as

The GNU Assembler

Dean Elsner, Jay Fenlason & friends

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some
work done.

Copyright (©) 1986,1987 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.



1 Overview, Usage

This document describes the GNU assembler as. This document does not describe what an
assembler does, or how it works. This document also does not describe the opcodes, registers
or addressing modes that as uses on any paticular computer that as runs on. Consult a
good book on assemblers or the machine’s architecture if you need that information.

This document describes the pseudo-ops that as understands, and their syntax. This
document also describes some of the machine-dependent features of various flavors of the
assembler. This document also describes how the assembler works internally, and provides
some information that may be useful to people attempting to port the assembler to another
machine.

Throughout this document, we assume that you are running GNU, the portable operating
system from the Free Software Foundation, Inc.. This restricts our attention to certain
kinds of computer (in paticular, the kinds of computers that GNU can run on); once this
assumption is granted examples and definitions need less qualification.

Readers should already comprehend:
e Central processing unit
e registers
e memory address
e contents of memory address
e bit
e 8-bit byte
e 2’s complement arithmetic
as is part of a team of programs that turn a high-level human-readable series of instruc-
tions into a low-level computer-readable series of instructions. Different versions of as are

used for different kinds of computer. In paticular, at the moment, as only works for the
DEC Vax, the Motorola 68020, the Intel 80386 and the National Semiconductor 32xxx.

1.1 Notation

GNU and as assume the computer that will run the programs it assembles will obey these
rules.

A (memory) address is 32 bits. The lowest address is zero.
The contents of any memory address is one byte of exactly 8 bits.

A word is 16 bits stored in two bytes of memory. The addresses of the bytes differ by
exactly 1. Notice that the interpretation of the bits in a word and of how to address a word
depends on which particular computer you are assembling for.

A long word, or long, is 32 bits composed of four bytes. It is stored in 4 bytes of memory;
these bytes have contiguous addresses. Again the interpretation and addressing of those bits
is machine dependent. National Semiconductor 32xxx computers say double word where we
say long.

Numeric quantities are usually unsigned or 2’s complement. Bytes, words and longs may
store numbers. as manipulates integer expressions as 32-bit numbers in 2’s complement



Chapter 1: Overview, Usage 2

format. When asked to store an integer in a byte or word, the lowest order bits are stored.
The order of bytes in a word or long in memory is determined by what kind of computer
will run the assembled program. We won’t mention this important caveat again.

The meaning of these terms has changed over time. Although byte used to mean any
length of contiguous bits, byte now pervasively means exactly 8 contiguous bits. A word
of 16 bits made sense for 16-bit computers. Even on 32-bit computers, a word still means
16 bits (to machine language programmers). To many other programmers of GNU a word
means 32 bits, so beware. Similarly long means 32 bits: from “long word”. National
Semiconductor 32xxx machine language calls a 32-bit number a “double word”.

Names for integers of different sizes: some conventions

length as vax 32xxx 68020 GNU C
(bits)
8 byte byte byte byte char
16 word word word word  short (int)

32 long 1long(-word) double-word long(-word) 1long (int)
64 quad quad(-word)
128 octa octa-word

1.2 as, the GNU Assembler

As is an assembler; it is one of the team of programs that ‘compile’ your programs into
the binary numbers that a computer uses to ‘run’ your program. Often as reads a source
program written by a compiler and writes an object program for the linker (sometimes
referred to as a loader) 1d to read.

The source program consists of statements and comments. Each statement might as-
semble to one (and only one) machine language instruction or to one very simple datum.

Mostly you don’t have to think about the assembler because the compiler invokes it as
needed; in that sense the assembler is just another part of the compiler. If you write your
own assembly language program, then you must run the assembler yourself to get an object
file suitable for linking. You can read below how to do this.

as is only intended to assemble the output of the C compiler cc for use by the linker 1d.
as (vax and 68020 versions) tries to assemble correctly everything that the standard assem-
bler would assemble, with a few exceptions (described in the machine-dependent chapters.)

Each version of the assembler knows about just one kind of machine language, but much
is common between the versions, including object file formats, (most) assembler directives
(often called pseudo-ops) and assembler syntax.

Unlike older assemblers, as tries to assemble a source program in one pass of the source
file. This subtly changes the meaning of the . org directive (See Section 6.24 [Org], page 25.).

If you want to write assembly language programs, you must tell as what numbers should
be in a computer’s memory, and which addresses should contain them, so that the program



Chapter 1: Overview, Usage 3

may be executed by the computer. Using symbols will prevent many bookkeeping mistakes
that can occur if you use raw numbers.

1.3 Command Line Synopsis

as [ options ] [ -G GDB_symbol_file ] [ -o object_file ][ inputl ... ]
After the program name as the command line may contain switches and file names in

any order. The order of switches doesn’t matter but the order of file names is significant.
Only the assembler’s name as is compulsory and it must (of course) be first.

1.3.1 Switches

3 9

Except for ‘-=" any command line argument that begins with a hyphen (‘-’) is a switch.
Each switch changes the behavior of as. No switch changes the way another switch works.
A switch is a ‘=’ followed by a letter; the case of the letter is important. No switch (letter)
should be used twice on the same command line. (Nobody has decided what two copies of
the same switch should mean.) All switches are optional.

Some switches expect exactly one file name to follow them. The file name may either
immediately follow the switch’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble
as -omy-object-file.o mumble

Always, -- (that’s two hyphens, not one) by itself names the standard input file.

1.4 Input File(s)

We use the words source program, abbreviated source, to describe the program input to one
run of as. The program may be in one or more GNU files; how the source is partitioned
into files doesn’t change the meaning of the source.

The source text is a catenation of the text in each file.

Each time you run as it assembles exactly one source program. A source program text
is made of one or more GNU files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command line argument (in any position) that has no
special meaning is taken to be an input file name. If as is given no file names it attempts
to read one input file from as’s standard input.

Use -- if you need to explicitly name the standard input file in your command line.

It is OK to assemble an empty source. You get a small harmless object (output) file.

If you try to assemble no files then as will try to read standard input, which is normally
your terminal. You may have to type ct1-D to tell as there is no more program to assemble.

1.4.1 Input Filenames and Line-numbers

A line is text up to and including the next newline. The first line of a file is numbered 1,
the next 2 and so on.

There are two ways of locating a line in the input file(s) and both are used in reporting
error messages. One way refers to a line number in a physical file; the other refers to a line
number in a logical file.



Chapter 1: Overview, Usage 4

Physical files are those files named in the command line given to as.

Logical files are “pretend” files which bear no relation to physical files. Logical file names
help error messages reflect the proper source file. Often they are used when as’ source is
itself synthesized from other files.

1.5 Output (Object) File

Every time you run as it produces an output file, which is your assembly language program
translated into numbers. This file is the object file; named a.out unless you tell as to give
it another name by using the -o switch. Conventionally, object file names end with .o.
The default name of a.out is used for historical reasons. Older assemblers were capable of
assembling self-contained programs directly into a runnable program. This may still work,
but hasn’t been tested.

The object file is for input to the linker 1d. It contains assembled program code, infor-
mation to help 1d to integrate the assembled program into a runnable file and (optionally)
symbolic information for the debugger. The precise format of object files is described else-
where.

1.6 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your terminal).
This should not happen when as is run automatically by a compiler. Error messages are
useful for those (few) people who still write in assembly language.

Warnings report an assumption made so that as could keep assembling a flawed program.
Errors report a grave problem that stops the assembly.
Warning messages have the format

file_name:1line_number:Warning Message Text

If a logical file name has been given (See Section 6.10 [File], page 23.) it is used for the
filename, otherwise the name of the current input file is used. If a logical line number was
given (See Section 6.20 [Line], page 24.) then it is used to calculate the number printed,
otherwise the actual line in the current source file is printed. The message text is intended
to be self explanatory (In the grand UN*X tradition).

Error messages have the format
file_name:line_number:FATAL:Error Message Text

The file name and line number are derived the same as for warning messages. The
actual message text may be rather less explanatory because many of them aren’t supposed
to happen.

1.7 Optional Switches

1.7.1 -f Works Faster

‘~f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
causes the assembler to not bother pre-processing the input file(s) before assembling them.
Needless to say, if the files actually need to be pre-processed (if the contain comments, for
example), as will not work correctly if ‘~f’ is used.



Chapter 1: Overview, Usage 5

1.7.2 -G Includes GDB Symbolic Information

(This option is depreciated, and may stop working without warning. GNU is abandoning
the GDB symbolic information. It doesn’t speed things up by much, and is difficult to
maintain.)

The C compiler may produce (apart from an assembler source file of your program) sym-
bolic information for the gdb program, in a file. Certain assembler statements manipulate
this information, and as can include the symbolic information in the object file that is the
result of your assembly.

Use this switch to say which file contains the symbolic information. The switch needs
exactly one filename.

as directives that begin with ‘.gdb. ..’ manipulate this gdb symbolic information. Un-
less you use a ‘-G’ switch all ‘.gdb. ..” assembler statements are ignored.

The gdb notes file is described elsewhere.

1.7.3 -1 Shortens Long Undefined Symbols

If this switch is not given, references to undefined symbols will be a full long (32 bits) wide.
(Since as cannot know where these symbols will end up being, as can only allocate space
for the linker to fill in later. Since as doesn’t know how far away these symbols will be,
it allocates as much space as it can.) If this option is given, the references will only be
one word wide (16 bits). This may be useful if you want the object file to be as small as
possible, and you know that the relevant symbols will be less than 17 bits away.

This switch only works with the MC68020 version of as.

1.7.4 -L Includes Local Labels

For historical reasons, labels beginning with ‘L’ (upper case only) are called local labels.
Normally you don’t see such labels because they are intended for the use of programs (like
compilers) that compose assembler programs, not for your notice. Normally both as and
1d discard such labels, so you don’t normally debug with them.

This switch tells as to retain those ‘L...’ symbols in the object file. Usually if you do
this you also tell the linker 1d to preserve symbols whose names begin with ‘L’.

1.7.5 -m{c}680{0,1,2}0 Different Kinds of 68000

The 68020 version of as is usually used to assemble programs for the Motorola MC68020
microprocessor. Occasionally it is used to assemble programs for the mostly-similar-but-
slightly-different MC68000 or MC68010 microprocessors. You can give as the switches
‘-m68000°, ‘-mc68000°, ‘-m68010°, ‘-mc68010°, ‘-m68020°, and ‘-mc68020° to tell it what
processor it should be assembling for. Unfortunately, these switches are essentially ignored.

1.7.6 -o Names the Object File

There is always one object file output when you run as. By default it has the name a.out.
You use this switch (which takes exactly one filename) to give the object file a different
name.

Whatever the object file is called, as will overwrite any existing file of the same name.



Chapter 1: Overview, Usage 6

1.7.7 -R Folds Data Segment into Text Segment

-R tells as to write the object file as if all data-segment data lives in the text segment. This
is only done at the very last moment: your binary data are the same, but data segment
parts are relocated differently. The data segment part of your object file is zero bytes long
because all it bytes are appended to the text segment. (See Chapter 3 [Segments], page 13.)

When you use -R it would be nice to generate shorter address displacements (possible
because we don’t have to cross segments) between text and data segment. We don’t do this
simply for compatibility with older versions of as. -R may work this way in future.

1.7.8 -W Represses Warnings

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file. If you use this switch,
any warning is repressed. This switch only affects warning messages: it cannot change any
detail of how as assembles your file. Errors, which stop the assembly, are still reported.

1.7.9 Useless (but Compatible) Switches

As accepts any of these switches, gives a warning message that the switch was ignored
and proceeds. These switches are for compatibility with scripts designed for other people’s
assemblers.

-D (Debug)
-S (Symbol Table)
-T (Token Trace)
Obsolete switches used to debug old assemblers.

-V (Virtualize Interpass Temporary File)
Other assemblers use a temporary file. This switch commanded them to keep
the information in active memory rather than in a disk file. as always does
this, so this switch is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instructions to do the same
job. Some of these instructions are short (and fast) but have a limited range;
others are long (and slow) but can branch anywhere in virtual memory. Often
there are 3 flavors of branch: short, medium and long. Other assemblers would
emit short and medium branches, unless told by this switch to emit short and
long branches. This is an archaic machine-dependent switch.

-d (Displacement size for JUMPs)
Like the -J switch, this is archaic. It expects a number following the -d. Like
switches that expect filenames, the number may immediately follow the -d (old

standard) or constitute the whole of the command line argument that follows
-d (GNU standard).

-t (Temporary File Directory)
Other assemblers may use a temporary file, and this switch takes a filename
being the directory to site the temporary file. as does not use a temporary disk
file, so this switch makes no difference. -t needs exactly one filename.



Chapter 1: Overview, Usage 7

1.8 Special Features to support Compilers

In order to assemble compiler output into something that will work, as will occasionlly do
strange things to ‘.word’ pseudo-ops. In particular, when gas assembles a pseudo-op of the
form ‘.word syml-sym2’, and the difference between syml and sym2 does not fit in 16 bits,
as will create a secondary jump table, immediately before the next label. This secondary
jump table will be preceeded by a short-jump to the first byte after the table. The short-
jump prevents the flow-of-control from accidentally falling into the table. Inside the table
will be a long-jump to sym2. The original ‘.word’ will contain sym1 minus (the address of
the long-jump to sym2) If there were several ‘.word sym1-sym2’ before the secondary jump
table, all of them will be adjusted. If ther was a ‘.word sym3-sym4’, that also did not fit
in sixteen bits, a long-jump to sym4 will be included in the secondary jump table, and the
.word(s), will be adjusted to contain sym3 minus (the address of the long-jump to sym4),
etc.

This feature may be disabled by compiling as with the “~“DWORKING_DOT_WORD’ option.
This feature is likely to confuse assembly language programmers.



2 Syntax

This chapter informally defines the machine-independent syntax allowed in a source file. as
has ordinary syntax; it tries to be upward compatible from BSD 4.2 assembler except as
does not assemble Vax bit-fields.

2.1 The Pre-processor

The preprocess phase handles several aspects of the syntax. The pre-processor will be
disabled by the ‘-f’ option, or if the first line of the source file is #NO_APP. The option to
disable the pre-processor was designed to make compiler output assemble as fast as possible.

The pre-processor adjusts and removes extra whitespace. It leaves one space or tab
before the keywords on a line, and turns any other whitespace on the line into a single
space.

The pre-processor removes all comments, replacing them with a single space (for /* . ..
*/ comments), or an appropriate number of newlines.

The pre-processor converts character constants into the appropriate numeric values.

This means that excess whitespace, comments, and character constants cannot be used
in the portions of the input text that are not pre-processed.

If the first line of an input file is #NO_APP or the ‘-f’ option is given, the input file will
not be pre-processed. Within such an input file, parts of the file can be pre-processed by
putting a line that says #APP before the text that should be pre-processed, and putting a
line that says #NO_APP after them. This feature is mainly intend to support asm statements
in compilers whose output normally does not need to be pre-processed.

2.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(See Section 2.6.1 [Characters], page 10.), any whitespace means the same as exactly one
space.

2.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.

Anything from ‘/*’ to the next ‘*/’ inclusive is a comment.

/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.
*/
/* This sort of comment does not nest. */
Anything from the line comment character to the next newline considered a comment

and is ignored. The line comment character is ‘#” on the Vax, and ‘|’ on the 68020. See
Chapter 7 [MachineDependent|, page 28.



Chapter 2: Syntax 9

To be compatible with past assemblers a special interpretation is given to lines that begin
with ‘#’. Following the ‘#’ an absolute expression (see Chapter 5 [Expressions|, page 20)
is expected: this will be the logical line number of the next line. Then a string (See
Section 2.6.1.1 [Strings|, page 10.) is allowed: if present it is a new logical file name. The
rest of the line, if any, should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)

# This is an ordinary comment.
# 42-6 "new_file_name" # New logical file name
# This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

2.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and lower
case), digits and the three characters ‘_.$’. No symbol may begin with a digit. Case is
significant. There is no length limit: all characters are significant. Symbols are delimited
by characters not in that set, or by begin/end-of-file. (See Chapter 4 [Symbols], page 17.)

2.5 Statements

A statement ends at a newline character (‘\n’) or at a semicolon (‘;’). The newline or
semicolon is considered part of the preceding statement. Newlines and semicolons within
character constants are an exception: they don’t end statements. It is an error to end any
statement with end-of-file: the last character of any input file should be a newline.

You may write a statement on more than one line if you put a backslash (\) immediately
in front of any newlines within the statement. When as reads a backslashed newline both
characters are ignored. You can even put backslashed newlines in the middle of symbol
names without changing the meaning of your source program.

An empty statement is OK, and may include whitespace. It is ignored.

Statements begin with zero or more labels, followed by a key symbol which determines
what kind of statement it is. The key symbol determines the syntax of the rest of the
statement. If the symbol begins with a dot (.) then the statement is an assembler direc-
tive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it will assemble into a machine language instruction.
Different versions of as for different computers will recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is usually a symbol immediately followed by a colon (:). Whitespace before a
label or after a colon is OK. You may not have whitespace between a label’s symbol and its
colon. Labels are explained below. See Section 4.1 [Labels], page 17.

label: .directive followed by something
another$label: # This is an empty statement.
instruction operand_1, operand_2,



Chapter 2: Syntax 10

2.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEFO # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

2.6.1 Character Constants

There are two kinds of character constants. Characters stand for one character in one byte
and their values may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

2.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null characters.
The way to get weird characters into a string is to escape these characters: precede them
with a backslash (\) character. For example ‘\\’ represents one backslash: the first \ is
an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

\EOF A\ followed by end-of-file erroneous. It is treated just like an end-of-file without
a preceding backslash.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.

\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Un*x systems, 8 and 9 are legal digits with values 010 and 011

respectively.
\\ Represents one ‘\’ character.
\" Represents one ‘"’ character. Needed in strings to represent this character,

because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ will give a warning, but assemble as if
the ‘\’ was not present. The idea is that if you used an escape sequence you
clearly didn’t want the literal interpretation of the following character. However
as has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.



Chapter 2: Syntax 11

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think BSD 4.2 as recognizes, and is a subset of
what most C compilers recognize. If you are in doubt, don’t use an escape sequence.

2.6.1.2 Characters

A single character may be written as a single quote immediately followed by that character.
The same escapes apply to characters as to strings. So if you want to write the character
backslash, you must write ’\\ where the first \ escapes the second \. As you can see, the
quote is an accent acute, not an accent grave. A newline (or semicolon (‘;’)) immediately
following an accent acute is taken as a literal character and does not count as the end of
a statement. The value of a character constant in a numeric expression is the machine’s
byte-wide code for that character. GNU assumes your character code is ASCII: ’A means

65, ’B means 66, and so on.

2.6.2 Number Constants

as distinguishes 3 flavors of numbers according to how they are stored in the target machine.
Integers are numbers that would fit into an int in the C language. Bignums are integers,
but they are stored in a more than 32 bits. Flonums are floating point numbers, described
below.

2.6.2.1 Integers
An octal integer is ‘0’ followed by zero or more of the octal digits ‘01234567’.

A decimal integer starts with a non-zero digit followed by zero or more digits
(‘0123456789").

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdef ABCDEF”.

Integers have the obvious values. To denote a negative integer, use the unary operator
‘=’ discussed under expressions (See Section 5.2.4 [Unops|, page 20.).

2.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its
negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

2.6.2.3 Flonums

A flonum represents a floating point number. The translation is complex: a decimal floating
point number from the text is converted by as to a generic binary floating point number of
more than sufficient precision. This generic floating point number is converted to the par-
ticular computer’s floating point format(s) by a portion of as specialized to that computer.

A flonum is written by writing (in order)
e The digit ‘0.
e A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not

important. (Any otherwise illegal letter will work here, but that might be changed.
VAX BSD 4.2 assembler seems to allow any of ‘defghDEFGH’.)

e An optional sign: either ‘+’ or ‘-’



Chapter 2: Syntax 12

e An optional integer part: zero or more decimal digits.
e An optional fraction part: ‘.’ followed by zero or more decimal digits.
e An optional exponent, consisting of:

e A letter; the exact significance varies according to the computer that executes the
program. as accepts any letter for now. Case is not important.

e Optional sign: either ‘+’ or ‘-’
e One or more decimal digits.
At least one of integer part or fraction part must be present. The floating point number
has the obvious value.

The computer running as needs no floating point hardware. as does all processing using
integers.



13

3 (Sub)Segments & Relocation

Roughly, a segment is a range of addresses, with no gaps, with all data “in” those addresses
being treated the same. For example there may be a “read only” segment.

The linker 1d reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. 1d will assign the final addresses the partial program occupies, so that
different partial programs don’t overlap. That explanation is too simple, but it will suffice
to explain how as works.

1d moves blocks of bytes of your program to their run-time addresses. These blocks slide
to their run-time addresses as rigid units; their length does not change and neither does
the order of bytes within them. Such a rigid unit is called a segment. Assigning run-time
addresses to segments is called relocation. It includes the task of adjusting mentions of
object-file addresses so they refer to the proper run-time addresses.

An object file written by as has three segments, any of which may be empty. These
are named text, data and bss segments. Within the object file, the text segment starts at
address 0, the data segment follows, and the bss segment follows the data segment.

To let 1d know which data will change when the segments are relocated, and how to
change that data, as also writes to the object file details of the relocation needed. To
perform relocation 1d must know for each mention of an address in the object file:

e At what address in the object file does this mention of an address begin?
e How long (in bytes) is this mention?

e Which segment does the address refer to? What is the numeric value of (address -
start-address of segment)?

e Is the mention of an address “Program counter relative”?

In fact, every address as ever thinks about is expressed as (segment + offset into segment).
Further, every expression as computes is of this segmented nature. So absolute expression
means an expression with segment “absolute” (See Section 3.1.1 [LdSegs|, page 14.). A
passl expression means an expression with segment “passl” (See Section 3.1.2 [MythSegs],
page 15.). In this document “(segment, offset)” will be written as { segment-name (offset
into segment) }.

Apart from text, data and bss segments you need to know about the absolute segment.
When 1d mixes partial programs, addresses in the absolute segment remain unchanged.
That is, address {absolute 0} is “relocated” to run-time address 0 by 1d. Although two
partial programs’ data segments will not overlap addresses after linking, by definition their
absolute segments will overlap. Address {absolute 239} in one partial program will always
be the same address when the program is running as address {absolute 239} in any other
partial program.

The idea of segments is extended to the undefined segment. Any address whose segment
is unknown at assembly time is by definition rendered {undefined (something, unknown
yet)}. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has segment undefined.



Chapter 3: (Sub)Segments & Relocation 14

By analogy the word segment is to describe groups of segments in the linked program.
1d puts all partial program’s text segments in contiguous addresses in the linked program.
It is customary to refer to the text segment of a program, meaning all the addresses of all
partial program’s text segments. Likewise for data and bss segments.

3.1 Segments

Some segments are manipulated by 1d; others are invented for use of as and have no meaning
except during assembly.

3.1.1 1d segments
14 deals with just 5 kinds of segments, summarized below.

text segment

data segment
These segments hold your program bytes. as and 1d treat them as separate
but equal segments. Anything you can say of one segment is true of the other.
When the program is running however it is customary for the text segment to
be unalterable: it will contain instructions, constants and the like. The data
segment of a running program is usually alterable: for example, C variables
would be stored in the data segment.

bss segment
This segment contains zeroed bytes when your program begins running. It is
used to hold unitialized variables or common storage. The length of each partial
program’s bss segment is important, but because it starts out containing zeroed
bytes there is no need to store explicit zero bytes in the object file. The Bss
segment was invented to eliminate those explicit zeros from object files.

absolute segment
Address 0 of this segment is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that 1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they don’t change during relocation.

undefined segment
This “segment” is a catch-all for address references to objects not in the pre-
ceding segments. See the description of a.out for details.

An idealized example of the 3 relocatable segments follows. Memory addresses are on
the horizontal axis.
o to———t——+

partial program # 1: |ttttt|dddd|00]
e e

text data bss
seg. seg. seg.

e s
partial program # 2: |TTT|DDD]|00O|



Chapter 3: (Sub)Segments & Relocation 15

T B e L s It S
linked program: | |TTT|ttttt| |dddd|DDD|00000]|
e o ettt i
addresses: o ...

3.1.2 Mythical Segments

These segments are invented for the internal use of as. They have no meaning at run-time.
You don’t need to know about these segments except that they might be mentioned in as’
warning messages. These segments are invented to permit the value of every expression in
your assembly language program to be a segmented address.

absent segment
An expression was expected and none was found.

goof segment
An internal assembler logic error has been found. This means there is a bug in
the assembler.

grand segment
A grand number is a bignum or a flonum, but not an integer. If a number can’t
be written as a C int constant, it is a grand number. as has to remember that
a flonum or a bignum does not fit into 32 bits, and cannot be a primary (See
Section 5.2.1 [Primary|, page 20.) in an expression: this is done by making a
flonum or bignum be of type “grand”. This is purely for internal as convenience;
grand segment behaves similarly to absolute segment.

passl segment
The expression was impossible to evaluate in the first pass. The assembler will
attempt a second pass (second reading of the source) to evaluate the expression.
Your expression mentioned an undefined symbol in a way that defies the one-
pass (segment + offset in segment) assembly process. No compiler need emit
such an expression.

difference segment
As an assist to the C compiler, expressions of the forms

e (undefined symbol) - (expression)
e (something) - (undefined symbol)
e (undefined symbol) - (undefined symbol)

are permitted to belong to the “difference” segment. as re-evaluates such ex-
pressions after the source file has been read and the symbol table built. If by
that time there are no undefined symbols in the expression then the expres-
sion assumes a new segment. The intention is to permit statements like ‘.word
label - base_of_table’ to be assembled in one pass where both label and
base_of_table are undefined. This is useful for compiling C and Algol switch
statements, Pascal case statements, FORTRAN computed goto statements and
the like.



Chapter 3: (Sub)Segments & Relocation 16

3.2 Sub-Segments

Assembled bytes fall into two segments: text and data. Because you may have groups of
text or data that you want to end up near to each other in the object file, as, allows you
to use subsegments. Within each segment, there can be numbered subsegments with values
from 0 to 8192. Objects assembled into the same subsegment will be grouped with other
objects in the same subsegment when they are all put into the object file. For example, a
compiler might want to store constants in the text segment, but might not want to have
them intersperced with the program being assembled. In this case, the compiler could
issue a text 0 before each section of code being output, and a text 1 before each group of
constants being output.

Subsegments are optional. If you don’t used subsegments, everything will be stored in
subsegment number zero.

Each subsegment is zero-padded up to a multiple of four bytes. (Subsegments may be
padded a different amount on different flavors of as.) Subsegments appear in your object
file in numeric order, lowest numbered to highest. (All this to be compatible with other
people’s assemblers.) The object file, 1d etc. have no concept of subsegments. They just
see all your text subsegments as a text segment, and all your data subsegments as a data
segment.

To specify which subsegment you want subsequent statements assembled into, use a
‘.text expression’ or a ‘.data expression’ statement. Expression should be an absolute
expression. (See Chapter 5 [Expressions|, page 20.) If you just say ‘.text’ then ‘.text 0’
is assumed. Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text O # The default subsegment is text 0 anyway.
.ascii "This lives in the first text subsegment. *"
.text 1

.ascii "But this lives in the second text subsegment."
.data O

.ascii "This lives in the data segment,"

.ascii "in the first data subsegment."

.text O

.ascii "This lives in the first text segment,"

.ascii "immediately following the asterisk (*)."

Each segment has a location counter incremented by one for every byte assembled into
that segment. Because subsegments are merely a convenience restricted to as there is no
concept of a subsegment location counter. There is no way to directly manipulate a location
counter. The location counter of the segment that statements are being assembled into is
said to be the active location counter.

3.3 Bss Segment

The bss segment is used for local common variable storage. You may allocate address
space in the bss segment, but you may not dictate data to load into it before your program
executes. When your program starts running, all the contents of the bss segment are zeroed
bytes. Addresses in the bss segment are allocated with a special statement; you may not
assemble anything directly into the bss segment. Hence there are no bss subsegments.



17

4 Symbols

Because the linker uses symbols to link, the debugger uses symbols to debug and the pro-
grammer uses symbols to name things, symbols are a central concept. Symbols do not
appear in the object file in the order they are declared. This may break some debuggers.

4.1 Labels

A label is written as a symbol immediately followed by a colon (‘:’). The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

4.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol followed by an equals sign
(‘=7) followed by an expression (see Chapter 5 [Expressions|, page 20). This is equivalent to
using the .set directive. (See Section 6.26 [Set], page 25.)

4.3 Symbol Names

Symbol names begin with a letter or with one of ‘$._’". That character may be followed by
any string of digits, letters, underscores and dollar signs. Case of letters is significant: foo
is a different symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly program refers to exactly
one symbol. You may use that symbol name any number of times in an assembly program.

4.3.1 Local Symbol Names

Local symbols help compilers and programmers use names temporarily. There are ten local
symbol names, which are re-used throughout the program. Their names are ‘0’ ‘1’ ...
‘9’. To define a local symbol, write a label of the form digit:. To refer to the most recent
previous definition of that symbol write digitb, using the same digit as when you defined
the label. To refer to the next definition of a local label, write digitf where digit gives you
a choice of 10 forward references. The ‘b’ stands for “backwards” and the ‘f’ stands for
“forwards”.

Local symbols are not used by the current C compiler.

There is no restriction on how you can use these labels, but remember that at any point
in the assembly you can refer to at most 10 prior local labels and to at most 10 forward
local labels.

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler thinks about them. The symbol
names stored in the symbol table, appearing in error messages and optionally emitted to
the object file have these parts:

L All local labels begin with ‘L’. Normally both as and 1d forget symbols that
start with ‘L’. These labels are used for symbols you are never intended to see.
If you give the ‘~L’ switch then as will retain these symbols in the object file.
By instructing 1d to also retain these symbols, you may use them in debugging.



Chapter 4: Symbols 18

adigit  If the label is written ‘0:’ then the digit is ‘0’. If the label is written ‘1:’ then
the digit is ‘1’. And so on up through ‘9:".

control-A
This unusual character is included so you don’t accidentally invent a symbol of
the same name. The character has ASCII value ‘\001".

an ordinal number
This is like a serial number to keep the labels distinct. The first ‘0:’ gets the
number ‘1’; The 15th ‘0:’ gets the number ‘15’; etc.. Likewise for the other
labels ‘1:’ through ‘9:’.

For instance, the first 1: is named L1~A1, the 44th 3: is named L3"A44.

4.4 Symbol Attributes

Every symbol has the attributes discussed below. The detailed definitions are in <a.out.h>.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

4.4.1 Value

The value of a symbol is (usually) 32 bits, the size of one C int. For a symbol which labels a
location in the text, data, bss or Absolute segments the value is the number of addresses
from the start of that segment to the label. Naturally for text data and bss segments the
value of a symbol changes as 1d changes segment base addresses during linking. absolute
symbols’ values do not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol
is not defined in this assembler source program, and 1d will try to determine its value from
other programs it is linked with. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a . comm common declaration.
The value is how much common storage to reserve, in bytes (i.e. addresses). The symbol
refers to the first address of the allocated storage.

4.4.2 Type

The type attribute of a symbol is 8 bits encoded in a devious way. We kept this coding
standard for compatibility with older operating systems.

7 6 5 4 3 2 1 0 bit numbers
+-——— +-——— +——— +———— +-——— +-——— +-——— +————- +
| | I |
|  N_STAB bits | N_TYPE bits |N_EXT|
I I | bit |
Fm——— Fm——— Fm——— Fm——— F=——— Fe=——— Fm——— F———— +

n_type byte



Chapter 4: Symbols 19

4.4.2.1 N_EXT bit

This bit is set if 1d might need to use the symbol’s value and type bits. If this bit is
re-set then 1d can ignore the symbol while linking. It is set in two cases. If the symbol
is undefined, then 14 is expected to find the symbol’s value elsewhere in another program
module. Otherwise the symbol has the value given, but this symbol name and value are
revealed to any other programs linked in the same executable program. This second use of
the N_EXT bit is most often done by a .globl statement.

4.4.2.2 N_TYPE bits

These establish the symbol’s “type”, which is mainly a relocation concept. Common values
are detailed in the manual describing the executable file format.

4.4.2.3 N_STAB bits

Common values for these bits are described in the manual on the executable file format..

4.4.3 Desc(riptor)

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using
a .desc statement (See Section 6.8 [Desc|, page 22.). A descriptor value means nothing to
as.

4.4.4 Other

This is an arbitrary 8-bit value. It means nothing to as.

4.5 The Special Dot Symbol

The special symbol . refers to the current address that as is assembling into. Thus, the
expression ‘melvin: .long .’ will cause melvin to contain its own address. Assigning a
value to . is treated the same as a .org pseudo-op. Thus, the expression ‘.=.+4’ is the
same as saying ‘.space 4’.



20

5 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or follow
an expression.

5.1 Empty Expressions

An empty expression has no operands: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression and as will assume a value of (absolute)
0. This is compatible with other assemblers.

5.2 Integer Expressions

An integer expression is one or more primaries delimited by operators.

5.2.1 Primaries

Primaries are symbols, numbers or subexpressions. Other languages might call primaries
“arithmetic operands” but we don’t want them confused with “instruction operands” of the
machine language so we give them a different name.

Symbols are evaluated to yield {segment value} where segment is one of text, data, bss,
absolute, or undefined. value is a signed 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low
order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis (() followed by an integer expression followed by a
right parenthesis () ), or a unary operator followed by an primary.

5.2.2 Operators

Operators are arithmetic marks, like + or %. Unary operators are followed by an primary.
Binary operators appear between primaries. Operators may be preceded and/or followed
by whitespace.

5.2.3 Unary Operators

as has the following unary operators. They each take one primary, which must be absolute.

- Hyphen. Negation. Two’s complement negation.

Tilde. Complementation. Bitwise not.

5.2.4 Binary Operators

Binary operators are infix. Operators are prioritized, but equal priority operators are
performed left to right. Apart from ‘+’ or ‘-’, both primaries must be absolute, and the

result is absolute, else one primary can be either undefined or passl and the result is passl.
1. Highest Priority

* Multiplication.



Chapter 5: Expressions 21

T

<<

>>

Division. Truncation is the same as the C operator ¢/’ of the compiler that
compiled as.

Remainder.

Shift Left. Same as the C operator ‘<<’ of the compiler that compiled as.

Shift Right. Same as the C operator ‘>>’ of the compiler that compiled
as.

2. Intermediate priority

|
&

~

Bitwise Inclusive Or.
Bitwise And.
Bitwise Exclusive Or.

Bitwise Or Not.

3. Lowest Priority

+

Addition. If either primary is absolute, the result has the segment of the
other primary. If either primary is passl or undefined, result is passl.
Otherwise + is illegal.

Subtraction. If the right primary is absolute, the result has the segment
of the left primary. If either primary is passl the result is passl. If either
primary is undefined the result is difference segment. If both primaries are
in the same segment, the result is absolute; provided that segment is one
of text, data or bss. Otherwise - is illegal.

The sense of the rules is that you can’t add or subtract quantities from two different
segments. If both primaries are in one of these segments, they must be in the same segment:
text, data or bss, and the operator must be ‘=’.



22

6 Assembler Directives

[

All assembler directives begin with a symbol that begins with a period (‘.’). The rest of
the symbol is letters: their case does not matter.

6.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assemblers.
The original idea was that the assembler program would be piped into the assembler. If the
source of program wanted to quit, then this directive tells as to quit also. One day .abort
will not be supported.

6.2 .align absolute-expression , absolute-expression

Pad the location counter (in the current subsegment) to a word, longword or whatever
boundary. The first expression is the number of low-order zero bits the location counter
will have after advancement. For example ‘.align 3’ will advance the location counter until
it a multiple of 8. If the location counter is already a multiple of 8, no change is needed.

The second expression gives the value to be stored in the padding bytes. It (and the
comma) may be omitted. If it is omitted, the padding bytes are zeroed.
6.3 .ascii strings

Expects zero or more string literals (See Section 2.6.1.1 [Strings], page 10.) separated by
commas. Assembles each string (with no automatic trailing zero byte) into consecutive
addresses.

6.4 .asciz strings

Just like .ascii, but each string is followed by a zero byte. The ‘z’ in ‘.asciz’ stands for ‘zero’.

6.5 .byte expressions

Expects zero or more expressions, separated by commas. Each expression is assembled into
the next byte.

6.6 .comm symbol , length

Declares a named common area in the bss segment. Normally 1d reserves memory addresses
for it during linking, so no partial program defines the location of the symbol. Tell 1d that
it must be at least length bytes long. 1d will allocate space that is at least as long as the
longest . comm request in any of the partial programs linked. length is an absolute expression.

6.7 .data subsegment

Tells as to assemble the following statements onto the end of the data subsegment numbered
subsegment (which is an absolute expression). If subsegment is omitted, it defaults to zero.

6.8 .desc symbol, absolute-expression

Set n_desc of the symbol to the low 16 bits of absolute-expression.



Chapter 6: Assembler Directives 23

6.9 .double flonums

Expect zero or more flonums, separated by commas. Assemble floating point numbers. The
exact kind of floating point numbers emitted depends on what computer as is assembling
for. See the machine-specific part of the manual for the machine the assembler is running
on for more information.

6.10 .file string

Tells as that we are about to start a new logical file. String is the new file name. An empty
file name is OK, but you must still give the quotes: "". This statement may go away in
future: it is only recognized to be compatible with old as programs.

6.11 .fill repeat , size , value

result, size and value are absolute expressions. Emit repeat copies of size bytes. Repeat
may be zero or more. Size may be zero or more, but if it is more than 8, then it is deemed
to have the value 8, compatible with other people’s assemblers. The contents of each repeat
bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The lowest order
4 bytes are value rendered in the byte-order of an integer on the computer as is assembling
for. Each size bytes in a repetition is taken from the lowest order size bytes of this number.
Again, this bizarre behavior is compatible with other people’s assemblers.

Size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

6.12 .float Aonums

Expect zero or more flonums, separated by commas. Assemble floating point numbers. The
exact kind of floating point numbers emitted depends on what computer as is assembling
for. See the machine-specific part of the manual for the machine the assembler is running
on for more information.

6.13 .gdbbeg absolute-expression

(This pseudo-op may go away without warning.) Absolute-expression must be at least zero.
as will remember that a block numbered absolute-expression began where the location count
is when this statement is read.

6.14 .gdbblock block-number , offset

(This pseudo-op may go away without warning.) Block-number is a gdb block number, at
least zero, an absolute expression. Offset is an offset into the gdb symbolic file named in
the ‘-G’ switch; an absolute expression; the lowest offset written by this directive. Two C
ints are written in the symbolic file: first the object-file address of the .gdbbeg statement
of block number; then the object-file address of the .gdbend statement of block number.



Chapter 6: Assembler Directives 24

6.15 .gdbend absolute-expression

(This pseudo-op may go away without warning.) Absolute-expression must be at least zero.
as will remember that a block numbered absolute-expression ended where the location count
is when this statement is read.

6.16 .gdbsym symbol , offset

(This pseudo-op may go away without warning.) If the ‘-G’ switch named a file of gdb
symbolic information then the n_value of symbol is written as a C int starting at offset
in the symbolic file. Offset is an absolute expression. Symbol may be defined after the
.gdbsym statement.

6.17 .global symbol

Makes the symbol visible to 1d. If you define symbol in your partial program, its value is
made available to other partial programs that are linked with it. Otherwise, symbol will
take its attributes from a symbol of the same name from another partial program it is linked
with.

This is done by setting the N_EXT bit of that symbol’s n_type to 1.

6.18 .int expressions

Expect zero or more expressions, of any segment, separated by commas. For each expression,
emit a 32-bit number that will, at run time, be the value of that expression. The byte order
of the expression depends on what kind of computer will run the program.

6.19 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common and denoted by symbol,
whose segment and value are those of the new local common. The addresses are allocated
in the bss segment, so at run-time the bytes will start off zeroed. Symbol is not declared
global (See Section 6.17 [Global], page 24.), so is normally not visible to 1d.

6.20 .line logical line number

This tells as to change the logical line number. logical line number is an absolute expression.
The next line will have that logical line number. So any other statements on the current
line (after a ;) will be reported as on logical line number logical line number - 1. One day
this directive will be unsupported: it is used only for compatibility with existing assembler
programs.

6.21 .long expressions

The same as ‘.int’, see Section 6.18 [Int], page 24.

6.22 .lsym symbol, expression

Create a new symbol named symbol, but do not put it in the hash table, ensuring it cannot
be referenced by name during the rest of the assembly. Set the attributes of the symbol to



Chapter 6: Assembler Directives 25

be the same as the expression value. n_other = n_desc = 0. n_type = (whatever segment
the expression has); the N_EXT bit of n_type is zero. n_value = (expression’s value).

6.23 .octa bignums

Expect zero or more bignums, separated by commas. For each bignum, emit an 16-byte
(octa-word) integer.

6.24 .org new-Ic , fill

This will advance the location counter of the current segment to new-Ic. new-Ic is either
an absolute expression or an expression with the same segment as the current subsegment.
That is, you can’t use .org to cross segments. Because as tries to assemble programs in
one pass new-Ic must be defined. If you really detest this restriction we eagerly await a
chance to share your improved assembler. To be compatible with former assemblers, if the
segment of new-Ic is absolute then we pretend the segment of new-Ic is the same as the
current subsegment.

Beware that the origin is relative to the start of the segment, not to the start of the
subsegment. This is compatible with other people’s assemblers.

If the location counter (of the current subsegment) is advanced, the intervening bytes are
filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

6.25 .quad bignums

Expect zero or more bignums, separated by commas. For each bignum, emit an 8-byte
(quad-word) integer. If the bignum won’t fit in a quad-word, warn; just take the lowest
order 8 bytes of the bignum.

6.26 .set symbol, expression
Set the value of symbol to expression. This will change n_value and n_type to conform to
the expression.

It is OK to .set a symbol many times in the same assembly. If the expression’s segment
is unknowable during pass 1, a second pass over the source program will be forced. The
second pass is currently not implemented. as will abort with an error message if one is
required.

If you .set a global symbol, the value stored in the object file is the last value stored
into it.
6.27 .short expressions
The same as ‘.word’. See Section 6.31 [Word], page 26.

6.28 .space size , fill

Emit size bytes, each of value fill. Both size and fill are absolute expressions. If the comma
and fill are omitted, fill is assumed to be zero.



Chapter 6: Assembler Directives 26

6.29 .stabd, .stabn, .stabs

There are three directives that begin .stab.... All emit symbols, for use by symbolic
debuggers. The symbols are not entered in as’ hash table: they cannot be referenced
elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Old debuggers used to code
arbitrarily complex structures into symbol names using this technique.

type An absolute expression. The symbol’s n_type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but 1d and debuggers will choke on
silly bit patterns.

other An absolute expression. The symbol’s n_other is set to the low 8 bits of this
expression.

desc An absolute expression. The symbol’s n_desc is set to the low 16 bits of this
expression.

value An absolute expression which becomes the symbol’s n_value.

If a warning is detected while reading the .stab. .. statement the symbol has probably
already been created and you will get a half-formed symbol in your object file. This is
compatible with earlier assemblers (!)

.stabd type , other , desc

The “name” of the symbol generated is not even an empty string. It is a null pointer,
for compatibility. Older assemblers used a null pointer so they didn’t waste space in object
files with empty strings.

The symbol’s n_value is set to the location counter, relocatably. When your program
is linked, the value of this symbol will be where the location counter was when the .stabd
was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value

6.30 .text subsegment

Tells as to assemble the following statements onto the end of the text subsegment numbered
subsegment, which is an absolute expression. If subsegment is omitted, subsegment number
zero is used.

6.31 .word expressions

Expect zero or more expressions, of any segment, separated by commas. For each expression,
emit a 16-bit number that will, at run time, be the value of that expression. The byte order
of the expression depends on what kind of computer will run the program.



Chapter 6: Assembler Directives 27

6.32 Deprecated Directives

One day these directives won’t work. They are included for compatibility with older assem-
blers.

.abort
.file

.line



28

7 Machine Dependent Features

7.1 Vax

7.1.1 Floating Point

Conversion of flonums to floating point is correct, and compatible with previous assemblers.
Rounding is towards zero if the remainder is exactly half the least significant bit.

D, F, G and H floating point formats are understood.

Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly. Again, rounding is
towards zero in the boundary case.

The floating point formats generated by directives are these.

.float
.ffloat F format floating point numbers.

.double
.dfloat D format floating point numbers.

.gfloat G format floating point numbers.

.hfloat H format floating point numbers.

7.1.2 Machine Directives

The Vax version of the assembler supports four pseudo-ops for generating Vax floating point
constants.

7.1.2.1 .dfloat lonums

Expect zero or more flonums, separated by commas. Assemble Vax d format floating point
constants.

7.1.2.2 .flloat lonums

Expect zero or more flonums, separated by commas. Assembles Vax f format floating point
constants.

7.1.2.3 .gfloat flonums

Expect zero or more flonums, separated by commas. Assembles Vax g format floating point
constants.

7.1.2.4 .hfloat lonums

Expect zero or more flonums, separated by commas. Assembles Vax h format floating point
constants.

7.1.3 Opcodes

All DEC mnemonics are supported. Beware that case... instructions have exactly 3
operands. The dispatch table that follows the case. .. instruction should be made with
.word statements. This is compatible with all un*x assemblers we know of.



Chapter 7: Machine Dependent Features 29

7.1.4 Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instructions. They expand to
the shortest branch instruction that will reach the target. Generally these mnemonics are
made by substituting ‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you don’t need this feature, don’t use these
opcodes. Here are the mnemonics, and the code they can expand into.

jbsb

jbr
jr

3jCOND

jacbX

jaobYYY
jsobZZZz

‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

(byte displacement)
bsbb ...

(word displacement)
bsbw ...

(long displacement)
Jjsb ...

Unconditional branch.

(byte displacement)
brb ...

(word displacement)
brw ...

(long displacement)

Jjmp ...
COND may be any one of the conditional branches neq nequ eql eqlu gtr
geq 1lss gtru lequ vc vs gequ cc 1ssu cs. COND may also be one of the bit

tests bs bc bss bcs bsc bee bssi beei 1bs 1bc. NOTCOND is the opposite
condition to COND.

(byte displacement)
bCOND . ..

(word displacement)
bUNCOND foo ; brw ... ; foo:

(long displacement)
bUNCOND foo ; jmp ... ; foo:

X may beoneofbdf ghlw.

(word displacement)
OPCODE . ..

(long displacement)
OPCODE ..., foo ; brb bar ; foo: jmp ... ; bar:

YYY may be one of 1ss leq.
ZZZ7 may be one of geq gtr.

(byte displacement)
OPCODE . ..



Chapter 7: Machine Dependent Features 30

(word displacement)
OPCODE ..., foo ; brb bar ; foo: brw destination ; bar:

(long displacement)
OPCODE ..., foo ; brb bar ; foo: jmp destination ; bar:

aobleq
aoblss
sobgeq
sobgtr

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE ..., foo ; brb bar ; foo: brw destination ; bar:

(long displacement)
OPCODE ..., foo ; brb bar ; foo: jmp destination ; bar:

7.1.5 operands
The immediate character is ‘¢’ for Un*x compatibility, not ‘#’ as DEC writes it.
The indirect character is ‘¢’ for Un*x compatibility, not ‘@’ as DEC writes it.

The displacement sizing character is ‘¢’ (an accent grave) for Un*x compatibility, not
= as DEC writes it. The letter preceding ‘‘’ may have either case. ‘G’ is not understood,
but all other letters (b i 1 s w) are understood.

4

Register names understood are rO r1 r2 ... r15 ap fp sp pc. Any case of letters will
do.

For instance
tstb *w‘$4(r5)

Any expression is permitted in an operand. Operands are comma separated.

7.2 68020

7.2.1 Syntax

The 68020 version of as uses syntax similar to the Sun assembler. Size modifieres are ap-
pended directly to the end of the opcode without an intervening period. Thus, ‘move.1’ is
written ‘movl’, etc. Explicit size modifiers for branch instructions are ignored; as automat-
ically picks the smallest size that will reach the destination.

If as is compiled with SUN_ASM_SYNTAX defined, it will also allow Sun-style local
labels of the form ‘1$’ through ‘$9’.

In the following table apc stands for any of the address registers (‘a0’ through ‘a7’), noth-
ing, (*’), the Program Counter (‘pc’), or the zero-address relative to the program counter
(‘zpc?).

The following addressing modes are understood:

Immediate
‘#digits’



Chapter 7: Machine Dependent Features 31

Data Register
‘d0’ through ‘d7’

Address Register
‘a0’ through ‘a7’

Address Register Indirect
‘a0@’ through ‘a7@’

Address Register Postincrement
‘a0@+’ through ‘a7@+’

Address Register Predecrement
‘a0@-’ through ‘a7@-’

Indirect Plus Offset
‘apc@(digits)’

Index ‘apc@(digits,register:size:scale)’ or ‘apc@(register:size:scale)’
Postindex ‘apc@(digits)@(digits,register:size:scale)’ or ‘apc@(digits)@(register:size:scale)’l]
Preindex ‘apc@(digits,register:size:scale)@(digits)’or ‘apc@(register:size:scale)@(digits)’l]

Memory Indirect
‘apc@(digits)@(digits)’

Absolute  ‘symbol’; or ‘digits’, or either of the above followed by ‘:b’, “:w’, or ‘:1’.

7.2.2 Floating Point

The floating point code is not well tested, and may have subtle bugs in it.
X and P format floating literals are not supported. Feel free to add the code yourself.

The floating point formats generated by directives are these.
.float Single precision floating point constants.

.double Double precision floating point constants.

7.2.3 Machine Directives

In order to be compatible with the Sun assembler the 68020 assembler understands the
following directives.

.datal This directive is identical to a .data 1 directive.
.data?2 This directive is identical to a .data 2 directive.
.even This directive is identical to a .align 2 directive.
.skip This directive is identical to a .space directive.

7.2.4 Opcodes
Danger: Several bugs have been found in the opcode table (and fixed). More bugs may
exist. The floating point code is especially untested.

The assembler automatically chooses the proper size for branch instructions. Any at-
tempt to force a short displacement will be silently ignored.



Chapter 7: Machine Dependent Features 32

The immediate character is ‘#’ for Sun compatibility. The line-comment character is ‘|’.
If a ‘#’ appears at the beginning of a line, it is treated as a comment unless it looks like ‘#
line file’, in which case it is treated normally.

7.3 32xxx

as for the 32xxx computer family has not been written yet.

7.4 Intel 80386

7.4.1 AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of GCC, as supports AT&T System V /386
assembler syntax. This is quite different from Intel syntax. We mention these differences
because almost all 80386 documents used only Intel syntax. Notable differences between
the two syntaxes are:

e AT&T immediate operands are preceded by ‘$’; Intel immediate operands are undelim-
ited (Intel ‘push 4’ is AT&T ‘pushl $4’). AT&T register operands are preceded by ‘%’;
Intel register operands are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in Intel syntax.

e AT&T and Intel syntax use the opposite order for source and destination operands.
Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source, dest’ convention is maintained
for compatibility with previous Un*x assemblers.

e In AT&T syntax the size of memory operands is determined from the last character of
the opcode name. Opcode suffixes of ‘b’, ‘w’, and ‘1’ specify byte (8-bit), word (16-bit),
and long (32-bit) memory references. Intel syntax accomplishes this by prefixes memory
operands (not the opcodes themselves) with ‘byte ptr’, ‘word ptr’, and ‘dword ptr’.
Thus, Intel ‘mov al, byte ptr foo’ is ‘movb foo, %al’ in AT&T syntax.

e Immediate form long jumps and calls are ‘1call/1ljmp $segment, $offset’ in AT&T
syntax; the Intel syntax is ‘call/jmp far segment:offset’. Also, the far return in-
struction is ‘lret $stack-adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-
adjust’.

e The AT&T assembler does not provide support for multiple segment programs. Un*x
style systems expect all programs to be single segments.

7.4.2 Opcode Naming

Opcode names are suffixed with one character modifiers which specify the size of operands.
The letters ‘b’, ‘w’, and ‘1’ specify byte, word, and long operands. If no suffix is specified
by an instruction and it contains no memory operands then as tries to fill in the missing
suffix based on the destination register operand (the last one by convention). Thus, ‘mov
%hax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equivalent to ‘movw $1,
%bx’. Note that this is incompatible with the AT&T Un*x assembler which assumes that
a missing opcode suffix implies long operand size. (This incompatibility does not affect
compiler output since compilers always explicitly specify the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format. There are a few
exceptions. The sign extend and zero extend instructions need two sizes to specify them.



Chapter 7: Machine Dependent Features 33

They need a size to sign/zero extend from and a size to zero extend to. This is accomplished
by using two opcode suffixes in AT&T syntax. Base names for sign extend and zero extend
are ‘movs. ..’ and ‘movz...’ in AT&T syntax (‘movsx’ and ‘movzx’ in Intel syntax). The
opcode suffixes are tacked on to this base name, the from suffix before the to suffix. Thus,
‘movsbl %al, %edx’ is AT&T syntax for “move sign extend from %al to %edx.” Possible
suffixes, thus, are ‘b1’ (from byte to long), ‘bw’ (from byte to word), and ‘wl’ (from word
to long).

The Intel syntax conversion instructions

e ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘%ax’,

e ‘cwde’ — sign-extend word in ‘/,ax’ to long in ‘%eax’,

o ‘cwd’ — sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,

e ‘cdq’ — sign-extend dword in ‘%eax’ to quad in ‘%edx:’%eax’,

are called ‘cbtw’, ‘cwtl’; ‘cwtd’, and ‘cltd’ in AT&T naming. as accepts either naming
for these instructions.

Far call/jump instructions are ‘lcall’ and ‘ljmp’ in AT&T syntax, but are ‘call far’
and ‘jump far’ in Intel convention.

7.4.3 Register Naming
Register operands are always prefixes with ‘%’. The 80386 registers consist of
e the 8 32-bit registers ‘,eax’ (the accumulator), ‘%ebx’, ‘hecx’, ‘hedx’, ‘%hedi’, ‘%esi’,
‘%ebp’ (the frame pointer), and ‘%esp’ (the stack pointer).
e the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘Yhcx’, “%dx’, ‘%di’, ‘%si’, ‘%bp’, and ‘Ysp’.
e the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ich’, ‘%cl’, ‘%dh’, and ‘%dl’ (These are
the high-bytes and low-bytes of ‘%ax’, ‘%bx’, ‘%cx’, and ‘%dx’)
e the 6 segment registers ‘%cs’ (code segment), ‘%ds’ (data segment), ‘%ss’ (stack seg-
ment), ‘%es’, ‘%fs’, and ‘%gs’.
e the 3 processor control registers ‘%cr0’, ‘,cr2’, and ‘Ycr3’.
e the 6 debug registers ‘%db0’, ‘%dbl’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.
e the 2 test registers ‘%tr6’ and ‘%tr7’.

e the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’, ‘%st(1)’, ‘%st(2)’,
%hst(3)7, ‘%hst(4)’, ‘%st(5)’, ‘Y%st(6)’, and ‘Yst (7).

7.4.4 Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are used to repeat string
instructions, to provide segment overrides, to perform bus lock operations, and to give
operand and address size (16-bit operands are specified in an instruction by prefixing what
would normally be 32-bit operands with a “operand size” opcode prefix). Opcode prefixes
are usually given as single-line instructions with no operands, and must directly precede
the instruction they act upon. For example, the ‘scas’ (scan string) instruction is repeated
with:

repne
scas



Chapter 7: Machine Dependent Features 34

Here is a list of opcode prefixes:

e Segment override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are automatically added

by specifying using the segment:memory-operand form for memory references.

e Operand/Address size prefixes ‘datal6’ and ‘addr16’ change 32-bit operands/addresses
into 16-bit operands/addresses. Note that 16-bit addressing modes (i.e. 8086 and 80286
addressing modes) are not supported (yet).

e The bus lock prefix ‘lock’ inhibits interrupts during execution of the instruction it
precedes. (This is only valid with certain instructions; see a 80386 manual for details).

e The wait for coprocessor prefix ‘wait’ waits for the coprocessor to complete the current
instruction. This should never be needed for the 80386/80387 combination.

e The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions to make them
repeat ‘%ecx’ times.

7.4.5 Memory References
An Intel syntax indirect memory reference of the form
segment: [base + index*scale + disp]
is translated into the AT&T syntax
segment:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the
address of the operand. If no scale is specified, scale is taken to be 1. segment specifies the
optional segment register for the memory operand, and may override the default segment
register (see a 80386 manual for segment register defaults). Note that segment overrides
in AT&T syntax must have be preceded by a ‘}’. If you specify a segment override which
coincides with the default segment register, as will not output any segment register override
prefixes to assemble the given instruction. Thus, segment overrides can be specified to
emphasize which segment register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4 (%ebp)’, Intel: ‘[ebp - 4]’
base is ‘Jiebp’; disp is ‘-4’. segment is missing, and the default segment is used
(‘%ss’ for addressing with ‘%ebp’ as the base register). index, scale are both
missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
index is ‘Yeax’ (scaled by a scale 4); disp is ‘foo’. All other fields are missing.
The segment register here defaults to ‘%ds’.

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand. Note that base
[

and index are both missing, but there is only one ¢,”. This is a syntactic
exception.

AT&T: “fgs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with segment register segment
being ‘%gs’.



Chapter 7: Machine Dependent Features 35

Absolute (as opposed to PC relative) call and jump operands must be prefixed with ‘*’.
If no ‘*’ is specified, as will always choose PC relative addressing for jump/call labels.

Any instruction that has a memory operand must specify its size (byte, word, or long)
with an opcode suffix (‘v’, ‘w’, or ‘1’, respectively).

7.4.6 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This is
accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently
close. If a byte displacement is insufficient a long (32-bit) displacement is used. We do
not support word (16-bit) displacement jumps (i.e. prefixing the jump instruction with the
‘addr16’ opcode prefix), since the 80386 insists upon masking ‘%eip’ to 16 bits after the
word displacement is added.

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and ‘loopne’ instruc-
tions only come in byte displacements, so that it is possible that use of these instructions
(GCC does not use them) will cause the assembler to print an error message (and generate
incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding
‘jcxz foo’ to

jcxz cx_zero

jmp cx_nonzero
cx_zero: jmp foo
CX_NONZero:

7.4.7 Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may
be added without much difficulty). These data types are 16-, 32-, and 64- bit integers,
and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each
supported type has an opcode suffix and a constructor associated with it. Opcode suffixes
specify operand’s data types. Constructors build these data types into memory.

e Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and ‘.tfloat’ for

32-, 64-, and 80-bit formats. These correspond to opcode suffixes ‘s’, ‘1’, and ‘t’. ‘t’
stands for temporary real, and that the 80387 only supports this format via the ‘f1dt’
(load temporary real to stack top) and ‘fstpt’ (store temporary real and pop stack)
instructions.

e Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the 16-, 32-, and

64-bit integer formats. The corresponding opcode suffixes are ‘s’ (single), ‘1’ (long),
and ‘q’ (quad). As with the temporary real format the 64-bit ‘q’ format is only present
in the ‘fildq’ (load quad integer to stack top) and ‘fistpq’ (store quad integer and
pop stack) instructions.

Register to register operations do not require opcode suffixes, so that ‘fst %st, %st(1)’
is equivalent to ‘fstl %st, %st(1)’.

Since the 80387 automatically synchronizes with the 80386 ‘fwait’ instructions are al-
most never needed (this is not the case for the 80286,/80287 and 8086/8087 combinations).
Therefore, as supresses the ‘fwait’ instruction whenever it is implicitly selected by one
of the ‘fn. ..’ instructions. For example, ‘fsave’ and ‘fnsave’ are treated identically. In



Chapter 7: Machine Dependent Features 36

9

general, all the ‘fn. ..’ instructions are made equivalent to ‘f...’ instructions. If ‘fwait’
is desired it must be explicitly coded.

7.4.8 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions that deserves mention.
The 16-, 32-, and 64-bit expanding multiplies (base opcode ‘0xf6’; extension 4 for ‘mul’
and 5 for ‘imul’) can be output only in the one operand form. Thus, ‘imul %ebx, %eax’
does not select the expanding multiply; the expanding multiply would clobber the ‘/edx’
register, and this would confuse GCC output. Use ‘imul %ebx’ to get the 64-bit product in
‘hedx:%eax’.

We have added a two operand form of ‘imul’ when the first operand is an immediate
mode expression and the second operand is a register. This is just a shorthand, so that,
multiplying ‘%eax’ by 69, for example, can be done with ‘imul $69, %eax’ rather than ‘imul
$69, %eax, heax’.



37

8 Maintaining the Assembler
[[this chapter is still being built]]

8.1 Design
We had these goals, in descending priority:

Accuracy. For every program composed by a compiler, as should emit “correct” code. This
leaves some latitude in choosing addressing modes, order of relocation_info
structures in the object file, etc.

Speed, for usual case.
By far the most common use of as will be assembling compiler emissions.

Upward compatibility for existing assembler code.
Well ... we don’t support bit fields but everything else seems to be upward
compatible. Bit fields could be implemented if someone really cared.

Readability.
The code should be maintainable with few surprises.

We assumed that disk 1/O was slow and expensive while memory was fast and access
to memory was cheap. We expect the in-memory data structures to be less than 10 times
the size of the emitted object file. (Contrast this with the C compiler where in-memory
structures might be 100 times object file size!) This suggests:

e Try to read the source file from disk only one time. For other reasons, we do keep
the entire source file in memory during assembly so this is not a problem. Also the
assembly algorithm should only scan the source text once if the compiler composed the
text according to a few simple rules.

e Emit the object code bytes only once. Don’t store values and then backpatch later.
e Build the object file in memory and do direct writes to disk of large buffers.
RMS suggested a one-pass algorithm which seems to work well. By not parsing text

during a second pass considerable time is saved on large programs (e.g. the sort of C
program yacc would emit).

It happened that the data structures needed to emit relocation information to the object
file were neatly subsumed into the data structures that do backpatching of addresses after
pass 1.

Many of the functions began life as re-usable modules, loosely connected. RMS changed
this to gain speed. For example, input parsing routines which used to work on pre-sanitized
strings now must parse raw data. Hence they have to import knowledge of the assemblers’
comment conventions etc.

8.2 Deprecated Feature(?)s

We have stopped supporting some features:
e .org statements must have defined expressions.

e VAX Bit fields (: operator) are entirely unsupported.



Chapter 8: Maintaining the Assembler 38

It might be a good idea to not support these features in a future release:
# should begin a comment, even in column 1.
Why support the logical line & file concept any more?
.gdb. .. directives will be abandoned in favor of .stab. .. directives.

Subsegments are a good candidate for flushing. Depends on which compilers need them
I guess.

8.3 Bugs, Ideas, Further Work

Clearly the major improvement is DON’T USE A TEXT-READING ASSEMBLER for the
back end of a compiler. It is much faster to interpret binary gobbledygook from a compiler’s
tables than to ask the compiler to write out human-readable code just so the assembler can
parse it back to binary.

Assuming you use as for human written programs: here are some ideas:
Document (here) APP.

Take advantage of knowing no spaces except after opcode to speed up as. (Modify
app.c to flush useless spaces: only keep space/tabs at begin of line or between 2
symbols.)

Put pointers in this documentation to a.out documentation.

Split the assembler into parts so it can gobble direct binary from e.g. cc. It is silly
forcc to compose text just so as can parse it back to binary.

Rewrite hash functions: 1 want a more modular, faster library.
Clean up LOTS of code.

Include all the non-.c files in the maintenance chapter.
Document flonums.

Implement flonum short literals.

Change all talk of expression operands to expression quantities, or perhaps to expression
primaries.

Implement pass 2.

Whenever a .text or .data statement is seen, we close of the current frag with an
imaginary .£i11 0. This is because we only have one obstack for frags, and we can’t
grow new frags for a new subsegment, then go back to the old subsegment and append
bytes to the old frag. All this nonsense goes away if we give each subsegment its own
obstack. It makes code simpler in about 10 places, but nobody has bothered to do it
because C compiler output rarely changes subsegments (compared to ending frags with
relaxable addresses, which is common).

8.4 Sources

Here is a list of the source files in the as directory.

app.c The pre-processing phase, which deletes comments, handles whitespace, etc.

This was recently re-written, since app used to be a separate program, but
RMS wanted it to be inline.



Chapter 8: Maintaining the Assembler 39

append.c A subroutine to append a string to another string returning a pointer just after
the last char appended. (JF: All these little routines should probably all be
put in one file.)

as.c Main program of the assembler as.

expr.c A branch office of read.c. Understands expressions, primaries. Inside as,
primaries are called (expression) operands. This is confusing, because we also
talk (elsewhere) about instruction operands. Also, expression operands are
called quantities explicitly to avoid confusion with instruction operands. What
a mess.

frags.c  Implements the frag concept. Without frags, finding the right size for branch
instructions would be a lot harder.

gdb_blocks.c
Implement .gdbbeg, .gdbend, .gdbblock statements. This file should go away
when ‘-G’ is flushed.

gdb_file.c
Operating system dependent functions to read the file named in a ‘-G’ switch.
This file should go away someday.

gdb_symbols.c
Implement the .gdbsym statement. Remembers all .gdbsym statements then
executes them after assembly when gdb symbols are being built. This file should
go away someday.

gdb.c Some more functions for the GDB dependent stuff. This file should go away
someday.

hash.c The symbol table, opcode table etc. hashing functions.

hex_value.c
Table of values of digits, for use in atoi() type functions. Could probably be
flushed by using calls to strtol(), or something similar.

input-file.c
Operating system dependent source file reading routines. Since error messages
often say where we are in reading the source file, they live here too. Since Gas
is intended to run under GNU and UN*X only, this might be worth flushing.
Anyway, almost all C compilers support stdio.

input-scrub.c
Deals with calling the pre-processor (if needed) and feeding the chunks back to
the rest of the assembler the right way.

messages.c
Operating system independent parts of fatal and warning message reporting.

output-file.c
Operating system dependent functions that write an object file for as. See
input-file.c above.



Chapter 8: Maintaining the Assembler 40

read.c Implements all the directives of as. Also passing input lines to the machine
dependent part of the assembler.

strstr.c A C library function that isn’t in my C library yet.

subsegs.c
Implements subsegments.

symbols.c
Implements symbols.

write.c  Operating system independent functions to emit an object file for as.

xmalloc.c
Implements malloc() or bust. Should be combined into some other file some-
where. (misc.c?)

xrealloc.c
Implements realloc() or bust. See xmalloc.c.

atof-generic.c
The following files were taken from a machine-independent subroutine library
for manipulating floating point numbers and very large integers.

atof-generic.c turns a string into a flonum internal format floating-point
number.

flonum-const.c
Some potentially useful floating point numbers in flonum format.

flonum-copy.c
Copies a flonum.

flonum-multip.c
Multiplies two flonums together.

bignum-copy.c
Copies a bignum.

Here is a table of all the machine-specific files (this includes both source and header
files). Typically, there is a machine.c file, a machine-opcode.h file, and an atof-machine.c
file. The machine-opcode.h file should be identical to the one used by gdb (which uses it
for disassembly.)

m-generic.h
generic 68020 header file. To be linked to m68k.h on a non-sun3, non-hpux
system.

m-sun3.h 68020 header file for Sun3 workstations. To be linked to m68k.h before com-
piling on a Sun3 system. This also works (somewhat) on a sun2 system, if you
call the assembler with ‘-m68010°.

m-hpux.h 68020 header file for a HPUX (system 57?) box. Which box, which version of
HPUX, etc? I don’t know.



Chapter 8: Maintaining the Assembler 41

m68k.h A hard- or symbolic- link to either m-generic.h, m-hpux.h or m-sun3.h depend-
ing on which kind of 68020 you are compiling for.

m68k-opcode.h
Opcode table for 68020. Should be identical to the one used by gdb, but may
contain more mnemonics.

pmmu. h Information for the M68851 Memory-managment-unit which is a companion
chip to the 68020. 68851 support can be optionally compiled into the assembler.
Check the code for details.

mé8k.c All the mc68020 code, in one huge, slow-to-compile file.

atof-m68k.c
Turns a flonum into a 68020 literal constant.

vax—inst.h
Vax specific file for describing Vax operands and other Vax-ish things.

vax-opcode.h
Vax opcode table.

vax.c Vax specific parts of as. Also includes the former files vax-ins-parse.c,
vax-reg-parse.c and vip-op.c.

atof-vax.c
Turns a flonum into a Vax constant.

Here is a list of the header files in the source directory. (Warning: This section may not
be very accurate. I didn’t write the header files; I just report them.) Also note that I think
many of these header files could be cleaned up or eliminated.

a.out.h  Describes the structures used to create the binary header data inside the object
file. Perhaps we should use the one in /usr/include?

as.h Defines all the globally useful things, and pulls in <stdio.h> and <assert.h>.
bignum.h Macros useful for dealing with bignums.
expr.h Structure and macros for dealing with expression()
flonum.h Structure for dealing with floating point numbers. Includes bignum.h
frags.h  Macro for appending a byte to the current frag.
hash.h Structures and function definitions for the hashing functions.
input-file.h

Function headers for the input-file.c functions.

md.h structures and function headers for things defined in the machine dependent
part of the assembler.

obstack.h
GNU systemwide include file for manipulating obstacks. Since nobody is run-
ning under real GNU yet, we include this file.

read.h Macros and function headers for reading in source files.



Chapter 8: Maintaining the Assembler 42

struct-symbol.h
Structure definition and macros for dealing with the gas internal form of a
symbol.

subsegs.h
structure definition for dealing with the numbered subsegments of the text and
data segments.

symbols.h
Macros and function headers for dealing with symbols.

write.h  Structure for doing segment fixups.



43

9 Teaching the Assembler about a New Machine

This chapter describes the steps required in order to make the assembler work with another
machine’s assembly language. This chapter is not complete, and only describes the steps in
the broadest terms. You should look at the source for the currently supported machine in
order to discover some of the details that aren’t mentioned here.

You should create a new file called machine.c, and add the appropriate lines to the
file Makefile so that you can compile your new version of the assembler. This should be
straighforward; simply add lines similar to the ones there for the four current versions of
the assembler.

If you want to be compatable with GDB, (and the current machine-dependent versions
of the assembler), you should create a file called machine-opcode.h which should contain
all the information about the names of the machine instructions, their opcodes, and what
addressing modes they support. If you do this right, the assembler and GDB can share this
file, and you’ll only have to write it once.

9.1 Functions You will Have to Write

Your file machine.c should contain definitions for the following functions and variables. It
will need to include some header files in order to use some of the structures defined in the
machine-independent part of the assembler. The needed header files are mentioned in the
descriptions of the functions that will need them.

long omagic;
This long integer holds the value to place at the beginning of the a.out file.
It is usually ‘OMAGIC’, except on machines that store additional information in
the magic-number.

char comment_chars[];
This character array holds the values of the characters that start a comment
anywhere in a line. Comments are stripped off automatically by the machine
independent part of the assembler. Note that the ‘/*’ will always start a com-
ment, and that only ‘*/’ will end a comment started by ‘*x/’.

char line_comment_chars[];
This character array holds the values of the chars that start a comment only
if they are the first (non-whitespace) character on a line. If the character ‘#
does not appear in this list, you may get unexpected results. (Various machine-
independent parts of the assembler treat the comments ‘#APP’ and ‘#NO_APP’
specially, and assume that lines that start with ‘#’ are comments.)

char EXP_CHARS[];
This character array holds the letters that can separate the mantissa and the
exponent of a floating point number. Typical values are ‘e’ and ‘E’.

char FLT_CHARS[];
This character array holds the letters that—when they appear immediately after
a leading zero—indicate that a number is a floating-point number. (Sort of how
0x indicates that a hexadecimal number follows.)



Chapter 9: Teaching the Assembler about a New Machine 44

pseudo_typeS md_pseudo_table[];
(pseudo_typeS is defined in md.h) This array contains a list of the
machine_dependent pseudo-ops the assembler must support. It contains the
name of each pseudo op (Without the leading ‘.’), a pointer to a function to
be called when that pseudo-op is encountered, and an integer argument to be

passed to that function.

void md_begin(void)
This function is called as part of the assembler’s initialization. It should do any
initialization required by any of your other routines.

int md_parse_option(char **optionPTR, int *argcPTR, char **xargvPTR)

This routine is called once for each option on the command line that the
machine-independent part of as does not understand. This function should
return non-zero if the option pointed to by optionPTR is a valid option. If it
is not a valid option, this routine should return zero. The variables argcPTR
and argvPTR are provided in case the option requires a filename or something
similar as an argument. If the option is multi-character, optionPTR should be
advanced past the end of the option, otherwise every letter in the option will
be treated as a separate single-character option.

void md_assemble(char *string)
This routine is called for every machine-dependent non-pseudo-op line in the
source file. It does all the real work involved in reading the opcode, parsing the
operands, etc. string is a pointer to a null-terminated string, that comprises
the input line, with all excess whitespace and comments removed.

void md_number_to_chars(char *outputPTR, long value,int nbytes)
This routine is called to turn a C long int, short int, or char into the series of
bytes that represents that number on the target machine. outputPTR points
to an array where the result should be stored; value is the value to store; and
nbytes is the number of bytes in ’value’ that should be stored.

void md_number_to_imm(char *outputPTR,long value,int nbytes)
This routine is identical to md_number_to_chars, except on NS32K machines.

void md_number_to_disp(char *outputPTR,long value,int nbytes)
This routine is identical to md_number_to_chars, except on NS32K machines.

void md_number_to_field(char *outputPTR,long value,int nbytes)
This routine is identical to md_number_to_chars, except on NS32K machines.

void md_ri_to_chars(struct relocation_info *riPTR,ri)
(struct relocation_info is defined in a.out.h) This routine emits the re-
location info in ri in the appropriate bit-pattern for the target machine. The
result should be stored in the location pointed to by riPTR.

char *md_atof (char type,char *outputPTR,int *sizePTR)
This routine turns a series of digits into the appropriate internal representation
for a floating-point number. type is a character from FLT_CHARS|] that de-
scribes what kind of floating point number is wanted; outputPTR is a pointer
to an array that the result should be stored in; and sizePTR is a pointer to an



Chapter 9: Teaching the Assembler about a New Machine 45

integer where the size (in bytes) of the result should be stored. This routine
should return an error message, or an empty string (not (char *)0) for success.

int md_short_jump_size;
This variable holds the (maximum) size in bytes of a short (16 bit or so)
jump created by md_create_short_jump(). This variable is used as part of
the broken-word function, and isn’t needed if the assembler is compiled with
‘~-DWORKING_DOT_WORD’.

int md_long_jump_size;
This variable holds the (maximum) size in bytes of a long (32 bit or so)
jump created by md_create_long_jump(). This variable is used as part of
the broken-word function, and isn’t needed if the assembler is compiled with
‘~-DWORKING_DOT_WORD’.

void md_create_short_jump(char *resultPTR,long from_addr,

long to_addr,fragS *frag,symbolS *to_symbol) This function creates
(stores) a jump from from_addr to to_addr in the array of bytes pointed to by
resultPTR. If this uses a type of jump that must be relocated, this function
should call fix_new() with frag and to_symbol. The jump created by this
function may be smaller than md_short_jump_size, but it must never create
a larger one. This function is used as part of the broken-word function, and
isn’t needed if the assembler is compiled with ‘-DWORKING_DOT_WORD’.

void md_create_long_jump(char *ptr,long from_addr,
long to_addr,fragS *frag,symbolS *to_symbol) This function is similar
to the previous function, md_create_short_jump(), except that it creates
a long jump instead of a short one. This function is used as part of the
broken-word function, and isn’t needed if the assembler is compiled with
‘~-DWORKING_DOT_WORD’.

int md_estimate_size_before_relax(fragS *fragPTR,int segment_type)
This function does the initial setting up for relaxation. This includes forcing
references to still-undefined symbols to the appropriate addressing modes.

relax_typeS md_relax_tablel[];
(relax_typeS is defined in md.h) This array describes the various machine de-
pendent states a frag may be in before relaxation. You will need one group of
entries for each type of addressing mode you intend to relax.

void md_convert_frag(fragS *fragPTR)
(fragS is defined in as.h) This routine does the required cleanup after relax-
ation. Relaxation has changed the type of the frag to a type that can reach
its destination. This function should adjust the opcode of the frag to use the
appropriate addressing mode. fragPTR points to the frag to clean up.

void md_end(void)
This function is called just before the assembler exits. It need not free up mem-
ory unless the operating system doesn’t do it automatically on exit. (In which
case you’ll also have to track down all the other places where the assembler
allocates space but never frees it.)



Chapter 9: Teaching the Assembler about a New Machine 46

9.2 External Variables You will Need to Use

You will need to refer to or change the following external variables from within the machine-
dependent part of the assembler.

extern char flagseen([];
This array holds non-zero values in locations corresponding to the options
that were on the command line. Thus, if the assembler was called with ‘=W’,
flagseen[’"W’] would be non-zero.

extern fragS *frag_now;
This pointer points to the current frag—the frag that bytes are currently being
added to. If nothing else, you will need to pass it as an argument to various
machine-independent functions. It is maintained automatically by the frag-
manipulating functions; you should never have to change it yourself.

extern LITTLENUM_TYPE generic_bignum[];
(LITTLENUM_TYPE is defined in bignum.h. This is where bignums-numbers
larger than 32 bits—are returned when they are encountered in an expression.
You will need to use this if you need to implement pseudo-ops (or anything
else) that must deal with these large numbers. Bignums are of segT SEG_BIG
(defined in as.h, and have a positive X_add_number. The X_add_number of a
bignum is the number of LITTLENUMS in generic_bignum that the number takes

up.

extern FLONUM_TYPE generic_floating_point_number;
(FLONUM_TYPE is defined in flonum.h. The is where flonums—floating-point
numbers within expressions—are returned. Flonums are of segT SEG_BIG, and
have a negative X_add_number. Flonums are returned in a generic format. You
will have to write a routine to turn this generic format into the appropriate
floating-point format for your machine.

extern int need_pass_2;
If this variable is non-zero, the assembler has encountered an expression that
cannot be assembled in a single pass. Since the second pass isn’t implemented,
this flag means that the assembler is punting, and is only looking for additional
syntax errors. (Or something like that.)

extern segT now_seg;
This variable holds the value of the segment the assembler is currently assem-
bling into.

9.3 External functions will you need

You will find the following external functions useful (or indispensable) when you’re writing
the machine-dependent part of the assembler.

char *frag_more(int bytes)
This function allocates bytes more bytes in the current frag (or starts a new frag,
if it can’t expand the current frag any more.) for you to store some object-file
bytes in. It returns a pointer to the bytes, ready for you to store data in.



Chapter 9: Teaching the Assembler about a New Machine 47

void fix_new(fragS *frag, int where, short size, symbolS *add_symbol, symbolS

xsub_symbol, long offset, int pcrel)
This function stores a relocation fixup to be acted on later. frag points to the
frag the relocation belongs in; where is the location within the frag where the
relocation begins; size is the size of the relocation, and is usually 1 (a single
byte), 2 (sixteen bits), or 4 (a longword). The value add_symbol — sub_symbol
+ offset, is added to the byte(s) at frag->literal[where]. If pcrel is non-zero, the
address of the location is subtracted from the result. A relocation entry is also
added to the a.out file. add_symbol, sub_symbol, and/or offset may be NULL.

char *frag_var(relax_stateT type, int max_chars, int var,

relax_substateT subtype, symbolS *symbol, char *opcode) This function
creates a machine-dependent frag of type type (usually rs_machine_
dependent). max_chars is the maximum size in bytes that the frag may
grow by; var is the current size of the variable end of the frag; subtype is
the sub-type of the frag. The sub-type is used to index into md_relax_table|]
during relaxation. symbol is the symbol whose value should be used to when
relax-ing this frag. opcode points into a byte whose value may have to be
modified if the addressing mode used by this frag changes. It typically points
into the fr_literal[] of the previous frag, and is used to point to a location that
md_convert_frag(), may have to change.

void frag_wane(fragS *fragPTR)
This function is useful from within md_convert_frag. It changes a frag to type
rs_fill, and sets the variable-sized piece of the frag to zero. The frag will never
change in size again.

segT expression(expressionS *retval)
(segT is defined in as.h; expressionS is defined in expr.h) This function parses
the string pointed to by the external char pointer input_line_pointer, and re-
turns the segment-type of the expression. It also stores the results in the ex-
pressionS pointed to by retval. input_line_pointer is advanced to point past
the end of the expression. (input_line_pointer is used by other parts of the
assembler. If you modify it, be sure to restore it to its original value.)

as_warn(char *message,...)
If warning messages are disabled, this function does nothing. Otherwise, it
prints out the current file name, and the current line number, then uses fprintf
to print the message and any arguments it was passed.

as_fatal(char *message,...)
This function prints out the current file name and line number, prints the word
‘FATAL:’, then uses fprintf to print the message and any arguments it was
passed. Then the assembler exits. This function should only be used for serious,
unrecoverable errors.

void float_const(int float_type)
This function reads floating-point constants from the current input line, and
calls md_atof to assemble them. It is useful as the function to call for the
pseudo-ops ‘.single’, ‘.double’, ‘.float’, etc. float_type must be a character
from FLT_CHARS.



Chapter 9: Teaching the Assembler about a New Machine 48

void demand_empty_rest_of_line(void);
This function can be used by machine-dependent pseudo-ops to make sure the
rest of the input line is empty. It prints a warning message if there are additional
characters on the line.

long int get_absolute_expression(void)
This function can be used by machine-dependent pseudo-ops to read an absolute
number from the current input line. It returns the result. If it isn’t given an
absolute expression, it prints a warning message and returns zero.

9.4 The concept of Frags

This assembler works to optimize the size of certain addressing modes. (e.g. branch in-
structions) This means the size of many pieces of object code cannot be determined until
after assembly is finished. (This means that the addresses of symbols cannot be determined
until assembly is finished.) In order to do this, as stores the output bytes as frags.

Here is the definition of a frag (from as.h)

struct frag

{
long int fr_fix;
long int fr_var;
relax_stateT fr_type;
relax_substateT fr_substate;
unsigned long fr_address;
long int fr_offset;
struct symbol *fr_symbol;
char *fr_opcode;
struct frag *fr_next;
char fr_literall];

fr_fix is the size of the fixed-size piece of the frag.
fr_var is the maximum (?) size of the variable-sized piece of the frag.

fr_type is the type of the frag. Current types are: rs_fill rs_align rs_org
rs_machine_dependent

fr_substate
This stores the type of machine-dependent frag this is. (what kind of addressing
mode is being used, and what size is being tried /will fit/etc.

fr_address fr_address is only valid after relaxation is finished. Before relaxation, the only
way to store an address is (pointer to frag containing the address) plus (offset
into the frag).

fr_offset This contains a number, whose meaning depends on the type of the frag. for
machine_dependent frags, this contains the offset from fr_symbol that the frag
wants to go to. Thus, for branch instructions it is usually zero. (unless the
instruction was ‘jba foo+12’ or something like that.)



Chapter 9: Teaching the Assembler about a New Machine 49

fr_symbol for machine_dependent frags, this points to the symbol the frag needs to reach.

fr_opcode

fr_next

This points to the location in the frag (or in a previous frag) of the opcode for
the instruction that caused this to be a frag. fr_opcode is needed if the actual
opcode must be changed in order to use a different form of the addressing mode.
(For example, if a conditional branch only comes in size tiny, a large-size branch
could be implemented by reversing the sense of the test, and turning it into a
tiny branch over a large jump. This would require changing the opcode.)

fr_literal is a variable-size array that contains the actual object bytes. A frag
consists of a fixed size piece of object data, (which may be zero bytes long),
followed by a piece of object data whose size may not have been determined
yet. Other information includes the type of the frag (which controls how it is
relaxed),

This is the next frag in the singly-linked list. This is usually only needed by
the machine-independent part of as.

[end of manual]



Short Contents

1 Overview, Usage . . ..o oottt 1
2 S MEAX e 8
3 (Sub)Segments & Relocation .. .......... .. ... .. ..... 13
4 Symbols . ..o 17
O EXPressions . ..........iii 20
6  Assembler Directives....... ... .. i 22
7  Machine Dependent Features . .......................... 28
8  Maintaining the Assembler . ........ .. ... ... . ... ..... 37
9  Teaching the Assembler about a New Machine .. ........... 43



Table of Contents

1 Overview, Usage..........ccoviiiiiiiiiinn.. 1
1.1 Notation ....ooonn e 1
1.2 as, the GNU Assembler...... ..., 2
1.3 Command Line Synopsis. ..., 3

1.3.1 Switches. ... 3
1.4 Input File(s).....ooonimii 3
1.4.1 Input Filenames and Line-numbers......................... 3
1.5 Output (Object) File ... i 4
1.6 Error and Warning Messages. ..o, 4
1.7 Optional Switches .......... i 4
1.7.1 -f Works Faster ...... .o 4
1.7.2 -G Includes GDB Symbolic Information.................... 5)
1.7.3 -1 Shortens Long Undefined Symbols ....................... 5
1.7.4 -L Includes Local Labels................. oot )
1.7.5 -m{c}680{0,1,2}0 Different Kinds of 68000 ................. 5
1.7.6 -o Names the Object File ....... ... oL, 5
1.7.7 -R Folds Data Segment into Text Segment ................. 6
1.7.8 -W Represses Warnings.........cccooveiiniiiiineeeee... 6
1.7.9 Useless (but Compatible) Switches......................... 6
1.8 Special Features to support Compilers .......................... 7

2 Syntax........... 8
2.1 The Pre-processor ... ... .oou e 8
2.2 Whitespace . ...ooon 8
2.3 COmMMENtS. ..ottt 8
2.4 Symbols. ... 9
2.5 StEAEMENES . . oottt 9
2.6 COonStantS . . ..ot 10

2.6.1 Character Constants............ooeiiiiiiiieiiiie ... 10
2.6. 1.1 Strings ...onuutiii e 10
2.6.1.2 Characters..........ouuiuieiini i 11

2.6.2 Number Constants. .........ouuieiiineiiieiinennn.. 11
2.6.2.1 INbegers. ...t 11
2.6.2.2 Bignums..........oiiiiiiii 11
2.6.2.3 Flonums.........ccoiuiiiiiiii i 11

3 (Sub)Segments & Relocation.................. 13

3.1 Segments. . ... 14
311 Id Segments. .. ....ovit i 14
3.1.2 Mythical Segments ... 15

3.2 Sub-Segments ........... 16

3.3 BssSegment. ... 16



4 Symbols...... ... 17
4.1 Labels. ... 17
4.2 Giving Symbols Other Values............. ..., 17
4.3 Symbol Names . ... 17

4.3.1 Local Symbol Names ..., 17
4.4 Symbol Attributes....... ... 18
44T Value. ..o 18
442 TYPE e e 18
4421 N.EXT Dbit ..o 19
4422 N.TYPEDbits....coooi s 19
4.4.2.3 N_STAB bits .. voiei e 19

4.4.3 Desc(TIPOr) ..o veit e 19
4.4.4 Other ... 19
4.5 The Special Dot Symbol......... ... ... .. i 19
Expressions.......... ... .. 20
5.1 Empty EXpressions . ..... ..o 20
5.2 Integer EXpPressions. ........oouueiiiiiiiiii i 20
5.2.1 Primaries....... ... 20
5.2.2  OPErators .. ...ouuit it e 20
5.2.3 Unary Operators .........ccouuuieiiniiiiniiinnieann. 20
5.2.4 Binary Operators..........oouiiiiiiiiiiiiiiiii.. 20
Assembler Directives........................... 22
6.1 abort ... 22
6.2 .align absolute-expression , absolute-expression................. 22
6.3 .ASCIL SETINGS . .« v vttt ettt e 22
6.4 .ASCIZ STIINZS <« oo oot 22
6.5 Dyte eXPIreSSIONS ... .....uutii i 22
6.6 .comm symbol ,length ......... . ... . . i 22
6.7 .data subsegment............. .. 22
6.8 .desc symbol, absolute-expression ............ ..., 22
6.9 .double lonums ........ ... 23
6.10  file String . ....oouou 23
6.11 .fill repeat , size , value....... ... ..o 23
6.12 .float flonums ...... ... . 23
6.13 .gdbbeg absolute-expression ..............couiiiiiiiiiiiia 23
6.14 .gdbblock block-number , offset............... ... ... ... ..., 23
6.15 .gdbend absolute-expression ................c.cciiiiiiiiiiiiia.. 24
6.16 .gdbsym symbol , offset ...........c i 24
6.17 .global symbol....... ... ... 24
6.18 Nt eXPreSSIONS. ... oovvvr e e 24
6.19 .lcomm symbol , length............. ... ... 24
6.20 .line logical line number ........... ... ... i i 24
6.21  .long eXPressions ...............ee i 24
6.22  .Isym Symbol, eXpression .............iiiiii i 24

6.23  .octa DIgnums ....... ..o 25

iii



6.24 .org new-Ic , fill ... 25
6.25 .quad BIgnums ............. 25
6.26 .set Symbol, eXPreSsSion ..........ouuuiiiiiiiiiii i 25
6.27  .short expressions .............coouiiiiiiii i 25
6.28 .space size , fill ... 25
6.29 .stabd, .stabn, .stabs........... ... 26
6.30 .text subsegment ............ .. 26
6.31  .WOTrd EXPIeSSIONS. . .. v vttt et ettt 26
6.32 Deprecated Directives ..........ccoviiiiiiiiiiiiii i 27
7 Machine Dependent Features................. 28
% Y P 28
7.1.1 Floating Point........... .. . . 28
7.1.2 Machine Directives ... 28
7.1.2.1 dfloat lonums. ... 28
7.1.2.2 fHoat flonums ..........ccooiiiiiiiiii i 28
7.1.2.3 .gfloat flonums........... ... .. i 28
7.1.2.4 hfloat flonums........ ..o 28

T.1.3 OPCOdes. .ot 28
7.1.4 Branch Improvement .............. ... ... 29
715 0OPErands . ...ooun e 30
T2 68020 ...ttt e 30
T2.1  SYNbAK oot 30
7.2.2 Floating Point........ ... . i 31
7.2.3 Machine Directives ...........ccooiiiii i 31
724 OPCOAES. .o 31
RS T 3o 32
T4 Intel 80386 .. ..ottt 32
7.4.1 AT&T Syntax versus Intel Syntax .............. ... ..... 32
7.4.2 Opcode Naming .........o.uoiiiiieiiiii ... 32
7.4.3 Register Naming............coo i, 33
7.4.4 Opcode Prefixes ..o 33
7.4.5 Memory References...............coiiiiiiiiiiiiii 34
7.4.6 Handling of Jump Instructions............................ 35
7.4.7 Floating Point....... ... 35
TA8 NOES. .. e 36

8 Maintaining the Assembler.................... 37
8.1 Design .o oottt 37
8.2 Deprecated Feature(?)s. ... 37
8.3 Bugs, Ideas, Further Work......... ... ... i, 38
8ud  SOUTCES. . .ttt e 38

iv



9 Teaching the Assembler about a New Machine .. 43

9.1 Functions You will Have to Write.......... ..., 43
9.2 External Variables You will Need to Use ....................... 46
9.3 External functions will youneed ............. ... ... . 46

9.4 The concept of Frags ... 48



	1 Overview, Usage
	Notation
	as, the GNU Assembler
	Command Line Synopsis
	Switches

	Input File(s)
	Input Filenames and Line-numbers

	Output (Object) File
	Error and Warning Messages
	Optional Switches
	-f Works Faster
	-G Includes GDB Symbolic Information
	-l Shortens Long Undefined Symbols
	-L Includes Local Labels
	-m{c}680{0,1,2}0 Different Kinds of 68000
	-o Names the Object File
	-R Folds Data Segment into Text Segment
	-W Represses Warnings
	Useless (but Compatible) Switches

	Special Features to support Compilers

	2 Syntax
	The Pre-processor
	Whitespace
	Comments
	Symbols
	Statements
	Constants
	Character Constants
	Strings
	Characters

	Number Constants
	Integers
	Bignums
	Flonums



	3 (Sub)Segments & Relocation
	Segments
	ld segments
	Mythical Segments

	Sub-Segments
	Bss Segment

	4 Symbols
	Labels
	Giving Symbols Other Values
	Symbol Names
	Local Symbol Names

	Symbol Attributes
	Value
	Type
	N_EXT bit
	N_TYPE bits
	N_STAB bits

	Desc(riptor)
	Other

	The Special Dot Symbol

	5 Expressions
	Empty Expressions
	Integer Expressions
	Primaries
	Operators
	Unary Operators
	Binary Operators


	6 Assembler Directives
	.abort
	.align absolute-expression , absolute-expression
	.ascii strings
	.asciz strings
	.byte expressions
	.comm symbol , length
	.data subsegment
	.desc symbol, absolute-expression
	.double flonums
	.file string
	.fill repeat , size , value
	.float flonums
	.gdbbeg absolute-expression
	.gdbblock block-number , offset
	.gdbend absolute-expression
	.gdbsym symbol , offset
	.global symbol
	.int expressions
	.lcomm symbol , length
	.line logical line number
	.long expressions
	.lsym symbol, expression
	.octa bignums
	.org new-lc , fill
	.quad bignums
	.set symbol, expression
	.short expressions
	.space size , fill
	.stabd, .stabn, .stabs
	.text subsegment
	.word expressions
	Deprecated Directives

	7 Machine Dependent Features
	Vax
	Floating Point
	Machine Directives
	.dfloat flonums
	.ffloat flonums
	.gfloat flonums
	.hfloat flonums

	Opcodes
	Branch Improvement
	operands

	68020
	Syntax
	Floating Point
	Machine Directives
	Opcodes

	32xxx
	Intel 80386
	AT&T Syntax versus Intel Syntax
	Opcode Naming
	Register Naming
	Opcode Prefixes
	Memory References
	Handling of Jump Instructions
	Floating Point
	Notes


	8 Maintaining the Assembler
	Design
	Deprecated Feature(?)s
	Bugs, Ideas, Further Work
	Sources

	9 Teaching the Assembler about a New Machine
	Functions You will Have to Write
	External Variables You will Need to Use
	External functions will you need
	The concept of Frags


