘Devices’ window will be closed.

1.13 scout.guide/Expansions

Expansions
==========

In this list you will find all your expansion boards (graphic boards,
memory expansions and so on).

Column items

‘BoardAddr’
Usually you will find the ROM of the card here. If this address
points into RAM, the card is a memory expansion.

‘BoardSize’
If the entry belongs to a memory expansion, the size of the memory
is displayed here. Otherwise it’s the ROM size of the card.

‘Manufacturer’
ManufacturerID, assigned by Commodore

scout 9 / 39

‘Product’
Productnumber, assigned by the manufacturer of the board

‘Serial#’
Serialnumber of the card (usually unused)

Actions

‘Print’
This function allows you to send the list of ‘Expansions’ to
printer or a selected file.

‘More’
Now a window will be opened, that includes more informations about
the selected expansion board.

Doubleclick an element of the ‘Expansions’ list and you will have
the same effect.

‘Exit’
The ‘Expansions’ window will be closed.

Unknown expansion boards

If you select an expansion board by selecting its list item, you will
get the name of the manufacturer and the card in the textfield you find
below the list, provided that I have known these data at compiling.

If no information is available in this textfield or the given
information is wrong, you should send me the following data, please.

1. ManufacturerID (Manufacturer)
2. ProductID (Product)
3. Name of the company
4. Name of your expansion card

If you send me these data, the next version of file ‘scout.data’
will include your expansion boards. Please be as precise you can.

1.14 scout.guide/Fonts

Fonts
=====

This function will show you all fonts existing in your system.

Column items

‘YSize’
Vertical size of the font

scout 10 / 39

‘Count’
Here you can see how many programs use the font.

‘Type’
‘ROMFONT’ means the font is located in ROM and ‘DISKFONT’ means
the font was loaded from disk/harddisk.

‘Name’
Name of the font

Actions

‘Update’
The list of fonts will be updated.

‘Print’
This function allows you to send the list of ‘Fonts’ to printer or
a selected file.

‘Close’
The font will be closed by using this function.

‘Remove’
It is possible to remove a font from system, provided that no
program uses it and it’s no ‘ROMFONT’.

‘Exit’
The ‘Fonts’ window disappears.

1.15 scout.guide/InputHandlers

InputHandlers
=============

Input handlers take care of all user input arriving in system
(pressed keys, mouseclicks, inserted disks, etc.). They stand one
behind the other like on a production line and analyze the user input.
The input handler with the highest priority gets the ‘events’ first and
if it doesn’t know how to react on these ‘events’, the second input
handler gets them, and so on.

Usually the system input handler has a priority of 50. Every input
handler, that wants to get the user input before the system, must have
a higher priority.

Column items

‘ln_Name’
Name of the input handler

‘ln_Pri’
Its priority

scout 11 / 39

‘is_Data’
This address points to some data needed by the input handler.

‘is_Code’
The program code starts here. If the code is located in RAM, the
address is of different color. Otherwise you can find the code in
ROM. Some viruses install an input handler in system. In this
case the ‘is_Code’ address points into RAM, but many other
programs uses input handlers, too. Don’t panic!

Actions

‘Update’
The list of input handlers will be updated when you select this
gadget.

‘Print’
This function allows you to send the list of ‘InputHandlers’ to
printer or a selected file.

‘Remove’
Removes an input handler from system.

‘Priority’
Changes the priority of an input handler.

‘Exit’
The window will be closed.

1.16 scout.guide/Interrupts

Interrupts
==========

Interrupts are important events the computer system has to react on.
It exists a list of interrupt routines for each interrupt type. If a
certain interrupt occurs, all these interrupt routines will be called.
During their execution the running program will be interrupted.

Column items

‘ln_Name’
Name of the interrupt

‘ln_Pri’
Its priority

‘is_Data’
At this address you find the data of the interrupt.

‘is_Code’

scout 12 / 39

Address of the interrupt code. If this address points into RAM,
it’s of a different color.

‘NUM’
This number represents the type of event the interrupt routine is
called on. The ‘IntName’ you find in the interrupt detail window
gives you a little bit more information about it.

Example: Number 5 means that the interrupt is called at every
vertical blank interval.

Actions

‘Update’
The list of interrupts will be updated.

‘Print’
This function allows you to send the list of ‘Interrupts’ to
printer or a selected file.

‘Remove’
If the interrupt is a server you can remove it from system. An
interrupt handler can’t be removed by ‘Scout’.

If you call ‘avail flush’ and the audio.device isn’t used, the
interrupt handlers of the audio.device will be removed.

‘More’
Now a window will be opened that includes more details of the
interrupt.

‘Exit’
Selecting this gadget will close the ‘Interrupts’ window.

1.17 scout.guide/Libraries

Libraries
=========

A library is a collection of functions/procedures, which have to do
certain jobs. E.g. the ‘graphics.library’ includes routines for
graphical display.

Column items

‘Address’
Adress of the library structure

‘ln_Name’
Name of a library

‘ln_Pri’

scout 13 / 39

Priority of a library

‘OpenC’
Here you see, how often the library was opened.

‘RPC’
‘RPC’ means ‘RAM Pointer Count’ and shows how many jump addresses
of the library point into RAM. In this way many programs -- like
the ‘setpatch’ command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the library is located in RAM, you
will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’
Type of this structure (usually ‘library’)

Actions

‘Update’
The list of libraries will be updated.

‘Print’
This function allows you to send the list of ‘Libraries’ to
printer or a selected file.

‘Remove’
The selected library will be removed with this function provided
that no program uses this library anymore and the ‘OpenC’ is zero.

Some libraries can’t be removed from system without a reset. So
you shouldn’t wonder about it, if this happens.

‘Close’
A library must be closed by all programs, if you want to remove it
from system. In this case the ‘OpenC’ is zero.

If you select this function, you will be asked, how often you want
to close it. You can choose between ‘Once’ and ‘All’.

Select ‘All’ and the library will so often be closed till the
‘OpenC’ is zero.

‘Priority’
Herewith the priority of the library can be changed. A little
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the library gets a new place
in the list of libraries.

‘More’
A window will be opened that includes more details of the library.

scout 14 / 39

‘Exit’
Selecting this gadget will close the ‘library’ window.

1.18 scout.guide/Locks

Locks
=====

A lock structure shows you, that a program reads from or perhaps
write into a file or a directory. With this type of structure the
system prevents, that a file will be deleted while another program gets
some data from it.

Column items

‘Access’
Here you can see the type of access. This could be ‘READ’,
‘WRITE’ or ‘OWN’. ‘OWN’ stands for a lock ‘Scout’ created to get
the elements of this list.

‘Path’
Path of the file or directory

Actions

‘Update’
The list of ‘Locks’ will be updated.

‘Print’
This function allows you to send the list of ‘Locks’ to printer or
a selected file.

‘Remove’
A lock will be removed through dos.library’s ‘UnLock()’ function.

‘Pattern’
If you give ‘Scout’ a pattern, only the locks with a matching path
will be shown.

‘Exit’
The ‘Locks’ window will be closed.

1.19 scout.guide/Memory

Memory
======

In this list you will find the segments of your memory. At least you

scout 15 / 39

will find an entry for your chip memory.

Column items

‘ln_Name’
Name of the memory segment (e.g. ‘chip memory’)

‘ln_Pri’
Priority of memory

‘mh_Lower’
First address of memory

‘mh_Upper’
Last address of memory

Actions

‘Print’
This function allows you to send the list of the memory segments to
printer or a selected file.

‘Priority’
This function allows you to change the priority of a memory
segment. The memory segment with the highest priority will be
preferred from system, provided that no certain type of memory is
demanded.

‘More’
Another window will be opened. This window includes more
information about the memory segment.

‘Exit’
The window will be closed.

1.20 scout.guide/Mounted Devs

Mounted Devices
===============

In this list you will find all your devices like disk drives, printer
devices, etc.

Column items

‘Name’
Name of the device

‘Unit’
Unit number

scout 16 / 39

‘Heads’
Number of heads

‘Cyl’
Number of cylinders

‘State’
The state shows you for example, if a disk is in drive.

‘DiskType’
Type of a disk (e.g. OFS (OldFileSystem), FFS (FastFileSystem),
...)

‘Handler or Device’
The handler or the device you find here has to manage the stream of
data from and to the device.

Actions

‘Update’
The list will be updated.

‘Print’
This function allows you to send the list of ‘Mounted Devs’ to
printer or a selected file.

‘Exit’
The window will be closed.

1.21 scout.guide/Ports

Ports
=====

Programs are able to communicate together through ports.

Column items

‘Address’
Here you will find the port structure.

‘ln_Name’
Name of port

‘ln_Pri’
Priority of port

‘mp_SigTask’
The task is communicating through the port.

Actions

scout 17 / 39

‘Update’
The ports list will be updated.

‘Print’
This function allows you to send the list of ‘Ports’ to printer or
a selected file.

‘Remove’
The port will be removed.

‘Priority’
Herewith the port priority can be changed.

‘Exit’
The ‘Ports’ window will be closed.

1.22 scout.guide/Resident Cmds

Resident Commands
=================

This list includes all resident commands. That means all commands you
find in ROM and the commands you made ‘resident’ through the ‘resident’
command.

Positions and sizes of their hunks you will find here, too.

Column items

‘Name’
Name of the command

‘UseCount’
Here you can see, how often a command was being executed at the
time the list was build.

‘Lower’
First address of hunk in memory

‘Upper’
Last address of hunk in memory

‘Size’
Size of hunk (upper - lower - 8 bytes overhead)

Actions

‘Update’
The list of ‘Resident Commands’ will be updated.

‘Print’

scout 18 / 39

This function allows you to send the list of ‘Resident Commands’ to
printer or a selected file.

‘Remove’
The selected command will be removed with this function provided
that no program uses this command anymore and the ‘UseCount’ is
zero.

‘Exit’
The window disappears.

1.23 scout.guide/Residents

Residents
=========

Resident modules are reset-protected segments (code and data). In
the list of ‘Residents’ you usually find libraries, devices and
resources. A programmer has the possibility to make his own programs
reset-protected. He has to initialize a resident structure for it and
then he can link the program through the kick-vectors (see

Vectors
) to

the list of the resident modules. The residents you linked to system
are usually located in RAM and are of a different color.

If you find a resident module that points into RAM and you don’t know
which program has created it, you should start your favourite virus
detector and let it check your memory. Many viruses prefer this way to
travel around.

Column items

‘Address’
At this address the resident module is located.

‘ln_Name’
Name of the resident module

‘rt_Pri’
Priority

‘rt_IdString’
Identity string of the resident module.

Actions

‘Update’
The list of ‘Residents’ will be updated.

‘Print’
This function allows you to send the list of ‘Residents’ to

scout 19 / 39

printer or a selected file.

‘More’
Selecting this gadget opens a new window with more information
about the selected resident module.

‘Exit’
The ‘Residents’ window will be closed.

1.24 scout.guide/Resources

Resources
=========

Usually a resource is -- like a library (see
Libraries
) -- a

collection of functions/procedures, which have to do certain jobs.

E.g. the ‘filesystem.resource’ includes functions for the filesystem
handling.

Column items

‘Address’
Address of the resource structure

‘ln_Name’
Name of a resource

‘ln_Pri’
Priority of a resource

‘OpenC’
This element shows how often the resource was opened.

‘RPC’
‘RPC’ means ‘RAM Pointer Count’ and shows how many jump addresses
of the resource point into RAM. In this way many programs -- like
the ‘setpatch’ command from Commodore -- patch the system.

Many viruses patch the system in this way too, but don’t panic now.
If you check your system in regular intervals with a current virus
killer, it should be out of danger.

If the whole program code of the resource is located in RAM, you
will find a dash (minus sign) here, because in this case it’s
unimportant how many jump addresses point into RAM.

‘ln_Type’
Type of this structure (usually ‘resource’)

scout 20 / 39

Actions

‘Update’
The list of ‘Resources’ will be updated.

‘Print’
This function allows you to send the list of ‘Resources’ to
printer or a selected file.

‘Remove’
The selected resource will be removed with this function, provided
that no program uses it anymore and the ‘OpenC’ is zero.

‘Priority’
Herewith the priority of the resource can be changed. A small
window will be opened, that asks you for a new priority. Through
the new priority it can happen that the resource gets a new
position in the list of resources.

‘More’
Select this gadget and you get a new window with more information
about the selected resource.

‘Exit’
The ‘Resources’ window will be closed.

Please note: If you should find three dashes (minus signs) at
‘OpenC’ and/or ‘RPC’, the resource has no typical library structure.
This happens for example at the ‘FileSystem.resource’.

1.25 scout.guide/Semaphores

Semaphores
==========

The use of semaphores is a way of single-threading critical
sections. For example only one program is allowed to use the printer
at one time, otherwise the texts would be mixed.

Column items

‘ln_Name’
Name of a semaphore

‘Nest’
This item counts how often the semaphore has been obtained by the
owner task.

‘Queue’
This counter shows you, how many programs want to obtain the
semaphore.

scout 21 / 39

‘Owner’
Here you will find the name of the task that owns the semaphore.

Actions

‘Update’
The list of ‘Semaphores’ will be updated.

‘Print’
This function allows you to send the list of ‘Semaphores’ to
printer or a selected file.

‘Obtain’
This function is used to gain access to a semaphore. The ‘NestCnt’
will be increased at one by this call.

‘Release’
Herewith you can make a signal semaphore available to others.

‘Exit’
The ‘Semaphores’ window will be closed.

1.26 scout.guide/Tasks

Tasks
=====

In this window you find a list of all tasks and processes being in
system. Each program you start will be executed as a task or process.

Column items

‘ln_Name’
Name of the task/process

‘ln_Type’
Type of the structure (‘task’ or ‘process’)

‘ln_Pri’
Priority of the task/process

‘NUM’
If a non detaching program was started from shell, you will find
here the number of the process. Programs you started from
Workbench have a dash here.

‘State’
Here you see the state of the task or process. You will find
Scout’s own process on the top of the list with a ‘run’ at this
place, because this process is always running when it gets the
task list.

scout 22 / 39

‘ready’ means the task wants to work, but it’s interrupted by the
execution of another task.

A task that is waiting for a certain signal is in the state
‘wait’. In this case it doesn’t need processing time.

‘SigWait’
Signalmask the task is waiting for.

Actions

‘Print’
This function allows you to send the list of ‘Tasks’ to printer or
a selected file.

‘Freeze’
With this function you freeze the selected task. It can still be
found in the list of tasks, but it gets no processing time from
system.

Warning: If you try to freeze tasks essential to the system
like ‘input.device’, you should have saved all important
data, cause a RESET is the only way out!

‘Activate’
A frozen task can be activated here.

‘CPU’
Here you will find a text field and a cycle gadget. This text field
displays -- dependent on the state of the cycle gadget -- the CPU
load in percent.

For the cycle gadget you can choose between three states:
‘off’

In this case the CPU load won’t be displayed. If you select
another state, ‘Scout’ will patch some system functions to
calculate the CPU load of all tasks.

‘full’
If you select this state, ‘Scout’ sets the real cpu load to
100%. That means the total of the CPU loads of all tasks and
processes will be 100%. Therefore nothing will be displayed
in the text field.

‘in %’
‘Scout’ starts a task named ‘« Scout’s cheat task »’ to
calculate the real CPU load and it will be displayed in the
text field.

‘Secs’
This string gadget allows you to set the intervall time for
updating of the CPU load display.

‘Update’
The list will be updated.

scout 23 / 39

‘Remove’
A task will be removed from the list. You should prefer the freeze
function, if you perhaps need this task again.

See also ‘Break’!

‘Signal’
If you select a signal mask, it will be send to the task.

‘Break’
A signal mask that includes the signals CTRL-C and CTRL-D will be
send to the task you selected. Many tasks and processes end, if
they receive these signals.

‘Priority’
The priority of a task can be changed with this function.

‘More’
Selecting this gadget will open another window that displays more
informations about the task or the process.

‘Exit’
The window will be closed.

1.27 scout.guide/Vectors

Vectors
=======

Actions

‘Update’
The displayed vectors will be updated.

‘Print’
This function allows you to send the list of ‘Vectors’ to printer
or a selected file.

‘Exit’
The window will be closed.

Reset Vectors

A program can make itself reset-protected by using the reset vectors.
If the vectors are unused, they have a value of zero. The programs
which use the Kick-Vectors (KickTagPtr, KickMemPtr and KickCheckSum)
can also be found in the list of resident structures. See also

Residents
.

scout 24 / 39

Auto Vector Interrupts

In a computer system with a MC68000 processor you will find the seven
‘Auto Vector Interrupts’ from address $64 to address $7c. Higher
processors (MC68010, etc.) have the VBR (Vector Base Register) that
allows you to move the interrupt table to FAST-MEM. The system will be
a little bit faster then. ‘Scout’ uses the VBR if it exists.

Interrupt Vectors

Here you see 16 interrupt vectors (IntVecs). These vectors are
located in the ‘ExecBase’ (base structure of the exec.library).

1.28 scout.guide/Windows

Windows
=======

All screens with the windows opened on them are listed here. Screens
are of a different color as windows.

Column items

‘Pos(x,y)’
x and y position of the screen/window

‘Size(x,y)’
x and y size of the screen/window

‘Title’
Title of the screen/window

Actions

‘Update’
The list will be updated.

‘Print’
This function allows you to send the list of ‘Windows’ to printer
or a selected file.

‘Close’
With this function it is possible to close screens and/or windows.
If you close a screen, all windows on it will be closed too.

‘To Front’
The selected screen/window will be popped to front.

‘More’

scout 25 / 39

If you select this gadget another window will be opened that
displays more informations about the window or the screen.

‘Exit’
The window will be closed.

1.29 scout.guide/Scout and AmiTCP

Scout and AmiTCP
================

This section will show you what you have to do for using ‘Scout’ as
a TCP/IP service through ‘AmiTCP’. Nearly all functions of ‘Scout’ can
also be used via ‘AmiTCP’.

Now some knowledge will be assumed. If you don’t know, what kind of
program ‘AmiTCP’ represents, you should read ‘AmiTCP’s’ user’s manual
before. (See also

AmiTCP
.)

If you have installed ‘AmiTCP’, you can use ‘Scout’ as client and
server. Except the installed programs of ‘AmiTCP’ you don’t need
another program for using ‘Scout’ on networks.

If you want to make your computer available for other systems on the
network, you have to do following two steps:

1. Add the line ‘scout 6543/tcp’ to file ‘AmiTCP:db/services’.

2. Now please add the line ‘scout stream tcp nowait root dh0:scout’
to file ‘AmiTCP:db/inetd.conf’. Make sure that the path at the end
of this line is the right path for ‘scout’.

That’s it! If you start ‘AmiTCP’ now, your computer is available for
other systems through using the options ‘HOST’, ‘USER’ and ‘PASSWORD’.

Example: If I want perform some actions on some system
structures of my own system for example, I have to start ‘Scout’
through something like:

1> scout HOST crash.north.de USER atte PASSWORD secret

If you leave out option ‘PASSWORD’, you will be asked for the
correct password through the ‘password:’ prompt. In this case nobody
can see your password, because it won’t be displayed in shell.

If you don’t use option ‘USER’, ‘AmiTCP’ takes the username that is
actually available in system.

The usage of ‘AmiTCP’ doesn’t provide the installation of ‘MUI’. All
of ‘Scout’s’ shell commands (see also

Commands
) can be used via network

scout 26 / 39

through ‘AmiTCP’.

Example: If I want to get the task list of my system, I have to
use something like:

1> scout HOST crash.north.de USER atte PASSWORD secret Tasks

You and all other users must always identify themselves through
their usernames (option ‘USER’) and their passwords (option ‘PASSWORD’).
It’s also possible to allow or deny certain systems the usage of some
services through the file ‘AmiTCP:db/inet.access’. See also the user’s
manual of ‘AmiTCP’.

If you want to get more informations about the implemented options
and commands, you should also see

Options
and

Commands
.

1.30 scout.guide/Scout without MUI

Scout without MUI
=================

Nearly all through the graphical user interface available functions
of ‘Scout’ are also available via shell. Therefore you don’t really
need ‘MUI’ for using ‘Scout’. But if you want to use ‘Scout’s’
graphical user interface, you must have ‘MUI’ in your system.

1.31 scout.guide/Options

Options

There are some options for ‘Scout’ which you can use, when you start
the program. The following options are available from shell and as
tool types from Workbench.

‘ICONIFIED’

Usage: ‘ICONIFIED’

If this option is activ, ‘Scout’ starts iconified.

‘PORTNAME’

Usage: ‘PORTNAME’=PORTNAME

The name of Scout’s ARexx port can be changed into PORTNAME.
Without this option the ARexx port is called ‘SCOUT.X’. The ‘X’

scout 27 / 39

stands for a decimal number that will be incremented, if a so
called port already exists.

‘TOOLPRI’

Usage: ‘TOOLPRI’=VALUE

This option allows you to change the priority of Scout’s process
into VALUE.

‘STARTUP’

Usage: ‘STARTUP’=SCRIPTNAME

You can choose an ARexx script SCRIPTNAME, that will be executed
at the start of ‘Scout’. In this way you can open more than only
the main window. If for example the ARexx script includes the
command ‘OpenWindow Tasks’, the task list window will always be
opened when the program starts.

(See also
ARexx port
.)

‘INTERVALTIME’

Usage: ‘INTERVALTIME’=SECONDS

This options allows you to save your preferred update time for the
list of tasks. (See also

Secs
.)

‘CPUDISPLAY’

Format: ‘CPUDISPLAY’=VALUE

Through the variable VALUE you can select the state of the ‘CPU’
cycle gadget you find in the ‘Tasks’ window. (See also

CPU
.)

* ‘1’ means ‘CPU: full’

* ‘2’ means ‘CPU: in %’

‘HOST’

Format: ‘HOST’=HOSTNAME

This options allows you to specify the system (HOSTNAME) you want
to manipulate via network through ‘AmiTCP’.

‘USER’

Format: ‘USER’=USERNAME

You have to use this option to identify yourself by using ‘Scout’
as a TCP/IP service.

‘PASSWORD’

Format: ‘PASSWORD’=PASSWORD

scout 28 / 39

Without a password ‘Scout’ can’t connect to another system via
network. This option allows you to set the correct password.

‘COMMAND’

Format: ‘COMMAND’=COMMANDLINE

Nearly all of ‘Scout’s’ implemented functions are available from
shell through this option. You don’t need the ‘COMMAND’ key to use
this option. (See also

Commands
.)

‘SORTTASKSBYNAME’

Format: ‘SORTTASKSBYNAME’

If this option is used, ‘Scout’ sorts the list of tasks by name.

‘SINGLEWINDOWS’

Format: ‘SINGLEWINDOWS’

Some users don’t like to handle the many windows of Scout. This
option solves the problem of too many windows. If this option is
selected, only one list window and only one detail window is
opened at a time.

1.32 scout.guide/Commands

Scout’s commands via ARexx and shell

‘Scout’ supports two kinds of commands:

1. commands only available from shell

2. commands available from ARexx and shell

ARexx port

It’s a feature of ‘MUI’ to give each application its own ARexx port.
Therefore ‘Scout’ also has an ARexx port that usually has the name
‘SCOUT.X’. The ‘X’ stands for a decimal number that will be
incremented, if a so called port already exists.

You will find the name of ‘Scout’s’ ARexx port in the window you
get, if you select the ‘Project/About’ menu.

Using tasknames:

If a task or a process was started from shell and hasn’t detached
itself, you will find the name of the command being executed, where
usually the taskname is displayed. The real name of those tasks

scout 29 / 39

usually is something like ‘Background CLI’, but such a taskname isn’t
useful.

Example: If you start a non detaching task like
‘DH0:Debug/Sushi’ from shell, you will see ‘DH0:Debug/Sushi’ as
taskname.

Some ARexx commands need a taskname as parameter. You have to select
those from CLI started self detaching tasks by using their command
names like ‘Scout’ displays them in the lists of tasks.

Commands only available from shell
==================================

‘Help’

Format: ‘Help’

This command is the most important one and it doesn’t need
parameters. If you try ‘Help’, ‘Scout’ prints a list of all
available commands to shell. =:^)

Now 18 commands follow. These commands allow the user to get all
lists of system structures from shell. Therefore you only need to
install ‘MUI’ for using ‘Scout’s’ graphical user interface.

Each of the following commands has a shortened form that stands
behind the command in parentheses.

‘Assigns’ (a), ‘Commands’ (c), ‘Devices’ (d), ‘Expansions’ (e),
‘Fonts’ (f), ‘InputHandlers’ (h), ‘Interrupts’ (i), ‘Libraries’
(l), ‘Memory’ (m), ‘Mounts’ (n), ‘Locks’ (o), ‘Ports’ (p),
‘Residents’ (r), ‘Semaphores’ (s), ‘Tasks’ (t), ‘Resources’ (u),
‘Vectors’ (v) und ‘Windows’ (w)

Example: To get the list of ports, you only have to use ‘scout
ports’ or ‘scout p’ from shell.

Commands available from ARexx and shell
=======================================

‘FindTask’

Usage: ‘FindTask’ TASK

This command allows you to check, if task TASK exists in system or
not. The result is the address of the task TASK, if it has been
found. TASK can be the name or the address of a task.

‘FreezeTask’

Usage: ‘FreezeTask’ TASK

The task TASKNAME will be frozen. After that it will still be
found in system’s task list, but then it doesn’t need processing
time. You can choose the name or the address of a task for TASK.

‘ActivateTask’

Usage: ‘ActivateTask’ TASK

scout 30 / 39

If task TASK was frozen, it will be activated, otherwise an error
occured. TASK is again a task’s name or an address.

‘RemoveTask’

Usage: ‘RemoveTask’ TASK

This command removes the task TASK. It’s lost forever.

‘BreakTask’

Usage: ‘BreakTask’ TASK

‘Scout’ sends the task TASK a certain signal mask that includes
the signals CTRL-C and CTRL-D. Many programs support these signals
and finish themselves, if they receive one of them.

‘SignalTask’

Usage: ‘SignalTask’ TASK HEXSIGNAL

This command allows you to send a signal HEXSIGNAL to the task
TASK. The signal must specified as a hexadecimal number.

Example:
SendSignal ’scout’ 0x001000

sends task ‘scout’ a CTRL-C and after that ‘Scout’ ends.

‘SetTaskPri’

Usage: ‘SetTaskPri’ TASK PRIORITY

The task TASK gets a new priority (PRIORITY).

‘RemovePort’

Usage: ‘RemovePort’ PORT

The port PORT will be removed from ‘Scout’. PORT can be the name
of a port or its address.

‘GetLockNumber’

Usage: ‘GetLockNumber’ LOCKPATTERN

This command returns the number of locks which have paths matching
to the pattern LOCKPATTERN.

Example: Use the command
GetLockNumber ’WORK:Utilities/#?’

and you will know, how many locks are currently used for files in
the directory ‘WORK:Utilities/’.

‘RemoveLocks’

Usage: ‘RemoveLocks’ LOCKPATTERN

Use this command and all locks which have paths matching to the
pattern LOCKPATTERN will be removed. (See also ‘GetLockNumber’.)

‘RemoveLock’

Format: ‘RemoveLock’ LOCKADDRESS

The lock at adress LOCKADDRESS will be removed.

scout 31 / 39

‘FindNode’

Usage: ‘FindNode’ NODETYPE NODENAME

This command allows you to find a certain node. You only have to
know its name (NODENAME) and its type (NODETYPE).

NODETYPE can have following values: ‘LIBRARY’, ‘DEVICE’,
‘RESOURCE’, ‘MEMORY’, ‘SEMAPHORE’, ‘PORT’ or ‘INPUTHANDLER’.

Example: If you want to get the address of the ‘disk.resource’
you must use:

FindNode RESOURCE ’disk.resource’

‘GetPriority’

Usage: ‘GetPriority’ NODEADDRESS

This command allows you to check the priority of a certain node
structure. This includes all following structure types: tasks,
libraries, devices, resources, ports, residents, input handlers,
interrupts, semaphores and the elements of the memory list.

You only have to know the address (NODEADDRESS) of that structure.

Example: The following ARexx commands store the priority of your
chip memory in the variable ‘pri’:

FindName MEMORY ’chip memory’
addr = result
GetPriority addr
pri = result

‘SetPriority’

Usage: ‘SetPriority’ NODETYPE NODENAME

If you want to change the priority of the node NODENAME, you can
use this command. Again NODETYPE can have following values:
‘LIBRARY’, ‘DEVICE’, ‘RESOURCE’, ‘MEMORY’, ‘SEMAPHORE’, ‘PORT’ or
‘INPUTHANDLER’.

‘CloseLibrary’

Format: ‘CloseLibrary’ LIBRARY

The library LIBRARY will be closed once. LIBRARY can be the name
of the library or its address.

‘RemoveLibrary’

Format: ‘RemoveLibrary’ LIBRARY

The library LIBRARY will be removed, if no program uses it.

‘RemoveDevice’

Format: ‘RemoveDevice’ DEVICE

The selected device DEVICE will be removed. For DEVICE use the
name or the address of the device.

‘RemoveResource’

scout 32 / 39

Format: ‘RemoveResource’ RESOURCE

The resource RESOURCE will be removed.

‘ObtainSemaphore’

Format: ‘ObtainSemaphore’ SEMAPHORE

This command allows you to obtain the given semaphore. SEMAPHORE
can be the semaphore’s name or address.

‘ReleaseSemaphore’

Format: ‘ReleaseSemaphore’ SEMAPHORE

The semaphore SEMAPHORE will be once released.

‘RemoveSemaphore’

Format: ‘RemoveSemaphore’ SEMAPHORE

You are able to remove the semaphore SEMAPHORE by using this
command.

‘RemoveInputhandler’

Format: ‘RemoveInputhandler’ INPUTHANDLER

The input handler INPUTHANDLER selected through name or address
will be removed.

‘FindResident’

Usage: ‘FindResident’ RESIDENT

This command returns the address of the resident structure
RESIDENT.

‘FindInterrupt’

Usage: ‘FindInterrupt’ INTERRUPTNAME

The address of the interrupt INTERRUPTNAME will be returned.

‘RemoveInterrupt’

Format: ‘RemoveInterrupt’ INTERRUPTNAME

The interrupt you have selected through INTERRUPTNAME will be
removed.

‘FlushDevs’

Usage: ‘FlushDevs’

All not used devices will be removed. The used memory will be
freed.

‘FlushFonts’

Usage: ‘FlushFonts’

If a diskfont is in memory, but no program uses it, it will be
removed.

‘FlushLibs’

scout 33 / 39

Usage: ‘FlushLibs’

All not used libraries will be removed. The used memory will be
freed.

‘FlushAll’

Usage: ‘FlushAll’

This function includes ‘FlushDevs’, ‘FlushFonts’ and ‘FlushLibs’.
All not used devices, libraries and fonts will be removed and the
used memory will be freed.

‘ClearResetVectors’

Usage: ‘ClearResetVectors’

The six reset vectors will be cleared, if you select this function
(see

Vectors
).

‘PopToFront’

Usage: ‘PopToFront’ TITLE

This command allows you to pop a screen or window to front. You
only have to know its (TITLE).

‘CloseWindow’

Usage: ‘CloseWindow’ WINDOWTITLE

This command closes the window that is specified through its title
(WINDOWTITLE).

‘CloseScreen’

Usage: ‘CloseScreen’ SCREENTITLE

If you select this command, the screen (SCREENTITLE) will be
closed with all its windows.

‘CloseFont’

Format: ‘CloseFont’ ADDRESS

The font at address ADDRESS will be closed once.

‘RemoveFont’

Format: ‘RemoveFont’ ADDRESS

This command removes the font at address ADDRESS, if it’s not used
by any program.

‘RemoveCommand’

Format: ‘RemoveCommand’ ADDRESS

‘Scout’ makes the resident command at address ADDRESS not resident.

‘RemoveAssign’

Format: ‘RemoveAssign’ NAME

scout 34 / 39

With this command you’re able to remove the assign NAME.

‘RemoveAssignList’

Format: ‘RemoveAssignList’ NAME ADDRESS

This command removes the directory at address ADDRESS from assign
NAME. You will find the address of that directory in the list of
assigns.

‘OpenWindow’

Usage: ‘OpenWindow’ WINDOWID

All windows you get if you select a gadget of ‘Scout’s’ main
window, can be opened with this command. The WINDOWID is the same
text you find on the main window gadgets.

Example:
OpenWindow ’Mounted Devs’

will open the window with the list of mounted devices.

1.33 scout.guide/Updates

How to get updates
==================

The newest version of ‘Scout’ should always be available in the
"DEEP THOUGHT BBS" (see below), on AmiNet or Public Domain collections,
which are up-to-date.

Support BBS
===========

DEEP THOUGHT Bulletin Board System, Oldenburg, Germany

Node 1
+49-(0)441-383365 1200-21600 bps v.32terbo, v.42bis

Node 2
+49-(0)441-383839 1200-19200 bps v.32bis, v.42bis, ZyXEL

Node 1 Node 2
FidoNet 2:2426/2020.0 2:2426/2021.0
AmigaNet 39:170/204.0 39:170/205.0

InterNet cosinus@deepthought.north.de

Both Nodes are 24 hours online every day.
A FidoNet Mailer is running on both Nodes which accepts
FidoNet Filerequests.

Use the magic SCOUT for the newest version of SCOUT
or FILES for a complete filelist

scout 35 / 39

1.34 scout.guide/Credits

Credits
=======

Now I have to thank some people for supporting the development of
‘Scout’ on many different kinds:

* Klaus ‘gizmo’ Weber, he was always available to me and my many
questions (not a few) during the programming of ‘Scout’.

* Christian ‘cosinus’ Stelter, he gave me the permission to use his
many manuals.

* Stefan Stuntz for his great ‘MagicUserInterface’

* all bug reporting and feature requesting people: Kai ‘wusel’
Siering, Martin Hauner, Peter Meyer, Karl ‘Charly’ Skibinski,
Michael ‘Mick’ Hohmann, Thore Böckelmann, Bernardo Innocenti, ...

and last but not least

* all the others I’ve forgotten for reporting bugs, sending
expansion boards data and so on.

1.35 scout.guide/Author Info

How to reach the author
=======================

If you have questions, suggestions, bug reports or anything else, you
can send electronic mails to:

atte@crash.north.de (Andreas Gelhausen)
or

2:2426/2020.24 (on FidoNet)

If it is not possible for you to use this way, you can send letters
to:

Andreas Gelhausen
Graf Spee Str. 23b
26123 Oldenburg

- Germany -

That’s it! =:^)

scout 36 / 39

1.36 scout.guide/Index

Index

AmiTCP
AmiTCP

ARexx
Commands

ARexx port
Commands

Assigns
Assigns

Author Info
Author Info

Boards
Expansions

Command
Commands

Command Line Options
Options

Copyright
Copyright

Credits
Credits

DEEP THOUGHT BBS
Updates

Device names, logical
Assigns

Devices
Devices

Disclaimer
Disclaimer

DISKFONT
Fonts

Expansions
Expansions

Fonts
Fonts

scout 37 / 39

Giftware
Giftware

Hardware
Expansions

Input events
InputHandlers

InputHandlers
InputHandlers

Installation
Installation

Interrupts
Interrupts

Introduction
Introduction

Legalities
Copyright

Libraries
Libraries

Locks
Locks

Logical device names
Assigns

MagicUserInterface
MUI

Main Window
Using Scout

Manufacturer
Expansions

Memory
Memory

Mounted Devices
Mounted Devs

MUI
MUI

No Warranty
Disclaimer

Options
Options

scout 38 / 39

Ports
Ports

Processes
Tasks

RAM Pointer Count
Devices

Resident Commands
Resident Cmds

Residents
Residents

Resources
Resources

ROMFONT
Fonts

RPC
Devices

Screens
Windows

Semaphores
Semaphores

Support BBS
Updates

System Requirements
System Requirements

Tasknames
Commands

Tasks
Tasks

TCP/IP
AmiTCP

Tool Types
Options

Updates
Updates

Using Scout
Using Scout

VBR
Vectors

scout 39 / 39

Vectors
Vectors

Vertical blank interrupt
Interrupts

Warranty
Disclaimer

What is Scout?
Introduction

Windows
Windows

	scout
	scout.guide
	scout.guide/Introduction
	scout.guide/Copyright
	scout.guide/Disclaimer
	scout.guide/Giftware
	scout.guide/System Requirements
	scout.guide/MUI
	scout.guide/AmiTCP
	scout.guide/Installation
	scout.guide/Using Scout
	scout.guide/Assigns
	scout.guide/Devices
	scout.guide/Expansions
	scout.guide/Fonts
	scout.guide/InputHandlers
	scout.guide/Interrupts
	scout.guide/Libraries
	scout.guide/Locks
	scout.guide/Memory
	scout.guide/Mounted Devs
	scout.guide/Ports
	scout.guide/Resident Cmds
	scout.guide/Residents
	scout.guide/Resources
	scout.guide/Semaphores
	scout.guide/Tasks
	scout.guide/Vectors
	scout.guide/Windows
	scout.guide/Scout and AmiTCP
	scout.guide/Scout without MUI
	scout.guide/Options
	scout.guide/Commands
	scout.guide/Updates
	scout.guide/Credits
	scout.guide/Author Info
	scout.guide/Index

