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Abstract

This paper describes an active attack against the Transport Control Protocol (TCP) which allows a

cracker to redirect the TCP stream through his machine thereby permitting him to bypass the protection

o�ered by such a system as a one-time password [SKEY] or ticketing authentication [Kerberos]. The

TCP connection is vulnerable to anyone with a TCP packet sni�er and generator located on the path

followed by the connection. Some schemes to detect this attack are presented as well as some methods

of prevention and some interesting details of the TCP protocol behaviors.

1 Introduction

Passive attacks using sni�ers are becoming more and

more frequent on the Internet. The attacker obtains

a user id and password that allows him to logon as

that user. In order to prevent such attacks peo-

ple have been using identi�cation schemes such as

one-time password [SKEY] or ticketing identi�cation

[Kerberos]. Though they prevent password sni�ng

on an unsecure network these methods are still vul-

nerable to an active attack as long as they neither

encrypt nor sign the data stream.
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Still many people

are complacent believing that active attacks are very

di�cult and hence a lesser risk.

The following paper describes an extremely sim-

ple active attack which has been successfully used to

break into Unix hosts and which can be done with

the same resources as for a passive sni�ng attack.
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Some uncommon behaviors of the TCP protocol are

also presented as well as some real examples and sta-

tistical studies of the attack's impact on the network.

Finally some detection and prevention schemes are

explained. In order to help any reader unfamiliar

with the subtleties of the TCP protocol the article

starts with a short description of TCP.

The reader can also refers to another attack by R.

Morris presented in [Morris85]. Though the following

attack is related to Morris' one, it is more widely us-

able on any TCP connection. In section 7 we present

and compare this attack with the present one.

The presentation of the attack will be divided

into three parts: the \Established State" which is

the state where the session is open and data is ex-

changed; the set up (or opening) of such a session;

and �nally some real examples.

2 Established State

2.1 The TCP protocol

This section o�ers a short description of the TCP

protocol. For more details the reader can refer

to [RFC 793]. TCP provides a full duplex reliable

stream connection between two end points. A con-

nection is uniquely de�ned by the quadruple (IP ad-

dress of sender, TCP port number of the sender, IP

1

Kerberos also provides an encrypted TCP stream option.
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The attacks have been performed with a test software and the users were aware of the attack. Although we do not have

any knowledge of such an attack being used on the Internet, it may be possible.



address of the receiver, TCP port number of the re-

ceiver). Every byte that is sent by a host is marked

with a sequence number (32 bits integer) and is ac-

knowledged by the receiver using this sequence num-

ber. The sequence number for the �rst byte sent is

computed during the connection opening. It changes

for any new connection based on rules designed to

avoid reuse of the same sequence number for two dif-

ferent sessions of a TCP connection.

We shall assume in this document that one point

of the connection acts as a server (for instance a tel-

net server) and the other as the client. The following

terms will be used:

SVR SEQ: sequence number of the next byte to be

sent by the server;

SVR ACK: next byte to be received by the server

(the sequence number of the last byte received

plus one);

SVR WIND: server's receive window;

CLT SEQ: sequence number of the next byte to be

sent by the client;

CLT ACK: next byte to be received by the client;

CLT WIND: client's receive window;

At the beginning when no data has been ex-

changed we have SV R SEQ = CLT ACK and

CLT SEQ = SV R ACK. These equations are also

true when the connection is in a 'quiet' state (no data

being sent on each side). They are not true during

transitory states when data is sent. The more general

equations are:

CLT ACK � SV R SEQ � CLT ACK + CLT WIND

SV R ACK � CLT SEQ � SV R ACK + SV R WIND

The TCP packet header �elds are:

Source Port: The source port number;

Destination Port: The destination port number;

Sequence number: The sequence number of the

�rst byte in this packet;

Acknowledgment Number: The expected se-

quence number of the next byte to be received;

Data O�set: O�set of the data in the packet;

Control Bits:

URG: Urgent Pointer;

ACK: Acknowledgment;

PSH: Push Function;

RST: Reset the connection;

SYN: Synchronize sequence numbers;

FIN: No more data from sender;

Window: Window size of the sender;

Checksum: TCP checksum of the header and data;

Urgent Pointer: TCP urgent pointer;

Options: TCP options;

� SEG SEQ will refer to the packet sequence

number (as seen in the header).

� SEG ACK will refer to the packet acknowledg-

ment number.

� SEG FLAG will refer to the control bits.

On a typical packet sent by the client (no retransmis-

sion) SEG SEQ is set to CLT SEQ, SEG ACK to

CLT ACK.

TCP uses a \three-way handshake" to establish a

new connection. If we suppose that the client initi-

ates the connection to the server and that no data is

exchanged, the normal packet exchange is (C.f. Fig-

ure 1):

� The connection on the client side is on the

CLOSED state. The one on the server side is

on the LISTEN state.

� The client �rst sends its initial sequence num-

ber and sets the SYN bit:

SEG SEQ = CLT SEQ

0

;

SEG FLAG = SY N

Its state is now SYN-SENT

� On receipt of this packet the server acknowl-

edges the client sequence number, sends its own

initial sequence number and sets the SYN bit:

SEG SEQ = SV R SEQ

0

;

SEQ ACK = CLT SEQ

0

+ 1;

SEG FLAG = SY N

and set

SV R ACK = CLT SEQ

0

+ 1

Its state is now SYN-RECEIVED



� On receipt of this packet the client acknowl-

edges the server sequence number:

SEG SEQ = CLT SEQ

0

+ 1;

SEQ ACK = SV R SEQ

0

+ 1

and sets

CLT ACK = SV R SEQ

0

+ 1

Its state is now ESTABLISHED

� On receipt of this packet the server enters the

ESTABLISHED state. We now have:

CLT SEQ = CLT SEQ

0

+ 1

CLT ACK = SV R SEQ

0

+ 1

SV R SEQ = SV R SEQ

0

+ 1

SV R ACK = CLT SEQ

0

+ 1

Closing a connection can be done by using the

FIN or the RST ag. If the RST ag of a packet

is set the receiving host enters the CLOSED state

and frees any resource associated with this instance

of the connection. The packet is not acknowledged.

Any new incoming packet for that connection will be

dropped.

If the FIN ag of a packet is set the receiving host

enters the CLOSE-WAIT state and starts the pro-

cess of gracefully closing the connection. The detail

of that procces is beyond the scope of this document.

The reader can refer to [RFC 793] for further details.

In the preceding example we speci�cally avoided

any unusual cases such as out-of-band packets, re-

transmission, loss of packet, concurrent opening,

etc... These can be ignored in this simple study of

the attack.

When in ESTABLISHED state, a packet is ac-

ceptable if its sequence number falls within the ex-

pected segment

[SV R ACK;SV R ACK + SV R WIND]

(for the server) or

[CLT ACK;CLT ACK + CLT WIND]

(for the client). If the sequence number is beyond

those limits the packet is dropped and a acknowl-

edged packet will be sent using the expected sequence

number. For example if

SEG SEQ = 200;

SV R ACK = 100;

SV R WIND = 50

Then

SEG SEQ > SV R ACK + SV R WIND:

The server forms a ACK packet with

SEG SEQ = SV R SEQ

SEG ACK = SV R ACK

which is what the server expects to see in the packet.

2.2 A desynchronized state

The term \desynchronized state" will refer to the con-

nection when both sides are in the ESTABLISHED

state, no data is being sent (stable state), and

SV R SEQ 6= CLT ACK

CLT SEQ 6= SV R ACK

This state is stable as long as no data is sent. If

some data is sent two cases can occur:

1. If CLT SEQ < SV R ACK + SV R WIND

and CLT SEQ > SV R ACK the packet is

acceptable, the data may be stored for later

use (depending on the implementation) but not

sent to the user since the beginning of the

stream (sequence number SV R ACK) is miss-

ing.

2. If CLT SEQ > SV R ACK +SV R WIND or

CLT SEQ < SV R ACK the packet is not ac-

ceptable and will be dropped. The data is lost.

In both case data exchange is not possible even if

the state exists.

2.3 The attack

The proposed attack consists of creating a desynchro-

nized state on both ends of the TCP connection so

that the two points cannot exchange data any longer.

A third party host is then used to create acceptable

packets for both ends which mimics the real packets.

Assume that the TCP session is in a desynchro-

nized state and that the client sends a packet with

SEG SEQ = CLT SEQ

SEG ACK = CLT ACK

Since CLT SEQ 6= SV R ACK the data will not

be accepted and the packet is dropped. The third

party then sends the same packet but changes the

SEG SEQ and SEG ACK (and the checksum) such

that

SEG SEQ = SV R ACK;

SEG ACK = SV R SEQ
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Figure 1: Example of a connection opening

which is acceptable by the server. The data is pro-

cessed by the server.

If CLT TO SV R OFFSET refers to

SV R ACK � CLT SEQ and

SV R TO CLT OFFSET refers to CLT ACK �

SV R SEQ then the �rst party attacker has to rewrite

the TCP packet from the client to the server as:

SEG SEQ SEG SEQ+ CLT TO SV R OFFSET

SEG ACK  SEG ACK � SV R TO CLT OFFSET

Considering that the attacker can listen to any

packet exchanged between the two points and can

forge any kind of IP packet (therefore masquerad-

ing as either the client or the server) then every-

thing acts as if the connection goes through the at-

tacker machine. This one can add or remove any

data to the stream. For instance if the connec-

tion is a remote login using telnet the attacker can

include any command on behalf of the user (echo

merit.edu lpj >& ~ /.rhosts is an example of such

a command) and �lter out any unwanted echo so

that the user will not be aware of the intruder. Of

course in this case CLT TO SV R OFFSET and

SV R TO CLT OFFSET have to change. The new

values are let as an exercise for the reader.
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2.4 \TCP Ack storm"

A aw of the attack is the generation of a lot of

TCP ACK packets. When receiving an unaccept-

able packet the host acknowledges it by sending the

expected sequence number (As the Acknolegement

number. C.f. introduction about TCP) and us-

ing its own sequence number. This packet is itself

unacceptable and will generate an acknowledgement

packet which in turn will generate an acknowledge-

ment packet etc... creating a supposedly endless loop

for every data packet sent.

Since these packets do not carry data they are

not retransmitted if the packet is lost. This means

that if one of the packets in the loop is dropped then

the loop ends. Fortunately (or unfortunately?) TCP

uses IP on an unreliable network layer with a non null

packet loss rate, making an end to the loops. More-

over the more packets the network drops, the shorter

is the Ack storm (the loop). We also notice that these

loops are self regulating: the more loops we create the

more tra�c we get, the more congestion and packet

drops we experience and the more loops are killed.
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One can turn o� the echo in the telnet connection in order to avoid the burden of �ltering the output. The test we did

showed up a bug in the current telnet implementation (or maybe in the telnet protocol itself). If a TCP packet contains both

IAC DONT ECHO and IAC DO ECHO the telnet processor will answer with IAC WONT ECHO and IAC WILL ECHO. The

other end point will acknowledge IAC DONT ECHO and IAC DO ECHO etc... creating an endless loop.



The loop is created each time the client or the

server sends data. If no data is sent no loop appears.

If data is sent and no attacker is there to acknowledge

the data then the data will be retransmitted, a storm

will be created for each retransmission, and eventu-

ally the connection will be dropped since no ACK

of the data is sent. If the attacker acknowledges the

data then only one storm is produced (in practice the

attacker often missed the data packet due to the load

on the network, and acknowledge the �rst of subse-

quent retransmission).

The attack uses the second type of packet de-

scribed in Section 2.2. The �rst case in which the

data is stored by the receiver for later processing has

not been tested. It has the advantage of not generat-

ing the ACK storm but on the other hand it may be

dangerous if the data is actually processed. It is also

di�cult to use with small window connections.

3 Setup of the session

This paper presents two methods for desynchronizing

a TCP connection. Others can be imagined but will

not be described here. We suppose that the attacker

can listen to every packet sent between the two end

points.

3.1 Early desynchronization

This method consists of breaking the connection in

its early setup stage on the server side and creating a

new one with di�erent sequence number. Here is the

process (Figure 2 summarizes this process)

� The attacker listens for a SYN/ACK packet

from the server to the client (stage 2 in the con-

nection set up).

� On detection of that packet the attacker sends

the server a RST packet and then a SYN packet

with exactly the same parameters (TCP port)

but a di�erent sequence number (referred to as

ATK ACK

0

in the rest of the paper).

� The server will close the �rst connection when

it receives the RST packet and then reopens a

new one on the same port but with a di�er-

ent sequence number (SV R SEQ

0

0

) on receipt

of the SYN packet. It sends back a SYN/ACK

packet to the client.

� On detection of that packet the attacker sends

the server a ACK packet. The server switches

to the ESTABLISHED state.

� The client has already switched to the ES-

TABLISHED state when it receives the �rst

SYN/ACK packet from the server.

This diagram does not show the unacceptable ac-

knowledgement packet exchanges. Both ends are in

the desynchronized ESTABLISHED state now.

SV R TO CLT OFFSET = SV R SEQ

0

� SV R SEQ

0

0

is �xed by the server.

CLT TO SV R OFFSET = ATK SEQ

0

� CLT SEQ

0

is �xed by the attacker.

The success of the attack relies on the correct

value being chosen for

CLT TO SV R OFFSET . Wrong value may make

the client's packet acceptable and can produce un-

wanted e�ects.

3.2 Null data desynchronization

This method consists for the attacker in sending a

large amount of data to the server and to the client.

The data sent shouldn't a�ect nor be visible to the

client or sever, but will put both end of the TCP

session in the desynchronized state.

The following scheme can be used with a telnet

session:

� The attacker watchs the session without inter-

fering.

� When appropriate the attacker sends a large

amount of \null data" to the server. \Null

data" refers to data that will not a�ect any-

thing on the server side besides changing

the TCP acknowledgment number. For in-

stance with a telnet session the attacker sends

ATK SV R OFFSET bytes consisting of the

sequence IAC NOP IAC NOP... Every two

bytes IAC NOP will be interpreted by the tel-

net daemon, removed from the stream of data

and nothing will be a�ected.
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Now the Server

has

SV R ACK = CLT SEQ+ATK SV R OFFSET

which of course is desynchronized.

� The attacker does the same thing with the

client.

The method is useful if the session can carry \null

data". The time when the attacker sends that data is

also very di�cult to determine and may cause some

unpredictable side e�ects.
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The telnet protocol [RFC 854] de�nes the NOP command as \No Operation". In other words, do nothing, just ignore those

bytes.
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Figure 2: A attack scheme. The attacker's packets are marked with (

4 Examples

The following logs are provided by running a hacked

version of tcpdump [TCPDUMP] on the local ether-

net where the client resides. Comments are preceded

by `##'.

The �rst example is a normal telnet session open-

ing between 35.42.1.56 (the client) and 198.108.3.13

(the server).

## The client sends a SYN packet, 1496960000 is its initial sequence number.

11:07:14.934093 35.42.1.56.1374 > 198.108.3.13.23: S 1496960000:1496960000(0) win 4096

## The server answers with its initial sequence number and the SYN flag.

11:07:14.936345 198.108.3.13.23 > 35.42.1.56.1374: S 1402880000:1402880000(0) ack 1496960001 win 4096

## The client acknowledges the SYN packet.

11:07:14.937068 35.42.1.56.1374 > 198.108.3.13.23: . 1496960001:1496960001(0) ack 1402880001 win 4096

## Now the two end points are in the ESTABLISHED state.

## The client sends 6 bytes of data.

11:07:15.021817 35.42.1.56.1374 > 198.108.3.13.23: P 1496960001:1496960007(6)

ack 1402880001 win 4096 255 253 /C 255 251 /X

[...]

## The rest of the log is the graceful closing of the connection

11:07:18.111596 198.108.3.13.23 > 35.42.1.56.1374: F 1402880059:1402880059(0) ack 1496960025 win 4096

11:07:18.112304 35.42.1.56.1374 > 198.108.3.13.23: . 1496960025:1496960025(0) ack 1402880060 win 4096

11:07:18.130610 35.42.1.56.1374 > 198.108.3.13.23: F 1496960025:1496960025(0) ack 1402880060 win 4096



11:07:18.132935 198.108.3.13.23 > 35.42.1.56.1374: . 1402880060:1402880060(0) ack 1496960026 win 4095

The next example is the same session with an in-

trusion by the attacker. The desynchronized state

is created in the early stage of the session (subsec-

tion 3.1). The attacker will add the command 'ls;'

to the stream of data. The user uses skey to identify

himself to the server. From the user's point of view

the session looks like this:

<lpj@homefries: 1> telnet 198.108.3.13

Trying 198.108.3.13 ...

Connected to 198.108.3.13.

Escape character is '^]'.

SunOS UNIX (_host)

login: lpj

s/key 70 cn33287

(s/key required)

Password:

Last login: Wed Nov 30 11:28:21 from homefries.merit.edu

SunOS Release 4.1.3_U1 (GENERIC) #2: Thu Jan 20 15:58:03 PST 1994

(lpj@_host: 1) pwd

Mail/ mbox src/

elm* resize* traceroute*

/usr/users/lpj

(lpj@_host: 2) history

1 13:18 ls ; pwd

2 13:18 history

(lpj@_host: 3) logoutConnection closed by foreign host.

<lpj@homefries: 2>

The user types only one command pwd and then

asks for the history of the session. The history shows

that a ls has also being issued. The ls command pro-

duces an output which has not been �ltered. The fol-

lowing log shows the TCP packet exchanges between

the client and the server. Unfortunately some pack-

ets are missing from this log because they have been

dropped by the sni�er's ethernet interface driver.

One must see that log like a snapshot of a few in-

stants of the exchange more than the full transaction

log. The attacker's window size has been set to un-

common values (400, 500, 1000) in order to make

its packets more easily traceable. The attacker is on

35.42.1, three hops away from the server, on the path

from the client to the server. The names and ad-

dresses of the hosts have been changed for security

reasons.

## The client sends a SYN packet, 896896000 is its initial sequence number.

11:25:38.946119 35.42.1.146.1098 > 198.108.3.13.23: S 896896000:896896000(0) win 4096

## The server answers with its initial sequence number (1544576000) and the SYN flag.

11:25:38.948408 198.108.3.13.23 > 35.42.1.146.1098: S 1544576000:1544576000(0) ack 896896001 win 4096

## The client acknowledges the SYN packet. It is in the ESTABLISHED state now.

11:25:38.948705 35.42.1.146.1098 > 198.108.3.13.23: . 896896001:896896001(0) ack 1544576001 win 4096

## The client sends some data

11:25:38.962069 35.42.1.146.1098 > 198.108.3.13.23: P 896896001:896896007(6)

ack 1544576001 win 4096 255 253 /C 255 251 /X

## The attacker resets the connection on the server side

11:25:39.015717 35.42.1.146.1098 > 198.108.3.13.23: R 896896101:896896101(0) win 0

## The attacker reopens the connection with an initial sequence number of 601928704

11:25:39.019402 35.42.1.146.1098 > 198.108.3.13.23: S 601928704:601928704(0) win 500

## The server answers with a new initial sequence number (1544640000) and the SYN flag.

11:25:39.022078 198.108.3.13.23 > 35.42.1.146.1098: S 1544640000:1544640000(0) ack 601928705 win 4096

## Since the last packet is unacceptable for the client, it acknowledges it

## with the expected sequence number (1544576001)

11:25:39.022313 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096



## Retransmission to the SYN packet triggered by the unacceptable last packet

11:25:39.023780 198.108.3.13.23 > 35.42.1.146.1098: S 1544640000:1544640000(0) ack 601928705 win 4096

## The ACK storm loop

11:25:39.024009 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

11:25:39.025713 198.108.3.13.23 > 35.42.1.146.1098: S 1544640000:1544640000(0) ack 601928705 win 4096

11:25:39.026022 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

[...]

11:25:39.118789 198.108.3.13.23 > 35.42.1.146.1098: S 1544640000:1544640000(0) ack 601928705 win 4096

11:25:39.119102 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

11:25:39.120812 198.108.3.13.23 > 35.42.1.146.1098: S 1544640000:1544640000(0) ack 601928705 win 4096

11:25:39.121056 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

## Eventually the attacker acknowledges the server SYN packet with the attacker's new

## sequence number (601928705). The data in this packet is the one previously

## sent by the client but never received.

11:25:39.122371 35.42.1.146.1098 > 198.108.3.13.23: . 601928705:601928711(6)

ack 1544640001 win 400 255 253 /C 255 251 /X

## Some ACK storm

11:25:39.124254 198.108.3.13.23 > 35.42.1.146.1098: . 1544640001:1544640001(0) ack 601928711 win 4090

11:25:39.124631 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

11:25:39.126217 198.108.3.13.23 > 35.42.1.146.1098: . 1544640001:1544640001(0) ack 601928711 win 4090

11:25:39.126632 35.42.1.146.1098 > 198.108.3.13.23: . 896896007:896896007(0) ack 1544576001 win 4096

[...]

11:25:41.261885 35.42.1.146.1098 > 198.108.3.13.23: . 601928728:601928728(0) ack 1544640056 win 1000

## A retransmission by the client

11:25:41.422727 35.42.1.146.1098 > 198.108.3.13.23: P 896896018:896896024(6)

ack 1544576056 win 4096 255 253 /A 255 252 /A

11:25:41.424108 198.108.3.13.23 > 35.42.1.146.1098: . 1544640059:1544640059(0) ack 601928728 win 4096

[...]

11:25:42.323262 35.42.1.146.1098 > 198.108.3.13.23: . 896896025:896896025(0) ack 1544576059 win 4096

11:25:42.324609 198.108.3.13.23 > 35.42.1.146.1098: . 1544640059:1544640059(0) ack 601928728 win 4096

## The user ID second character.

11:25:42.325019 35.42.1.146.1098 > 198.108.3.13.23: P 896896025:896896026(1)

ack 1544576059 win 4096 p

11:25:42.326313 198.108.3.13.23 > 35.42.1.146.1098: . 1544640059:1544640059(0) ack 601928728 win 4096

[...]

11:25:43.241191 35.42.1.146.1098 > 198.108.3.13.23: . 601928731:601928731(0) ack 1544640060 win 1000

## Retransmission

11:25:43.261287 198.108.3.13.23 > 35.42.1.146.1098: P 1544640059:1544640061(2)

ack 601928730 win 4096 l p

11:25:43.261598 35.42.1.146.1098 > 198.108.3.13.23: . 896896027:896896027(0) ack 1544576061 win 4096

[...]

11:25:43.294192 198.108.3.13.23 > 35.42.1.146.1098: . 1544640061:1544640061(0) ack 601928730 win 4096

11:25:43.922438 35.42.1.146.1098 > 198.108.3.13.23: P 896896026:896896029(3)

ack 1544576061 win 4096 j /M /@

11:25:43.923964 198.108.3.13.23 > 35.42.1.146.1098: . 1544640061:1544640061(0) ack 601928730 win 4096

[...]

11:25:43.957528 198.108.3.13.23 > 35.42.1.146.1098: . 1544640061:1544640061(0) ack 601928730 win 4096

## The attacker rewrites the packet sent by the server containing the skey challenge

11:25:44.495629 198.108.3.13.23 > 35.42.1.146.1098: P 1544576064:1544576082(18)

ack 896896029 win 1000 s / k e y 7 0 c n 3 3 2 8 7 /M /J

11:25:44.502533 198.108.3.13.23 > 35.42.1.146.1098: P 1544576082:1544576109(27)

ack 896896029 win 1000 ( s / k e y r e q u i r e d ) /M /J P a s s w o r d :

11:25:44.522500 35.42.1.146.1098 > 198.108.3.13.23: . 896896029:896896029(0) ack 1544576109 win 4096

[...]

11:25:44.558320 198.108.3.13.23 > 35.42.1.146.1098: . 1544640109:1544640109(0) ack 601928733 win 4096

## Beginning of the skey password sent by the user (client)

11:25:57.356323 35.42.1.146.1098 > 198.108.3.13.23: P 896896029:896896030(1)

ack 1544576109 win 4096 T

11:25:57.358220 198.108.3.13.23 > 35.42.1.146.1098: . 1544640109:1544640109(0) ack 601928733 win 4096



[...]

11:25:57.412103 198.108.3.13.23 > 35.42.1.146.1098: . 1544640109:1544640109(0) ack 601928733 win 4096

## Echo of the beginning of the skey password sent by the server

11:25:57.412456 35.42.1.146.1098 > 198.108.3.13.23: P 601928733:601928734(1)

ack 1544640109 win 1000 T

11:25:57.412681 35.42.1.146.1098 > 198.108.3.13.23: . 896896030:896896030(0) ack 1544576109 win 4096

[...]

11:25:57.800953 198.108.3.13.23 > 35.42.1.146.1098: . 1544640109:1544640109(0) ack 601928734 win 4096

## The attacker rewrites the skey password packet

11:25:57.801254 35.42.1.146.1098 > 198.108.3.13.23: P 601928734:601928762(28)

ack 1544640109 win 1000 A U T S H I M L O F T V A S E M O O R I D /M /@

11:25:57.801486 35.42.1.146.1098 > 198.108.3.13.23: . 896896058:896896058(0) ack 1544576109 win 4096

[...]

11:25:58.358275 35.42.1.146.1098 > 198.108.3.13.23: . 896896058:896896058(0) ack 1544576109 win 4096

11:25:58.360109 198.108.3.13.23 > 35.42.1.146.1098: P 1544640263:1544640278(15)

ack 601928762 win 4096 ( l p j @ \_ r a d b : 1 )

11:25:58.360418 35.42.1.146.1098 > 198.108.3.13.23: . 896896058:896896058(0) ack 1544576109 win 4096

[...]

11:26:00.919976 35.42.1.146.1098 > 198.108.3.13.23: . 896896058:896896058(0) ack 1544576278 win 4096

## The 'p' of the 'pwd' command typed by the user.

11:26:01.637187 35.42.1.146.1098 > 198.108.3.13.23: P 896896058:896896059(1)

ack 1544576278 win 4096 p

11:26:01.638832 198.108.3.13.23 > 35.42.1.146.1098: . 1544640278:1544640278(0) ack 601928762 win 4096

[...]

11:26:03.183200 35.42.1.146.1098 > 198.108.3.13.23: . 896896063:896896063(0) ack 1544576280 win 4096

11:26:03.921272 35.42.1.146.1098 > 198.108.3.13.23: P 896896060:896896063(3)

ack 1544576280 win 4096 d /M /@

11:26:03.922886 198.108.3.13.23 > 35.42.1.146.1098: . 1544640283:1544640283(0) ack 601928767 win 4096

[...]

11:26:04.339186 35.42.1.146.1098 > 198.108.3.13.23: . 896896063:896896063(0) ack 1544576280 win 4096

11:26:04.340635 198.108.3.13.23 > 35.42.1.146.1098: P 1544640288:1544640307(19)

ack 601928770 win 4096 M a i l / /I /I m b o x /I /I s r c / /M /J

11:26:04.342872 198.108.3.13.23 > 35.42.1.146.1098: P 1544640307:1544640335(28)

ack 601928770 win 4096 e l m * /I /I r e s i z e * /I /I t r a c e r o u t e * /M

/J

11:26:04.345480 35.42.1.146.1098 > 198.108.3.13.23: . 896896063:896896063(0) ack 1544576280 win 4096

11:26:04.346791 198.108.3.13.23 > 35.42.1.146.1098: P 1544640335:1544640351(16)

ack 601928770 win 4096 / u s r / u s e r s / l p j /M /J

11:26:04.347094 35.42.1.146.1098 > 198.108.3.13.23: . 896896063:896896063(0) ack 1544576280 win 4096

11:26:04.348402 198.108.3.13.23 > 35.42.1.146.1098: P 1544640351:1544640366(15)

ack 601928770 win 4096 ( l p j @ \_ r a d b : 2 )

11:26:04.378571 35.42.1.146.1098 > 198.108.3.13.23: . 896896063:896896063(0) ack 1544576280 win 4096

[...]

11:26:09.791045 35.42.1.146.1098 > 198.108.3.13.23: P 601928773:601928775(2)

ack 1544640369 win 1000 t o

11:26:09.794653 198.108.3.13.23 > 35.42.1.146.1098: P 1544640369:1544640371(2)

ack 601928775 win 4096 t o

11:26:09.794885 35.42.1.146.1098 > 198.108.3.13.23: . 896896068:896896068(0) ack 1544576366 win 4096

[...]

11:26:12.420397 35.42.1.146.1098 > 198.108.3.13.23: P 896896068:896896072(4)

ack 1544576368 win 4096 r y /M /@

11:26:12.422242 198.108.3.13.23 > 35.42.1.146.1098: . 1544640371:1544640371(0) ack 601928775 win 4096

[...]

11:26:12.440765 35.42.1.146.1098 > 198.108.3.13.23: . 896896072:896896072(0) ack 1544576368 win 4096

## The 'ry' of the 'history' command sent by the client

11:26:16.420287 35.42.1.146.1098 > 198.108.3.13.23: P 896896068:896896072(4)

ack 1544576368 win 4096 r y /M /@

11:26:16.421801 198.108.3.13.23 > 35.42.1.146.1098: . 1544640371:1544640371(0) ack 601928775 win 4096

[...]



11:26:16.483943 35.42.1.146.1098 > 198.108.3.13.23: . 896896072:896896072(0) ack 1544576368 win 4096

## The same packet rewritten by the attacker.

11:26:16.505773 35.42.1.146.1098 > 198.108.3.13.23: P 601928775:601928779(4)

ack 1544640371 win 1000 r y /M /@

## answer to the history command sent by the server. We can notice the 'ls ;' inclusion

## before the 'pwd'

11:26:16.514225 198.108.3.13.23 > 35.42.1.146.1098: P 1544640371:1544640437(66)

ack 601928779 win 4096 r y /M /@ /M /J 1 /I 1 1 : 2 8 /I l s ; p w

d /M /J 2 /I 1 1 : 2 8 /I /@ /@ /@ L /@ /@ /@ T . 220 167 168 /@ /G

/@ /@ /@ /X /@ /H 137 148 /@ /@

11:26:16.514465 35.42.1.146.1098 > 198.108.3.13.23: . 896896072:896896072(0) ack 1544576368 win 4096

[...]

11:26:16.575344 35.42.1.146.1098 > 198.108.3.13.23: . 896896072:896896072(0) ack 1544576368 win 4096

## The same packet rewritten by the attacker.

11:26:16.577183 198.108.3.13.23 > 35.42.1.146.1098: P 1544576368:1544576434(66)

ack 896896072 win 1000 r y /M /@ /M /J 1 /I 1 1 : 2 8 /I l s ; p w

d /M /J 2 /I 1 1 : 2 8 /I /@ /@ /@ L /@ /@ /@ T . 220 167 168 /@ /H /@ /@ /@

/X /@ /H 137 148 /@ /@

11:26:16.577490 198.108.3.13.23 > 35.42.1.146.1098: . 1544640437:1544640437(0) ack 601928779 win 4096

[...]

## The user log out.

11:26:20.236907 35.42.1.146.1098 > 198.108.3.13.23: P 601928781:601928782(1) ack 1544640437 win 1000 g

11:26:20.247288 198.108.3.13.23 > 35.42.1.146.1098: . 1544576438:1544576438(0) ack 896896074 win 1000

11:26:20.253500 198.108.3.13.23 > 35.42.1.146.1098: P 1544576435:1544576436(1) ack 896896074 win 1000 o

11:26:20.287513 198.108.3.13.23 > 35.42.1.146.1098: P 1544640439:1544640440(1) ack 601928782 win 4096 g

11:26:20.287942 35.42.1.146.1098 > 198.108.3.13.23: P 896896075:896896076(1) ack 1544576436 win 4096 o

11:26:20.289312 198.108.3.13.23 > 35.42.1.146.1098: . 1544640440:1544640440(0) ack 601928782 win 4096

11:26:20.289620 35.42.1.146.1098 > 198.108.3.13.23: . 896896076:896896076(0) ack 1544576436 win 4096

Almost all of the packets with the ACK ag set

but with no data are acknowledgement of unaccept-

able packets. A lot of retransmission occurs due to

the load on the network and on the attacker host cre-

ated by the ACK storm. The real log (including all

ACK packets) is about 3000 lines long whereas the

one shown here has been stripped to about 100 lines.

A lot of packets have also been lost and do not show

up in this log. The data collected during the test

shows that one real packet sent can generate between

10 and 300 empty Ack packets. Those numbers are

of course highly variable.

5 Detection and Side E�ects

Several aws of that attack can be used to detect

it. Three will be described here but one can imagine

some other ways to detect the intrusion.

� Desynchronized state detection. By comparing

the sequence numbers of both ends of the con-

nection the user can tell if the connection is in

the desynchronized state. This method is fea-

sible if we assume that the sequence numbers

can be transmitted through the TCP stream

without being compromised (changed) by the

attacker.

� Ack storm detection. Some statistics on the

TCP tra�c conducted on our local ethernet

segment outside the attack show that the aver-

age ratio of ACK without data packets per total

telnet packets is around 45%. On a more loaded

transit ethernet the average is about 33% (C.f

Table 1).

The total number of TCP packets as well as the

total number of ACK and telnet packets uctu-

ate a lot on the local ethernet. The table shows

the limits. The percentage of ACK telnet pack-

ets is very stable, around 45%. This can be

explained by the fact that the telnet session is

an interactive session and every character typed

by the user must be echoed and acknowledged.

The volume of exchanged data is very small

each packet usually contains one character or

one text line.

The data for the transit ethernet is very con-

sistent. Due to the high load on that segment

a few packets may have been dropped by the

collecting host.

When the attack is conducted some of these �g-

ures change. The next table shows the results

for two types of session. The data has been

collected on the local ethernet only.



Local Ethernet Transit Ethernet

Total TCP/s 80-100 (60-80) 1400 (87)

Total Ack 25-75 (25-45) 500 (35)

Total Telnet 10-20 (10-25) 140 (10)

Total Telnet Ack 5-10 (45-55) 45 (33)

Table 1: Percentage of ACK packets without the attack.

In Table 2 the `Local connection' is a session

with a host at a few IP hops from the client.

The Round Trip Delay (RTD) is approximately

3ms and the actual number of hops is 4. The

'Remote connection' is a session with a RTD of

about 40ms and 9 hops away. In the �rst case

the attack is clearly visible. Even if it's very

uctuant, the percentage of TCP ACK is near

100%. Almost all of the tra�c is acknowledge-

ment packets.

In the second case the detection of the attack is

less obvious. The data has to be compared with

the �rst column of Table 1 (local tra�c). The

percentage of TCP ACK slightly increases but

not signi�cantly. One can explain this result

by the long RTD which decreases the rate of

ACK packets sent. The underlying network is

also used to experience between a 5% and 10%

packet loss which helps in breaking the ACK

loop.

� Increase of the packet loss and retransmission

for that particular session. Though no data is

available to enlighten us on that behavior the

log produced during the attack shows an un-

usually high level of packet loss and so retrans-

mission. Therefore this implies a deterioration

of the response time for the user. The packet

loss increase is caused by:

{ The extra load of the network due to the

ACK storms.

{ The packet dropped by the sni�er of the

attacker. The drops tend to increase as

the load on the network increases.

� Some unexpected connection reset. The fol-

lowing behavior has not been fully investigated

since the attacker program developed was to try

the validity of the concept more than making

the attack transparent to the client and server.

These are likely to disappear with a more so-

phisticated attacker program. The user can ex-

perience a connection reset of its session at the

early stage of the connection if the protocol of

the attack is not correctly executed. A loss of

the attacker's RST or SYN packets may leave

the server side of the connection in a unde�ned

state (usually CLOSED or SYN-RECEIVED)

and may make the client packets acceptable.

About 10% of the attacks performed were un-

successful, ending either by a connection close

(very visible) or a non-desynchronized connec-

tion (the attacker failed to redirect the stream).

Some side e�ects and notes about TCP and the

attack.

� TCP implementation. The desynchronization

process described here failed on certain TCP

implementations. According to [RFC 793] a

RST packet is not acknowledged and just de-

stroys the TCB. Some TCP implementations

do when in a certain state acknowledge the RST

packet by sending back a RST packet. When

the attacker sends the RST packet to the server

the RST is sent back to the client which closes

its connection and ends the session. Other

desynchronization mechanisms may be investi-

gated which do not reset the connection.

� The client and the attacker were always on the

same ethernet segment when performing the

test. This makes the attack more di�cult to

run because of a high load on that segment.

The collision rate increases and the attacker's

sni�er bu�er are overowed by the tra�c.

� One can think of just watching the session and

sending some data to the server, without car-

ing about creating the desynchronized state and

forwarding the TCP packets. Though it will

succeed in corrupting the host that approach is

likely to be detected early by the user. Indeed

the TCP session will not be able to exchange

data once the command sent.



Local connection Remote connection

Total Telnet 80-400 (60-85) 30-40 (30-35)

Total Telnet Ack 75-400 (90-99) 20-25 (60-65)

Table 2: Percentage of ACK packets during an attack.

6 Prevention

The only ways known by the writer currently avail-

able to prevent such an attack on a telnet session are

the encrypted Kerberos scheme (application layer)

or the TCP crypt implementation [TCPcrypt] (TCP

layer). Encryption of the data ow prevents any in-

trusion or modi�cation of the content. Signature of

the data can also be used. [PGP] is an example of an

available way to secure electronic mail transmission.

7 Morris' Attack Reviewed

Morris' attack as described in [Morris85] assumes

that the attacker can predict the next initial sequence

number used by the server (noted SV R SEQ

0

in

this document) and that the identi�cation scheme

is based on trusted hosts (which means only certain

hosts are allowed to perform some commands on the

server without any other identi�cation process being

needed).

In this attack the cracker initiates the session by

sending a SYN packet to the server using the client

(trusted host) as the source address. The server ac-

knowledge the SYN with a SYN/ACK packet with

SEG SEQ = SV R SEQ

0

. The attacker then ac-

knowledges that packet in guessing SV R SEQ

0

. The

cracker does not need to sni� the client packets as

long as he can predict SV R SEQ

0

in order to ac-

knowledge it. This attack has two main aws:

� The client whom the attacker masquerades will

receive the SYN/ACK packet from the server

and then could generate a RST packet to the

server since in the client's view no session yet

exists. Morris supposes that one can stop the

RST generation by either performing the attack

when the client is down or by overowing the

client's TCP queue so the SYN/ACK packet

will be lost.

� The attacker cannot receive data from the

server. But he can send data which is some-

time enough to compromise a host.

The are four principal di�erences between Morris'

attack and the present one:

� Morris's relies on the trusted hosts identi�cation

scheme whereas the present attack lets the user

conduct the identi�cation stage of the connec-

tion.

� The present attack is a full duplex TCP stream.

The attacker can send and receive data.

� The present attack uses the ether-

net sni�er to predict (or just get)

SV R SEQ

0

.

� The present attack can be used against any kind

of host besides Unix hosts.

Morris' attack can easily be extented in regard of the

present attack:

� The sni�er is used to get the server's initial se-

quence number. Morris' attack can then be per-

formed against the server. The attacker do not

need to wait for a client to connect.

� Considering that the client will not send RST

packets (for example it is down) the attacker

can establish a full duplex TCP connection with

the server. It can send data and receive data

on behalf of the client. Of course the cracker

still has to pass the identi�cation barrier. If

the identi�cation is based on trusted hosts (like

NFS or rlogin) the cracker has full access to the

host's services.

Steven M. Bellovin in [Bellovin89] also presents

how ICMP packets can be used to disable one side

of the connection. In this case the attacker gets full

control of the session (people have referred to 'TCP

session hijacking'), but this is too easily detected by

the user.

8 Conclusion

Although easy to detect when used on a local net-

work, the attack presented here is quite e�cient on

long distance, low bandwidth, high delay networks

(usually WAN). It can be carried with the same re-

sources as for a passive sni�ng attack which have



occurred so frequently on the Internet. This attack

has also the dangerous advantage of being invisible to

the user. While cracking into a host on the Internet is

becoming more and more frequent, the stealthfulness

of the attack is now a very important parameter for

the success of the attack and makes it more di�cult

to detect.

When everybody's attention in the Internet is fo-

cused on the emerging new IPv6 protocol to replace

the current IPv4, increasing attacks and the need for

secure systems press us to develop and use a secure

transport layer for the Internet community. Options

should be available to send signed and eventually en-

crypted data to provide privacy. And since the signa-

ture of the data implies reliability the signature can

be substituted to the current TCP checksum.

This paper does not attempt to explain all cases

of active attacks using a sni�er. It is more a warn-

ing for people using s/key or Kerberos against the

danger of someone sni�ng the ethernet. It provides

a few ideas and starting points which can be more

deeply studied. The method presented has been suc-

cessfully used during our test even with a very simple

attacker's software.
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