
PhxAss

PhxAss ii

COLLABORATORS

TITLE :

PhxAss

ACTION NAME DATE SIGNATURE

WRITTEN BY September 19, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

PhxAss iii

Contents

1 PhxAss 1

1.1 PhxAss V4.00 Documentation (26-Dec-94) . 1

1.2 Preface . 2

1.3 Modifications since PhxAss V2.xx . 3

1.4 Modifications since PhxAss V3.00 . 4

1.5 Modifications since PhxAss V4.00 . 8

1.6 Bug fixes since V2.11 . 8

1.7 Bug fixes since V3.00 . 8

1.8 Bug fixes since V4.00 . 11

1.9 Starting PhxAss . 11

1.10 Command line arguments . 11

1.11 Programmer Information . 15

1.12 Comments . 15

1.13 Labels . 16

1.14 Executable M68000 instructions . 16

1.15 General Format . 16

1.16 M68000 Standard Addressing Modes . 17

1.17 68020+ Extended Addressing Modes . 18

1.18 68020+ Suppressed Registers . 19

1.19 M68000 Instructions supported by PhxAss . 20

1.20 Integer Instructions (68000,68010,68020,68030,68040,68060) . 20

1.21 Integer Instructions (68010,68020,68030,68040,68060) . 22

1.22 Integer Instructions (68020,68030,68040,68060) . 23

1.23 Integer Instructions (68040,68060) . 23

1.24 Integer Instructions (68060) . 24

1.25 MOVEC Control Registers (Rc) . 24

1.26 Floating Point Instructions (68881,68882,68040,68060) . 24

1.27 Floating Point Instructions (68040,68060) . 26

1.28 PMMU Instructions (68851) . 26

1.29 PMMU Instructions (68030) . 27

PhxAss iv

1.30 PMMU Instructions (68040,68060) . 27

1.31 Expressions . 28

1.32 Assembler Directives . 29

1.33 EQU . 33

1.34 EQU.x . 34

1.35 EQUR . 34

1.36 REG . 34

1.37 SET . 34

1.38 SET.x . 35

1.39 INT . 35

1.40 RSRESET . 35

1.41 RSSET . 35

1.42 RS . 35

1.43 IDNT . 36

1.44 SUBTTL . 36

1.45 COMMENT . 36

1.46 LIST . 36

1.47 NOLIST . 36

1.48 OPT . 36

1.49 MACRO, ENDM . 37

1.50 MEXIT . 37

1.51 END . 37

1.52 FAIL . 37

1.53 ECHO . 38

1.54 MACHINE . 38

1.55 FPU . 38

1.56 PMMU . 38

1.57 SECTION . 38

1.58 CODE, CSEG . 39

1.59 DATA, DSEG . 39

1.60 CODE_C, CODE_F, DATA_C, DATA_F, BSS_C, BSS_F . 39

1.61 BSS . 39

1.62 BSS . 40

1.63 GLOBAL . 40

1.64 OFFSET . 40

1.65 RORG . 40

1.66 INCDIR . 41

1.67 INCLUDE . 41

1.68 INCBIN . 41

PhxAss v

1.69 XREF . 41

1.70 NREF . 42

1.71 XDEF . 42

1.72 PUBLIC . 42

1.73 ORG . 42

1.74 LOAD . 43

1.75 FILE . 43

1.76 TRACKDISK . 43

1.77 NEAR . 43

1.78 FAR . 44

1.79 INITNEAR . 44

1.80 DC . 44

1.81 DCB, BLK . 45

1.82 DS . 45

1.83 CNOP . 45

1.84 EVEN . 46

1.85 IFcond, ELSEIF, ELSE, ENDIF, ENDC . 46

1.86 PROCSTART,PROCEND . 46

1.87 REPT/ENDR . 46

1.88 Compiler Compatibility . 46

1.89 Linker . 47

1.90 Assembler Errors . 47

1.91 History / Literature . 52

1.92 Acknowledgements . 53

1.93 Known bugs in version V4.00 . 53

PhxAss 1 / 54

Chapter 1

PhxAss

1.1 PhxAss V4.00 Documentation (26-Dec-94)

____ __ ___ __ _______________ __ __
/\ensuremath{\lnot}__)\ensuremath{\lnot}/_/ /\ensuremath{\lnot ←↩

}\/ //\ensuremath{\lnot}_ /\ensuremath{\lnot} __/\ ←↩
ensuremath{\lnot} __/ / /_/ /

/ ___/ __ /) _ (/ _ /__ /__ / /___ /
/_/ /_/ /_//_//_/_//_/____/____/ /_/

===
P H X A S S V 4 . x x MC680x0 / 68851 / 6888x Macro Assembler

===

Preface

Command line Parameters

Modifications since V2.00

Programmer Information

Modifications since V3.00

Assembler Errors

Modifications since V4.00

Linker

Bug fixes since V2.11

History

Bug fixes since V3.00

Acknowledgements

Bug fixes since V4.00

Bugs

PhxAss 2 / 54

Starting PhxAss

1.2 Preface

PhxAss V4.xx is a highly optimizing macro assembler for Motorola’s 680x0
CPUs, 6888x FPUs and 68851 MMU (of course, the 030, 040 and 060 MMUs are
also supported).

PhxAss V4.xx requires OS2.04 (V37) as a minimum and does no longer support
older operating systems! (Kick 1.x owners: Get PhxAss V3.97)

PhxAss V4.xx is SHAREWARE and © copyright 1994 by Frank Wille. Commercial
usage of this program, without a written permission of the author, is
strictly forbidden!

Most important features:
o Fast: 15000-30000 lines per minute with standard Amigas, 50000-200000

with A4000/040.
o Symbolic and Source Level Debugging.
o Automatic generation of executables (if possible).
o Small Code and Small Data support (also support for __MERGED sections).
o Listing file, Cross Reference Listing, Equates file.
o Complete floating point support: You can use complex floating point

expressions, including float functions (sine, logarithm, square root,
power, etc.), everywhere in your source, e.g. defining float EQUates or
SETs.

o Switches for nine different optimizations.
o Locale symbols (xxx$ and .xxx type).
o Support for Motorola’s old and new operand style (even in 68000 mode).
o locale.library usage (english, german, polish).
o Nearly all directives of the most popular assemblers like Seka, DevPac or

AS (Aztec) are supported. Example: INCBIN, INCDIR, CODE_C, REPT, RS,
RSRESET, EQUR, REG, OFFSET, XDEF, XREF, PUBLIC, ...

o Further development and support is guaranteed for years, because I’ll

never change my system (Amiga forever!).
o Finally: Although Shareware, PhxAss is completely functional!

You will find four different versions of PhxAss in this distribution:
1. PhxAss: The standard 680x0,FPU,MMU macro assembler.
2. SmallPhxAss: This is a 68000 only version without floating point support.

As a result the program is much smaller.
3. FreePhxAss: This program is FREEWARE! It is intended for developers of

PD-Compilers, who want to include PhxAss in their compiler package.
FreePhxAss is *very* limited: No support for 68030, 040, 060, FPU, MMU.
No floating point expressions. No listing file, equates file, include,
macros, conditional assembly and many directives have been removed.
But its functional extent is completely sufficient for a 68020 compiler.
Do with FreePhxAss what you want, but it would be very nice if you could
mention my name (in the docs, for example).

4. GigaPhxAss: Identical to PhxAss, but source codes are not limited to
65535 lines. Quite useful for assembling Reassembler outputs.
I recommend the PD-Reassembler IRA by Tim Rühsen, which was written
especially for use with PhxAss.

PhxAss is SHAREWARE. So if you like it, please send me 25 DM or 15$ to be-

PhxAss 3 / 54

come a registered user. In return you will get the latest update and the
right to ask for a new update whenever you want (provided that you send me
a disk). The best solution, of course, is to get the updates from one of my
local BBSs in the region of Bielefeld (Germany, Ostwestfalen-Lippe).
Examples:

Beautiful South, Greste +49 (0)5202 158696
Knight Box Lippe, Lemgo +49 (0)5261 189296
Suicide, Bielefeld +49 (0)521 897178
Komet Box, Lage +49 (0)5232 64938
Lost Alamour, Herford +49 (0)5221 15281

1.3 Modifications since PhxAss V2.xx

Register symbols (
EQUR
) must be defined before they are used. This enables

a faster addressing mode recognition.

There are some new optimizations possible. The optimize-flags which can be
specified after -n (since V4.00: OPT) or after the

OPT
directive have

completely changed (see
Command line paramters
).

If you have enabled the
near-code
model, all jumps which are

referencing external symbols are converted to PC-relative instead of long
branch.

The ’*’-symbol contains the current address. For example a ’bra *+10’ would
branch to the location 12 bytes behind the ’bra’-opcode.

New directives:
FPU
,
PMMU
,
CODE_C
,
CODE_F
,
DATA_C
,
DATA_F
,

BSS_C
,
BSS_F
and

INCDIR
.

PhxAss 4 / 54

The
instructions
and

addressing modes
of 68020-68040, 68851(PMMU)

and 6888x(FPCP) are completely supported. You can use Motorola’s new
addressing mode style even in the 68000 mode (e.g. MOVE (4,A5),D0).

The new addressing mode recognition has no difficulties with parentheses
’()’ instead of brackets ’[]’ to indicate a term. An operand like

-([x|y]*z)+6([addr+2,A4,regxy*QSIZE],[outdisp+$10<<(1+3)]),((abc-xyz)+2,A3)

would cause no problems.

PhxAss enables floating-point numbers to be used with the 6888x (FPCP)
instructions. For example: fmove.d #3.1415926536,fp7
moves the double-precision number pi to the FPCP register seven.

1.4 Modifications since PhxAss V3.00

V3.10:
o PhxAss is able to optimize forward-branches, which are coming into their

8/16-bit range by optimzation of the subsequent code. As a result, other
forward-branches could come into range and are also optimized, and so
on.

V3.30:
o Symbols which are preceded by a ’.’ will be regarded as

local symbols
too.

o A special version of PhxAss is available, which is not limited to the
maximum number of 65535 lines.

V3.40:
o

Macro
parameters may contain 63 characters now.

o The
extended addressing
mode recognition accepts the register

symbols ZD0-ZD7 and ZA0-ZA7 to specify a
suppressed register
.

o Two new
escape codes
available:

\e = escape ($1b) and \c = control sequence introducer ($9b).

V3.42:
o

Float constants
may be replaced by hex-constants now.

PhxAss 5 / 54

o When branch-optimization is activated, no extension-checking takes place.
The best-possible code will be generated.

V3.47
o New

optimization flag
: ’I’ forces PhxAss to ignore a ’Too large distance’

error.

V3.50
o

’@’
is allowed to be the first character of a symbol name, providing

the second character is non-numeric.
o The

RORG
directive is implemented.

o Two Devpac-specific directives are also supported now:

RSRESET
and

RS.x
for faster reading of (Devpac) include files.

o The new option
’-c’ (V4:CASE)
can be used to switch off the case-

sensitivity.

V3.51
o

RSSET
was forgotten in V3.50

o New directives:
IDNT
, COMMENT,
SUBTTL
V3.55

o From now on
near-data
symbols can be accessed not only by Absolute

Addressing but also by Address Register Indirect mode ((An) must be the
correct near-data base register). This will make the assembling of your
source much faster, because PhxAss has to do less optimizations. As a
side effect

XREFs
will be interpreted correctly and must not be re-

placed by
NREFs
.

o If no unit name is given (by
TTL or IDNT
), PhxAss will use the name

of the source code without extension as the default unit name.
o The

OFFSET
directive is supported.

PhxAss 6 / 54

V3.60
o PhxAss V3.60 is pure! You can use the CLI-command RESIDENT to add it to

the resident list.

V3.70
o ’.W’ and ’.L’ displacement-extensions for explicitely activating the 68020

base-displacement mode.

V3.71
o

PROCSTART/PROCEND
directives for compatibility with DICE-C.

V3.75
o Immediate values are checked for their correct size. For example a

MOVE.B #$1234,D0 will lead to an error now.

V3.80
o New option

’-w’ (V4:ERRORS)
to determine the maximum number of errors

which will be displayed before a request.
o The addressing mode syntax is checked much sharper (e.g. former versions

accepted "(SP)-").

V3.81
o

DC.W / DC.L
strings must no longer be aligned (e.g. DC.L "x" ->

$00000078).

V3.90
o PhxAss was completely localized using the "locale.library".

Available languages (August ’94): english, german, polish.
o Documentation converted to AmigaGuide format.

V3.92
o New option

’-v’ (V4:VERBOSE)
for displaying the names of all include

files and macros, which are accessed during assembly.
o New directive

ELSEIF
for DevPac compatibility.

o Protection flags for created files will are "rw-d" now.

V3.94
o The immediate value of BTST, BSET, BCLR and BCHG is checked for valid

range (0..7 or 0..31).
o You will need to enable (s)pecial optimization, to remove a ZRn-index.

I think, if somebody explicitly writes ’ZRn’, he doesn’t want it to be
removed by (n)ormal optimization.

V3.95
o From now on, it is possible to shift distances! Example:

move.w #(label2-label1)>>1,d0
Although this is the same as "(label2-label1)/2", division and multi-

PhxAss 7 / 54

plication is not allowed on distances, use right- or left shift instead.
You might find it useful to use e.g. "((label2-label1)>>1)-1" to
initialize the counter for a DB<cc>-loop - but be careful! Addition and
subtraction after a distance-shift is not really supported, although it
seems to work in this special case, if label1 and label2 are word-aligned.
The reason is, that the shift is always executed last, which means that
the "-1" doesn’t affect the result of the shifting but the result of the
distance directly.

V4.00:
o Conversion to OS 2. New command line parsing, using ReadArgs(), and

new argument names.
o Automatic generation of executable load files. You no longer need to start

the linker, if your code doesn’t make use of external references.
This feature can be disabled by using the CLI parameter

NOEXE
.

o Source Level Debugging support! By using the CLI parameter
LINEDEBUG
,

PhxAss creates a Line Debug block for each section, which contains the
addresses of each source code line.

o Extended operand buffer from 80 to 128 characters.
o Floating point symbols and constants can be used in

expressions
of any

complexity (like integers) now. PhxAss supports five binary operators,
+(plus), -(minus), *(mult.), /(division), ^(power), and six unary
operators: SIN(sine), COS(cosine), TAN(tangent), EXP(exponent), LOG(nat.
logarithm), SQR(square root).

o New directive
SET.x
for alterable floating point symbols.

o New directive
INT
for assigning a float expression to an integer

SET-symbol.
o

REPT ... ENDR
directives, like with DevPac.

o Floating point symbols in a listing file are displayed as floats instead
of hexadecimals.

o Float symbols do appear in an equates file.
o Two new standard optimizations (which I must have forgotten in former

versions):
1. move.l #0,An -> suba.l An,An 2. move.l #x,An -> move.w #x,An

o New Small Data Mode: By writing
NEAR A4,-2
only the sections which are

named "__MERGED", will be regarded as small data sections (similar
to SAS/C).

o 68060 instructions implemented! (except PLPA, because it was impossible
for me to get its code).

PhxAss 8 / 54

1.5 Modifications since PhxAss V4.00

Currently none. :-)

1.6 Bug fixes since V2.11

o Some instructions had generated a wrong error, e.g. TRAP and STOP gene-
rated ’Assembly aborted’ instead of ’Out of range’.

o ’move.l #xxxx,-(a0)’ produced an illegal opcode.
o If someone writes a program without first opening a section with CODE/

CSEG, SECTION or an initial label, all labels got wrong values.
o In some cases the equates file let PhxAss crash.
o A XDEF for a symbol which was already defined in another section would

add this symbol to the external-hunk of the section currently active.
o Jump to Branch optimization did not check the addressing mode of the

JMP/JSR instruction. It simply optimized all modes.
o A long branch to the next instruction was incorrectly optimized to $6x00.
o B<cc>.B was not recognized as a short branch. PhxAss accepted only

B<cc>.S.
o The CNOP directive had disabled all optimizing in its section.
o The ’Word at odd address’-error crashed PhxAss sometimes.
o INITNEAR was useless in the absolute mode.

1.7 Bug fixes since V3.00

V3.01 (03.03.93)
o The 68020 addressing-mode ([Rn]) was assembled with a wrong size in pass

one.

V3.02 (20.04.93)
o TRACKDISK now really works.

V3.05 (30.05.93)
o The near-data range was incorrectly limited to 32k in object files.
o The formatted text-output should also work on OS2.xx/3.xx now.
o MOVE USP,An , MOVES and MOVEP produced incorrect code.
o GLOBAL and BSS destroyed the MSW-bits of the BSS-hunk type ($000003eb).

V3.10 (04.06.93)
o PhxAss didn’t accept octal numbers (@xxx).

V3.11 (06.06.93)
o CNOP definitely bug-free (I hope).
o CMPI #x,(PC) (>=68020)

V3.12 (08.06.93)
o Width 32 was impossible for bitfields.

V3.15 (12.06.93)
o Fixed bug with MOVEM-optimization.

V3.20 (03.07.93)

PhxAss 9 / 54

o References on "\@"-labels behind another macro nesting were impossible.

V3.21 (05.07.93)
o "\@" only allowed 999 macro calls (now it’s unlimited).

V3.22 (06.07.93)
o Some extended adressing modes had made some problems:

([..],Rn.s|*x,od) and ([PC.. got a wrong size in pass one,
([BaseDisp]) generated an error and (bd,An/PC,Xn) (where bd is outside
of the normal 8-bit range) crashed PhxAss.

V3.25 (17.07.93)
o Fixed bug with MOVES.
o FETOXM1 was forgotten (in my Reference Manual too).

V3.26 (18.07.93)
o TAB-Codes within strings could not be expanded.

V3.30 (25.07.93)
o Fixed bug with extended addressing modes ([..],Rn.x/*y,od), ([pc],..
and ([pc,Rn],..

V3.31 (28.07.93)
o INITNEAR was useless in small-data mode.

V3.40 (07.08.93)
o Include paths which are suffixed by a ’:’ (volume names) were not re-

cognized.
o FMOVEM.L Dn,FPcr got four bytes more in pass one than in pass two.
o Starting with page 100 the listing file became unreadable.
o The ’Out of memory’ error was useless, because PhxAss crashed in most

cases.
o CPUSHL,CINVL,CPUSHP,CINVP didn’t work.
o BTST Dn,#x was missing.

V3.42 (24.08.93)
o The new formard-branch optimization destroyed the CNOP-alignments, which

are located between the branch-instruction and the branch-destination.

V3.46 (02.09.93)
o PhxAss tried to optimize "MOVEP (d16,An)" with d16=0 into "MOVEP (An)".

This was a bug!

V3.50 (15.09.93)
o Fixed bug with the ’*’-symbol, containing the address of the current line.
o ".local" was impossible with float symbols.

V3.57 (22.09.93)
o PTESTR/PTESTW (68030) ignored the fourth operand.

V3.58 (23.09.93)
o NARG was not zero for a macro call without arguments.
o INCLUDE/INCBIN without quotes caused an error.

V3.61 (02.10.93)
o IFC ’\1’,’’ only behaved reliable if \1 was not used before.

PhxAss 10 / 54

V3.64 (24.11.93)
o The 16/32-bit displacements in the PC Indirect with Index addressing mode

were wrong (+2 Bytes).

V3.65 (10.12.93)
o Fixed bugs in AbsLong->AbsShort and Logical Shifts optimization.

V3.70 (15.12.93)
o Fixed bug with (d16,An,ZRn) and (bd,PC).
o PhxAss tried to optimize CMPI #x,AbsLong always to PC-relative, which

caused an ’Illegal Addressing Mode’ error in 68000/010 mode.

V3.76 (07.04.94)
o Another bug in forward-branch optimizing (T-flag) made a mess with the

object file in some specific cases.
o An illegal Bcc.B *+2 was converted into Bcc.W *+2 instead of Bcc.W *+4.

V3.77 (21.04.94)
o More than 13 sections in a file had lead to a crash or an infinite loop.

V3.78 (27.04.94)
o When PhxAss discovered an error in a line >= 32768 it didn’t show neither

the line-counter nor the incorrect line itself (now it works until 65000).

V3.79 (01.05.94)
o Absolute addressing with parentheses caused a Syntax Error.

E.g.: "move.w label+(x+y)*z", but "move.w (x+y)*z+label" works.

V3.90 (16.09.94)
o Macro arguments which contained a comma (e.g. (d,An)) were unusable.

V3.93 (25.09.94)
o An explicit B<cc>.L was calculated 2 bytes too short in 020+ mode and 2

bytes too far in normal mode.

V3.94 (09.10.94)
o The code generated by MOVE.B #-1,d0 (also: cmp, and, or, eor, etc.) was

$103C $FFFF, but the bits 8-15 of the first extension word are reserved,
for a byte-instruction! Now PhxAss politely generates: $103C $00FF.

o PhxAss changed (d,PC,ZRn) into (d,ZPC,ZRn).

V3.96 (23.10.94)
o PhxAss crashed when the macro nesting depth exceeded 8.

V3.97 (01.11.94)
o Distances, which are calculated by using a label directly behind a CNOP,

were sometimes wrong.
o Because of some speed-improvements in V3.96, macro-arguments in opcode

could lead to an error.

V4.00 (26.12.94)
o PhxAss crashed when a fixed number of include files were open.
o There were still some problems with removing empty sections.
o ELSEIF was documented, but not supported (forgotten).

PhxAss 11 / 54

1.8 Bug fixes since V4.00

Currently none. :-)

1.9 Starting PhxAss

PhxAss can be used from CLI only. You should copy it to "C:" or ←↩
set a path

or link to its directory. If you know, you will need PhxAss very often, I
recommend to make it resident by typing "Resident C:PhxAss".

Format: PhxAss [FROM] <source file> [TO <output file>] [OPT <opt flags>]
[EQU <equ file>] [LIST <list file>] [INCPATH {<include paths>}]
[HEADINC {<include files>}] [PAGE=<n>] [ERRORS=<n>]
[SMALLDATA <basReg>,[<sec>]] [SMALLCODE] [LARGE] [VERBOSE]
[SYMDEBUG] [LINEDEBUG] [ALIGN] [CASE] [XREFS] [QUIET]
[SET "<symbol>[=<n>][,<symbol>...]"] [NOEXE]

Template: FROM/A,TO/K,OPT/K,EQU/K,LIST/K,INCPATH/K,HEADINC/K,PAGE/K/N,
ERRORS/K/N,SD=SMALLDATA/K,SC=SMALLCODE/S,LARGE/S,VERBOSE/S,
DS=SYMDEBUG/S,DL=LINEDEBUG/S,A=ALIGN/S,C=CASE/S,XREFS/S,Q=QUIET/S,
SET/K,NOEXE/S

Starting PhxAss with no argument or with a single ’?’ will display a short
description. For a more precise description of all arguments, refer to

Command line arguments
.

When PhxAss is running, it can be stopped at any time by holding CTRL-C.

1.10 Command line arguments

The standard version of PhxAss understands the following arguments ←↩
:

FROM/A The only parameter, which is always required, is
[FROM] <source file> the name of your source code file. If this name has

no extension, PhxAss automatically assumes ".asm"
for being the extension.
The source code must be an ASCII text file, where
each line is terminated by a linefeed ($0a)
character (the format, which all Amiga editors
should generate).
TAB-codes ($09) are allowed and completely sup-
ported.

TO/K Defines the name of the output file. If not speci-
TO <output file> fied, PhxAss takes the source code’s filename and

replaces its extension by ".o" . If PhxAss is able
to create an executable file instead of an object

PhxAss 12 / 54

module, the ".o"-extension will be removed.

EQU/K Generates an equates file. If the <file name> is
EQU <file name> "*", the name of the source code with extension

".equ" will be used. Since V4.00 equates files can
also contain floating point equates.

LIST/K Generates a listing file. If the <file name> is
LIST <file name> "*",the name of the source code with extension

".lst" will be used.

PAGE/K/N Determines the page length for equates and listing
PAGE=<lines> files. If <lines> equals zero, no formular feed

($0c) characters will be generated.
The default value is 60 lines.

XREFS/S Appends a reference list with all global symbols in
XREFS the listing file. If no listing file was opened,

this switch will cause an error.

INCPATH/K Defines one or more include-paths which will be used
INCPATH <p1>[,<p2>,...] by the

INCLUDE
and

INCBIN
directives. The paths, specified by ←↩

INCPATH/K, are
used directly after the path, specified by the
environment-variable PHXASSINC, has failed.
Important: If the path- or file names after INCPATH
or HEADINC contain blanks, you should embrace *all*
names with quotation marks and not only the one,
which contains blanks. Example:
INCPATH "include:,dh1:inc dir"

HEADINC/K Creates one or more INCLUDE directives at the top of
HEADINC <i1>[,<i2>,...] your source code. See also: INCPATH.

DS=SYMDEBUG/S The names of all global labels of each section are
DS stored to symbol data blocks. A debugger can use

these names instead of addresses.

DL=LINEDEBUG/S PhxAss creates a linedebug block, which can tell a
DL Source Level Debugger the right line in your source

code for any address. The location of your source is
stored in this block with a complete path, e.g.
"Work:Programs/Assembler/Tools/Source/Test.asm"
(this is, for example, not the case with SAS’s
ASM :-).

SD=SMALLDATA/K Forces all sections to use the small data model.
SD <basReg>,[<sec>] <basReg> (default: 4) specifies the number of the

address register which will be used as pointer to
the small data section. Only the registers A2-A6 can
be used. <sec> is the number of the section which
will be your small data section (defaults to -2).

PhxAss 13 / 54

If <sec> is -1, all Data and Bss sections will be
treated as a whole small data section.
If <sec> is -2, only the sections which are named
"__MERGED", will be added to small data.

SC=SMALLCODE/S Forces PhxAss to use the small code model. All JSR
SC and JMP instructions which are referencing external

(XREF) symbols are converted to PC-relative 16-bit
jumps.

LARGE/S Forces PhxAss to use the large code and large data
LARGE model in all sections.

NEAR
directives within

the source code will be ignored.

SET/K Predefines a symbol by
SET
directive.

SET "<symbol>[=<val>]" Definition of multiple symbols must be seperated by
commas. <val> default to 1, when missing. Don’t
forget the to embed the whole term, which follows
SET, in quotes (because of some problems with
ReadArgs()) !

A=ALIGN/S Enable auto-align for
DC.x
directives. All DC.W,

A DC.L, etc. directives in the code will be auto-
matically aligned to word-boundaries.

C=CASE/S Case-sensitivity off. All symbol names will be con-
C verted to upper case. This will slow down PhxAss

by 5%.

ERRORS/K/N Determines the maximum number of error-messages to
ERRORS=<max errors> be displayed before a "continue?"-request. If

<max errors> is zero, PhxAss will never stop to
perform a request.

VERBOSE/S Displays the names of all include files and macros,
VERBOSE which are accessed during assembly. This can be

helpful to locate errors with macros.

Q=QUIET/S Quiet mode. PhxAss makes no outputs until an error
Q occurs.

NOEXE/S PhxAss always tries to create an executable load
NOEXE file, instead of an object module, which requires

the additional use of a linker. NOEXE forces PhxAss
to create object modules in any case.

OPT/K Sets the optimize flags. The following characters,
OPT <flags> without embedded blanks, can be specified after

’OPT’:

0 (None)

PhxAss 14 / 54

No optimizing allowed. This flag should always
stand alone.

N (Normal)
Standard optimizations:
clr.l Dn -> moveq #0,Dn
move.l #x,Dn -> moveq #x,Dn
move.l #0,An -> suba.l An,An
move.l #xxxx,An -> move.w #xx,An
link.l(68020) -> link.w
adda/suba -> lea
($xxxx).L -> ($xx).W
(0,An) -> (An)

R (Relative)
($xxxx) -> (xx,PC)

Q (Quick)
Conversions into addq/subq

B (Branches)
Bcc.l(020) -> Bcc.w -> Bcc.b, jmp/jsr -> bra/bsr

T (Total branch optimization)
Bcc.l(020) -> Bcc.w -> Bcc.b (forward branches)
Only active if ’B’ is also selected.
WARNING! If you use this option together with a
listing file, then you can’t rely on the line-
addresses in it.

L (Logical Shifts)
lsl #1,Dn -> add Dn,Dn
lsl.w/b #2,Dn -> add Dn,Dn + add Dn,Dn

P (PEA/LEA conversion)
move.l #x,An -> lea x,An

-> lea (x,PC),An / lea x.w,An
move.l #x,-(SP) -> pea x -> pea (x,PC) / pea x.w

S (Special optimizations)
pea 0 -> clr.l -(SP)
add/sub #0,An / lea (0,An),An -> (removed)
(d,An,ZRn) -> (d,An) -> (An)
(d,PC,ZRn) -> (d,PC)
The following are not recommendable for a MC68000
accessing hardware registers:
move #0,<ea> -> clr <ea>
move.b #-1,<ea> -> st <ea>

M (MOVEM)
movem Rn,<ea> -> move Rn,<ea>
movem ,<ea> -> (removed)

I (Ignore too large distances)
Distances, which are currently out of range will
not cause an error. This is sometimes useful for
assembling reassembler-outputs or when you’re

PhxAss 15 / 54

sure that all distances will come into range
again, by optimization of the subsequent code.
BE CAUTIOUS!!! If a distance has not come into
range, PhxAss creates faulty code!

There are two short cuts, which usually stand alone:

* Selects all standard optimizations & T
(OPT nrqbt).

! Enables all optimizations possible
(OPT nrqbtlpsm).

If OPT is not specified the assembler uses standard
optimization (OPT nrqb).

The Freeware version of PhxAss does not support the following arguments:

EQU, LIST, XREFS, PAGE, INCPATH, HEADINC, VERBOSE, CASE

1.11 Programmer Information

Comments

Labels

M68000 Instructions

Expressions

Assembler Directives

Compiler Compatibility

1.12 Comments

Comments start with a ’;’ or with a ’*’. The text which follows after the
operand field is also a comment and doesn’t need ’;’ or ’*’.

Example:
; Comment text
moveq #0,d0

** This is a comment too **
nop ; comment
add.l d0,d0 comment after operand field

If no operand field is given, e.g. after the NOP instruction, the comment
must be preceded by a ’;’. The example above without a semicolon after the

PhxAss 16 / 54

NOP would make the assembler to treat ’comment’ as its operand.
’*’ is not allowed as a comment-introducer after an instruction or
directive!

1.13 Labels

Labels must start in the first column of a line. The colon after a label is
optional.

Example:
Label: moveq #0,d0

Local labels have a ’$’ suffixed or are preceded by a ’.’ (since V3.30).
They are only valid between two global labels.

Example:
Global1: add.w d0,d1

beq.s local1$
bpl.s .local2
rts

local1$: moveq #-1,d0
.local2: rts
Global2:

The length for global and local labels is unlimited. Valid characters for
the labels are: ’a’-’z’, ’A’-’Z’, ’0’-’9’ and ’_’ . The first character may
be a ’.’ or an ’@’ (providing the second character is non-numeric). Global
labels cannot start with a digit.

The special ’*’-symbol always contains the address of the current source
code line. This enables instructions like: bra *+4

CAUTION! Forward references with ’*’ will be corrected by PhxAss, but
backward references won’t! I recommend to use labels, if you want to be
really safe.

1.14 Executable M68000 instructions

General Format

Standard Addressing Modes

Extended Addressing Modes

Suppressed Registers (020+)

M68000 Instruction Overview

1.15 General Format

PhxAss 17 / 54

A line of an assembler source text has the general format:

<label> <operation> <operands>

PhxAss recognizes all operations found in Motorola’s M68000PM/AD Program-
mer’s Reference Manual and all of the common additions and short forms like
BHS instead of BCC, BLO instead of BCS, MOVE instead of MOVEA, ADD instead
of ADDI, etc. . In the current version all MC68000,68010,68020,68030,68040,
68060,68851,68881 and 68882 instructions are completely supported.

Labels must start at the first column. Operations (M68000 instructions or
assembler directives) and operands must have at least one preceding blank.

The operand field consists of one to four (68851) operands, seperated by a
comma with no imbedded spaces.

1.16 M68000 Standard Addressing Modes

The notational conventions used in this section are:
EA - Effective address
An - Address register n
Dn - Data register n
Xn.SIZE - Denotes index register n (data or address) and

index size (W for Word or L for Longword)
PC - Program counter
dn - Displacement value, n bits wide
() - Identify an indirect address in a register

Data Register Direct
Syntax: Dn
Generation: EA = Dn
Extension Words: 0

Address Register Direct
Syntax: An
Generation: EA = An
Extension Words: 0

Address Register Indirect
Syntax: (An)
Generation: EA = (An)
Extension Words: 0

Address Register Indirect with Postincrement
Syntax: (An)+
Generation: EA = (An), An = An + SIZE
Extension Words: 0

Address Register Indirect with Predecrement
Syntax: -(An)
Generation: An = An - SIZE, EA = (An)
Extension Words: 0

PhxAss 18 / 54

Address Register Indirect with Displacement (16-Bit)
Syntax: (d16,An) or d16(An)
Generation: EA = (An) + d16
Extension Words: 1

Address Register Indirect with Index (8-Bit Displacement)
Syntax: (d8,An,Xn.SIZE) or d8(An,Xn.SIZE)
Generation: EA = (An) + (Xn) + d8
Extension Words: 1

Program Counter Indirect with Displacement (16-Bit)
Syntax: (d16,PC) or d16(PC)
Generation: EA = (PC) + d16
Extension Words: 1

Program Counter Indirect with Index (8-Bit Displacement)
Syntax: (d8,PC,Xn.SIZE) or d8(PC,Xn.SIZE)
Generation: EA = (PC) + (Xn) + d8
Extension Words: 1

Absolute Short Addressing
Syntax: (xxx).W or xxx.W
Generation: EA given
Extension Words: 1

Absolute Long Addressing
Syntax: (xxx).L or xxx.L
Generation: EA given
Extension Words: 2

Immediate Data
Syntax: #xxx
Generation: Operand given
Extension Words: 1 or 2

1.17 68020+ Extended Addressing Modes

The notational conventions used in this section are:
EA - Effective address
An - Address register n
Dn - Data register n
Xn.SIZE*SCALE - Denotes index register n (data or address), the index

size (W or L), and a scale factor (1, 2, 4 or 8)
PC - Program counter
dn - Displacement value, n bits wide
bd - Base displacement
od - Outer displacement
() - Identify an indirect address in a register
[] - Identify an indirect address in memory

Address Register Indirect with Index (extension of standard format)
Syntax: (d8,An,Xn.SIZE*SCALE)
Generation: EA = (An) + (Xn)*SCALE + d8
Extension Words: 1

PhxAss 19 / 54

Address Register Indirect with Index and Base Displacement
Syntax: (bd,An,Xn.SIZE*SCALE)
Generation: EA = (An) + (Xn)*SCALE + bd
Extension Words: 1, 2 or 3

Memory Indirect Postindexed
Syntax: ([bd,An],Xn.SIZE*SCALE,od)
Generation: EA = (bd + An) + Xn.SIZE*SCALE + od
Extension Words: 1, 2, 3, 4 or 5

Memory Indirect Preindexed
Syntax: ([bd,An,Xn.SIZE*SCALE],od)
Generation: EA = (bd + An + Xn.SIZE*SCALE) + od
Extension Words: 1, 2, 3, 4 or 5

Program Counter Indirect with Index (extension of standard format)
Syntax: (d8,PC,Xn.SIZE*SCALE)
Generation: EA = (PC) + (Xn)*SCALE + d8
Extension Words: 1

Program Counter Indirect with Index and Base Displacement
Syntax: (bd,PC,Xn.SIZE*SCALE)
Generation: EA = (PC) + (Xn)*SCALE + bd
Extension Words: 1, 2 or 3

Program Counter Memory Indirect Postindexed
Syntax: ([bd,PC],Xn.SIZE*SCALE,od)
Generation: EA = (bd + PC) + Xn.SIZE*SCALE + od
Extension Words: 1, 2, 3, 4 or 5

Program Counter Memory Indirect Preindexed
Syntax: ([bd,PC,Xn.SIZE*SCALE],od)
Generation: EA = (bd + An + Xn.SIZE*SCALE) + od
Extension Words: 1, 2, 3, 4 or 5

The extended addressing modes have some ambiguities:
E.g. (0,A0) would be optimized to (A0) (one word), but maybe you want the
zero to be a 32-bit base displacement and you also want a suppressed D7
register. This instruction would have the same effect when executing, but it
consists of eight words instead of one.
Since PhxAss V3.70 you only have to write: (0.L,A0,ZD7)

1.18 68020+ Suppressed Registers

The Memory Indirect Post/Preindexed addessing modes allow the programmer to
suppress really everything. This means you may for example change the
standard format ([bd,An,Xn.SIZE*SCALE],od) into the following formats:
o ([bd,An,Xn.SIZE*SCALE])
o ([An,Xn.SIZE*SCALE],od)
o ([bd],od)
o ([An])
o ([Xn.SIZE*SCALE])
o ([An],od)

PhxAss 20 / 54

etc...

If you want to specify the number of a suppressed register you can use the
Zero-register symbols (ZRn, ZPC). By utilizing Zero-register symbols and the
displacement extensions .W and .L you should be able to generate any 68020
instruction bit-pattern you want (maybe helpful for reassemblers).
A .W/.L extension after the first displacement will tell PhxAss to switch
to base displacement mode and to disable optimizing for the current
instruction.

The suppressed registers are represented by the following symbols:
o suppressed data register D0-D7: ZD0-ZD7
o suppressed address register A0-A7: ZA0-ZA7
o suppressed PC: ZPC

It is impossible to EQUR suppressed registers!

1.19 M68000 Instructions supported by PhxAss

Integer Instructions for all processors

Integer Instructions 010,020,030,040,060 only

Integer Instructions 020,030,040,060 only

Integer Instructions 040,060 only

Integer Instructions 68060 only

MOVEC Control Registers

Floating Point Instructions 881,882,040,060

Floating Point Instructions 040,060 only

68851 PMMU Instructions

68030 PMMU Instructions

68040/060 PMMU Instructions

1.20 Integer Instructions (68000,68010,68020,68030,68040,68060)

ABCD Dy,Dx Add Decimal with Extend
ABCD -(Ay),-(Ax)
ADD.x <ea>,Dn Add
ADD.x Dn,<ea>
ADDA.x <ea>,An Add Address
ADDI.x #<data>,<ea> Add Immediate
ADDQ.x #<data>,<ea> Add Quick
ADDX.x Dy,Dx Add Extended

PhxAss 21 / 54

ADDX.x -(Ay),-(Ax)
AND.x <ea>,Dn And Logical
AND.x Dn,<ea>
ANDI.x #<data>,<ea> And Immediate
ANDI.x #<data>,CCR And Immediate to Condition Codes
ANDI.x #<data>,SR And Immediate to the Status Register
ASL/ASR.x Dx,Dy Arithmetic Shift Left/Right
ASL/ASR.x #<data>,Dy
ASL/ASR <ea>
B<cc>.x <label> Branch Conditionally
BCHG Dn,<ea> Test a Bit and Change
BCHG #<data>,<ea>
BCLR Dn,<ea> Test a Bit and Clear
BCLR #<data>,<ea>
BRA.x <label> Branch Always
BSET Dn,<ea> Test a Bit and Set
BSET #<data>,<ea>
BSR.x <label> Branch to Subroutine
BTST.x Dn,<ea> Test a Bit
BTST.x #<data>,<ea>
CHK.x <ea>,Dn Check Register Against Bounds
CLR.x <ea> Clear an Operand
CMP.x <ea>,Dn Compare
CMPA.x <ea>,An Compare Address
CMPI.x #<data>,<ea> Compare Immediate
CMPM.x (Ay)+,(Ax)+ Compare Memory
DB<cc> Dn,<label> Test Condition, Decrement, and Branch
DIVS <ea>,Dn Signed Divide
DIVU <ea>,Dn Unsigned Divide
EOR.x Dn,<ea> Exclusive-OR Logical
EORI.x #<data>,<ea> Exclusive-OR Immediate
EORI.x #<data>,CCR Exclusive-OR Immediate to Cond. Codes
EORI.x #<data>,SR Exclusive-OR Immediate to Status Reg.
EXG Rn,Rm Exchange Registers
EXT.x Dn Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP <ea> Jump
JSR <ea> Jump to Subroutine
LEA <ea>,An Load Effective Address
LINK An,#<displacement> Link and Allocate
LSL/LSR.x Dx,Dy Logical Shift Left/Right
LSL/LSR.x #<data>,Dy
LSL/LSR <ea>
MOVE.x <ea>,<ea> Move Data from Source to Destination
MOVEA.x <ea>,An Move Address
MOVE <ea>,CCR Move to Condition Codes
MOVE <ea>,SR Move to the Status Register
MOVE SR,<ea> Move from Status Register
MOVE USP,An Move User Stack Pointer
MOVE An,USP
MOVEM.x <register list>,<ea> Move Multiple Registers
MOVEM.x <ea>,<register list>
MOVEP.x Dx,(d,Ay) Move Peripheral Data (not 68060!)
MOVEP.x (d,Ay),Dx
MOVEQ #<data>,Dn Move Quick
MULS <ea>,Dn Signed Multiply
MULU <ea>,Dn Unsigned Multiply

PhxAss 22 / 54

NBCD <ea> Negate Decimal with Extend
NEG.x <ea> Negate
NEGX.x <ea> Negate with Extend
NOP No Operation
NOT.x <ea> Logical Complement
OR.x <ea>,Dn Inclusive-OR Logical
OR.x Dn,<ea>
ORI.x #<data>,<ea> Inclusive-OR Immediate
ORI.x #<data>,CCR Inclusive-OR Immediate to Cond. Codes
PEA <ea> Push Effective Address
RESET Reset External Devices
ROL/ROR.x Dx,Dy Rotate (without Extend) Left/Right
ROL/ROR.x #<data>,Dy
ROL/ROR <ea>
ROXL/ROXR.x Dx,Dy Rotate Left/Right with Extend
ROXL/ROXR.x #<data>,Dy
ROXL/ROXR <ea>
RTE Return from Exception
RTR Return and Restore Condition Codes
RTS Return from Subroutine
SBCD Dx,Dy Subtract Decimal with Extend
SBCD -(Ax),-(Ay)
S<cc> <ea> Set According to Condition
STOP #<data> Load Status Register and Stop
SUB.x <ea>,Dn Subtract
SUB.x Dn,<ea>
SUBA.x <ea>,An Subtract Address
SUBI.x #<data>,<ea> Subtract Immediate
SUBQ.x #<data>,<ea> Subtract Quick
SUBX.x Dx,Dy Subtract with Extend
SWAP Dn Swap Register Halves
TAS <ea> Test and Set an Operand
TRAP #<vector> Take Trap Exception
TRAPV Trap on Overflow
TST.x <ea> Test an Operand
UNLK An Unlink

Integer Condition Codes <cc>:
CC (HS) carry clear (higher or same) CS (LO) carry set (lower)
EQ equal F never true
GE greater or equal GT greater than
HI higher LE less or equal
LS less or same LT less than
MI negative NE not equal
PL positive T always true
VC overflow clear VS overflow set

1.21 Integer Instructions (68010,68020,68030,68040,68060)

BKPT #<data> Breakpoint
MOVE CCR,<ea> Move from the Condition Code Register
MOVEC Rc,Rn Move Control Registers
MOVEC Rn,Rc
MOVES Rn,<ea> Move Address Space
MOVES <ea>,Rn

PhxAss 23 / 54

RTD #<displacement> Return and Deallocate

1.22 Integer Instructions (68020,68030,68040,68060)

BFCHG <ea>{offset:width} Test Bit Field and Change
BFCLR <ea>{offset:width} Test Bit Field and Clear
BFEXTS <ea>{offset:width},Dn Extract Bit Field Signed
BFEXTU <ea>{offset:width},Dn Extract Bit Field Unsigned
BFFFO <ea>{offset:width},Dn Find First One in Bit Field
BFINS Dn,<ea>{offset:width} Insert Bit Field
BFSET <ea>{offset:width} Test Bit Field and Set
BFTST <ea>{offset:width} Test Bit Field
CALLM #<data>,<ea> Call Module (68020 ONLY!)
CAS.x Dc,Du,<ea> Compare and Swap with Operand
CAS2.x Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) (020-040 only!)
CHK2.x <ea>,Rn (020-040 only!) Check Register Against Bounds
CMP2.x <ea>,Rn (020-040 only!) Compare Register Against Bounds
DIVS.L <ea>,Dq Signed Divide
DIVS.L <ea>,Dr:Dq
DIVSL.L <ea>,Dr:Dq (020-040 only!)
DIVU.L <ea>,Dq Unsigned Divide
DIVU.L <ea>,Dr:Dq
DIVUL.L <ea>,Dr:Dq (020-040 only!)
EXTB.L Dn Sign Extend
LINK.L An,#<displacement> Link and Allocate
MULS.L <ea>,Dl Signed Multiply
MULS.L <ea>,Dh:Dl
MULU.L <ea>,Dl Unsigned Multiply
MULU.L <ea>,Dh:Dl
PACK -(Ax),-(Ay),#<adjustment> Pack BCD
PACK Dx,Dy,#<adjustment>
RTM Rn Return from Module (68020 ONLY!)
TRAP<cc> Trap on Condition
TRAP<cc>.x #<data>
UNPK -(Ax),-(Ay),#<adjustment> Unpack BCD
UNPK Dx,Dy,#<adjustment>

1.23 Integer Instructions (68040,68060)

CINVL <caches>,(An) Invalidate Cache Lines
CINVP <caches>,(An) (<caches> = DC, IC, BC or NC)
CINVA <caches>
CPUSHL <caches>,(An) Push and Invalidate Cache Lines
CPUSHP <caches>,(An)
CPUSHA <caches>
MOVE16 (Ax)+,(Ay)+ Move 16 Bytes Block
MOVE16 xxx.L,(An)
MOVE16 xxx.L,(An)+
MOVE16 (An),xxx.L
MOVE16 (An)+,xxx.L

PhxAss 24 / 54

1.24 Integer Instructions (68060)

LPSTOP #<data> Low-Power Stop
PLPA ? ? (currently no info avail.)

Instructions that are not directly supported by the 68060, like
DIVUL, DIVSL, CAS2, CHK2, CMP2, MOVEP, will be assembled without
warning, because they are emulated by the "68060.library"
(I hope... :-).

1.25 MOVEC Control Registers (Rc)

68010 68020 68030 68040 68060
SFC Source Function Code x x x x x
DFC Destination Function Code x x x x x
USP User Stack Pointer x x x x x
VBR Vector Base Register x x x x x
CACR Cache Control Register x x x x
CAAR Cache Address Register x x
MSP Master Stack Pointer x x x x
ISP Interrupt Stack Pointer x x x x
TC MMU Translation Control Register x x
ITT0 Instr. Transparent Translation Reg. 0 x x
ITT1 Instr. Transparent Translation Reg. 1 x x
DTT0 Data Transparent Translation Reg. 0 x x
DTT1 Data Transparent Translation Reg. 1 x x
MMUSR MMU Status Register x x
URP User Root Pointer x x
SRP Supervisor Root Pointer x x
BUSCR Bus Control Register x
PCR Processor Control Register x

1.26 Floating Point Instructions (68881,68882,68040,68060)

Many of these instructions must be emulated for a 68040 or 68060,
but PhxAss will assemble them without any warnings.

68040 emulated instructions:
FACOS,FASIN,FATAN,FCOS,FCOSH,FETOX,FETOXM1,FGETEXP,FGETMAN,FINT,
FINTRZ,FLOG10,FLOG2,FLOGN,FLOGNP1,FMOD,FREM,FSGLDIV,FSGLMUL,FSIN,
FSINCOS,FSINH,FTAN,FTANH,FTENTOX,FTWOTOX

68060 emulated instructions:
FACOS,FASIN,FATAN,FCOS,FCOSH,FDB<cc>,FETOX,FETOXM1,FGETEXP,FGETMAN,
FLOG10,FLOG2,FLOGN,FLOGNP1,FMOD,FREM,FSGLDIV,FSGLMUL,FS<cc>,FSIN,
FSINCOS,FSINH,FTAN,FTANH,FTENTOX,FTWOTOX

Monadic operations:
Fxxxx <ea>,FPn
Fxxxx FPm,FPn
Fxxxx FPn

PhxAss 25 / 54

FABS Floating-Point Absolute value
FACOS Arc Cosine
FASIN Arc Sine
FATAN Arc Tangent
FTANTH Hyberbolic Arc Tangent
FCOS Cosine
FCOSH Hyperbolic Cosine
FETOX e to x
FETOXM1 e to x minus one
FGETEXP Get Exponent
FGETMAN Get Mantissa
FINT Integer Part
FINTRZ Integer Part, Round to Zero
FLOG10 log10
FLOG2 log2
FLOGN loge
FLOGNP1 loge (x+1)
FNEG Floating-Point Negate
FSIN Sine
FSINH Hyperbolic Sine
FSQRT Floating-Point Square Root
FTAN Tangent
FTANH Hyperbolic Tangent
FTENTOX 10 to x
FTWOTOX 2 to x

Dyadic operations:
Fxxxx <ea>,FPn
Fxxxx FPm,FPn

FADD Floating-Point Add
FCMP Floating-Point Compare
FDIV Floating-Point Divide
FMOD Modulo Remainder
FMUL Floating-Point Multiply
FREM IEEE Remainder
FSCALE Scale Exponent
FSGLDIV Single Precision Divide
FSGLMUL Single Precision Multiply
FSUB Floating-Point Subtract

Special operations:
FB<cc>.x <label> Floating-Point Branch Conditionally
FDB<cc> Dn,<label> FP Test Cond., Decr., and Branch
FMOVE.x <ea>,FPn Move Floating-Point Data Register
FMOVE.x FPm,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}
FMOVE.L <ea>,FPcr Move F.-Point System Control Register
FMOVE.L FPcr,<ea> (FPcr = FPCR, FPSR or FPIAR)
FMOVECR #ccc,FPn Move Constant ROM
FMOVEM <list>,<ea> Move Multiple F.-Point Data Registers
FMOVEM Dn,<ea>
FMOVEM <ea>,<list>
FMOVEM <ea>,Dn
FMOVEM.L <list>,<ea> Move Multiple F.-Point Control Regs.

PhxAss 26 / 54

FMOVEM.L <ea>,<list> (<list> = combin. of FPCR,FPSR,FPIAR)
FNOP No Operation
FRESTORE <ea> Restore Internal Floating-Point State
FSAVE <ea> Save Internal Floating-Point State
FS<cc> <ea> Set According to Flt.-Point Condition
FSINCOS.x <ea>,FPc:FPs Simultaneous Sine and Cosine
FSINCOS FPm,FPc:FPs
FTRAP<cc> Trap on Floating-Point Condition
FTRAP<cc>.x #<data>
FTST.x <ea> Test Floating-Point Operand
FTST FPm

Floating-Point Condition Codes <cc>:
F false EQ equal
OGT ordered greater than OGE ordered gt. than or equal
OLT ordered less than OLE ordered less than or equal
OGL ordered greater or less than OR ordered
UN unordered UNE unordered or equal
UGT unordered or greater than UGE unord. or gt. than or equal
ULT unordered or less than ULE unord. or less than or equal
NE not equal T true
SF signaling false SEQ signaling equal
GT greater than GE greater than or equal
LT less than LE less than or equal
GL greater than or less than GLE gt. or less than or equal
NGLE not (gt. or less or equal) NGL not (greater or less than)
NLE not (less than or equal) NLT not (less than)
NGE not (greater than or equal) NGT not (greater than)
SNE signaling not equal ST signaling true

1.27 Floating Point Instructions (68040,68060)

FSADD Add Single Precision
FDADD Add Double Precision
FSDIV Single Precision Divide
FDDIV Double Precision Divide
FSMOVE Single Precision Move
FDMOVE Double Precision Move
FSMUL Single Precision Multiply
FDMUL Double Precision Multiply
FSNEG Single Precision Negate
FDNEG Double Precision Negate
FSSQRT Single Precision Square Root
FDSQRT Double Precision Square Root
FSSUB Subtract Single Precision
FDSUB Subtract Double Precision

1.28 PMMU Instructions (68851)

PB<cc>.x <label> Branch on PMMU Condition
PDB<cc> Dn,<label> Test, Decr., and Branch on PMMU Cond.
PFLUSHA Invalidate Entries in the ATC

PhxAss 27 / 54

PFLUSH <fc>,#<mask>
PFLUSHS <fc>,#<mask>
PFLUSH <fc>,#<mask>,<ea>
PFLUSHS <fc>,#<mask>,<ea>
PFLUSHR <ea> Invalidate ATC and RPT Entries
PLOADR <fc>,<ea> Load an Entry into the ATC
PLOADW <fc>,<ea>
PMOVE <PMMU Register>,<ea> Move PMMU Register
PMOVE <ea>,<PMMU Register>
PRESTORE <ea> PMMU Restore Function
PSAVE <ea> PMMU Save Function
PS<cc> <ea> Set on PMMU Condition
PTESTR <fc>,<ea>,#<level> Get Information About Logical Address
PTESTR <fc>,<ea>,#<level>,An
PTESTW <fc>,<ea>,#<level>
PTESTW <fc>,<ea>,#<level>,An
PTRAP<cc> Trap on PMMU Condition
PTRAP<cc>.x #<data>

PMMU Condition Codes <cc>:
BS, BC Bus Error
LS, LC Limit Violation
SS, SC Supervisor Only
AS, AC Access Level Violation
WS, WC Write Protected
IS, IC Invalid Descriptor
GS, GC Gate
CS, CC Globally Sharable

PMMU Registers:
CRP, SRP, DRP, TC, BACx, BADx, AC, PSR, PCSR, CAL, VAL, SCC

1.29 PMMU Instructions (68030)

PFLUSHA Flush Entry in the ATC
PFLUSH <fc>,#<mask>
PFLUSH <fc>,#<mask>,<ea>
PLOADR <fc>,<ea> Load an Entry into the ATC
PLOADW <fc>,<ea>
PMOVE MRn,<ea> Move to/from MMU Registers
PMOVE <ea>,MRn
PMOVEFD <ea>,MRn
PTESTR <fc>,<ea>,#<level> Test a Logical Address
PTESTR <fc>,<ea>,#<level>,An
PTESTW <fc>,<ea>,#<level>
PTESTW <fc>,<ea>,#<level>,An

PMMU Registers (MRn):
SRP, CRP, TC, MMUSR(PSR), TT0, TT1

1.30 PMMU Instructions (68040,68060)

PhxAss 28 / 54

PFLUSH (An) Flush ATC Entries
PFLUSHN (An)
PFLUSHA
PFLUSHAN
PTESTR (An) Test a Logical Address
PTESTW (An)

1.31 Expressions

Expressions consist of symbols and constants. Symbols can be absolute,
relocatable or external. The arithmetic operations for INTEGER expressions,
supported by PhxAss, are (from highest to lowest precedence) :

~ not (unary) - negation (unary)
<< shift left >> shift right

* multiplication / division // modulo
& and | or (’!’ also allowed) ^ exclusive or
- subtraction + addition
() parentheses or [] brackets

For absolute symbols and constants (which are absolute too), all arithmetic
operations are allowed.
If relocatables or externals occur in the expression, only subtraction and
addition is possible with some restrictions:

reloc - abs extern - abs reloc - reloc
reloc + abs extern + abs abs + reloc abs + extern

since V3.95 also:
(reloc-reloc)<<abs (reloc-reloc)>>abs

are defined, the others are illegal.

FLOAT expressions consist of floating point constants and symbols and abso-
lute integer constants and symbols. The following operations and functions
are valid for float expressions (V4.00 feature):

Binary:
+ plus - minus * multiplication
/ division ^ power

Unary:
- negation sqr square root exp e^x
log nat. logarithm sin sine cos cosine
tan tangent

SQR, EXP, LOG, SIN, COS and TAN are functions and are not case sensitive.
They are usually written in front of a term, e.g. "sin(3.14159)". But if,
like in the last example, the term only consists of a single constant, it is
also allowed to write "sin:3.14159". The ’:’ is required to separate the
function name from a possible symbol name.

There are six types of constants:

PhxAss 29 / 54

Hexadecimal, preceded by a ’$’, consists of ’0’-’9’ and ’A’-’F’ (or ’a’-’f’)
Decimal, consists of ’0’-’9’
Float, has the format [+/-][integer][.fraction][E[+/-]exponent]
Octal, preceded by a ’@’, consists of ’0’-’7’
Binary, preceded by a ’%’, consists of ’0’ and ’1’
String, embedded by ’ or ", consists of one to four characters.

The character ’\’ is an escape-symbol, which can generate the following
codes:

\\ the ’\’-character itself
\’ character #39 (single quote)
\" character #34 (quote)
\0 character #0 (string terminator)
\n character #10 (line feed)
\f character #12 (formular feed)
\b character #8 (backspace)
\t character #9 (tabulator)
\r character #13 (carriage return)
\e character #27 (escape)
\c character #155(control sequence introducer)

1.32 Assembler Directives

The following paragraphs describe all directives that are ←↩
supported by

PhxAss. Important note! Directives must *not* start at the first column of
a line or they will be treated as labels! (note for Seka users :-)

Directives supported by PhxAss:

BLK
Define Constant Block

BSS
Bss section

BSS
Allocate storage for Bss symbol

BSS_C
Chip-RAM Bss section

BSS_F
Fast-RAM Bss section

CNOP
Align the following code

CODE
Code section

CODE_C
Chip-RAM Code section

PhxAss 30 / 54

CODE_F
Fast-RAM Code section

COMMENT
Comment line

CSEG
Code section

DATA
Data section

DATA_C
Chip-RAM Data section

DATA_F
Fast-RAM Data section

DC
Define Constant

DCB
Define Constant Block

DS
Define Storage

DSEG
Data section

ECHO
Print string

ELSE
Define ELSE-part for conditional assembly

ELSEIF
Define ELSE-part for conditional assembly

EQU
Assign expression to symbol

EQU.x
Assign floating point expression to symbol

EQUR
Assign register to symbol

END
End of source text

ENDC
End of conditional assembly

ENDIF
End of conditional assembly

PhxAss 31 / 54

ENDM
End of Macro definition

ENDR
End of REPT loop

EVEN
Align the following code to an even address

FAIL
Abort assembly

FAR
Enter Far mode

FILE
Destination file for absolute code

FPU
Enable FPU code generation

GLOBAL
Allocate storage for global Bss symbol

IDNT
Set unit name

IFC
Cond.Ass.: Compares two strings for equality

IFD
Cond.Ass.: Test if a symbol is defined

IFEQ
Cond.Ass.: Test if expression is zero

IFGT
Cond.Ass.: Test if expression is greater than zero

IFGE
Cond.Ass.: Test if exp. is greater or equal to zero

IFLT
Cond.Ass.: Test is exp. is less than zero

IFLE
Cond.Ass.: Test if exp. is less or equal to zero

IFNC
Cond.Ass.: Compares two strings for difference

IFND
Cond.Ass.: Test if a symbol is undefined

IFNE
Cond.Ass.: Test if expression is not zero

PhxAss 32 / 54

INCBIN
Include binary file

INCDIR
Set Include directory path

INCLUDE
Include another source file

INITNEAR
Initialize near mode base register

INT
Assign value of float expression to an integer SET-symbol

LIST
Next lines to listing file

LOAD
Destination address for absolute code

MACHINE
Set CPU type

MACRO
Macro definition

MEXIT
Exit Macro

NEAR
Enter Near mode

NOLIST
Next lines are invisible in listing file

NREF
Import Near-symbol

OFFSET
Start Offset section

OPT
Change optimization mode

ORG
Set absolute code origin

PMMU
Enable 68851 code generation

PROCSTART
Start of C-function for DICE-Compiler

PROCEND
End of C-function for DICE-Compiler

PhxAss 33 / 54

PUBLIC
Import/Export symbol

REG
Assign register list to symbol

REPT
Repeat lines between REPT and ENDR

RORG
Set offset to start of section

RS
Assign value of RS-counter to symbol

RSRESET
Reset RS-counter

RSSET
Set RS-counter

SECTION
Set section for following code

SET
Change value of SET-symbol

SET.x
Change value of floating point SET-symbol

SUBTTL
(no function)

TTL
Set unit name

TRACKDISK
Absolute code directly to disk

XDEF
Export symbol

XREF
Import symbol

The following directives are *not* supported by the Freeware version:
RSRESET,RSSET,RS,ECHO,LIST,NOLIST,INCDIR,INCLUDE,INCBIN,MACRO,ENDM,MEXIT,
RORG,OFFSET,ORG,FILE,LOAD,TRACKDISK,COMMENT,SUBTTL,IF<cc>,ELSE,ELSEIF,ENDC,
ENDIF,FPU,PMMU,REPT,ENDR,INT

1.33 EQU

symbol equ <expression>
symbol = <expression>

PhxAss 34 / 54

The expression will be assigned to the symbol.

1.34 EQU.x

symbol equ.x <float expression>
symbol =.x <float expression>

An equate with extension .d,.f,.p,.s,.x will assign the value of a
floating point expression to the symbol. If you want to know more
about float expressions, refer to

Expressions
.

This is a special PhxAss directive.

1.35 EQUR

symbol equr <register>

This directive assigns a register (D0-D7,A0-A7 or SP) to the symbol.
Since V3.00 a register symbol must be defined before it is used.

1.36 REG

symbol reg <register list>

This directive assigns the value of the register list to the symbol.
Valid register lists contain several register names (see

EQUR
)

separated by the ’/’ character. The ’-’ character defines a range of
registers. The following are valid register lists:

a1/a3-a5/d0/d2/d4
d0-d7/a2-a6
d1-3/d5-7/a0-1/a3-6 (since V3.56)

1.37 SET

symbol set <absolute expression>

This directive assigns the value of the expression to the symbol. No
relocatables or externals are allowed within the expression. A symbol
defined by a SET directive may change its value by another SET.
There are some set-symbols which are defined by PhxAss:
PHXASS set 1
VERSION set version<<16+revision
According to the connected processor and co-processor PhxAss will set
MC68000, _MC68010_, _MC68020_ and _MC68881_.

PhxAss 35 / 54

NARG is zero outside a macro. Within a macro NARG is set to the number
of specified arguments.

1.38 SET.x

symbol set.x <float expression>

A SET with extension .d,.f,.p,.s,.x will assign the value of a
floating point expression to the symbol. You may change its value
by another SET, later in the source, provided that you don’t change
its type (e.g. "symbol SET.S" followed by "symbol SET.D").
This is a special PhxAss directive.

1.39 INT

symbol int <float expression>

The float expression will be evaluated and the result, without the
fractional part, will be assigned to an integer symbol.

1.40 RSRESET

This directive resets the internal RS-counter.

1.41 RSSET

rsset [<count>]

This directive sets the internal RS-counter to the <count> expression.

1.42 RS

[symbol] rs.x [<count>]

RS assigns the value of the internal RS-counter to the symbol, then it
increases the counter by the extension size multiplied with <count>.
If <count> is missing, it defaults to zero. For valid extensions refer
to the

DC
directive.

PhxAss 36 / 54

1.43 IDNT

idnt <name>
ttl <name>

These directives set the name of the object file unit which the
assembler will generate. By default, it will be the name of the source
file without the extension.

1.44 SUBTTL

Source texts containing subttl will cause no error with PhxAss, but
for now it does completely nothing.
(To be honest, I’ve no idea what it should do! Please write me,
if somebody knows it.)

1.45 COMMENT

comment text

You may write any text you like behind this directive.

1.46 LIST

The following source code will be written to the listing file.

1.47 NOLIST

The following source code will not be written to the listing file.

1.48 OPT

opt <optimize flags>

Changes optimization level. For a listing of all optimize flags, see

Command line paramters
.

This is a special PhxAss directive.

PhxAss 37 / 54

1.49 MACRO, ENDM

symbol macro
...text...
endm

macro symbol
...text...
endm

This directive assigns a macro to the symbol. The symbol may appear on
the left or the right side of the directive. The text between the
MACRO and ENDM directives will be inserted into the source code when
the assembler discovers the symbol. When calling the macro, up to nine
arguments, separated by a comma, can be specified in the operand
field. They are referenced in the macro text as ’\1’ through ’\9’.
’\0’ is reserved for the extension of the macro symbol. Example:

bhs macro
bcc.\0 \1
endm

This macro can be called by: bhs.s label
".s" will be assigned to \0 and "label" will be assigned to \1.
A "\@" within the macro is replaced by text of the form "nnn", where
nnn is a unique three-digit number for each macro call.

Labels within a macro should consist of "\@", because defining labels
twice is illegal.

1.50 MEXIT

Upon encountering this directive within a macro, the ←↩
assembler scans

for the
ENDM
directive and leaves the macro.

1.51 END

In pass one the assembler ignores the rest of the source code and
starts pass two. In pass two the assembler closes all files and
terminates. By default the assembler terminates at end of file.

1.52 FAIL

The assembler displays the error "69 Assembly aborted !" and
terminates.

PhxAss 38 / 54

1.53 ECHO

echo <string>

The assembler echoes the string. If <string> isn’t specified, only a
newline is echoed.
This is a special PhxAss directive.

1.54 MACHINE

machine <processor-type>

This directive sets the processor-type for which the code will be
generated. Valid processor-types are:
68000, 68010, 68020, 68030, 68040, 68060
The implementation of this directive may be different in other
assemblers.

1.55 FPU

fpu [<cpID>]

This directive enables code generation for a MC68881/68882 coproces-
sor. By default the <cpID> is set to one, which should be the correct
ID for most systems using a floating point coprocessor.
Never set <cpID> to zero, because this is the constant ID for a PMMU.
If you have set the processor-type to 68040 or 68060 you should not
use this directive.
This is a special PhxAss directive.

1.56 PMMU

This directive enables code generation for a MC68851 Paged Memory
Management Unit. PMMU only makes sense if you have set the processor-
type to ’68020’.
This is a special PhxAss directive.

1.57 SECTION

section <name>[,<type>[,<memflag>]]

The subsequent code will be placed in the section named <name>. There
are three section types: CODE, DATA and BSS. CODE contains the exe-
cutable M68000 instructions, DATA contains initialized data and BSS
contains uninitialized data (set to zero before the program is star-
ted). By default <type> is set to CODE. The section will be loaded to
the memory indicated by the <memflag> argument. This can be FAST or

PhxAss 39 / 54

CHIP. By default the section will be loaded to the memory with the
highest priority.

For compatibility reasons CODE_C, DATA_C and BSS_C are also recognized
as section type since V3.56.

Creating a section lets the assembler change into relocatable mode. In
this mode the following directives are illegal:

org
,
load
,
file
,
trackdisk
.

1.58 CODE, CSEG

These directives correspond to:
section

"CODE",code

1.59 DATA, DSEG

These directives correspond to:
section

"DATA",data

1.60 CODE_C, CODE_F, DATA_C, DATA_F, BSS_C, BSS_F

See
CODE
,
DATA
or

BSS
. In addition a memflag will be set, which

causes the section to be loaded to FAST (xxx_F) or to CHIP (xxx_C).

1.61 BSS

This directive corresponds to:
section

"BSS",bss

PhxAss 40 / 54

1.62 BSS

bss symbol,<size>

BSS with arguments does not start a section. It defines a symbol to be
in the

BSS
-section, reserves <size> bytes in this section and assigns

the address of the first byte to the symbol.
This directive is for Aztec-C compatibility only.

1.63 GLOBAL

global symbol,<size>

This directive does the same as
BSS
symbol,<size>. In addition GLOBAL

will declare the symbol as
XDEF
(ext_def).

It is for Aztec-C compatibility only.

1.64 OFFSET

offset [<start offset>]

This directive indicates the beginning of a special offset-section.
All the labels, which are declared in this section, will be treated
as absolute offsets instead of addresses. <start offset> defaults to
zero. This might be useful for declaring structure offsets with the

DS.x
directive. While writing programs for PhxAss you should

prefer the faster
RSRESET
,
RSSET
and

RS.x
directives.

OFFSET was mainly implemented for compatibility reasons.

1.65 RORG

rorg <section offset>

This directive defines the offset of the subsequent code relative to
the start of the current section.

PhxAss 41 / 54

1.66 INCDIR

incdir <path1>[,<path2>,...]

This directive does the same like the INCPATH argument (see

Command line arguments
). Note that other assemblers don’t accept

multiple paths.

1.67 INCLUDE

include <filename>

This directive causes PhxAss to suspend the assembling of the current
file and to assemble the file named <filename>. When done, the
assembler continues assembling the original file.
If PhxAss can’t find the include file, it first searches in the
include directory defined by the environment variable PHXASSINC. Then
it searches in the include directories defined by INCPATH parameters
parameters (see

Command line arguments
). At last, the

directories defined by
INCDIR
are searched.

1.68 INCBIN

incbin <filename>

This directive causes the assembler to include a binary file into the
current section (e.g. graphics, samples or trigonometrical tables).
The assembler searches in the same include directories like

INCLUDE
.

1.69 XREF

xref symbol1[,symbol2,...]

This directive tells the assembler that the specified symbols are
externally defined and will be inserted by the linker.
Note that other assemblers may not support multiple symbols.

PhxAss 42 / 54

1.70 NREF

nref symbol1[,symbol2,...]

This directive does the same like
XREF
, but the assembler is forced to

use these symbols as near-data relocatables.
This is a special PhxAss directive.

1.71 XDEF

xdef symbol1[,symbol2,...]

This directive causes the assembler to add the names and values of the
specified symbols to the external-block of the object file. The linker
can read the values of these symbols and insert them into other object
files.
Note that other assemblers may not support multiple symbols.

1.72 PUBLIC

public symbol1[,symbol2,...]

When the specified symbols are defined in the current code, PUBLIC
will do the same like

XDEF
. When the symbols are unknown, PUBLIC

will do the same like
XREF
.

This directive is for Aztec-C compatibility only.

1.73 ORG

org address

Defines the origin of the subsequent code and lets the assembler
change into absolute mode. Since V1.8 several ORG directives are
allowed and each one can be seen as a new section. The following
directives are illegal in absolute mode:

ttl
,
code
,
cseg
, {"section" link section},
offset

PhxAss 43 / 54

,
xref
,

nref
,
xdef
,
public
,
idnt
.

1.74 LOAD

load address

After assembling is done, the absolute code will be loaded to this
address. By default the code will be loaded to the address which was
specified as origin. Be cautious with this directive, because the
destination memory will neither be checked nor allocated.
This is a special PhxAss directive (also known from SEKA).

1.75 FILE

file <filename>

After assembling is done, the absolute code will be written into the
file named <filename>.
This is a special PhxAss directive.

1.76 TRACKDISK

trackdisk <drive>,<startblock>[,<offset>]

After assembling is done, the absolute code will be written directly
to floppy disk using the ’trackdisk.device’. <drive> is valid from 0
to 3. <startblock> is valid from 0 to 1759 (or 3519, if you have a HD
drive). <offset>, which is zero by default, specifies the byte-offset
within a block and is valid from 0 to 511.
This is a special PhxAss directive.

1.77 NEAR

near [An[,<secnum>]]

This directive initializes the parameters used by the near-data model.

PhxAss 44 / 54

NEAR with arguments may appear only once in the whole source code.
After initializing the small-data model, it can be switched on and off
by NEAR and

FAR
without arguments. In this mode you are allowed

to access near-symbols via ’NearSymbol(An)’. Absolute references will
be automatically converted to Address Register Indirect, if possible.
The first argument, the address-register, is valid from A2 to A6 and
will be A4 by default. <secnum>, which defaults to -2, specifies the
number of the section which will be accessed by Address Register In-
direct mode.
If <secnum> is -1, all Data and Bss sections will be added to one
large small data section. Either PhxAss will do this job immediately,
when creating an executable file, or you must invoke your Linker with
the correct small data option.
If <secnum> is -2, only the Data or Bss sections which were named
"__MERGED", will be added to the small data section.

near code

If the argument equals to the string "CODE" the assembler activates
the near-code model. This will force all absolute

XREF
jumps

into PC-relative mode.

Note that other assemblers don’t accept parameters for NEAR.

1.78 FAR

This directive deactivates the near-code/data model when active.

1.79 INITNEAR

This directive inserts two M68000 instructions into the code ←↩
which

will initialize the small-data model depending on the parameters set
by the

NEAR
directive. The assembler will generate this code

(10 bytes):
lea SmallDataBase,An
lea 32766(An),An

This is a special PhxAss directive.

1.80 DC

PhxAss 45 / 54

label dc.? <value>[,<value>,...]
label dc.b/w/l "string"[,...]

The DC (Define Constant) directive causes one or more fields of memory
to be allocated and initialized. Each field has the same size, speci-
fied by the extension of the directive. Each byte, word or longword
<value> can be an expression and may contain forward references.
The following extensions are valid:
.B (1 byte) Byte .W (2 bytes) Word
.L (4 bytes) Longword .F (4 bytes) Fast Flt. Point
.S (4 bytes) Single Precision .D (8 bytes) Double Precision
.Q (8 bytes) Quadword(V3.42) .X (12 bytes) Ext. Precision
.P (12 bytes) Packed BCD

Note that other assemblers may not support the floating-point and
quadword types.

1.81 DCB, BLK

label dcb.x <num>[,<fill>]
label blk.x <num>[,<fill>]

These directives allocate a block of memory having <num> entries. The
available entry sizes are the same like with

DC
. The block will be

initialized with <fill>, which is zero when missing. For valid exten-
sions, refer to

DC
.

1.82 DS

label ds.x <num>

This directive allocates a block of memory having <num> entries and
initializes each field with zero. See DCB link dcb}, @{.

1.83 CNOP

cnop <offset>,<align>

This directive aligns the address of the following code to <align>.
Then the <offset> is added. Example: cnop 2,4 . This example
would align the next address two bytes behind the next longword
boundary. Note that an <align> larger than 8 makes no sense, if you’re
creating relocatable code (see AllocMem(), exec.library).

PhxAss 46 / 54

1.84 EVEN

This directive corresponds to
cnop
0,2 which will make the

address word-aligned.

1.85 IFcond, ELSEIF, ELSE, ENDIF, ENDC

These directives support conditional assembling. The general form of
the IF directive is:

if<cond> <expression> or symbol
...
[else (or elseif)
...]
endc (or endif)

PhxAss supports the following conditions:
IFC "string1","string2" compares two strings. This is useful within

macros, when the strings contain macro-
arguments ’\x’ .

IFD/IFND symbol Tests if the symbol is defined (undefined).
IFEQ/IFNE <exp> Tests if <exp> is zero (not zero).
IFGT/IFLT <exp> Tests if <exp> is greater (less) than zero.
IFGE/IFLE <exp> Tests if <exp> is greater (less) than or

equal to zero.

1.86 PROCSTART,PROCEND

These directives are for compatibility with the DICE-C sytem. But cur-
rently they do nothing. For the future it should be possible to remove
LINK A5,#0 / UNLK A5 when A5 is not referenced between PROCSTART and
PROCEND.

1.87 REPT/ENDR

rept <count>
...
endr

The part of source code, embedded by REPT/ENDR, will be assembled
<count> times. A negative <count> is illegal.

1.88 Compiler Compatibility

PhxAss 47 / 54

A major reason for writing PhxAss was to create a program which ←↩
can replace

the very slow AS-assembler of Aztec-C. There are many directives for Aztec-
compatibility, but since V3.30, where symbols preceded by a ’.’ are regarded
as local symbols, it is nearly impossible to assemble Aztec compiler out-
puts. The only solution is to write a program which translates all ’.nnn’
symbols into ’_nnn’, for example.

Since introducing the new directives
PROCSTART
and

PROCEND
in V3.71,

DICE-C sources are completely supported.

1.89 Linker

You may use any linker which supports the standard Amiga DOS object file
format. For example BLink, DLink, etc. - but I recommend that you use
PhxLnk, of course :-).

1.90 Assembler Errors

In the current version of PhxAss the following errors could occur:

01 Out of memory

02 Unable to open utility.library

03 Can’t open timer.device

04 DREL16 out of range
Your Small Data area is too large. 64k is the limit for all data and
bss sections together.

07 HEADINC: file name expected
Example: PhxAss HEADINC "dh0:file1,dh1:xdir/file2,"

08 IncDir path name expected
Example: incdir "dir1","dir2",
Caused also by INCPATH.

10 SMALLDATA: Illegal base register
Allowed are 2-6 for A2-A6. A4 is standard.

11 MACHINE not supported
The current version of PhxAss supports 68000, 68010, 68020,
68030 and 68040.

12 File doesn’t exist
Unable to open your source code.

PhxAss 48 / 54

13 Missing include file name

14 Read error

15 String buffer overflow
The length of a label, opcode or operand is limited to a length of
128 characters.

16 Too many sections
Maximum is 250 sections.

17 Symbol can’t be made external
XDEF can only be used on absolute or relocatable symbols.

18 Symbol was declared twice
Only SET symbols can be declared more than once.

19 Unable to make XREF symbol
A symbol, which is already defined in the current source code, can’t
be an XREF at the same time. Or: A symbol which is already declared as
XREF can’t be defined.

20 Illegal opcode extension
Legal: .b .w .l .s .f .d .x .p .q

21 Illegal macro parameter
Possible parameters are: \0 (opcode extension), \1 - \9 and \@

22 Illegal characters in label
Refer to

Labels
in Programmer Information.

23 Unknown directive
The opcode is neither a 680x0-mnemonic nor an assembler directive or
macro.

24 Too many parameters for a macro
Nine parameters (\1 to \9) are possible.

25 Can’t open trackdisk.device

26 Argument buffer overflow
Arguments are in most cases limited to 128 chracters.

27 Bad register list
Valid register lists: d0-d3 d3-d4/a2 d2/d3/a4-a6 d7 a0/d2 d2-6/a0-4

28 Missing label
The directive requires a label.
Example: EQU <exp> -> Error 28

29 Illegal seperator for a register list
Valid seperators are ’-’ and ’/’.

30 SET, MACRO, XDEF, XREF and PUBLIC are illegal for a local symbol

PhxAss 49 / 54

31 Not a register (try d0-d7 or a0-a7 or sp)

32 Too many ’)’

33 Unknown addressing mode
See

Standard Addressing Modes
and

Extended Addressing Modes
for a complete description of all addressing modes.

34 Addressing mode not supported
Example: move.b d0,a1 / move usp,d2 / clr.w (d3)+ -> Error 34

35 Can’t use macro in operand
Macros must be used as opcodes.

36 Undefined symbol

37 Missing register
Example: mulu d0, -> Error 37

38 Need data-register

39 Need address-register

40 Word at odd address
Example: dc.b "Hallo"

dc.w 0 -> Error 40
Insert CNOP 0,2 or EVEN after string-constants.

41 Syntax error in operand

42 Relocatability error
Example: move.l label(pc),d0 , where label is not a reloc. and/or
label is not defined in the current section -> Error 42

43 Too large distance
Example: move.w 50000(a0),d0 -> Error 43
Too large distance for a displacement by indirect addressing or branch.
Short branches have a range of +126/-128 bytes. Long branches have a
range of +32766/-32768 bytes.

44 Displacement expected
Example: label: move.l label(a2),d1 -> Error 44

45 Valid address expected
A program address was expected.

46 Missing argument

47 Need numeric symbol

48 Displacement outside of section
Example: bra label , where label is not defined in the current
section -> Error 48

PhxAss 50 / 54

49 Only one distance allowed
Expression can’t contain several distances.
Example: move.l #(label1-label2)+(label3-label4),d0 -> Error 49

50 Missing bracket/parenthesis

51 Expression stack overflow
A maximum of 128 arguments are allowed in one expression.

52 Unable to negate an address

53 Can’t use distance and reloc in the same expression
Example: move.l #(label1-label2)+label3,d0 -> Error 53

54 Shift error (wrong type or negative count)
Example: 1<<-1 -> Error 54

label<<1 -> Error 54

55 Can’t multiply an address
56 Overflow during multiplication
57 Can’t divide an address
58 Division by zero
59 No logical operation allowed on addresses
60 Need two addresses to make a distance
61 Unable to sum addresses

62 Write error

63 Not a byte-, word- or long-string
Example: dc.d "XYZ" -> Error 63

64 Can’t subtract a XREF
Valid operations with externals: ext + abs , abs + ext and ext - abs

65 Impossible in absolute mode
These directive can’t be used in absolute mode:
ttl, code, cseg, data, dseg, bss, section, xref, nref, xdef, public

66 Unknown error (fatal program failure)
The assembler or its memory was corrupted by a faulty program running at
the same time.

67 No externals in absolute mode
See 65.

68 Out of range
Example: addq.l #9,d1 -> Error 68

69 Assembly aborted
Generated by the FAIL directive.

70 Missing ENDC/ENDIF

71 Missing macro name

72 Missing ENDM

PhxAss 51 / 54

73 Can’t define macro within a macro

74 Unexpected ENDM

75 Unexpected ENDC/ENDIF

76 Impossible in relative mode
These directive can’t be used in relative mode: org, file, load, track-
disk.

77 Parameter buffer overflow
Macro parameters are limited to 63 characters.

78 Illegal REPT count
The initial count for REPT should not be negative.

79 Unable to create file
Maybe the destination disk is write-protected.

80 No reference list without a listing file
XREFS switch was specified without the LIST switch.

81 No address allowed here
Example: ds.l label -> Error 81

82 Illegal characters in symbol
See error 22.

83 Source code too large (max. 65535 lines)

84 No floating point without the appropriate math-libraries
To use floating point symbols, you must have the following libraries
in your LIBS: directory:

mathtrans.library, mathieeedoubbas.library, mathieeedoubtrans.library

85 Overflow during float calculation
This happens usually when converting the result of a float expression
into a float type with lower precision, e.g. FFP or Single Precision.

86 Illegal symbol type in float expression
Don’t use relocatable symbols in float expressions.

89 Type of SET can’t be changed
Example: symbol set.d 3.14159265

symbol set.x -0.1 -> Error 89
The value of SET is changeable, but not its type!

90 Can’t mix LOAD, FILE and TRACKDISK
Example: load $70000

file "mycode" -> Error 90

91 Near mode not activated
The near mode must be activated first, before using the INITNEAR
directive.

92 Instruction not implemented in your machine

PhxAss 52 / 54

The instruction exists for another processor, but not for your one. Use
MACHINE to change processor type.

93 Illegal scale factor
Example: move.w (a1,d2*3) -> Error 93
Valid scale factors are: 1, 2, 4 and 8

94 Missing operand
Example: move.l (a0)+ -> Error 94

95 Section doesn’t exist
This error is caused by specifying an illegal section number in the NEAR
directive.

96 Illegal RORG offset
The relative offset must not specify an address before the actual PC.

97 Immediate operand size error
Example: move.b #$1234,d0 -> Error 97

98 Missing ENDR
Open repeat loop, when leaving the source code, an include file or macro.

99 Unexpected ENDR
No matching REPT discovered.

100 REPT nesting depth exceeded
The maximum nesting depth is 255.

1.91 History / Literature

After six years of working with assemblers like SEKA, AS (Aztec-C) and A68k,
I decided in December 1991 that I need a new, powerful assembler. First,
I had the idea to buy O.M.A. or Devpac, but I don’t like these modern
assemblers with an integrated editor. Other reasons for starting the de-
velopment of PhxAss were the chronic lack of money (I’m student) and the
possibility to create an assembler which will satisfy all of my demands.

I completed the first version V1.00 at the 28th of January in 1992. From now
on I used PhxAss to assemble itself (first I used A68k). It took me more
than a year and 23 versions to reach V3.00 and nearly another two years and
52 versions for V4.00 (of course PhxAss was not my only project in this
period).

Here is a list of my hardware and literature that made the development of
PhxAss possible:

Hardware: My good old A1000 (first version from ’85) with 68010 CPU,
2 MB Fast-RAM and a 33 MB Harddisk.
(since December ’93 also:) A4000, 68040, 6 MB RAM, 250 MB Hard-
disk.

Literature: Motorola MC68000/68008/68010/68HC000 8-/16-/32-Bit Micro-

PhxAss 53 / 54

processor User’s Manual (Prentice Hall)

Motorola MC68020 32-Bit Microprocessor User’s Manual (Prentice
Hall)

Motorola MC68040/68EC040/68LC040 Microprocessor User’s Manual
(Motorola)

Motorola MC68881/882 Floating-Point Coprocessor User’s Manual
(Prentice Hall)

Motorola MC68851 Paged Memory Management Unit User’s Manual
(Prentice Hall)

Motorola M68000,MC68020,MC68030,MC68040,MC68851,MC68881/882
Programmer’s Reference Manual (Motorola)

Amiga ROM Kernel Reference Manual: Libraries & Devices (Addison-
Wesley)

Amiga ROM Kernel Reference Manual: Includes & Autodocs (Addison-
Wesley)

Amiga Intern (Data Becker)

Amiga Intern Band 2 (Data Becker)

The Amiga Guru Book (Taunusstein)

1.92 Acknowledgements

Thanks to the following persons, who intensively tested PhxAss and accele-
rated its development by constructive bug-reports:

Fabien Campagne (F)
Tim Rühsen
Andreas Smigielski
Andreas Ackermann
William P. Nee (USA)
Wojciech Czyz (PL)
Thomas Hagen Johansen (DK)
Matthias Bock
Christian Bauer

Another acknowledgement, although gone bankrupt, is going to Commodore:
Thanks, for the only computer of the present time, which really makes
fun to work with :-)

1.93 Known bugs in version V4.00

PhxAss 54 / 54

o When instruction xxxx is completely removed by optimization, PhxAss will
generate an illegal short branch with zero displacement:

B<cc>.B label
xxxx

label:
This will only happen when you’ve set the optimize flag ’M’, and xxxx is a
MOVEM without registers, or when you have set the ’S’-flag, and xxxx is a
’ADDA/SUBA #0,An’ or ’LEA 0(An),An’.

o The Forward-Branch optimization (T-flag) doesn’t correct the line-
addresses in the listing file.

o The following lines from the original Commodore include file
"exec/types.i" can’t be assembled and must be changed:
\@BITDEF SET 1<<\3

BITDEF0 \1,\2,F_,\@BITDEF
change to:
BITDEF\@ SET 1<<\3

BITDEF0 \1,\2,F_,BITDEF\@
I really wish to know, who have had the great idea to define a symbol,
which starts with a digit! :-(

o The 68060 instruction PLPA is currently, because lack of information,
not supported.

If any bugs or questions occur, please write to :

SMail: Frank Wille
Auf dem Dreische 45
32049 Herford
GERMANY

EMail: Phoenix@AXXIS.OWL.DE

Germans should prefer my home bbs:
Phoenix@Komet.guru.sub.de (no inter. connection)

__
///

///
///

__ ///
\\\ ///
\\\ ///
\\\///
\XX/ A M I G A F O R E V E R !

	PhxAss
	PhxAss V4.00 Documentation (26-Dec-94)
	Preface
	Modifications since PhxAss V2.xx
	Modifications since PhxAss V3.00
	Modifications since PhxAss V4.00
	Bug fixes since V2.11
	Bug fixes since V3.00
	Bug fixes since V4.00
	Starting PhxAss
	Command line arguments
	Programmer Information
	Comments
	Labels
	Executable M68000 instructions
	General Format
	M68000 Standard Addressing Modes
	68020+ Extended Addressing Modes
	68020+ Suppressed Registers
	M68000 Instructions supported by PhxAss
	Integer Instructions (68000,68010,68020,68030,68040,68060)
	Integer Instructions (68010,68020,68030,68040,68060)
	Integer Instructions (68020,68030,68040,68060)
	Integer Instructions (68040,68060)
	Integer Instructions (68060)
	MOVEC Control Registers (Rc)
	Floating Point Instructions (68881,68882,68040,68060)
	Floating Point Instructions (68040,68060)
	PMMU Instructions (68851)
	PMMU Instructions (68030)
	PMMU Instructions (68040,68060)
	Expressions
	Assembler Directives
	EQU
	EQU.x
	EQUR
	REG
	SET
	SET.x
	INT
	RSRESET
	RSSET
	RS
	IDNT
	SUBTTL
	COMMENT
	LIST
	NOLIST
	OPT
	MACRO, ENDM
	MEXIT
	END
	FAIL
	ECHO
	MACHINE
	FPU
	PMMU
	SECTION
	CODE, CSEG
	DATA, DSEG
	CODE_C, CODE_F, DATA_C, DATA_F, BSS_C, BSS_F
	BSS
	BSS
	GLOBAL
	OFFSET
	RORG
	INCDIR
	INCLUDE
	INCBIN
	XREF
	NREF
	XDEF
	PUBLIC
	ORG
	LOAD
	FILE
	TRACKDISK
	NEAR
	FAR
	INITNEAR
	DC
	DCB, BLK
	DS
	CNOP
	EVEN
	IFcond, ELSEIF, ELSE, ENDIF, ENDC
	PROCSTART,PROCEND
	REPT/ENDR
	Compiler Compatibility
	Linker
	Assembler Errors
	History / Literature
	Acknowledgements
	Known bugs in version V4.00

