
AFile

A datafile manager

Copyright c© 1993-1994 by Denis GOUNELLE.

Any commercial usage or selling without author’s written authorization is strictly forbidden. You

can copy and spread this program under the following conditions:

1. All the files must be provided

2. No file must be modified

3. You can’t charge more than $6 for the copy

In spite of several tests, no warranty is made that there are no errors in AFile. YOU USE THIS

PROGRAM AT YOUR OWN RISK. In no event will I be liable for any damage, direct or indirect,

resulting of the use of AFile.

Chapter 1: Introduction 1

1 Introduction

AFile is a data file manager, that is a tool which lets you create and manager your files (addresses,

video collections, clients, etc...) using an Intuition interface. There is not limitation to the number of

fields or records. The program offerts the standard printing, sorting, and data importing/exporting

functions.

AFile uses AREXX as it’s programming language. You can create full input masks with back-

ground picture, field positionning, checking of entered data, menus and printing customization.

Criticisms and suggestions will always be welcomed. Write to:

M. GOUNELLE Denis

27, rue Jules GUESDE

45400 FLEURY-LES-AUBRAIS

FRANCE

You can also send a message to the following Internet address : "gounelle@alphanet.ch". Note

that this mailbox is not mine, so please send only short messages. As I don’t have direct access to

the messages, don’t expect an answer before a dozen of days.

Thanks to Yves PERRENOUD for it’s numerous suggestions.

Chapter 2: Installation 2

2 Installation

AFile needs the ‘mathieedoubbas.library’ which is provided by Commodore on system disks.

AFile is now localized, so it can adapt itself to your favorite language. All you have to do is to

copy the good catalog file into the directory corresponding to your language. For exemple, if your de-

fault language is french, copy the ‘francais.catalog’ file into the ‘SYS:Locale/Catalogs/Francais’

directory, under the ‘AFile.catalog’ name.

Chapter 3: Startup 3

3 Startup

The program can be started both from CLI and Workbench. In both cases, you can specify a file

to use, with the usual method, so the program will jump directly to the visualisation/modification

screen.

The following arguments may also be specified:

USEASL asks to use the ‘asl.library’ file requester, instead of the builtin requester. This

option is ignored under Kickstart 1.3.

NOCASE asks search and sort operations to be case independant by default (using interface only)

PRINTSCRIPT <script’s name>
PRINTSCRIPT=<script’s name>

specifies the name of the AREXX script to use to print records, instead of the builtin

method.

The script will be called for each record to print, with record data directly accessible

using the GETFIELD command. The standard output is automatically redirected to

the printer, so you just have to use the "SAY" command to output data. See Chapter 11

[AREXX Interface], Page 18.

You can also specify a printing script in input masks. See Chapter 9 [Input masks],

Page 12.

INPUTMASK <mask’s name>
INPUTMASK=<mask’s name>

specifies an input mask at startup. This is usefull mostly when a file name is also

specified.

FONT <name>
FONT=<name>

specifies the font to use, rather than the default text font. The font name must be in

the <Y size> format (e.g. "courier9"). AFile can’t use a proportional font.

DEPTH <number of planes>
DEPTH=<number of planes>

specified AFile’s screen number of planes. This is usefull when an input mask loads a

background picture, and you want to be sure to have the right number of colors.

Chapter 4: Main menu 4

4 Mainmenu

This menu appears when the program is started, if you didn’t specified a file name as an

argument. AFile uses the prefered text font and screen mode. This menu has the following items:

New file Allows to create a new file. A file requester will allow you to specify the name of the

file to create. See Chapter 5 [Structure definition], Page 5.

Modify structure

Allows to modify the structure of an existing file. A file requester will allow you to

select the file to modify. See Chapter 6 [Structure modification], Page 7.

Open file Allows to open an existing file. A file requester will allow you to select the file to open,

then the visualisation/modification screen will appear. See Chapter 7 [Data access],

Page 8.

Executer script

Allows to run an AREXX script. A file requester will allow you to select the script to

run. See Chapter 11 [AREXX Interface], Page 18.

Quit Terminates AFile execution.

Chapter 5: Structure definition 5

5 Structure definition

AFile handles files made of fixed length records. All the records have the same structure, made

of an unlimited number of fields. Each field is defined by it’s name, size and type. The number of

records in a file is limited only by the capacity of your hard disk.

Field’s name can’t be longer than 32 characters, and may contain any character. However, you

shouldn’t use spaces if you think you will use AREXX to access to the file. Of course, each field’s

name must be unique.

Field’s size is limited to 65535 bytes, except for "DATE", "ENUM" and "BOOLEAN" fields,

which are 8, 1 and 1 bytes long, respectively. For numeric fields, you can also specify the number

of digits after the decimal point. Possible field’s types are:

alpha alphabetic value only (lowercase and upercase letters, space, dash, single quote)

numeric numeric value (real or integer)

alphanum any value

date date (day, month, year with century)

boolean boolean value (TRUE or FALSE)

enum value contained in a list specified when defining the file

The definition structure requester is made of a display area, where are displayed the field’s

definitions (name/type/length). You can use the scroller to scroll the display. The current field is

displayed under a blue background. To select a field, you just have to click upon it’s definition: it

will automatically copied in the gadgets.

The gadget row at the bottom of the window allow the following operations:

Add adds a new field as the last field

Insert inserts a new field before the current field

Remove removes the current field

Replace replaces the current field. This allow (for example) to modify the name, size or type of

a field.

Chapter 5: Structure definition 6

To define a new field, you’ll have to enter it’s name and length in corresponding string gadgets,

and to select it’s type using the Type cycle gadget. If the field’s type is "ENUM", you will also

have to enter the list of possible values (separated by commas) in the Values gadget. Then you

must click upon the Add gadget: the new field will be added to the list, and selected as the current

field. If the field can’t be added (no memory, name not unique, etc...) the screen will flash.

The definition requester also has a menu, with the following commands:

Copy structure

Copies the structure of an existing file. Note that the structure currently displayed in

the requester will be lost ! A file requester will appear, so you can select the file which

structure is to be copied.

Abort Cancels structure definition, and go back to main screen without creating the file.

Save Records structure definition, and go back to main screen after creating the file.

Encrypt data

Data in the file will be encryted, using a password that you will have to provide when

you record structure definition. This password will be asked for each time the user will

try to access to the data.

Caution ! If you ever forget this passord, you will never be able to access to the data

in the file !

Chapter 6: Structure modification 7

6 Structuremodification

This allows you to modify the structure of an existing file: you can add some fields, remove

some others, modify a field’s length, etc... However, you can’t modify a field’s type, or delete all

the fields.

The modification requester is quite the same as the definition requester (see Chapter 5 [Structure

Definition], Page 5). The only differences are that the Type gadget and Copy structure menu item

are disabled.

Once the structure has been modified, use the Save menu item to record your changes: AFile

will automatically convert the file into the new structure. Take care that deleted records will be

lost during this operation, and that this convertion may fail if there is not enough free space on

the volume where is the file.

If some data will be lost during the convertion (shorter or removed fields, deleted records, etc...),

you will be asked to confirm the operation.

With the Options menu, you can remove or add data encryption. If the encryption option is

enabled when you record the new structure, AFile will ask you to enter a password. This can also

be used to change the password for a file: you just have to ask to modify the structure of this file,

record the structure without any change, and enter the new password.

Chapter 7: Data access 8

7 Data access

The visualisation/modification screen is made of a display area where data is displayed, of a

status line and of a row of gadgets.

The gadgets showing the data are the same width as the corresponding field, except if the screen

is not large enough. Each time you modify the value of a field, AFile will check that this new value

is compatible with the field’s type. Dates must be entered in the "DD/MM/YYYY" format (with

century) or just "DD/MM/YY" (the current century will be added automatically). Entering "?"

is an easy way to specify today’s date (see Chapter 10 [Aliases], Page 17).

The first status line shows the type and size of the current field. The second line shows the file’s

name, and current position in the file under the X/Y form, where X is the current record number

and Y the last record number. When a sort has been activated, the (Sorted) word is displayed

after the file’s name. If the current record has been modfied, the Modified word is displayed at the

right of the status line.

The row of gadgets allows the following operations (from left to right):

− go to the first record (or shift-left key)

− go to the previous record (or left key)

− write the current record

− go to the next record (or right key)

− go to the last record (or shift-right key)

− go to a specifed record (or g key)

− delete the current record (or DEL key)

− print n records starting from the current record (or p key)

− previous fields page (or up key)

− next fields page (or down key)

If the current record has been modified, the changes will automatically be written if you move to

another record. When you are on the last record, asking to go to the next record will automatically

create a new record.

All other operations may be started with menus.

Chapter 7: Data access 9

7.1 The file menu

Undelete From AFile’s point of vue, deleting a record just mean setting a flag for this record,

which tells this record is deleted and must not be accessed. The record is not actually

removed: data is still here. The menu item allows you to clear all deletion flags, so the

corresponding records may be accessed again.

Pack file Actually removes deleted record (you will be asked for confirmation). After this, you

won’t be able to undelete these records, but the file will be smaller because the data

for these records will be definitly removed. Take care that this operation may fail if

there is not enough free space on the volume where is the file.

Informations

Displays some informations about the current file: name, number of fields, record size,

number of available records, number of deleted records.

Print structure

Prints the file’s structure, that is the definition of all the fields. You can print the

structure to the printer, or the a file.

Close file Close the current file, and go back to main screen.

7.2 The Edit menu

Cancel changes

Reads the current record from the file, so cancels all changes since last write.

Select mask

Selects an input mask. A file requester will appear, so you can specify the mask to

load. See Chapter 9 [Input masks], Page 12.

Forget mask

Forgets the current input mask.

Import Imports data from an ASCII file. The new records will be appended to the end of the

file. See Chapter 8 [Importing/Exporting data], Page 11.

Export Exports data to an ASCII file. All the records will be exported. See Chapter 8 [Im-

porting/Exporting data], Page 11.

Search Searches a record with a given value in a specified field. A field request will appear, so

you can specify which field the value is to be searched in. Then you will have to enter

the value to search, and search options:

Exact Searches for a field which is equal to the value (option set), or just contai-

ning the value (option cleared)

Chapter 7: Data access 10

min = MAJ

Case independant (option set) or dependant (option cleared) search

Not equal Reverse search (option set, will stop on the first record which field doesn’t

match) or normal search (option cleared)

The last two options are available only for "ALPHA" and "ALPHANUM" fields.

Seach next

Continues searching, starting from next record.

7.3 The Special menu

Activate sort

Sorts the records using a specified field. A first requester will appear so you can specify

the field which is to be used for sorting. A second requester will allow you to specify

sort parameters: increasing/decreasing order, case dependant/independant. Once the

sorting done, AFile will display the first record in the sorting order. Then all your

moves withing the records (first/previous/next/last) will be made in the sorting order.

Take care that AFile only does a "logical" sort: the order of the records within the file

is not actually modified. Sorting a file may use a lot of memory if the file contains a lot

of records. As long as the sort is activated, you won’t be able to add or remove records,

to modified a value in the field which is used for sorting, and to use the Undelete or

Pack file menu items.

Forget sort

Cancels the last sort. This will not only free all memory used for the sort but also allow

you to add or remove records. Your moves whithin the records will use the "physical"

order of the records in the file.

Reorder records

This actually modifies the order of the records in the file (you will be asked for con-

firmation). Take care that this operation may fail if there is not enough free space on

the volume where is the file, and that all deleted records will be definitly lost.

Execute script

Allows to run an AREXX script. A file requester will allow you to select the script to

run. See Chapter 11 [AREXX Interface], Page 18.

Chapter 8: Importing/Exporting data 11

8 Importing/Exporting data

Selecting the Import (or Export) item brings up a requester, which allows you to enter all the

required parameters to import (or export) data.

The first parameter is the name of the source (or target) ASCII file.

Then you will have to specify the field delimiter and record delimiter characters. These delimiters

may be entered as a single character (i.e. "/") or as an ASCII decimal code (i.e. 10 for a new

line character). If you want to use an ASCII decimal code, it must have at least two digits: "2"

specifies character "2", "02" specified character which ASCII decimal code is 2.

Last, you will have to specify the order in which the fields are to be imported (exported): enter

"1" for the first field, "2" for the second field, etc... If you don’t specify a order number for a field,

it won’t be imported (exported). When importing data, the order number may be considered as a

column number: it allows to ignore some data, or to swap two fields.

Chapter 9: Input masks 12

9 Inputmasks

Input masks allow to do a lot of things: customize data display, menus and printing, help the

user when he (or she) is entering data, check the data he (or she) has entered.

From AFile’s point of vue, a mask is an AREXX script with comments in a special format. The

general form of this script is like follows:

/*
* Sample input mask for AFile
*
* $MSG
* <message specification>
* $END
*
* $MASK <background picture>
* <mask specification>
* $END
*
* $MENU
* <menu specification>
* $END
*
* $PRINT <print script>
*/

PARSE ARG field value

<AREXX intructions>

EXIT 0

You don’t have to enter all the specifications: an input mask can only have a single $MSG

specification (for example). Within a specification, you may also enter comments:

/* $MSG
* specification line
** comment line (begins whith " **")
* specification line
* $END
*/

To select an input mask, you have to use the "Select mask" menu item. To cancel the mask,

use the "Forget mask" item. See Section 7.2 [The Edit menu], Page 9.

Chapter 9: Input masks 13

You may also associate an input mask to a data file, so it will automatically be loaded each time

the data file is opened. In order to use this possibility, the input mask file’s name must be equal

to the name of the data file, followed by the ‘.mask’ suffix. For example, if you want to define an

input mask for a data file named ‘Addresses’, it’s name must be ‘Addresses.mask’. The two files

must be in the same directory.

9.1 $MSG specification

The specification lines must contains:

1. a field’s name

2. a flag telling if the verification script is to call

3. a message

Here is an example:

/* $MSG
** Field’s name Verify? Message
* NUMBER - Product number
* QUANTITY y Quantity supplied
* SUPPLIER - Supplier’s name
* SUPPLY_DATE y Date of supply
* $END
*/

The message is displayed above the status line when the corresponding field is selected. If the

flag in column two is not "-", the AREXX script which contains the input mask is called each time

the value of the field is modified, with the field’s name and the new value as arguments. The script

must return a 0 return code if the value is accepted, or a non-0 return code if the value is refused.

Date values will be supplied in the "AAAAMMDD" format, and boolean values will be either "T"

or "F".

The script cannot use the SEEK, WRITE, APPEND, DELETE, SEARCH, SORT, RELEASE,

SETFIELD, and CLOSE commands on the current field. See Chapter 11 [AREXX Interface],

Page 18.

Chapter 9: Input masks 14

9.2 $MASK specification

This specification is more powerfull than the $MSG specification, because it allows to load a

background picture, and to set the position of the fields on the screen. The specification lines must

contains:

1. a field’s name

2. the left offset (X position, in pixels)

3. the top offset (Y position, in pixels)

4. the field width (in pixels)

5. a flag telling if the verification script is to call

6. a message

Here is an example:

* $MASK Work:Pictures/AFile/Address.pic
** Field’s name XPos YPos Width AREXX? Message
* NUMBER 400 4 - - Customer’s number
* FIRSTNAME 400 26 100 - Customer’s first name
* NAME 400 48 100 - Customer’s name
* $END
*/

The (optional) file’s name after the $MASK word must correspond to a picture file, in the

standard IFF format. This picture will be loaded as the background picture, while the input mask

is loaded. The picture’s palette will be loaded too.

AFile is able to load a picture which is not in the same resolution that the screen used. You

may use the DEPTH argument to specify a number of colors (see Chapter 3 [Startup], Page 3).

The X and Y positions, and the width, are used to display the fields on the screen. If you specify

"-" for the width, the default field’s width is used.

The message is displayed above the status line when the corresponding field is selected. If the

flag in column two is not "-", the AREXX script which contains the input mask is called each time

the value of the field is modified, with the field’s name and the new value as arguments. The script

must return a 0 return code if the value is accepted, or a non-0 return code if the value is refused.

Date values will be supplied in the "AAAAMMDD" format, and boolean values will be either "T"

or "F".

Chapter 9: Input masks 15

The script cannot use the SEEK, WRITE, APPEND, DELETE, SEARCH, SORT, RELEASE,

SETFIELD, and CLOSE commands on the current field. See Chapter 11 [AREXX Interface],

Page 18.

9.3 $MENU specification

The specification lines must contains:

1. the menu item’s title

2. a flag telling if arguments are needed

3. the name of the AREXX script to run

Here is an example:

/* $MENU
** Item’s name Arguments? Script’s name
* Weekly stats - Work:Lib/Stats.rexx
* $END
*/

The items will be added in a new menu: the Extras menu. The first ten items will have a

keyboard shortcut. Each time an item will be selected, AFile will call the corresponding AREXX

script, after having eventually asked some arguments (in the case the character in the second column

is not equal to "-").

9.4 $PRINT specification

The $PRINT word must be followed by the name of the AREXX script to call to print records.

The script will be called each time a record is to print, with the fields of this record directly

accessible using the GETFIELD AREXX command. The output will be redirected to the printer,

so you will just have to use "SAY" command to send data. See Chapter 11 [AREXX Interface],

Page 18.

This specification overwrites the optional PRINTSCRIPT argument (see Chapter 3 [Startup],

Page 3), as long as the input mask is loaded.

Chapter 10: Aliases 16

10 Aliases

Aliases allow you to make data entering easier, by defining shortcuts. An example is the possi-

bility to enter "?" in a DATE field, in order to have today’s date. This possibility is built in AFile,

but you can also define your own aliases, using a text file made of lines containing:

1. the field’s name

2. the alias value

3. the corresponding value

Here is an example:

;Field Alias Value
COUNTRY FRG FEDERAL REPUBLIC OF GERMANY
COUNTRY USA UNITED STATES OF AMERICA
COUNTRY UK UNITED KINGDOM

With this example, each time the user will enter the "USA" value in the "COUNTRY" field,

this value will automatically be replaced by the "UNITED STATES OF AMERICA" string. Take

care that aliases substitution is performed before running an eventual verification AREXX script

(see Chapter 9 [Input masks], Page 12).

The aliases file’s name must be equal to the name of the data file, followed by the ‘.alias’

suffix. For example, if you want to define aliases for a data file named ‘Addresses’, the aliases file’s

name must be ‘Addresses.alias’. The two files must be in the same directory. The aliases file

will automatically be opened when the data file is opened.

Chapter 11: AREXX Interface 17

11 AREXX Interface

AFile has a full AREXX interface, so AREXX may be considered as AFile’s programming

language. The name of the AREXX port is ‘AFile_rexx’. You can run a script using the Execute

AREXX menu item, either from the Project menu of the main screen, or from the Special menu

of the data access screen. In this case, the current file is automatically selected as the working file,

and the current record in this file is the record currently displayed.

The following commands are accepted:

OPEN name

Opens the given file, and go to the first record of this file

This file is NOT selected as the working file.

SELECT name

Selects the given file as the working file. This file must have been opened using the

OPEN command.

CLOSE name

Closes the given file.

CLOSE ALL

Closes any opened file.

The following commands are applied to the working file:

APPEND Appends a new record, and moves to this record.

SEEK FIRST

Moves the first record.

SEEK LAST

Moves the last record.

SEEK NEXT

Moves the next record.

SEEK PREV

Moves the previous record.

SEEK n Moves the n-th record.

SEARCH name value [NOCASE] [EXACT] [NOTEQUAL]

Searches a record which field named "name" contains the "value" value. If the "NO-

CASE" option is specified, the search will be case independant. If the "EXACT" option

Chapter 11: AREXX Interface 18

is specified, AFile will search a field equal to the value. The "NOTEQUAL" option

allow to find a field not equal to the value.

SEARCH NEXT

Searches next occurence.

INFO Returns informations about the current file, in the RESULT variable:

"full pathname" <number of fields> <record size> <number of available records> <num-

ber of deleted records>.

SORT name [DECREASE] [NOCASE]

Activates a sort on the field named "name". If the "DECREASE" option is specified,

the records will be sorted in reverse order. If the "NOCASE" option is specified, the

sort will be case independant.

RELEASE

Forgets currently activated sort.

The following commands are applied to the current record of the working file:

WRITE Updates the current record.

DELETE Deletes the current record.

GETFIELD name

Returns the value of the field named "name", in the RESULT variable.

SETFIELD name value

Modifies the value of the field named "name" to "value". Caution, the value must be

specified within double quotes !.

FIELDTYPE name

Returns the type of the field named "name" ("A", "N", "S", "D" or "B")

FIELDLEN name

Returns the length of the field named "name", as declared in file’s structure definition.

For numeric fields, the decimal point is taken in account if the number of digits is not

0.

If failed, all these commands return 10 in the RC variable. They return 0 if all is ok.

Chapter 12: History 19

12 History

AFile is written in C language, and was developped on an Amiga 3000 UNIX-1 (10 Mb RAM,

internal HD disk drive, two internal hard disks of 100 Mb and 160Mb, external SyQuest drive of 88

Mb, external floppy disk drive, 1960 monitor and Star LC24-10 printer) connected by a null-modem

cable to an A500 with 1 Mb RAM.

v1.00, 25-Jul-93, 60448 bytes

First released version.

v1.10, 07-Aug-93, 62632 bytes

Added input masks.

Added AREXX commands "FIELDTYPE" and "FIELDLEN".

When a sort is activated, displays "sorted on <field’s name>" in the status line (instead

of just "sorted").

v1.20, 06-Sep-93, 64336 bytes

The number of fields is no longer limited.

Sorting modified: field selection with a request box, added "lwr = UPR" option, AR-

EXX interface enhanced.

You can select the file to import/export with a file requester.

v1.21, 12-Sep-93, 64500 bytes

Uses new versions of OuvreEcran(), RequeteFic() and GetDefaultTextFont() functions.

v1.30, 15-Sep-93, 65612 bytes

Localized.

v1.31, 07-Oct-93, 65704 bytes

When an AREXX script is finished, waits for the user to press RETURN before closing

the output window.

Bug fixed: sorting numeric fields was made on the inverse order than asked.

v1.40, 14-Oct-93, 67036 bytes

You can modify the structure of an existing file.

Added aliases.

Reports errors occuring when loading input masks and aliases.

Bug fixed in string requests handling.

Some source cleanup.

v1.41, 17-Nov-93, 67292 bytes

Update the file header each time a record is added/deleted (instead of waiting for the

file to be closed).

Chapter 12: History 20

A few enhancements in source files.

When a request is displayed, locks main window with a Requester.

Bug fixed in refresh of gadget associated with boolean fields.

A few changes in order to support german catalogue.

v2.00, 28-Nov-93, 68960 bytes

You can now encrypt data in your files.

Added "PRINTSCRIPT" argument.

Bug fixed in fast copy of data fields: ln Pred of first field, and ln Succ of last field, were

not updated.

v2.10, 11-Dec-93, 69508 bytes

Changed input mask files format: there is now a single file (the AREXX script) which

both specifies messages and performs verifications. The old input mask files are still

recognized.

You may have an input mask file be automatically loaded when a data file is open.

Status and gadgets lines are now just below the last field’s gadget, instead of beeing at

the bottom of the screen.

When creating/changing a file’s structure, changing a field’s type no longer modifies

the field’s length when the new type is "DATE" or "BOOLEAN".

v2.20, 25-Dec-93, 70876 bytes

Extended input masks: custom menu with $MENU, print script selection with $PRINT.

Compiled with SAS/C 6.50.

v2.21, 26-Jan-94, 70876 bytes

Bug fixed: didn’t restore default public screen after running an AREXX script.

Shows my new address.

v2.30, 20-Feb-94, 71412 bytes

Handles keyboard : arrow keys (+ shift), "p", "g", "DEL".

Added USEASL argument.

In an input mask, a line beginning with " **" is a comment.

Default number of records to print is set to one.

The field requester has now a blue background.

Compiled with SAS/C 6.51.

v3.00, 26-Feb-94, 74696 bytes

Added $MASK specification (full mask with background picture and field positionning).

Added DEPTH argument.

Enhanced internal file requester.

Enhanced error handling (now displays some messages...).

Documentation formatted by TexInfo/MakeGuide.

Chapter 12: History 21

v3.01, 05-Mar-94, 74732 bytes

Bug fixed: displayed an error message when opening a file without corresponding

‘.mask’ file.

Restores palette when a file is closed.

v3.02, 25-Mar-94, 75088 bytes

Bug fixed: used a ‘graphics.library’ V39 function (so worked only under OS 3.1).

Bug fixed in AREXX message handling (some commands were refused)

Bug fixed: sending arguments to the verification AREXX script was not good.

Displays type and size of the current field, on the status line

v3.10, 06-Apr-94, 78960 bytes

Added new field type "ENUM"

Rewritten search fonction : now opens a window for search options, added "exact

match" and "not equal" options

Added "FONT" argument

"ALPHA" type fields now only accept lowercase and upercase letters (with or without

accents), space, dash and single quote

Displays current field’s type and size in the status line

Adds the pathname of the current data file if a script file name has no path in an input

mask

With full input masks ($MASK specification), displays status lines and action gadgets

in the bottom of the screen

Enhanced field request : if a data is missing when adding/inserting/replacing a field,

the corresponding gadget is automatically activated

Several bug fixed (was eating memory, problems with loading of input masks, ...)

v3.11, 16-Apr-94, 79220 bytes

Added "NOCASE" argument

Some source cleanup/reorganization (data access interface)

Locks input for structure definition window when the file requester is displayed ("Copy

structure" item)

Removed fast field definitions copy (can’t be done in a "system friendly" way, generated

memory corruption)

Bug fixed in CLI argument parsing

v3.12, 21-May-94, 79220 bytes

The data access Intuition interface now handles century in dates

Bug fixed : "TOOL TYPES" were not scanned the good way

i

Table of contents

1 Introduction . 1

2 Installation . 2

3 Startup . 3

4 Main menu . 4

5 Structure definition . 5

6 Structure modification . 7

7 Data access . 8

7.1 The file menu . 9

7.2 The Edit menu . 9

7.3 The Special menu . 10

8 Importing/Exporting data . 11

9 Input masks . 12

9.1 $MSG specification . 13

9.2 $MASK specification . 14

9.3 $MENU specification . 15

9.4 $PRINT specification . 15

10 Aliases . 16

11 AREXX Interface . 17

12 History . 19

