
4–1SAT Format � 6.0

Chapter 4.
Sat Functions

Topic: Ignore

Introduction
Topic: Ignore

This chapter describes the ACIS functions that can have data appear in the SAT file. The
functions are each documented in reference templates that provide a minimal description of
each function and their related SAT data. The reference templates are organized
alphabetically by function name.

Not all ACIS functions are documented. Only those functions that can potentially read the
content of a SAT file are included.

api_get_file_info
Function: SAT Save and Restore

Action: Gets header info from the last restored file.

Prototype: outcome api_get_file_info (
FileInfo& info // file information

// returned
);

Description: The API fills in a FileInfo class with the header information from the last
restored file. It does not alter the model.

api_get_save_version
Function: SAT Save and Restore

Action: Gets the current save file format version.

Prototype: outcome api_get_save_version (
int& major_version, // major version returned

// e.g., 1
int& minor_version // minor version returned

// e.g., 5
);

4

Spatial Technology Inc.

4–2 SAT Format � 6.0

Description: This API gets the output file format.

api_restore_entity_list
Function: SAT Save and Restore

Action: Restores an entity_list from disk.

Prototype: outcome api_restore_entity_list (
FILE* file_ptr, // open file descriptor
logical text_mode, // TRUE if file is text,

// FALSE if binary
ENTITY_LIST& entities // returns entities made
);

Description: The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

api_restore_entity_list_file
Function: SAT Save and Restore

Action: Restores an entity_list from disk.

Prototype: outcome api_restore_entity_list_file (
FileInterface* file_ptr, // open file descriptor
ENTITY_LIST& entities // returns entities

// restored
);

Description: This API restores a list of entities from a file. The file_ptr points to an
open file positioned at the point where this API begins the restore entity.
When the restore is complete, the file will be correctly positioned at the
end of the entity save. This allows an application to restore multiple
entities intermixed with other application specific data in a single save
file.

4

Spatial Technology Inc.

4–3SAT Format � 6.0

api_restore_entity_list_with_history
Function: SAT Save and Restore, History and Roll

Action: Restores an entity_list from disk.

Prototype: outcome api_restore_entity_list_with_history (
FILE* file_ptr, // open file

// descriptor
logical text_mode, // TRUE if file is

// text, FALSE if
// binary

ENTITY_LIST& entities, // returns entities
// made

HISTORY_STREAM_LIST& hslist,// returns history
// streams made

DELTA_STATE_LIST& dslist // returns delta
// states made

);

Description: The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

api_restore_entity_list_with_history_file
Function: SAT Save and Restore, History and Roll

Action: Restores an entity_list from disk.

Prototype: outcome api_restore_entity_list_with_history_file (
FileInterface* file_ptr, // open file

// descriptor
ENTITY_LIST& entities, // returns entities

// made
HISTORY_STREAM_LIST& hslist,// returns history

// streams made
DELTA_STATE_LIST& dslist // returns delta

// states made
);

Description: The file pointer is an open file positioned at the point where this API
begins the restore entity. When the restore is complete, the file will be
correctly positioned at the end of the save entity. This allows an
application to restore multiple entities intermixed with other application
specific data in a single save file.

4

Spatial Technology Inc.

4–4 SAT Format � 6.0

api_save_entity_list
Function: SAT Save and Restore, Entity, Part Management

Action: Writes a list of entities to disk as text or binary.

Prototype: outcome api_save_entity_list (
FILE* file_ptr, // open file

// descriptor
logical text_mode, // TRUE if file is text,

// FALSE if binary
ENTITY_LIST const& // returns entities

entity_list // to save
);

Description: The file pointer argument should be an open file positioned at the point
where this API begins the entity save. When the save is complete, the file
will be correctly positioned at the end of the entity save; therefore, an
application can save multiple bodies intermixed with other application
specific data in a single save file.

api_save_entity_list_file
Function: SAT Save and Restore

Action: Writes a list of entities to disk in text or binary format.

Prototype: outcome api_save_entity_list_file (
FileInterface* file_ptr, // open file

// descriptor
ENTITY_LIST const& entity_list // returns

// entities to be
// saved

);

Description: This API creates the file pointer argument an open file positioned at the
point where this API begins the entity save. When the save is complete,
the file will be correctly positioned at the end of the entity save; therefore,
an application can save multiple bodies intermixed with other application
specific data in a single save file.

4

Spatial Technology Inc.

4–5SAT Format � 6.0

api_save_entity_list_with_history
Function: SAT Save and Restore, History and Roll

Action: Writes a list of entities to disk as text or binary.

Prototype: outcome api_save_entity_list_with_history (
FILE* file_ptr, // open file

// descriptor
logical text_mode, // TRUE if file is

// text, FALSE if
// binary

ENTITY_LIST const& // entities to
entity_list, // save

HISTORY_STREAM_LIST& hslist,// history streams to
// save

DELTA_STATE_LIST& dslist // returns delta
// states saved

);

Description: The file pointer argument should be an open file positioned at the point
where this API begins the entity save. When the save is complete, the file
will be correctly positioned at the end of the entity save; therefore, an
application can save multiple bodies intermixed with other application
specific data in a single save file.

api_save_entity_list_with_history_file
Function: SAT Save and Restore, History and Roll

Action: Writes a list of entities to disk as text or binary.

Prototype: outcome api_save_entity_list_with_history_file (
FileInterface* file_ptr, // open file

// descriptor
ENTITY_LIST const& entity_list, // entities to

// save
HISTORY_STREAM_LIST& hslist, // history

// streams to
// save

DELTA_STATE_LIST& dslist // returns delta
// states saved

);

4

Spatial Technology Inc.

4–6 SAT Format � 6.0

Description: The file pointer argument should describe an open file positioned at the
point where this API begins the entity save. When the save is complete,
the file will be correctly positioned at the end of the entity save; therefore,
an application can save multiple bodies intermixed with other application
specific data in a single save file.

api_save_version
Function: SAT Save and Restore

Action: Sets the save file format.

Prototype: outcome api_save_version (
int major_version, // release number;

// e.g., 1
int minor_version // version number;

// e.g., 5
);

Description: This API sets the output file format. For Release 1.5 and above, the system
can output data in a format that a previous version can read. This is only
TRUE for objects that are compatible in the previous release.

api_set_file_info
Function: SAT Save and Restore

Action: Sets header info to be written to ACIS save files.

Prototype: outcome api_set_file_info (
unsigned long, // mask indicating fields

// to set
FileInfo const& info // info to be set
);

Description: The API sets the information to be written to the header of later saved
files. Does not alter the model.

BDY_GEOM_restore
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* BDY_GEOM_restore();

4

Spatial Technology Inc.

4–7SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data from a save file. This uses a dispatch table, whereby the
proper restore functions have been previously registered. At runtime, the
proper restore routine is called.

if (form == PCURVE_BOUNDARY)
BDY_GEOM_PCURVE::restore Routine to perform actual work.

else if (form == PLANE_BOUNDARY)
BDY_GEOM_PLANE::restore Routine to perform actual work.

else if (form == CIRCLE_BOUNDARY)
BDY_GEOM_CIRCLE::restore Routine to perform actual work.

else if (form == DEGENERATE_BOUNDARY)
BDY_GEOM_DEG::restore Routine to perform actual work.

begin_local_savres
Function: SAT Save and Restore

Action: Starts process to allow individual items to be written to a file for
debugging.

Prototype: void begin_local_savres (
FILE* fp, // file pointer
int major // major release number

= –1,
int minor // minor release number

= –1
);

Description: Refer to action.

bs2_curve_restore
Function: Spline Interface, Construction Geometry, SAT Save and Restore

Action: Restores a curve.

Prototype: bs2_curve bs2_curve_restore ();

4

Spatial Technology Inc.

4–8 SAT Format � 6.0

Description: Reads back a representation of a parametric curve written by
bs2_curve_save and construct a duplicate of the original curve. Reading
uses routines read_int, read_long, read_real, and read_string defined in
kernutil/fileio/fileio.hxx.

bs_2_3_spline_restore Information to restore from SAT

bs3_curve_restore
Function: Spline Interface, Construction Geometry, SAT Save and Restore

Action: Restores a curve from a file.

Prototype: bs3_curve bs3_curve_restore ();

Description: Reads back a representation of a parametric curve written by
bs3_curve_save and constructs a duplicate of the original curve. Reading
uses routines read_int, read_long, read_real, and read_string defined in
kernutil/fileio/fileio.hxx.

bs_2_3_spline_restore Restore spline

bs3_surface_restore
Function: Spline Interface, Construction Geometry

Action: Restores a saved surface.

Prototype: bs3_surface bs3_surface_restore ();

Description: Reads back a representation of a parametric surface as written by
bs3_surface_save, and creates a duplicate of the original surface.

Reading uses routines read_int, read_long, read_real, and read_string
that are defined in kernutil/fileio/fileio.hxx.

if (restore_version_number < SPLINE_VERSION)
if (read_int() == –1)

// First check that there is a surface to read.
read_int stype
read_int save_dim
read_int u degree
read_int v degree
read_int save nu span

4

Spatial Technology Inc.

4–9SAT Format � 6.0

read_int save nv span
read_int rat u
read_int rat v
read_int form u
read_int form v
read_int pole u
read_int pole v

else
// New style header. There are keywords instead of numbers
// where appropriate, and redundant values are missing.
read_id This class does not save any data
if (strcmp(id_string, type_nullbs) == 0)

// return NULL;
else if (strcmp(id_string, type_nubs) == 0)

// rational = FALSE;
else if (strcmp(id_string, type_nurbs) == 0)

// rational = TRUE;
else

// sys_error(UNKNOWN_BS_SURFACE);
read_int u degree
read_int v degree
if (rational)

read_id id string for rational_u or
rational_v

if (restore_version_number < CONSISTENT_VERSION)
read_id id string for formu
read_id id string for formv
read_id id string for poleu
read_id id string for polev

else
read_enum Read enumeration bs3_surf_form

for form_map for form u
read_enum Read enumeration bs3_surf_form

for form_map for form v
read_enum Read enumeration sing_map for

pole u
read_enum Read enumeration sing_map for

pole v
// Read the knots and multiplicities, allocating space for
// the knot values as we go, and accumulating the total of
// knots and multiplicities.
read_int Number of knots in u
if (restore_version_number >= SPLINE_VERSION)

4

Spatial Technology Inc.

4–10 SAT Format � 6.0

read_int Number of knots in v
for (int i = 0; i < n_uknots; i++)

read_real u knot
read_int u multiplicity

if (restore_version_number < SPLINE_VERSION)
read_int Number of knots in v

for (i = 0; i < n_vknots; i++)
read_real v knot
read_int v multiplicity

// Finally read the control point values.
for (row_start = bs–>node0;

row_start != NULL;
row_start = row_start–>vnext)
for (ag_snode *this_node = row_start;

this_node != NULL;
this_node = this_node–>unext)
for (i = 0; i < dimh; i++)

read_real node Pw weight

bs_2_3_spline_restore
Function: Spline Interface, SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: ag_spline* bs_2_3_spline_restore (
int dim // dimensionality
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

4

Spatial Technology Inc.

4–11SAT Format � 6.0

if (restore_version_number < INTCURVE_VERSION)
 // Old style – lots of numbers.
if (read_int() == –1)

// First check that there is a curve to read – if so the
// first item is 0, otherwise –1.
// return NULL;

read_int c type
read_int save dimension
read_int degree
read_int save n span
read_int rational
read_int form

else
// New style header. There are keywords instead of numbers
// where appropriate, and redundant values are missing.
read_id type: nullbs, nubs, nurbs
if (strcmp(id_string, type_nullbs) == 0)

// return NULL;
else if (strcmp(id_string, type_nubs) == 0)

// rat = 0;
else if (strcmp(id_string, type_nurbs) == 0)

// rat = 1;
else

// sys_error(UNKNOWN_BS_CURVE)
read_int degree
if (restore_version_number < CONSISTENT_VERSION)

read_id form
else

read_enum form_map
// Read the knots and multiplicities
read_int Number of knots
for (int i = 0; i < n_knots; i++)

read_real knot
read_int multiplicity

// Finally read the control point values
// int dimh = rat ? dim + 1 : dim;
for (this_node = bs–>node0;

this_node != NULL;
this_node = this_node–>next)
for (i = 0; i < dimh; ++i)

read_real Control point value

4

Spatial Technology Inc.

4–12 SAT Format � 6.0

bs_2_3_spline_save
Function: Spline Interface, SAT Save and Restore

Action: Writes a spline to the system save file.

Prototype: void bs_2_3_spline_save (
ag_spline* bs, // input curve
int dim // curve dimension
);

Description: This function is also called by bs2_curve_save to save a 2D spline.

coedge_end_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the end position of the
coedge.

Prototype: unit_vector coedge_end_outdir (
COEDGE* coedge, // coedge to examine
transf const& ctrans // transform to apply

=*(transf*)NULL_REF, // to coedge
FACE* face // surface to

= NULL, // intersect
transf const& ftrans // transform to apply

=*(transf*)NULL_REF // to surface
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parametrization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.

4

Spatial Technology Inc.

4–13SAT Format � 6.0

coedge_mid_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the mid position of the
coedge.

Prototype: unit_vector coedge_mid_outdir (
COEDGE* coedge, // coedge to examine
transf const& ctrans // transform to apply

=*(transf*)NULL_REF, // to coedge
FACE* face // surface to

= NULL, // intersect
transf const& ftrans // transform to apply

=*(transf*)NULL_REF // to surface
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces. 4

Spatial Technology Inc.

4–14 SAT Format � 6.0

coedge_param_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the parameter position
of the coedge.

Prototype: unit_vector coedge_param_outdir (
COEDGE* coedge, // coedge to examine
double coedge_param, // parameter along coedge
transf const& ctrans // transform to apply

=*(transf*)NULL_REF, // to coedge
FACE* face // surface to

= NULL, // intersect
transf const& ftrans // transform to apply

=*(transf*)NULL_REF // to surface
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.

4

Spatial Technology Inc.

4–15SAT Format � 6.0

coedge_start_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the starting position of
the coedge.

Prototype: unit_vector coedge_start_outdir (
COEDGE* coedge, // coedge to examine
transf const& ctrans // transform to apply

=*(transf*)NULL_REF, // to coedge
FACE* face // surface to

= NULL, // intersect
transf const& ftrans // transform to apply

=*(transf*)NULL_REF // to surface
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.

copy_body_from_body
Function: SAT Save and Restore

Action: Copies a body.

Prototype: BODY* copy_body_from_body (
BODY* body // body to copy
);

4

Spatial Technology Inc.

4–16 SAT Format � 6.0

Description: Refer to action.

copy_entity_from_entity
Function: SAT Save and Restore

Action: Copies an entity structure.

Prototype: ENTITY* copy_entity_from_entity (
ENTITY* entity // entity to copy
);

Description: Refer to action.

dispatch_restore_cu
Function: SAT Save and Restore

Action: Determines which curve type to restore and calls its restore method.

Prototype: curve* dispatch_restore_cu (
char* subtype // curve type
);

Description: This function is never called directly by an application. Its purpose is to
search through the list of possible curve types and then to call the
appropriate restore method for the curve type passed in.

Given a curve subtype, scan the subtype list, and call the appropriate
restore routine. If the type unknown, flag an error. This version is only
used for old (pre–V1.8/R1.3) save files, which used the integer curve type
rather than the textual name.

No data This function does not save any
data, but does route to the
appropriate restore function in the
curve definition table.

dispatch_restore_su
Function: SAT Save and Restore

Action: Determines which surface type to restore and calls its restore method.

Prototype: surface* dispatch_restore_su (
char* subtype // surface type
);

4

Spatial Technology Inc.

4–17SAT Format � 6.0

Description: This function is never called directly by an application. Its purpose is to
search through the list of possible surface types and then to call the
appropriate restore method for the surface type passed in.

No data This function does not save any
data, but does route to the
appropriate restore function in the
surface definition table.

dispatch_restore_subtype
Function: SAT Save and Restore

Action: Determines which subtype to restore and calls its restore method.

Prototype: subtype_object* dispatch_restore_subtype (
char const* postfix, // postfix for name
char const* name // subtype name
);

Description: This function is never called directly by an application. Its purpose is to
search through the list of possible subtypes and then to call the appropriate
restore method for the subtype passed in.

The two argument prototype calls the overloaded
dispatch_restore_subtype accepting three arguments.

This routine is called when it is known that a subtype follows. It
determines the beginning of the subtype definition. Then, based on the
name used for the subtype identifier, it calls the appropriate restore
routine for that subtype. In general, this is used for subtypes defined from
int_cur and spl_sur.

Restore mechanism for subtype objects. Static declarations of objects of
this class form themselves into a table containing the external (string)
identifier of the particular subtype, together with a pointer to the correct
restore routine. The generic restore routine reads the external identifier,
and switches according to the table.

The table will probably be short, so can be simply a linear list, for ease of
implementation. We keep this implementation private, so that we might
some time have a more exotic version.

4

Spatial Technology Inc.

4–18 SAT Format � 6.0

read_subtype_start Marker indicating beginning of a
subtype. In the SAT file, this is a
“{”

read_id The name of the subclass identifier
if (strncmp(name, null_id, strlen(null_id)) == 0)

read_subtype_end Marker indicating ending of a
subtype. In the SAT file, this is a
“}”

else if (strcmp(name, ref_id) == 0)
read_int Index within the save for for this

ref_id.
read_subtype_end Marker indicating ending of a

subtype. In the SAT file, this is a
“}”

else
// Not a reference, so scan the list. First try for the id as
// read, then if unsuccessful try appending the given postfix
// and look again.
restore_subtype_def *this_def = search_subtype_table(name)
// Now read the object.
if (this_def != NULL)

this_def–>restore This class does not save any data
read_subtype_end Marker indicating ending of a

subtype. In the SAT file, this is a
“}”

else if (unknown_types_ok() && bra_read)
// No match found. Read it as unknown data, up to the matching
// closing bracket.
restore_unknown_subtype(name)

else
// No match found, and we are in binary mode, or the text file
// is an old–style one without brackets. This is an error,
// as we cannot tell the end of the unknown data.4

Spatial Technology Inc.

4–19SAT Format � 6.0

edge_end_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the end position of the
edge.

Prototype: unit_vector edge_end_outdir (
EDGE* edge, // edge to test
transf const& etrans, // edge transform
FACE* face, // surface to test
transf const& ftrans // surface transform

=*(transf*)NULL_REF, // to edge coord system
pcurve const& pcu // supply for speed if

=*(pcurve*)NULL_REF // surface is parametric
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces. 4

Spatial Technology Inc.

4–20 SAT Format � 6.0

edge_mid_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the mid position of the
edge.

Prototype: unit_vector edge_mid_outdir (
EDGE* edge, // edge to test
transf const& etrans, // edge transform
FACE* face, // surface to test
transf const& ftrans // surface transform

=*(transf*)NULL_REF, // to edge coord system
pcurve const& pcu // supply for speed if

=*(pcurve*)NULL_REF // surface is parametric
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.4

Spatial Technology Inc.

4–21SAT Format � 6.0

edge_param_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the parameter position
of the edge.

Prototype: unit_vector edge_param_outdir (
EDGE* edge, // edge to test
double edge_param, // parameter
transf const& etrans, // edge transform
FACE* face, // surface to test
transf const& ftrans // surface transform

=*(transf*)NULL_REF, // to edge coord system
pcurve const& pcu // supply for speed if

=*(pcurve*)NULL_REF // surface is parametric
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.

4

Spatial Technology Inc.

4–22 SAT Format � 6.0

edge_start_outdir
Function: Construction Geometry

Action: Returns the direction outwards from the surface at the start position of the
edge.

Prototype: unit_vector edge_start_outdir (
EDGE* edge, // edge to test
transf const& etrans, // edge transform
FACE* face, // surface to test
transf const& ftrans // surface transform

=*(transf*)NULL_REF, // to edge coord system
pcurve const& pcu // supply for speed if

=*(pcurve*)NULL_REF // surface is parametric
);

Description: This routine finds a direction outwards from the surface at a position on a
coedge. This is usually the normal to the surface, but if the point is a
singularity of the surface (like the apex of a cone or one apex of a
degenerate torus), it just returns some direction guaranteed to point
outwards from the surface (and not tangential, except for a vortex).

The start and end are obvious. The mid point is defined to be the one at
middle parameter. For a parametric point, the parameter value corresponds
to the parameterization of the coedge.

If the first transf is given, the result is for a coedge of a body transformed
by that transf. If a face is given, the coedge is simply assumed to lie on the
face, otherwise it looks for the face owning the loop of the coedge.

If the second transformation is given, this is the transform required to
translate the face geometry into the same coordinate system as the
untransformed coedge geometry. It should only be non–null if the face is
given, and is used primarily in Boolean operations when testing a graph
coedge against body faces.

end_local_savres
Function: SAT Save and Restore

Action: Terminates local saving.

Prototype: void end_local_savres ();

Description: Refer to action.

4

Spatial Technology Inc.

4–23SAT Format � 6.0

ENTITY_restore_data
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: ENTITY* ENTITY_restore_data ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

ENTITY_restore_data works just like any derived class’ restore function,
but it is called explicitly by restore_entity_from_file if no id string is
recognized. ENTITY::restore_common is also just like one for a derived
class, except that, of course, it cannot call the function for its parent class.

ENTITY::restore_common Calls the common restore method
for the entities.

find_entity_code
Function: SAT Save and Restore

Action: Gets the integer identifier of the entity described by the given external
identifier.

Prototype: int find_entity_code (
const char* entity_str // external ID
);

Description: The identifier is also truncated to just the portion that cannot be matched,
separating the “–” unrecognized portion form the recognized part. If
nothing is recognized, this method returns 0 and the input string does not
change.

find_restore_def
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: restore_def const* find_restore_def (
char* entity_str // string to search on
);

4

Spatial Technology Inc.

4–24 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Searches the restore definition structure to find the entry corresponding to
a given external ENTITY identifier string. The string consists of
identifiers separated by “–”, with base identifier last and leaf identifier
first. It should contain no white space. The function finds the restore
definition object which matches the longest right–to–left sequence of
identifiers, and modifies the input string by replacing the “–” immediately
before the matched string with a terminator, or making the whole string
empty if it is all matched.

No data This function does not save any
data, but does route to the
appropriate restore function in the
definition table.

get_file_info
Function: SAT Save and Restore

Action: Retrieves information about file.

Prototype: void get_file_info (
FileInfo& info // file information
);

Description: Refer to action.

get_save_file_version
Function: SAT Save and Restore

Action: Gets the save / restore file version.

Prototype: void get_save_file_version (
int& major, // major release number
int& minor // minor release number
);

4

Spatial Technology Inc.

4–25SAT Format � 6.0

Description: Refer to action.

get_savres_file
Function: SAT Save and Restore

Action: Gets the file interface object corresponding to the current SAT file.

Prototype: FileInterface* get_savres_file ();

Description: Refer to Action.

get_savres_file_interface
Function: SAT Save and Restore

Action: Gets the save / restore file interface in use.

Prototype: FileInterface* get_savres_file_interface (
FILE* file_ptr, // file pointer
logical mode_text // SAT or SAB
);

Description: Refer to action.

LW_REFINEMENT_restore_data
Function: Faceting, SAT Save and Restore

Action: Saves data for saving and restoring refinements.

Prototype: ENTITY* LW_REFINEMENT_restore_data ();

Description: This is used for saving and restoring refinements. This should not be
called directly.

ENTITY::restore_common REFINEMENT is derived from
ENTITY. Create an instance of this
class but then use the inherited
ENTITY restore_common method.

read_int Minimum level (ignored)
read_int maximum grid lines
read_real flatness tolerance
read_real silhouette tolerance
read_real surface tolerance
read_real normal tolerance
read_real pixel area tolerance
read_real grid aspect ratio
read_int mode

4

Spatial Technology Inc.

4–26 SAT Format � 6.0

read_array
Function: SAT Save and Restore

Action: Reads an of array indices.

Prototype: ENTITY* read_array (
ENTITY* array[], // array of entities
int i // number of entities
);

Description: This routine is used as part of restore from a SAT or SAB file. It returns an
array of indices or NULL for negative index.

if (i < 0)
return NULL

else
return array[i] Array of indices.

read_char
Function: SAT Save and Restore

Action: Reads a character written with C printf format “%c”.

Prototype: int read_char ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_char() : EOF;
Call the appropriate SatFile or
SabFile method

read_data
Function: SAT Save and Restore

Action: Reads a TaggedData item from an unkown ENTITY type.

Prototype: TaggedData* read_data ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work. Reads a
TaggedData item from an unkown ENTITY type. This procedure returns a
new object which is allocated on the heap. It is the callers responsibility to
free it when it is done with it. Normally, the object will be appended to a
TaggedDataList, and the list will assume responsibility for deleting it.

4

Spatial Technology Inc.

4–27SAT Format � 6.0

return ActiveFile ? ActiveFile–>read_data() : NULL;
Call the appropriate SatFile or
SabFile method

read_enum
Function: SAT Save and Restore

Action: Reads an enumeration table.

Prototype: int read_enum (
enum_table const& tbl // enumeration table
);

Description: Read an enumeration table. The <identifier> specifies which enumeration
is active and its valid values. The <identifier> is not written to the file. A
valid value only is written to the file. This is a character string or a long
value from the enumeration <identifier> written with C printf format
“%s”. For compatibility with older files, accept the integer value, even for
interfaces which write the corresponding string. ActiveFile is a
FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_enum(tb1) : 0;

read_float
Function: SAT Save and Restore

Action: Reads a float written with C printf format “%g ”.

Prototype: float read_float ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_float() : 0;
Call the appropriate SatFile or
SabFile method

4

Spatial Technology Inc.

4–28 SAT Format � 6.0

read_header
Function: SAT Save and Restore

Action: Reads a header.

Prototype: logical read_header (
int& i1, // release level
int& i2, // number of data records
int& i3, // number of entities
int& i4 // history
);

Description: Reads a header. The first record of the ACIS save file is a header, such
as: 200 0 1 0

First Integer: An encoded version number. In the example, this is “200”.
This value is 100 times the major version plus the minor version (e.g., 107
for ACIS version 1.7). For point releases, the final value is truncated.
Part save data for the .sat files is not affected by a point release (e.g., 105
for ACIS version 1.5.2).

Second Integer: The total number of saved data records, or zero. If zero,
then there needs to be an end mark.

Third Integer: A count of the number of entities in the original entity list
saved to the part file.

Fourth Integer: The least significant bit of this number is used to indicate
whether or not history has been saved in this save file.

 ActiveFile is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_header(i1, i2, i3, i4) : FALSE;
Call the appropriate SatFile or
SabFile method

read_id
Function: SAT Save and Restore

Action: Reads an identifier.

Prototype: int read_id (
char* buf, // id string
int buflen // length of buffer

= 0
);

4

Spatial Technology Inc.

4–29SAT Format � 6.0

Description: The save identifier written with C printf format “%s ”. Read an entity
identifier. In text mode, this is just a sequence of non–blank characters. In
binary mode, it is a sequence of counted strings, of which all but the last
have negative counts. These strings are assembled into the buffer,
separated by ’–’. The result is placed in a caller–supplied buffer –
overflow causes an error, unless the length is given zero or negative, in
which case no overflow is detected. ActiveFile is a FileInterface object and
does most of the actual work.

return ActiveFile ? ActiveFile–>read_id(buf, buflen) : 0;
Call the appropriate SatFile or
SabFile method

read_int
Function: SAT Save and Restore

Action: Reads an integer by reading a long and converting.

Prototype: int read_int ();

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
integer by reading a long and converting. Some compilers will give a
warning for this shortening, but it may be ignored. Implementations for
machines with ints and longs different lengths may well want a different
version. ActiveFile is a FileInterface object and does most of the actual
work.

return ActiveFile ? (int)(ActiveFile–>read_long()) : 0;
Call the appropriate SatFile or
SabFile method

read_interval
Function: SAT Save and Restore

Action: Reads an interval as two doubles.

Prototype: interval read_interval ();

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
interval as two doubles (old–style), or as two instances of ”I” for infinite,
or as ”F <value>” for finite bound.

4

Spatial Technology Inc.

4–30 SAT Format � 6.0

if (restore_version_number < INFINT_VERSION)
read_real starting
read_real ending

else
read_logical finite: either “I” or “F”
if (finite)

read_real ending

read_logical
Function: SAT Save and Restore

Action: Reads a logical.

Prototype: logical read_logical (
char const* false_str // string for FALSE

= ”F”,
char const* true_str // string for TRUE

= ”T”
);

Description: (false_string, true_string, {or any_valid_string}): Appropriate string
written with C printf format “%s ”. Reads a logical value. Up to
LOGICAL_VERSION, this was an integer 0 or 1. Later than that in text
files it has been keywords defaulting to ”T” or ”F”. For generality, accept
an integer value or any blank–terminated string starting with the first
character of either of the given strings. ActiveFile is a FileInterface object
and does most of the actual work.

return ActiveFile ? ActiveFile–>read_logical(false_str, true_str) : FALSE;
Call the appropriate SatFile or
SabFile method

read_long
Function: SAT Save and Restore

Action: Reads a long written with C printf format “%ld”.

Prototype: long read_long ();

Description: This routine is used as part of restore from a SAT or SAB file. Reads a
long integer. In text mode, this ignores initial white space, and leaves the
input stream positioned at the character (which should be white space)
which terminates the decimal integer representation. In binary, this simply
reads the correct number of bytes for the internal representation, and then
possibly reorders them. ActiveFile is a FileInterface object and does most
of the actual work.

4

Spatial Technology Inc.

4–31SAT Format � 6.0

return ActiveFile ? ActiveFile–>read_long() : 0;
Call the appropriate SatFile or
SabFile method

read_matrix
Function: SAT Save and Restore, Mathematics

Action: Reads a matrix as three row vectors.

Prototype: matrix read_matrix ();

Description: This routine is used as part of restore from a SAT or SAB file.

read_vector vector v1
read_vector vector v2
read_vector vector v3

read_pointer
Function: SAT Save and Restore

Action: Reads a pointer.

Prototype: void* read_pointer ();

Description: Reads a pointer. Pointer reference to a save file record index. Written as
“$” followed by index number written as a long. ActiveFile is a
FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_pointer() : NULL;
Call the appropriate SatFile or
SabFile method

read_position
Function: SAT Save and Restore

Action: Reads a position as three doubles.

Prototype: position read_position ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

4

Spatial Technology Inc.

4–32 SAT Format � 6.0

return ActiveFile ? ActiveFile–>read_position() : position(0,0,0);
Call the appropriate SatFile or
SabFile method

read_ptr
Function: SAT Save and Restore

Action: Reads a pointer for the save file.

Prototype: ENTITY* read_ptr ();

Description: This routine is used as part of restore from a SAT or SAB file.

return (ENTITY *)read_pointer(); Call the other read pointer
function.

read_real
Function: SAT Save and Restore

Action: Reads a double.

Prototype: double read_real ();

Description: This routine is used as part of restore from a SAT or SAB file. Read a
double. In text mode, this ignores initial white space, and leaves the input
stream positioned at the character (which should be white space) which
terminates the decimal representation, which may be fixed–point or
exponent notation. In binary, this simply reads the correct number of bytes
for the internal representation, and then possibly reorders them. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_double() : 0;
Call the appropriate SatFile or
SabFile method

read_sequence
Function: SAT Save and Restore

Action: Reads an explicit record sequence number.

Prototype: int read_sequence ();

4

Spatial Technology Inc.

4–33SAT Format � 6.0

Description: This routine is used as part of restore from a SAT or SAB file. Reads an
explicit record sequence number, returning it, or negative if none.
Sequence numbers in text mode consist of a minus sign with no preceding
white space, followed by a positive or zero integer. They do not appear in
binary files. ActiveFile is a FileInterface object and does most of the actual
work.

return ActiveFile ? ActiveFile–>read_sequence() : –1;
Call the appropriate SatFile or
SabFile method

read_string
Function: SAT Save and Restore

Action: Reads a string into a supplied buffer of a given size, maxlen.

Prototype: char* read_string (
int& len // length of buffer
);

Description: This routine is used as part of restore from a SAT or SAB file. Reads a
string. This consists of an integer length, followed by that number of
literal characters. In text mode, the length and characters are separated by
exactly one space. In int read_string, we assume that the buffer supplied is
of sufficient length for the characters plus the usual terminating null. The
function returns the actual number of characters read. The char*
read_string is a more convenient form of read_string. The string is written
the same as it was for the old version, with a count followed by the actual
string. Unlike the old version however, this version allocates a string of the
correct length and returns a pointer to it, so you do not have to worry
about reading the count, and then backspacing the file to re–read the string
if you want to make sure that you have a buffer which is big enough. If the
length of the string was zero characters, then this will return NULL rather
than ””. ActiveFile is a FileInterface object and does most of the actual
work.

return ActiveFile ? ActiveFile–>read_string(buf) : 0;
Call the appropriate SatFile or
SabFile method

return ActiveFile ? ActiveFile–>read_string(len) : NULL;
Call the appropriate SatFile or
SabFile method

4

Spatial Technology Inc.

4–34 SAT Format � 6.0

read_subtype_end
Function: SAT Save and Restore

Action: Reads subtype end, braces around the subtypes, written as “} ”.

Prototype: logical read_subtype_end ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_subtype_end() : FALSE;
Call the appropriate SatFile or
SabFile method

read_subtype_start
Function: SAT Save and Restore

Action: Reads subtype start,braces around the subtypes, written as “{ ”.

Prototype: logical read_subtype_start ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_subtype_start() : FALSE;
Call the appropriate SatFile or
SabFile method

read_transf
Function: SAT Save and Restore, Mathematics, Transforms

Action: Internal to ACIS and not intended for direct usage. Reads a
transformation.

Prototype: transf read_transf ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

4

Spatial Technology Inc.

4–35SAT Format � 6.0

Read a transformation as matrix, translation vector, double scaling factor
and three integer flags.

read_matrix Affine matrix
read_vector Translation vector
read_real Scaling
read_logical Either “no_rotate” or “rotate”
read_logical Either “no_reflect” or “reflect”
read_logical Either “no_shear” or “shear”

read_unit_vector
Function: SAT Save and Restore

Action: Reads a unit vector as a vector and then normalizes it.

Prototype: unit_vector read_unit_vector ();

Description: This routine is used as part of restore from a SAT or SAB file. Reads a unit
vector as a vector and then normalizes it.

read_vector Vector to read in.

read_vector
Function: SAT Save and Restore

Action: Reads a vector as three doubles.

Prototype: vector read_vector ();

Description: This routine is used as part of restore from a SAT or SAB file. ActiveFile
is a FileInterface object and does most of the actual work.

return ActiveFile ? ActiveFile–>read_vector() : vector(0,0,0);
Call the appropriate SatFile or
SabFile method

restore_BDY_GEOM
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* restore_BDY_GEOM();

4

Spatial Technology Inc.

4–36 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

if (restore_version_number < CONSISTENT_VERSION) {
read_int form
if (form == PCURVE_BOUNDARY)

BDY_GEOM_PCURVE::restore
Routine to perform actual work.

else if (form == PLANE_BOUNDARY)
BDY_GEOM_PLANE::restore

Routine to perform actual work.
else if (form == CIRCLE_BOUNDARY)

BDY_GEOM_CIRCLE::restore
Routine to perform actual work.

else if (form == DEGENERATE_BOUNDARY)
BDY_GEOM_DEG::restore Routine to perform actual work.

else
BDY_GEOM_restore Use dispatch table.

restore_BDY_GEOM_CIRCLE
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* restore_BDY_GEOM_CIRCLE();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

BDY_GEOM_CIRCLE::restore Routine to perform actual work.

4

Spatial Technology Inc.

4–37SAT Format � 6.0

restore_BDY_GEOM_DEG
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* restore_BDY_GEOM_DEG();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

BDY_GEOM_DEG::restore Routine to perform actual work.

restore_BDY_GEOM_PCURVE
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* restore_BDY_GEOM_PCURVE();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

BDY_GEOM_PCURVE::restore Routine to perform actual work.

restore_BDY_GEOM_PLANE
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BDY_GEOM* restore_BDY_GEOM_PLANE();

4

Spatial Technology Inc.

4–38 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

BDY_GEOM_PLANE::restore Routine to perform actual work.

restore_blend_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_blend_int_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

blend_int_cur::restore_data Routine to perform actual work.

restore_blend_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_blend_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

4

Spatial Technology Inc.

4–39SAT Format � 6.0

None Nothing is saved or restored.

restore_body_from_file
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: BODY* restore_body_from_file (
FILE* file_ptr, // pointer to file
logical mode_text // text or binary
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Reads the body from the file, in text or binary.

restore_entity_from_file Routine to perform actual work.

restore_compcurv
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_compcurv ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the compcurv. The restore function does the actual work. It calls
the base class, then reads the selector, if the save file is new enough.

4

Spatial Technology Inc.

4–40 SAT Format � 6.0

compcurv::restore_data Restores the low-level geometry
for the compcurv.

restore_com_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: com_cur* restore_com_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the com_cur. The restore function does the actual work. It calls
the base class, then reads the selector, if the save file is new enough.

com_cur::restore_data Restore the underlying com_cur.

restore_cone
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_cone ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores a cone.

if (restore_version_number < SURFACE_VERSION)
read_int The curve type of the base ellipse

used to be saved, though it is
redundant

cone::restore_data Save the rest of the cone data.

4

Spatial Technology Inc.

4–41SAT Format � 6.0

restore_cross_section
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: var_cross_section* restore_cross_section ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

var_cross_section::restore_data Routine to perform actual work

restore_crv_crv_v_bl_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_crv_crv_v_bl_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores a crv_crv_v_bl_spl_sur.

crv_crv_v_bl_spl_sur::restore_data Save the rest of the data.

restore_crv_srf_v_bl_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_crv_srf_v_bl_spl_sur ();

4

Spatial Technology Inc.

4–42 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores a crv_srf_v_bl_spl_sur.

crv_srf_v_bl_spl_sur::restore_data Save the rest of the data.

restore_curve
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_curve ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the curve. The restore function does the actual work. It calls the
base class, then reads the selector, if the save file is new enough. This
reads the curve type and then switches in the run-time table to the correct
restore routine.

if (restore_version_number < CURVE_VERSION)
read_int integer for the type of curve.
dispatch_restore_cu Supply the number for the type of

curve
else

read_id Reads in the string associated with
the curve identification.

dispatch_restore_cu Supply the curve identification for
the type of curve

4

Spatial Technology Inc.

4–43SAT Format � 6.0

restore_degenerate_curve
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_degenerate_curve ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data for a degenerate_curve from a save file.

degenerate_curve::restore_data Call the method to restore the bulk
of the curve data.

restore_ellipse
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_ellipse ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the ellipse. The restore function does the actual work. It calls the
base class, then reads the selector, if the save file is new enough.

ellipse::restore_data Calls the method for doing the
actual work.

4

Spatial Technology Inc.

4–44 SAT Format � 6.0

restore_entity_from_file
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: ENTITY* restore_entity_from_file (
FILE* file_ptr, // file pointer
logical mode_text // text or binary
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the entity structure from the file, in text or binary.

restore_entity_list_from_file Calls the routine for doing the
actual work.

restore_entity_list_from_file
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: logical restore_entity_list_from_file (
FILE* file_ptr, // input file
logical mode_text, // type of file, SAT or

// SAB
ENTITY_LIST& entities // list to restore
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores an entity list from a SAT file.

4

Spatial Technology Inc.

4–45SAT Format � 6.0

// Prototype with three arguments: FILE, logical, ENTITY_LIST
restore_entity_list_from_file Reads in entity list from file

// Prototype with two arguments: FILE, restore_data
restore_some_entities Reads in entity list from file

// Prototype with two arguments: FILE, ENTITY_LIST
restore_entity_list_from_file Reads in entity list from file.
// “r” is set upon successful completion of restore_entity_list_from_file
if(r && rd.history_flag)

read_id Reads in entity list from file
if(strcmp(id_array, ACIS_EOF) == 0)

break
if(strcmp(id_array, ACIS_HISTORY_EOS) == 0)

ENTITY::restore_common Perform other read operations
ENTITY::restore_end Finish restore process

restore_entity_list_from_file_with_history
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: logical restore_entity_list_from_file_with_history (
FILE* file_ptr, // file pointer
logical mode_text, // SAT or SAB flag
ENTITY_LIST& entities, // entity list
HISTORY_STREAM_LIST& histories,// histories
DELTA_STATE_LIST& dslist // delta state
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores an entity list from a SAT file.

4

Spatial Technology Inc.

4–46 SAT Format � 6.0

// Prototype with five arguments:
restore_entity_list_from_file_with_history

Calls prototype with four
arguments

// If the restore failed and we are in binary mode, it could be
// because the file is an old style binary file. Try again with
// the old binary FileInterface.
if(!ok && !mode_text)

restore_entity_list_from_file_with_history
Calls prototype with four
arguments

// Prototype with four arguments:
restore_entity_list_from_file Reads in entity list from file.
// “r” is set upon successful completion of restore_entity_list_from_file
if(r && rd.history_flag)

read_id Reads in entity list from file
while (1)

if(strcmp(HISTORY_STREAM_NAME, id_array) == 0)
HISTORY_STREAM::restore

else if(strcmp(id_array, DELTA_STATE_NAME) == 0)
DELTA_STATE::restore

if(strcmp(id_array, ACIS_HISTORY_EOS) == 0)
break

restore_some_entities Finish restore process

restore_exact_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_exact_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the exact_int_cur. The restore function does the actual work. It
calls the base class, then reads the selector, if the save file is new enough.

4

Spatial Technology Inc.

4–47SAT Format � 6.0

exact_int_cur::restore_data Call the restore method which does
the actual work.

restore_exact_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_exact_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the exact_spl_sur. The restore function does the actual work. It
calls the base class, then reads the selector, if the save file is new enough.

exact_spl_sur::restore_data Call to the restore routine that does
most of work.

restore_exp_par_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_exp_par_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the exp_par_cur. The restore function does the actual work. It
calls the base class, then reads the selector, if the save file is new enough.

4

Spatial Technology Inc.

4–48 SAT Format � 6.0

exp_par_cur::restore_data Call method to perform the actual
work.

restore_imp_par_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_imp_par_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the imp_par_cur. The restore function does the actual work. It
calls the base class, then reads the selector, if the save file is new enough.

imp_par_cur::restore_data Routine to perform actual work.

restore_intcurve
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_intcurve ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the intcurve. The restore function does the actual work. It calls
the base class, then reads the selector, if the save file is new enough.

4

Spatial Technology Inc.

4–49SAT Format � 6.0

intcurve::restore_data Restore function to do actual work

restore_int_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_int_int_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

The restore function for int_int_cur is special, as it has to handle old-style
SAT files, where that form was used for exact and surface int_curs as well.
As a result, it has to get at the surface and pcurve pointers.

int_int_cur::restore_data Routine to perform actual work.

restore_law
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: law* restore_law ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

This extracts a law from the save file from the current read location. This
is only used in an application that is reading a save file (.sat or .sab).

4

Spatial Technology Inc.

4–50 SAT Format � 6.0

read_string Associated law string within a set
of double quotation marks. Law
strings can be any valid
combination of law symbols.

read_int The number of law data items
(dsize) attached to law definition.

for(i=0;i<dsize;i++)
law_data* restore_law_data Restore the individual law data

items.

restore_law_data
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: law_data* restore_law_data ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

This extracts a law from the save file from the current read location. This
is only used in an application that is reading a save file (.sat or .sab).

4

Spatial Technology Inc.

4–51SAT Format � 6.0

read_string String represents the type of law
data that appears after law
definition.

if(strcmp(type,”TRANS”)==0)
read_transf Read in the associated

TRANSFORM.
else if(strcmp(type,”WIRE”)==0)

read_int The number of WIRE instances to
restore. (Represents size of an
array).

for(int i=0;i<size;i++)
curve* restore_curve Restore the underlying curve.
read_real Starting parameter for curve.
read_real Scale factor.
read_intervalRange for the curve.

else if(strcmp(type,”EDGE”)==0)
curve* restore_curve Restore the underlying curve.
read_real Starting parameter for curve.
read_real Ending parameter for curve.

else if(strcmp(type,”SURF”)==0)
surface* restore_surface Restore the underlying surface.
read_interval u domain for surface.
read_interval v domain for surface.

else if(strcmp(type,”PCURVE”)==0)
pcurve* restore_pcurve Restore the underlying pcurve.
read_real Starting parameter for pcurve.
read_real Ending parameter for pcurve.

else System error: unknown law data
type.

restore_law_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_law_int_cur();

4

Spatial Technology Inc.

4–52 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Constructs an law_int_cur, then calls the appropriate method to do the
actual work.

law_int_cur::restore_data Restore method to do actual work.

restore_law_par_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_law_par_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Constructs an law_par_cur, then calls the appropriate method to do the
actual work.

law_par_cur::restore_data Restore method to do actual work.

restore_law_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_law_spl_sur();

4

Spatial Technology Inc.

4–53SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Constructs a law_spl_sur, then calls the appropriate method to do the
actual work.

law_spl_sur::restore_data Call the method to do actual work.

restore_meshsurf
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_meshsurf ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the meshsurf. The restore function does the actual work. It calls
the base class, then reads the selector, if the save file is new enough.

meshsurf::restore_data Call method to perform actual
work.

restore_net_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_net_spl_sur();

4

Spatial Technology Inc.

4–54 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine for retrieving the data for a net_spl_sur from a
save file.

net_spl_sur::restore_data The routine to perform the actual
work.

restore_offset_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_offset_int_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve the data for a offset_int_cur from a save
file.

offset_int_cur::restore_data Call the routine to perform the
actual work.

restore_off_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_off_int_cur();

4

Spatial Technology Inc.

4–55SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the data for a off_int_cur from a save file.

off_int_cur::restore_data Routine to perform actual work.

restore_off_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_off_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve the data for a off_spl_sur from a save
file.

off_spl_sur::restore_data Routine to perform actual work.

restore_off_surf_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_off_surf_int_cur();

4

Spatial Technology Inc.

4–56 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve the data for a off_surf_int_cur from a
save file.

off_surf_int_cur::restore_data Routine to perform actual work.

restore_old_bl_edge_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_old_bl_edge_int_cur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

restore_old_var_rad_spl
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_old_var_rad_spl ();

4

Spatial Technology Inc.

4–57SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly. This function does the registration for the string
“varblndsur” during the restore.

Restores the srf_srf_v_vl_spl_sur. The restore function does the actual
work. It calls the base class, then reads the selector, if the save file is new
enough.

restore_one_entity
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: LOCAL_PROC logical restore_one_entity (
char* id_array, // input file
ENTITY*& new_ent // entity to restore
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores an entity list from a SAT file.

find_restore_def for the id_array passed in
if (found_restore_def == NULL)

ENTITY::restore_common Restore vanilla ENTITY.
else

// Call restore routine to read as much data as possible.
get_restore_routine

ENTITY::restore_end Finish restore process

4

Spatial Technology Inc.

4–58 SAT Format � 6.0

restore_ortho_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_ortho_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine for retrieving the data for a ortho_spl_sur from a
save file.

ortho_spl_sur::restore_data Routine to perform the actual
work.

restore_para_silh_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_para_silh_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restores routine to retrieve the data for a para_silh_int_cur from a
save file.

para_silh_int_cur::restore_data Routine to perform the actual
work.

4

Spatial Technology Inc.

4–59SAT Format � 6.0

restore_par_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_par_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve the data for a par_int_cur from a save
file.

par_int_cur::restore_data Routine to perform the actual
work.

restore_pcurve
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: pcurve* restore_pcurve ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve the data for a pcurve from a save file.

read_id Subtype reference identifier
if (strcmp(id, pcurve_id) == 0)

pcurve::restore_data Routine to perform actual work.

4

Spatial Technology Inc.

4–60 SAT Format � 6.0

restore_persp_silh_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_persp_silh_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine for retrieving the data for a persp_silh_int_cur
from a save file.

persp_silh_int_cur::restore_data Routine to perform actual work.

restore_pipe_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_pipe_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine for retrieving the data for a pipe_spl_sur from a
save file.

pipe_spl_sur::restore_data Routine to perform the actual
work.

4

Spatial Technology Inc.

4–61SAT Format � 6.0

restore_plane
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_plane();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the cone. The restore function does the actual work. It calls the
base class, then reads the selector, if the save file is new enough.

plane::restore_data Routine to perform actual work.

restore_pre_30
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_pre_30 ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly. Used to save to pre-ACIS 3.0 versions.

4

Spatial Technology Inc.

4–62 SAT Format � 6.0

surface * restore_surface specific surface data
curve * restore_curve specific interpolated curve data
read_unit_vector direction of taper
read_real sine of angle
read_real cosine of angle
read_inteval u range
read_inteval v range
read_int u closure form; either “open”,

“closed”, “periodic”, or
“unknown”.

restore_proj_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_proj_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the data for a proj_int_cur from a save file.

proj_int_cur::restore_data Routine to perform actual work.

restore_radius
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: var_radius* restore_radius ();

4

Spatial Technology Inc.

4–63SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

if (restore_version_number < CONSISTENT_VERSION)
read_int form or type of radius.
if (form == two_ends_form)

var_rad_two_ends::restore_data
else if (form == functional_form)

var_rad_functional::restore_data
else if (form == fixed_width_form)

var_rad_fixed_width::restore_data
else if (form == rot_ellipse_form)

var_rad_rot_ellipse::restore_data
else

var_radius_restore

restore_rb_blend_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_rb_blend_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

4

Spatial Technology Inc.

4–64 SAT Format � 6.0

blend_spl_sur::restore_data Routine to perform actual work.

restore_rot_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_rot_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

rot_spl_sur::restore_data Routine to perform actual work.

restore_ruled_tpr_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_ruled_tpr_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

ruled_tpr_spl_sur::restore_data Routine to perform actual work.

4

Spatial Technology Inc.

4–65SAT Format � 6.0

restore_sfcv_free_bl_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_sfcv_free_bl_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

sfcv_free_bl_spl_sur::restore_data Routine to perform actual work but
will use parent’s version.

restore_shadow_tpr_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_shadow_tpr_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

shadow_tpr_spl_sur::restore_data Routine to perform actual work.

restore_skin_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_skin_spl_sur();

4

Spatial Technology Inc.

4–66 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

skin_spl_sur::restore_data Routine to perform actual work

restore_some_entities
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: logical restore_some_entities (
restore_data& rd // pointer to data
);

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restores the entity list.

for (;;)
read_sequence Read in the sequence number
read_id id of entity to restore
// Check to see if this is the end of the data
if(rd.num_ents_to_restore == 0)

if(strcmp(id_array, ACIS_EOF) == 0)
break Nothing is saved or restored.

// Check for Begin of History section
if(strcmp(id_array, ACIS_HISTORY_BEGIN) == 0)

break Nothing is saved or restored.
restore_one_entity Restore an individual entity

4

Spatial Technology Inc.

4–67SAT Format � 6.0

restore_sphere
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_sphere();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve a sphere from a save file. This is never
called directly.

sphere::restore_data Routine to perform actual work.

restore_spline
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_spline ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Primary restore routine to retrieve a spline from a save file. This is never
called directly.

spline::restore_data Routine to perform actual work

restore_spring_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_spring_int_cur ();

4

Spatial Technology Inc.

4–68 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

spring_int_cur::restore_data Routine to perform actual work

restore_srf_srf_v_bl_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_srf_srf_v_bl_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly. Even though there is no new data,
restore_srf_srf_v_bl_spl_sur is implemented, because it does a ”new”.
The parent’s version of everything else can be used.

srf_srf_v_bl_spl_sur::restore_data Routine to perform actual work

restore_straight
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_straight ();

4

Spatial Technology Inc.

4–69SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

straight::restore_data Routine to perform actual work.

restore_stripc
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_stripc();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

stripc::restore_data Routine to perform actual work.

restore_subset_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_subset_int_cur();

4

Spatial Technology Inc.

4–70 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

subset_int_cur::restore_data Routine to perform actual work.

restore_sub_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_sub_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

sub_spl_sur::restore_data Routine to perform actual work

restore_sum_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_sum_spl_sur();

4

Spatial Technology Inc.

4–71SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

sum_spl_sur::restore_data Routine to perform actual work

restore_surface
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_surface ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

if (restore_version_number < SURFACE_VERSION)
// Old style: first item is the integer surface type
read_int Read the type of surface
dispatch_restore_su(type) Restore that type of surface

else
read_id Read the type of surface
dispatch_restore_su(type) Restore that type of surface

4

Spatial Technology Inc.

4–72 SAT Format � 6.0

restore_surf_int_cur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_surf_int_cur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

surf_int_cur::restore_data Routine to perform actual work.

restore_sweep_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_sweep_spl_sur();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

sweep_spl_sur::restore_data Routine to perform actual work.

restore_swept_tpr_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_swept_tpr_spl_sur ();

4

Spatial Technology Inc.

4–73SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

swept_tpr_spl_sur::restore_data Routine to perform actual work.

restore_taper_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_taper_spl_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly. It is used for old style taper_spl_sur.

restore_pre_30 Routin to check on version

restore_torus
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: surface* restore_torus();

4

Spatial Technology Inc.

4–74 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

torus::restore_data Routine to perform actual work.

restore_tri3_msh_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: msh_sur* restore_tri3_msh_sur ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

tri3_msh_sur::restore_data Routine to perform actual work.

restore_tube_spl_sur
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_tube_spl_sur();

4

Spatial Technology Inc.

4–75SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

tube_spl_sur::restore_data Routine to perform actual work.

restore_undefc
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: curve* restore_undefc ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

undefc::restore_data Routine to perform actual work.

restore_unknown_entity_text
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: unknown_entity_text*
restore_unknown_entity_text (
char const* name // name to use
);

4

Spatial Technology Inc.

4–76 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Used as part of the save and restore operation. This is never called by an
application directly.

unknown_entity_text::data_list::restore unknown_entity_text uses the
data_list method, which calls its
restore method– the routine to
perform the actual read.

restore_var_rad_fixed_width
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: static var_radius *restore_var_rad_fixed_width();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data for a var_rad_functional from a save file.

var_rad_fixed_width::restore_data Routine to perform actual work.

restore_var_rad_functional
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: static var_radius *restore_var_rad_functional ();

4

Spatial Technology Inc.

4–77SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data for a var_rad_functional from a save file.

var_rad_functional::restore_data Routine to perform actual work.

restore_var_rad_rot_ellipse
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: static var_radius *restore_var_rad_rot_ellipse();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data for a var_rad_rot_ellipse from a save file.

var_rad_rot_ellipse::restore_data Routine to perform actual work.

restore_var_rad_two_ends
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: static var_radius *restore_var_rad_two_ends();

4

Spatial Technology Inc.

4–78 SAT Format � 6.0

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Restore the data for a var_rad_two_ends from a save file.

var_rad_two_ends::restore_data Routine to perform actual work.

restore_VBL_OFFSURF
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_VBL_OFFSURF ();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

Function to search the restore definition structure to find the entry
corresponding to a given external ENTITY identifier string. The string
consists of identifiers separated by ’–’, with base identifier last and leaf
identifier first. It should contain no white space. The function finds the
restore definition object which matches the longest right–to–left sequence
of identifiers, and modifies the input string by replacing the ’–’
immediately before the matched string with a terminator, or making the
whole string empty if it is all matched.

Restore the data from a save file.

VBL_OFFSURF::restore_data Routine to perform actual work.

4

Spatial Technology Inc.

4–79SAT Format � 6.0

restore_VBL_SURF
Function: SAT Save and Restore

Action: Internal to ACIS and not intended for direct usage.

Prototype: subtype_object* restore_VBL_SURF();

Description: Although this internal function is intended strictly for ACIS usage, a
minimal amount of information about this function is provided for the sole
purpose of being able to understand and trace restoration from a SAT file.
This function should never be called directly, because it makes
assumptions about the availability of a SAT file, the location of the input
pointer into the SAT file, and the validity of SAT data it expects to read in.
It also may start a lengthy process of nested function or class method calls,
which have many of the same assumptions.

VBL_SURF::restore_data Routine to perform actual work.

save_body_on_file
Function: SAT Save and Restore

Action: Saves the body in a file, in text or binary.

Prototype: logical save_body_on_file (
FILE* file_ptr, // output SAT file
logical mode_text, // SAT or SAB mode
BODY* body // body to save
);

Description: Refer to action.

save_entity_list_on_file
Function: SAT Save and Restore

Action: Saves an entity list to a file.

Prototype: logical save_entity_list_on_file (
FILE* file_ptr, // output file pointer
logical mode_text, // TRUE is SAT
ENTITY_LIST const& entities // entity list to

// save
);

Description: The mode_text saves as SAT.

4

Spatial Technology Inc.

4–80 SAT Format � 6.0

save_entity_on_file
Function: SAT Save and Restore

Action: Saves the general entity structure of the file, in text or binary.

Prototype: logical save_entity_on_file (
FILE* file_ptr, // output file pointer
logical mode_text, // TRUE is SAT
ENTITY* entity // pointer to entity
);

Description: Refer to action.

save_law
Function: SAT Save and Restore

Action: Saves a law to a .sat file.

Prototype: void save_law (
law* the_law // law to save
);

Description: For internal use only. Refer to the ENTITY class for details. Handles the
save operation by writing out the savable data associated with a law.

set_file_info
Function: SAT Save and Restore

Action: Sets information about file.

Prototype: void set_file_info (
unsigned long, // mask
const FileInfo& info // file information
);

Description: Refer to action.

4

Spatial Technology Inc.

4–81SAT Format � 6.0

set_save_file_version
Function: SAT Save and Restore

Action: Sets the version number to be used for save file, for backwards
compatibility.

Prototype: void set_save_file_version (
int save_maj // major version number

= 0,
int save_min // minor version number

= –1
);

Description: This method defaults to the current version. The default for the minor
version number returns an error unless the major version number is 0.

4

