
gprof

The GNU Profiler

Jay Fenlason and Richard Stallman

23 December 2022

This manual describes the GNU profiler, gprof, and how you can use it to determine which
parts of a program are taking most of the execution time. We assume that you know how
to write, compile, and execute programs. GNU gprof was written by Jay Fenlason.

Copyright c© 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

1

1 Why Profile

Profiling allows you to learn where your program spent its time and which functions called
which other functions while it was executing. This information can show you which pieces
of your program are slower than you expected, and might be candidates for rewriting to
make your program execute faster. It can also tell you which functions are being called
more or less often than you expected. This may help you spot bugs that had otherwise
been unnoticed.

Since the profiler uses information collected during the actual execution of your program,
it can be used on programs that are too large or too complex to analyze by reading the
source. However, how your program is run will affect the information that shows up in the
profile data. If you don’t use some feature of your program while it is being profiled, no
profile information will be generated for that feature.

Profiling has several steps:

• You must compile and link your program with profiling enabled. See Chapter 2 [Com-
piling], page 3.

• You must execute your program to generate a profile data file. See Chapter 3 [Execut-
ing], page 5.

• You must run gprof to analyze the profile data. See Chapter 4 [Analyzing], page 7.

The next three chapters explain these steps in greater detail.

The result of the analysis is a file containing two tables, the flat profile and the call
graph (plus blurbs which briefly explain the contents of these tables).

The flat profile shows how much time your program spent in each function, and how
many times that function was called. If you simply want to know which functions burn
most of the cycles, it is stated concisely here. See Chapter 5 [Flat Profile], page 9.

The call graph shows, for each function, which functions called it, which other functions
it called, and how many times. There is also an estimate of how much time was spent in
the subroutines of each function. This can suggest places where you might try to eliminate
function calls that use a lot of time. See Chapter 6 [Call Graph], page 11.

3

2 Compiling a Program for Profiling

The first step in generating profile information for your program is to compile and link it
with profiling enabled.

To compile a source file for profiling, specify the ‘-pg’ option when you run the compiler.
(This is in addition to the options you normally use.)

To link the program for profiling, if you use a compiler such as cc to do the linking,
simply specify ‘-pg’ in addition to your usual options. The same option, ‘-pg’, alters either
compilation or linking to do what is necessary for profiling. Here are examples:

cc -g -c myprog.c utils.c -pg

cc -o myprog myprog.o utils.o -pg

The ‘-pg’ option also works with a command that both compiles and links:

cc -o myprog myprog.c utils.c -g -pg

If you run the linker ld directly instead of through a compiler such as cc, you must
specify the profiling startup file /lib/gcrt0.o as the first input file instead of the usual
startup file /lib/crt0.o. In addition, you would probably want to specify the profiling
C library, /usr/lib/libc_p.a, by writing ‘-lc_p’ instead of the usual ‘-lc’. This is not
absolutely necessary, but doing this gives you number-of-calls information for standard
library functions such as read and open. For example:

ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p

If you compile only some of the modules of the program with ‘-pg’, you can still profile
the program, but you won’t get complete information about the modules that were compiled
without ‘-pg’. The only information you get for the functions in those modules is the total
time spent in them; there is no record of how many times they were called, or from where.
This will not affect the flat profile (except that the calls field for the functions will be
blank), but will greatly reduce the usefulness of the call graph.

So far GNU gprof has been tested only with C programs, but it ought to work with
any language in which programs are compiled and linked to form executable files. If it does
not, please let us know.

5

3 Executing the Program to Generate Profile
Data

Once the program is compiled for profiling, you must run it in order to generate the infor-
mation that gprof needs. Simply run the program as usual, using the normal arguments,
file names, etc. The program should run normally, producing the same output as usual. It
will, however, run somewhat slower than normal because of the time spent collecting and
the writing the profile data.

The way you run the program—the arguments and input that you give it—may have a
dramatic effect on what the profile information shows. The profile data will describe the
parts of the program that were activated for the particular input you use. For example, if
the first command you give to your program is to quit, the profile data will show the time
used in initialization and in cleanup, but not much else.

You program will write the profile data into a file called gmon.out just before exiting.
If there is already a file called gmon.out, its contents are overwritten. There is currently
no way to tell the program to write the profile data under a different name, but you can
rename the file afterward if you are concerned that it may be overwritten.

In order to write the gmon.out file properly, your program must exit normally: by
returning from main or by calling exit. Calling the low-level function _exit does not write
the profile data, and neither does abnormal termination due to an unhandled signal.

The gmon.out file is written in the program’s current working directory at the time it
exits. This means that if your program calls chdir, the gmon.out file will be left in the last
directory your program chdir’d to. If you don’t have permission to write in this directory,
the file is not written. You may get a confusing error message if this happens. (We have
not yet replaced the part of Unix responsible for this; when we do, we will make the error
message comprehensible.)

7

4 Analyzing the Profile Data: gprof Command
Summary

After you have a profile data file gmon.out, you can run gprof to interpret the information
in it. The gprof program prints a flat profile and a call graph on standard output. Typically
you would redirect the output of gprof into a file with ‘>’.

You run gprof like this:

gprof options [executable-file [profile-data-files...]] [> outfile]

Here square-brackets indicate optional arguments.

If you omit the executable file name, the file a.out is used. If you give no profile data
file name, the file gmon.out is used. If any file is not in the proper format, or if the profile
data file does not appear to belong to the executable file, an error message is printed.

You can give more than one profile data file by entering all their names after the exe-
cutable file name; then the statistics in all the data files are summed together.

The following options may be used to selectively include or exclude functions in the
output:

-a The -a option causes gprof to ignore static (private) functions. (These are
functions whose names are not listed as global, and which are not visible outside
the file/function/block where they were defined.) Time spent in these functions,
calls to/from them, etc, will all be attributed to the function that was loaded
directly before it in the executable file. This is compatible with Unix gprof,
but a bad idea. This option affects both the flat profile and the call graph.

-e function_name

The -e function option tells gprof to not print information about the function
(and its children. . .) in the call graph. The function will still be listed as a
child of any functions that call it, but its index number will be shown as ‘[not
printed]’.

-E function_name

The -E function option works like the -e option, but time spent in the function
(and children who were not called from anywhere else), will not be used to
compute the percentages-of-time for the call graph.

-f function_name

The -f function option causes gprof to limit the call graph to the function
and its children (and their children. . .).

-F function_name

The -F function option works like the -f option, but only time spent in the
function and its children (and their children. . .) will be used to determine
total-time and percentages-of-time for the call graph.

-z If you give the -z option, gprof will mention all functions in the flat profile,
even those that were never called, and that had no time spent in them.

The order of these options does not matter.

Note that only one function can be specified with each -e, -E, -f or -F option. To
specify more than one function, use multiple options. For example, this command:

gprof -e boring -f foo -f bar myprogram > gprof.output

8 gprof

lists in the call graph all functions that were reached from either foo or bar and were not
reachable from boring.

There are two other useful gprof options:

-b If the -b option is given, gprof doesn’t print the verbose blurbs that try to
explain the meaning of all of the fields in the tables. This is useful if you intend
to print out the output, or are tired of seeing the blurbs.

-s The -s option causes gprof to summarize the information in the profile data
files it read in, and write out a profile data file called gmon.sum, which contains
all the information from the profile data files that gprof read in. The file
gmon.sum may be one of the specified input files; the effect of this is to merge
the data in the other input files into gmon.sum. See Chapter 8 [Sampling Error],
page 19.

Eventually you can run gprof again without ‘-s’ to analyze the cumulative
data in the file gmon.sum.

9

5 How to Understand the Flat Profile

The flat profile shows the total amount of time your program spent executing each function.
Unless the ‘-z’ option is given, functions with no apparent time spent in them, and no
apparent calls to them, are not mentioned. Note that if a function was not compiled for
profiling, and didn’t run long enough to show up on the program counter histogram, it will
be indistinguishable from a function that was never called.

Here is a sample flat profile for a small program:

Each sample counts as 0.01 seconds.

% time seconds cumsec calls function

79.17 0.19 0.19 6 a

16.67 0.04 0.23 1 main

4.17 0.01 0.24 mcount

0.00 0 0.24 1 profil

The functions are sorted by decreasing run-time spent in them. The functions mcount and
profil are part of the profiling aparatus and appear in every flat profile; their time gives a
measure of the amount of overhead due to profiling. (These internal functions are omitted
from the call graph.)

The sampling period estimates the margin of error in each of the time figures. A time
figure that is not much larger than this is not reliable. In this example, the seconds field
for mcount might well be 0 or 0.02 in another run. See Chapter 8 [Sampling Error], page 19,
for a complete discussion.

Here is what the fields in each line mean:

% time This is the percentage of the total execution time your program spent in this
function. These should all add up to 100%.

seconds This is the total number of seconds the computer spent executing the user code
of this function.

cumsec This is the cumulative total number of seconds the computer spent executing
this functions, plus the time spent in all the functions above this one in this
table.

calls This is the total number of times the function was called. If the function
was never called, or the number of times it was called cannot be determined
(probably because the function was not compiled with profiling enabled), the
calls field is blank.

function This is the name of the function.

11

6 How to Read the Call Graph

The call graph shows how much time was spent in each function and its children. From this
information, you can find functions that, while they themselves may not have used much
time, called other functions that did use unusual amounts of time.

Here is a sample call from a small program. This call came from the same gprof run as
the flat profile example in the previous chapter.

index % time self children called name

<spontaneous>

[1] 100.00 0 0.23 0 start [1]

0.04 0.19 1/1 main [2]

--

0.04 0.19 1/1 start [1]

[2] 100.00 0.04 0.19 1 main [2]

0.19 0 1/1 a [3]

--

0.19 0 1/1 main [2]

[3] 82.61 0.19 0 1+5 a [3]

--

The lines full of dashes divide this table into entries, one for each function. Each entry
has one or more lines.

In each entry, the primary line is the one that starts with an index number in square
brackets. The end of this line says which function the entry is for. The preceding lines in
the entry describe the callers of this function and the following lines describe its subroutines
(also called children when we speak of the call graph).

The entries are sorted by time spent in the function and its subroutines.

The internal profiling functions mcount and profil (see Chapter 5 [Flat Profile], page 9)
are never mentioned in the call graph.

6.1 The Primary Line

The primary line in a call graph entry is the line that describes the function which the entry
is about and gives the overall statistics for this function.

For reference, we repeat the primary line from the entry for function a in our main
example, together with the heading line that shows the names of the fields:

index % time self children called name

...

[3] 82.61 0.19 0 1+5 a [3]

Here is what the fields in the primary line mean:

index Entries are numbered with consecutive integers. Each function therefore has
an index number, which appears at the beginning of its primary line.

Each cross-reference to a function, as a caller or subroutine of another, gives its
index number as well as its name. The index number guides you if you wish to
look for the entry for that function.

12 gprof

% time This is the percentage of the total time that was spent in this function, including
time spent in subroutines called from this function.

The time spent in this function is counted again for the callers of this function.
Therefore, adding up these percentages is meaningless.

self This is the total amount of time spent in this function. This should be identical
to the number printed in the seconds field for this function in the flat profile.

children This is the total amount of time spent in the subroutine calls made by this
function. This should be equal to the sum of all the self and children entries
of the children listed directly below this function.

called This is the number of times the function was called.

If the function called itself recursively, there are two numbers, separated by a
‘+’. The first number counts non-recursive calls, and the second counts recursive
calls.

In the example above, the function a called itself five times, and was called once
from main.

name This is the name of the current function. The index number is repeated after
it.

If the function is part of a cycle of recursion, the cycle number is printed between
the function’s name and the index number (see Section 6.4 [Cycles], page 14).
For example, if function gnurr is part of cycle number one, and has index
number twelve, its primary line would be end like this:

gnurr <cycle 1> [12]

6.2 Lines for a Function’s Callers

A function’s entry has a line for each function it was called by. These lines’ fields correspond
to the fields of the primary line, but their meanings are different because of the difference
in context.

For reference, we repeat two lines from the entry for the function a, the primary line
and one caller-line preceding it, together with the heading line that shows the names of the
fields:

index % time self children called name

...

0.19 0 1/1 main [2]

[3] 82.61 0.19 0 1+5 a [3]

Here are the meanings of the fields in the caller-line for a called from main:

self An estimate of the amount of time spent in a itself when it was called from
main.

children An estimate of the amount of time spent in a’s subroutines when a was called
from main.

The sum of the self and children fields is an estimate of the amount of time
spent within calls to a from main.

Chapter 6: How to Read the Call Graph 13

called Two numbers: the number of times a was called from main, followed by the
total number of nonrecursive calls to a from all its callers.

name and index number

The name of the caller of a to which this line applies, followed by the caller’s
index number.

Not all functions have entries in the call graph; some options to gprof request
the omission of certain functions. When a caller has no entry of its own, it still
has caller-lines in the entries of the functions it calls. Since this caller has no
index number, the string ‘[not printed]’ is used instead of one.

If the caller is part of a recursion cycle, the cycle number is printed between
the name and the index number.

If the identity of the callers of a function cannot be determined, a dummy caller-line is
printed which has ‘<spontaneous>’ as the “caller’s name” and all other fields blank. This
can happen for signal handlers.

6.3 Lines for a Function’s Subroutines

A function’s entry has a line for each of its subroutines—in other words, a line for each
other function that it called. These lines’ fields correspond to the fields of the primary line,
but their meanings are different because of the difference in context.

For reference, we repeat two lines from the entry for the function main, the primary line
and a line for a subroutine, together with the heading line that shows the names of the
fields:

index % time self children called name

...

[2] 100.00 0.04 0.19 1 main [2]

0.19 0 1/1 a [3]

Here are the meanings of the fields in the subroutine-line for main calling a:

self An estimate of the amount of time spent directly within a when a was called
from main.

children An estimate of the amount of time spent in subroutines of a when a was called
from main.

The sum of the self and children fields is an estimate of the total time spent
in calls to a from main.

called Two numbers, the number of calls to a from main followed by the total number
of nonrecursive calls to a.

name The name of the subroutine of a to which this line applies, followed by the
subroutine’s index number. If the subroutine is a function omitted from the
call graph, it has no index number, so ‘[not printed]’ appears instead.

If the caller is part of a recursion cycle, the cycle number is printed between
the name and the index number.

14 gprof

6.4 How Mutually Recursive Functions Are Described

The graph may be complicated by the presence of cycles of recursion in the call graph. A
cycle exists if a function calls another function that (directly or indirectly) calls (or appears
to call) the original function. For example: if a calls b, and b calls a, then a and b form a
cycle.

Whenever there are call-paths both ways between a pair of functions, they belong to the
same cycle. If a and b call each other and b and c call each other, all three make one cycle.
Note that even if b only calls a if it was not called from a, gprof cannot determine this, so
a and b are still considered a cycle.

The cycles are numbered with consecutive integers. When a function belongs to a cycle,
each time the function name appears in the call graph it is followed by ‘<cycle number>’.

The reason cycles matter is that they make the time values in the call graph paradoxical.
The “time spent in children” of a should include the time spent in its subroutine b and in
b’s subroutines—but one of b’s subroutines is a! How much of a’s time should be included
in the children of a, when a is indirectly recursive?

The way gprof resolves this paradox is by creating a single entry for the cycle as a whole.
The primary line of this entry describes the total time spent directly in the functions of the
cycle. The “subroutines” of the cycle are the individual functions of the cycle, and all other
functions that were called directly by them. The “callers” of the cycle are the functions,
outside the cycle, that called functions in the cycle.

Here is a portion of the call graph which shows a cycle containing functions a and b.
The cycle was entered by a call to a from main; both a and b called c.

index % time self children called name

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

(The entire call graph for this program contains in addition an entry for main, which calls
a, and an entry for c, with callers a and b.)

index % time self children called name

<spontaneous>

[1] 100.00 0 1.93 0 start [1]

Chapter 6: How to Read the Call Graph 15

0.16 1.77 1/1 main [2]

--

0.16 1.77 1/1 start [1]

[2] 100.00 0.16 1.77 1 main [2]

1.77 0 1/1 a <cycle 1> [5]

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

0 0 6/6 c [6]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

0 0 3/6 b <cycle 1> [4]

0 0 3/6 a <cycle 1> [5]

[6] 0.00 0 0 6 c [6]

--

The self field of the cycle’s primary line is the total time spent in all the functions of
the cycle. It equals the sum of the self fields for the individual functions in the cycle,
found in the entry in the subroutine lines for these functions.

The children fields of the cycle’s primary line and subroutine lines count only subrou-
tines outside the cycle. Even though a calls b, the time spent in those calls to b is not
counted in a’s children time. Thus, we do not encounter the problem of what to do when
the time in those calls to b includes indirect recursive calls back to a.

The children field of a caller-line in the cycle’s entry estimates the amount of time
spent in the whole cycle, and its other subroutines, on the times when that caller called a
function in the cycle.

The calls field in the primary line for the cycle has two numbers: first, the number of
times functions in the cycle were called by functions outside the cycle; second, the number
of times they were called by functions in the cycle (including times when a function in the
cycle calls itself). This is a generalization of the usual split into nonrecursive and recursive
calls.

The calls field of a subroutine-line for a cycle member in the cycle’s entry says how
many time that function was called from functions in the cycle. The total of all these is the
second number in the primary line’s calls field.

16 gprof

In the individual entry for a function in a cycle, the other functions in the same cycle can
appear as subroutines and as callers. These lines show how many times each function in the
cycle called or was called from each other function in the cycle. The self and children

fields in these lines are blank because of the difficulty of defining meanings for them when
recursion is going on.

17

7 Implementation of Profiling

Profiling works by changing how every function in your program is compiled so that when
it is called, it will stash away some information about where it was called from. From this,
the profiler can figure out what function called it, and can count how many times it was
called. This change is made by the compiler when your program is compiled with the ‘-pg’
option.

Profiling also involves watching your program as it runs, and keeping a histogram of
where the program counter happens to be every now and then. Typically the program
counter is looked at around 100 times per second of run time, but the exact frequency may
vary from system to system.

A special startup routine allocates memory for the histogram and sets up a clock signal
handler to make entries in it. Use of this special startup routine is one of the effects of
using ‘cc -pg’ to link. The startup file also includes an exit function which is responsible
for writing the file gmon.out.

Number-of-calls information for library routines is collected by using a special version
of the C library. The programs in it are the same as in the usual C library, but they were
compiled with ‘-pg’. If you link your program with ‘cc -pg’, it automatically uses the
profiling version of the library.

The output from gprof gives no indication of parts of your program that are limited by
I/O or swapping bandwidth. This is because samples of the program counter are taken at
fixed intervals of run time. Therefore, the time measurements in gprof output say nothing
about time that your program was not running. For example, a part of the program that
creates so much data that it cannot all fit in physical memory at once may run very slowly
due to thrashing, but gprof will say it uses little time. On the other hand, sampling by
run time has the advantage that the amount of load due to other users won’t directly affect
the output you get.

19

8 Statistical Inaccuracy of gprof Output

The run-time figures that gprof gives you are based on a sampling process, so they are
subject to statistical inaccuracy. If a function runs only a small amount of time, so that on
the average the sampling process ought to catch that function in the act only once, there is
a pretty good chance it will actually find that function zero times, or twice.

By contrast, the number-of-calls figures are derived by counting, not sampling. They
are completely accurate and will not vary from run to run if your program is deterministic.

The sampling period that is printed at the beginning of the flat profile says how often
samples are taken. The rule of thumb is that a run-time figure is accurate if it is considerably
bigger than the sampling period.

The actual amount of error is usually more than one sampling period. In fact, if a value
is n times the sampling period, the expected error in it is the square-root of n sampling
periods. If the sampling period is 0.01 seconds and foo’s run-time is 1 second, the expected
error in foo’s run-time is 0.1 seconds. It is likely to vary this much on the average from
one profiling run to the next. (Sometimes it will vary more.)

This does not mean that a small run-time figure is devoid of information. If the program’s
total run-time is large, a small run-time for one function does tell you that that function
used an insignificant fraction of the whole program’s time. Usually this means it is not
worth optimizing.

One way to get more accuracy is to give your program more (but similar) input data so
it will take longer. Another way is to combine the data from several runs, using the ‘-s’
option of gprof. Here is how:

1. Run your program once.

2. Issue the command ‘mv gmon.out gmon.sum’.

3. Run your program again, the same as before.

4. Merge the new data in gmon.out into gmon.sum with this command:

gprof -s executable-file gmon.out gmon.sum

5. Repeat the last two steps as often as you wish.

6. Analyze the cumulative data using this command:

gprof executable-file gmon.sum > output-file

21

9 Estimating children Times Uses an Assumption

Some of the figures in the call graph are estimates—for example, the children time values
and all the the time figures in caller and subroutine lines.

There is no direct information about these measurements in the profile data itself. In-
stead, gprof estimates them by making an assumption about your program that might or
might not be true.

The assumption made is that the average time spent in each call to any function foo is
not correlated with who called foo. If foo used 5 seconds in all, and 2/5 of the calls to foo

came from a, then foo contributes 2 seconds to a’s children time, by assumption.

This assumption is usually true enough, but for some programs it is far from true.
Suppose that foo returns very quickly when its argument is zero; suppose that a always
passes zero as an argument, while other callers of foo pass other arguments. In this program,
all the time spent in foo is in the calls from callers other than a. But gprof has no way of
knowing this; it will blindly and incorrectly charge 2 seconds of time in foo to the children
of a.

We hope some day to put more complete data into gmon.out, so that this assumption is
no longer needed, if we can figure out how. For the nonce, the estimated figures are usually
more useful than misleading.

23

10 Incompatibilities with Unix gprof

GNU gprof and Berkeley Unix gprof use the same data file gmon.out, and provide essen-
tially the same information. But there a few differences.

GNU gprof does not support the ‘-c’ option which prints a static call graph based on
reading the machine language of your program. We think that program cross-references
ought to be based on the source files, which can be analyzed in a machine-independent
fashion.

For a recursive function, Unix gprof lists the function as a parent and as a child, with a
calls field that lists the number of recursive calls. GNU gprof omits these lines and puts
the number of recursive calls in the primary line.

When a function is suppressed from the call graph with ‘-e’, GNU gprof still lists it as
a subroutine of functions that call it.

The function names printed in GNU gprof output do not include the leading underscores
that are added internally to the front of all C identifiers on many operating systems.

The blurbs, field widths, and output formats are different. GNU gprof prints blurbs
after the tables, so that you can see the tables without skipping the blurbs.

i

Table of Contents

1 Why Profile . 1

2 Compiling a Program for Profiling 3

3 Executing the Program to
Generate Profile Data . 5

4 Analyzing the Profile Data: gprof

Command Summary . 7

5 How to Understand the Flat Profile 9

6 How to Read the Call Graph 11
6.1 The Primary Line . 11
6.2 Lines for a Function’s Callers . 12
6.3 Lines for a Function’s Subroutines . 13
6.4 How Mutually Recursive Functions Are Described 14

7 Implementation of Profiling 17

8 Statistical Inaccuracy of gprof Output 19

9 Estimating children Times Uses
an Assumption . 21

10 Incompatibilities with Unix gprof 23

	1 Why Profile
	2 Compiling a Program for Profiling
	3 Executing the Program to Generate Profile Data
	4 Analyzing the Profile Data: gprof Command Summary
	5 How to Understand the Flat Profile
	6 How to Read the Call Graph
	The Primary Line
	Lines for a Function's Callers
	Lines for a Function's Subroutines
	How Mutually Recursive Functions Are Described

	7 Implementation of Profiling
	8 Statistical Inaccuracy of gprof Output
	9 Estimating children Times Uses an Assumption
	10 Incompatibilities with Unix gprof

