
dos

dos ii

COLLABORATORS

TITLE :

dos

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

dos iii

Contents

1 dos 1
1.1 dos.doc . 1

1.2 dos.library/Close . 2

1.3 dos.library/CreateDir . 2

1.4 dos.library/CreateProc . 3

1.5 dos.library/CurrentDir . 4

1.6 dos.library/DateStamp . 4

1.7 dos.library/Delay . 5

1.8 dos.library/DeleteFile . 5

1.9 dos.library/DeviceProc . 6

1.10 dos.library/DupLock . 6

1.11 dos.library/Examine . 7

1.12 dos.library/Execute . 8

1.13 dos.library/Exit . 9

1.14 dos.library/ExNext . 9

1.15 dos.library/Info . 10

1.16 dos.library/IoErr . 11

1.17 dos.library/Input . 11

1.18 dos.library/IsInteractive . 12

1.19 dos.library/LoadSeg . 12

1.20 dos.library/Lock . 13

1.21 dos.library/Open . 14

1.22 dos.library/Output . 15

1.23 dos.library/ParentDir . 15

1.24 dos.library/Read . 15

1.25 dos.library/Rename . 16

1.26 dos.library/Seek . 17

1.27 dos.library/SetComment . 17

1.28 dos.library/SetProtection . 18

1.29 dos.library/UnLoadSeg . 19

1.30 dos.library/UnLock . 19

1.31 dos.library/WaitForChar . 20

1.32 dos.library/Write . 20

dos 1 / 21

Chapter 1

dos

1.1 dos.doc

Close()

Exit()

Read()

CreateDir()

ExNext()

Rename()

CreateProc()

Info()

Seek()

CurrentDir()

Input()

SetComment()

DateStamp()

IoErr()

SetProtection()

Delay()

IsInteractive()

UnLoadSeg()

DeleteFile()

dos 2 / 21

LoadSeg()

UnLock()

DeviceProc()

Lock()

WaitForChar()

DupLock()

Open()

Write()

Examine()

Output()

Execute()

ParentDir()

1.2 dos.library/Close

NAME
Close -- Close an open file

SYNOPSIS
Close(file)

D1

struct FileHandle *file;

FUNCTION
The file specified by the file handle is closed. You must close all
files you explicitly opened, but you must not close inherited file
handles that are passed to you (each filehandle must be closed once
and ONLY once).

INPUTS
file - BCPL pointer to a file handle

SEE ALSO
Open

1.3 dos.library/CreateDir

NAME
CreateDir -- Create a new directory

dos 3 / 21

SYNOPSIS
lock = CreateDir(name)
D0 D1

struct FileLock *lock;
char *name;

FUNCTION
CreateDir creates a new directory with the specified name. An error
is returned if it fails. Directories can only be created on
devices which support them, e.g. disks. A return of zero means
that AmigaDOS has found an error you should then call

IoErr()
to

find out more; otherwise, CreateDir returns an exclusive lock on
the new directory.

INPUTS
name - pointer to a null-terminated string

OUTPUTS
lock - BCPL pointer to a lock

1.4 dos.library/CreateProc

NAME
CreateProc -- Create a new process

SYNOPSIS
process = CreateProc(name, pri, segment, stackSize)
D0 D1 D2 D3 D4

struct Process *process;
char *name;
LONG pri, stackSize;
BPTR *segment;

FUNCTION
CreateProc cretes a new AmigaDOS process of name ’name’. AmigaDOS
processes are a superset of exec tasks.

A segment list, as returned by
LoadSeg()
, is passed as ’seglist’.

This represents a section of code which is to be run as a new
process. The code is entered at the first hunk in the segment list,
which should contain suitable initialization code or a jump to
such. A process control structure is allocated from memory and
initialized. If you wish to fake a segment list (that will never
have DOS

UnLoadSeg()
called on it), use this code:

dos 4 / 21

ds.l 0 ;Align to longword
DC.L 16 ;Segment "length" (faked)
DC.L 0 ;Pointer to next segment
...start of code...

The size of the root stack upon activation is passed as
’stackSize’. ’pri’ specifies the required priority of the new
process. The result will be the process identifier of the new
process, or zero if the routine failed. The argument ’name’
specifies the new process name. A zero return code indicates
error.

INPUTS
name - pointer to a null-terminated string
pri - signed integer
segment - BCPL pointer to a segment
stackSize - integer (must be a multiple of 4 bytes)

OUTPUTS
process - process identifier

1.5 dos.library/CurrentDir

NAME
CurrentDir -- Make a directory associated with a lock the working

directory

SYNOPSIS
oldLock = CurrentDir(lock)
D0 D1

struct FileLock *oldlock, *lock;

FUNCTION
CurrentDir() causes a directory associated with a lock to be made
the current directory. The old current directory lock is returned.

A value of zero is a valid result here, this 0 lock represents the
root of file system that you booted from (which is, in effect, the
parent of all other file system roots.)

INPUTS
lock - BCPL pointer to a lock

OUTPUTS
oldLock - BCPL pointer to a lock

SEE ALSO
Lock

1.6 dos.library/DateStamp

dos 5 / 21

NAME
DateStamp -- Obtain the date and time in internal format

SYNOPSIS
DateStamp(v);

D1

LONG *v;

FUNCTION
DateStamp() takes a vector of three longwords that is set to the
current time. The first element in the vector is a count of the
number of days. The second element is the number of minutes elapsed
in the day. The third is the number of ticks elapsed in the current
minute. A tick happens 50 times a second. DateStamp ensures that
the day and minute are consistent. All three elements are zero if
the date is unset. DateStamp() currently only returns even
multiples of 50 ticks. Therefore the time you get is always an even
number of ticks.

INPUTS
v - pointer to an array of three longwords

OUTPUTS
The array is filled as described.

1.7 dos.library/Delay

NAME
Delay -- Delay a process for a specified time

SYNOPSIS
Delay(ticks)

D1

LONG ticks;

FUNCTION
The argument ’ticks’ specifies how many ticks (50 per second) to
wait before returning control.

BUGS
Due to a bug in the timer.device in V1.2/V1.3, specifying a timeout
of zero for Delay() can cause the unreliable timer & floppy disk
operation.

INPUTS
ticks - integer

1.8 dos.library/DeleteFile

dos 6 / 21

NAME
DeleteFile -- Delete a file or directory

SYNOPSIS
success = DeleteFile(name)
D0 D1

BOOL success;
char *name;

FUNCTION
This attempts to delete the file or directory specified by ’name’.
An error is returned if the deletion fails. Note that all the files
within a directory must be deleted before the directory itself can
be deleted.

INPUTS
name - pointer to a null-terminated string

OUTPUTS
success - boolean

SEE ALSO
IoErr

1.9 dos.library/DeviceProc

NAME
DeviceProc -- Return the process I.D. of specific I/O handler

SYNOPSIS
process = DeviceProc(name)
D0 D1

FUNCTION
DeviceProc() returns the process identifier of the process which
handles the device associated with the specified name. If no
process handler can be found then the result is zero. If the name
refers to a file on a mounted device then a pointer to a directory
lock is returned in

IoErr()
.

1.10 dos.library/DupLock

NAME
DupLock -- Duplicate a lock

SYNOPSIS
lock = DupLock(lock)

dos 7 / 21

D0 D1

struct FileLock *newlock, *lock;

FUNCTION
DupLock() is passed a shared filing system lock. This is the ONLY
way to obtain a duplicate of a lock... simply copying is not
allowed.

Another lock to the same object is then returned. It is not
possible to create a copy of a write lock.

A zero return indicates failure.

INPUTS
lock - BCPL pointer to a lock

OUTPUTS
newLock - BCPL pointer to a lock

SEE ALSO

Lock()

1.11 dos.library/Examine

NAME
Examine -- Examine a directory or file associated with a lock

SYNOPSIS
success = Examine(lock, infoBlock)
D0 D1 D2

BOOL success;
struct FileLock *lock;
struct FileInfoBlock *infoBlock

FUNCTION
Examine() fills in information in the FileInfoBlock concerning the
file or directory associated with the lock. This information
includes the name, size, creation date and whether it is a file or
directory. FileInfoBlock must be longword aligned. Examine() gives
a return code of zero if it fails.

You may make a local copy of the FileInfoBlock, as long as it is
never passed back to the operating system.

INPUTS
lock - BCPL pointer to a lock
infoBlock - pointer to a FileInfoBlock (must be longword aligned)

OUTPUTS
success - boolean

dos 8 / 21

1.12 dos.library/Execute

NAME
Execute -- Execute a CLI command

SYNOPSIS
success = Execute(commandString, input, output)
D0 D1 D2 D3

BOOL success
char *commandString;
struct FileHandle *input, *output;

FUNCTION
This function attempts to execute the string commandString as
though it were a CLI command and arguments. The string can contain
any valid input that you could type directly in a CLI, including
input and output redirection using < and >.

The input file handle will normally be zero, and in this case
Execute() will perform whatever was requested in the commandString
and then return. If the input file handle is nonzero then after the
(possibly null) commandString is performed subsequent input is read
from the specified input file handle until end of that file is
reached.

In most cases the output file handle must be provided, and is used
by the CLI commands as their output stream unless output
redirection was specified. If the output file handle is set to zero
then the current window, normally specified as *, is used. Note
that programs running under the Workbench do not normally have a
current window.

Execute() may also be used to create a new interactive CLI process
just like those created with the NEWCLI function. In order to do
this you would call Execute() with an empty commandString, and pass
a file handle relating to a new window as the input file handle.
The output file handle would be set to zero. The CLI will read
commands from the new window, and will use the same window for
output. This new CLI window can only be terminated by using the
ENDCLI command.

For this command to work the program RUN must be present in C:.

INPUTS
commandString - pointer to a null-terminated string
input - BCPL pointer to a file handle
output - BCPL pointer to a file handle

OUTPUTS
success - BOOLEAN indicating whether Execute was successful

in finding and starting the specified program

dos 9 / 21

1.13 dos.library/Exit

NAME
Exit -- Exit from a program

SYNOPSIS
Exit(returnCode)

D1

LONG returnCode;

FUNCTION
Exit() is currently for use with programs written as if they
were BCPL programs. This function is not normally useful for
other purposes.
In general, therefore, please DO NOT CALL THIS FUNCTION!

In order to exit, C programs should use the C language exit()
function (note the lower case letter "e"). Assembly programs should
place a return code in D0, and execute an RTS instruction.

IMPLEMENTATION
The action of Exit() depends on whether the program which called it
is running as a command under a CLI or not. If the program is
running under the CLI the command finishes and control reverts to
the CLI. In this case, returnCode is interpreted as the return code
from the program.

If the program is running as a distinct process, Exit() deletes the
process and release the space associated with the stack, segment
list and process structure.

INPUTS
returnCode - integer

1.14 dos.library/ExNext

NAME
ExNext -- Examine the next entry in a directory

SYNOPSIS
success = ExNext(lock, infoBlock)
D0 D1 D2

BOOL success;
struct FileLock *lock;
struct FileInfoBlock *infoBlock;

FUNCTION
This routine is passed a directory lock and a FileInfoBlock that
have been initialized by a previous call to

Examine()
, or updated

by a previous call to ExNext. ExNext gives a return code of zero

dos 10 / 21

on failure. The most common cause of failure is reaching the end
of the list of files in the owning directory. In this case, IoErr
will return ERROR_NO_MORE_ENTRIES and a good exit is appropriate.

So, follow these steps to examine a directory:
1) Pass a Lock and a FileInfoBlock to

Examine()
. The Lock must

be on the directory you wish to examine.
2) Pass ExNext the same Lock and FileInfoBlock.
3) Do something with the information returned in the FileInfoBlock.

Note that the type field is positive for directories, negative for
files.

4) Keep calling ExNext until it returns FALSE. Check
IoErr()

to ensure that the reason for failure was ←↩
ERROR_NO_MORE_ENTRIES.

Note: if you wish to recursively scan the file tree and you find
another directory while ExNext’ing you must Lock that directory and

Examine()
it using a new FileInfoBlock. Use of the same

FileInfoBlock to enter a directory would lose important state
information such that it will be impossible to continue scanning
the parent directory. While it is permissible to UnLock and Lock
the parent directory between ExNext calls, this is not recommended.
Important state information is associated with the parent lock so
if it is freed between ExNext calls this information has to be
rebuilt on each new ExNext call and will significantly slow down
directory scanning.

It is NOT legal to
Examine()
a file, and then to ExNext from that

FileInfoBlock. You may make a local copy of the FileInfoBlock, as
long as it is never passed back to the operating system.

INPUTS
lock - BCPL pointer to a lock originally used for the

Examine()
call

infoBlock - pointer to a FileInfoBlock used on the previous
Examine()

or ExNext() call.

OUTPUTS
success - boolean

SPECIAL NOTE
The FileInfoBlock must be longword aligned.

1.15 dos.library/Info

dos 11 / 21

NAME
Info -- Returns information about the disk

SYNOPSIS
success = Info(lock, parameterBlock)
D0 D1 D2

struct FileLock *lock;
struct InfoData *parameterBlock

FUNCTION
Info() can be used to find information about any disk in use.
’lock’ refers to the disk, or any file on the disk. The parameter
block is returned with information about the size of the disk,
number of free blocks and any soft errors.

INPUTS
lock - BCPL pointer to a lock
parameterBlock - pointer to an InfoData structure

(longword aligned)

OUTPUTS
success - boolean

SPECIAL NOTE:
Note that InfoData structure must be longword aligned.

1.16 dos.library/IoErr

NAME
IoErr -- Return extra information from the system

SYNOPSIS
error = IoErr()

D0

LONG error;

FUNCTION
I/O routines return zero to indicate an error. When this happens,
this routine may be called to determine more information. It is
also used in some routines to pass back a secondary result.

OUTPUTS
error - integer

SEE ALSO
Open, Read, ExNext

1.17 dos.library/Input

dos 12 / 21

NAME
Input -- Identify the program’s initial input file handle

SYNOPSIS
file = Input()
D0

struct FileHandle *file;

FUNCTION
Input() is used to identify the initial input stream allocated when
the program was initiated.

OUTPUTS
file - BCPL pointer to a file handle

SEE ALSO

Output()

1.18 dos.library/IsInteractive

NAME
IsInteractive -- Discover whether a file is a virtual terminal

SYNOPSIS
status = IsInteractive(file)
D0 D1

BOOL status;
struct FileHandle *file;

FUNCTION
The return value ’status’ indicates whether the file associated
with the file handle ’file’ is connected to a virtual terminal.

INPUTS
file - BCPL pointer to a file handle

OUTPUTS
status - boolean

1.19 dos.library/LoadSeg

NAME
LoadSeg -- Load a load module into memory

SYNOPSIS
segment = LoadSeg(name)
D0 D1

dos 13 / 21

BPTR segment;
char *name;

FUNCTION
The file ’fileName’ should be a load module produced by the linker.
LoadSeg scatter loads the CODE, DATA and BSS segments into memory,
chaining together the segments with BPTR’s on their first words.
The end of the chain is indicated by a zero.

In the event of an error any blocks loaded will be unloaded and a
FALSE (zero) result returned.

If the module is correctly loaded then the output will be a pointer
at the beginning of the list of blocks. Loaded code is unloaded via
a call to

UnLoadSeg()
.

INPUTS
name - pointer to a null-terminated string

OUTPUTS
segment - BCPL pointer to a segment

1.20 dos.library/Lock

NAME
Lock -- Lock a directory or file

SYNOPSIS
lock = Lock(name, accessMode)
D0 D1 D2

struct FileLock *lock;
char *name;
LONG accessMode;

FUNCTION
A filing system lock on the file or directory ’name’ is returned if
possible.

If the accessMode is ACCESS_READ, the lock is a shared read lock;
if the accessMode is ACCESS_WRITE then it is an exclusive write
lock.

If Lock() fails (that is, if it cannot obtain a filing system lock
on the file or directory) it returns a zero. Note that the overhead
for doing a Lock() is less than that for doing an

Open()
, so that,

if you want to test to see if a file exists, you should use Lock().
Of course, once you’ve found that it exists, you must use

Open()

dos 14 / 21

if
you want to open it.

Tricky assumptions about the internal format of a lock are unwise.

INPUTS
name - pointer to a null-terminated string
accessMode - integer

OUTPUTS
lock - BCPL pointer to a lock

1.21 dos.library/Open

NAME
Open -- Open a file for input or output

SYNOPSIS
file = Open(name, accessMode)
D0 D1 D2

struct FileHandle *file;
char *name;
LONG accessMode;

FUNCTION
The named file is opened and a file handle returned. If the
accessMode is MODE_OLDFILE, an existing file is opened for reading
or writing. If the value is MODE_NEWFILE, a new file is created for
writing. MODE_READWRITE opens an old file with and exclusive lock.
Open types are documented in the "libraries/dos.h" include file.

The ’name’ can be a filename (optionally prefaced by a device
name), a simple device such as NIL:, a window specification such as
CON: or RAW: followed by window parameters, or *, representing the
current window.

If the file cannot be opened for any reason, the value returned
will be zero, and a secondary error code will be available by
calling the routine

IoErr()
.

INPUTS
name - pointer to a null-terminated string
accessMode - integer

OUTPUTS
file - BCPL pointer to a file handle

dos 15 / 21

1.22 dos.library/Output

NAME
Output -- Identify the programs’ initial output file handle

SYNOPSIS
file = Output()
D0

struct FileHandle *file;

FUNCTION
Output() is used to identify the initial output stream allocated
when the program was initiated.

OUTPUTS
file - BCPL pointer to a file handle

1.23 dos.library/ParentDir

NAME
ParentDir -- Obtain the parent of a directory or file

SYNOPSIS
newlock = ParentDir(lock)
D0 D1

struct FileLock *newlock, *lock;

FUNCTION
The argument ’lock’ is associated with a given file or directory.
ParentDir() returns ’newlock’ which is associated the parent
directory of ’lock’.

Taking the ParentDir() of the root of the current filing system
returns a NULL (0) lock. Note this 0 lock represents the root of
file system that you booted from (which is, in effect, the parent
of all other file system roots.)

INPUTS
lock - BCPL pointer to a lock

OUTPUTS
newlock - BCPL pointer to a lock

1.24 dos.library/Read

NAME
Read -- Read bytes of data from a file

SYNOPSIS
actualLength = Read(file, buffer, length)

dos 16 / 21

D0 D1 D2 D3

LONG actualLength;
struct FileHandle *file;
char *buffer;
LONG length;

FUNCTION
Data can be copied using a combination of Read() and

Write()
.

Read() reads bytes of information from an opened file (represented
here by the argument ’file’) into the buffer given. The argument
’length’ is the length of the buffer given.

The value returned is the length of the information actually read.
So, when ’actualLength’ is greater than zero, the value of
’actualLength’ is the the number of characters read. Usually Read
will try to fill up your buffer before returning. A value of zero
means that end-of-file has been reached. Errors are indicated by a
value of -1. In any case, the value of

IoErr()
is also modified by

this call. If there was an error it gives more error information,
otherwise it indicates whether there is any more data in the file.

INPUTS
file - BCPL pointer to a file handle
buffer - pointer to buffer
length - integer

OUTPUTS
actualLength - integer

1.25 dos.library/Rename

NAME
Rename -- Rename a directory or file

SYNOPSIS
success = Rename(oldName, newName)
D0 D1 D2

BOOL success;
char *oldName, *newName;

FUNCTION
Rename() attempts to rename the file or directory specified as
’oldName’ with the name ’newName’. If the file or directory
’newName’ exists, Rename() fails and returns an error. Both
’oldName’ and the ’newName’ can contain a directory specification.
In this case, the file will be moved from one directory to another.

Note: it is impossible to Rename() a file from one volume to

dos 17 / 21

another.

INPUTS
oldName - pointer to a null-terminated string
newName - pointer to a null-terminated string

OUTPUTS
success - boolean

1.26 dos.library/Seek

NAME
Seek -- Find and point at the logical position in a file

SYNOPSIS
oldPosition = Seek(file, position, mode)
D0 D1 D2 D3

LONG oldPosition, position, mode;
struct FileHandle *file;

FUNCTION
Seek() sets the read/write cursor for the file ’file’ to the
position ’position’. This position is used by both

Read()
and

Write()
as a place to start reading or writing. The result is the

current absolute position in the file, or -1 if an error occurs, in
which case

IoErr()
can be used to find more information. ’mode’ can

be OFFSET_BEGINNING, OFFSET_CURRENT or OFFSET_END. It is used to
specify the relative start position. For example, 20 from current
is a position 20 bytes forward from current, -20 is 20 bytes back
from current.

So that to find out where you are, seek zero from current. The end
of the file is a Seek() positioned by zero from end. You cannot
Seek() beyond the end of a file.

INPUTS
file - BCPL pointer to a file handle
position - integer
mode - integer

OUTPUTS
oldPosition - integer

1.27 dos.library/SetComment

dos 18 / 21

NAME
SetComment -- Change a files’ comment string

SYNOPSIS
success = SetComment(name, comment)
D0 D1 D2

BOOL success;
char *name;
char *comment;

FUNCTION
SetComment() sets a comment on a file or directory. The comment is
a pointer to a null-terminated string of up to 80 characters.

INPUTS
name - pointer to a null-terminated string
comment - pointer to a null-terminated string

1.28 dos.library/SetProtection

NAME
SetProtection -- Set protection for a file or directory

SYNOPSIS
success = SetProtection(name, mask)
D0 D1 D2:4

BOOL success;
char *name;
LONG mask;

FUNCTION
SetProtection() sets the protection attributes on a file or
directory. The lower bits of the mask are as follows:

Bits 31-4 Reserved.
bit 4: 1 = file has not changed 0 = file has been changed
bit 3: 1 = reads not allowed, 0 = reads allowed.
bit 2: 1 = writes not allowed, 0 = writes allowed.
bit 1: 1 = execution not allowed, 0 = execution allowed.
bit 0: 1 = deletion not allowed, 0 = deletion allowed.

Only delete is checked for by the Old Filing System. The archive
bit is cleared by the file system whenever the file is changed.
Backup utilities will generally set the bit after backing up
each file.

The new Fast Filing System looks at the read and write bits, and
the Shell looks at the execute bit, and will refuse to start
a file as a binary executable if it is set.

Other bits may will be defined in the "libraries/dos.h" include
files. Rather than referring to bits by number you should use the

dos 19 / 21

definitions in "dos.h".

INPUTS
name - pointer to a null-terminated string
mask - the protection mask required

OUTPUTS
success - boolean

1.29 dos.library/UnLoadSeg

NAME
UnLoadSeg -- Unload a segment previously loaded by

LoadSeg()
SYNOPSIS

error = UnLoadSeg(segment)
D0 D1

BOOL error;
BPTR segment;

FUNCTION
Unload a segment loaded by

LoadSeg()
. ’segment’ may be zero.

INPUTS
segment - BCPL pointer to a segment identifier

OUTPUTS
error - boolean

1.30 dos.library/UnLock

NAME
UnLock -- Unlock a directory or file

SYNOPSIS
UnLock(lock)

D1

struct FileLock *lock;

FUNCTION
The filing system lock [obtained from

Lock()
,
DupLock()
, or

CreateDir()

dos 20 / 21

] is removed and deallocated.

INPUTS
lock - BCPL pointer to a lock

NOTE
passing zero to UnLock() is harmless

1.31 dos.library/WaitForChar

NAME
WaitForChar -- Determine if chars arrive within a time limit

SYNOPSIS
status = WaitForChar(file, timeout)
D0 D1 D2

BOOL status;
struct FileHandle *file;
LONG timeout;

FUNCTION
If a character is available to be read from ’file’ within a the
time (in microseconds) indicated by ’timeout’, WaitForChar()
returns -1 (TRUE). If a character is available, you can use

Read()
to read it. Note that WaitForChar() is only valid when the I/ ←↩

O
stream is connected to a virtual terminal device. If a character is
not available within ’timeout’, a 0 (FALSE) is returned.

BUGS
Due to a bug in the timer.device in V1.2/V1.3, specifying a timeout
of zero for WaitForChar() can cause the unreliable timer & floppy
disk operation.

INPUTS
file - BCPL pointer to a file handle
timeout - integer

OUTPUTS
status - boolean

1.32 dos.library/Write

NAME
Write -- Write bytes of data to a file

SYNOPSIS
returnedLength = Write(file, buffer, length)

dos 21 / 21

D0 D1 D2 D3

LONG returnedLength;
struct FileHandle *file;
char *buffer;
LONG length;

FUNCTION
Write() writes bytes of data to the opened file ’file’. ’length’
indicates the length of data to be transferred; ’buffer’ is a
pointer to the buffer. The value returned is the length of
information actually written. So, when ’length’ is greater than
zero, the value of ’length’ is the number of characters written.
Errors are indicated by a value of -1.

INPUTS
file - BCPL pointer to a file handle
buffer - pointer to the buffer
length - integer

OUTPUTS
returnedLength - integer

	dos
	dos.doc
	dos.library/Close
	dos.library/CreateDir
	dos.library/CreateProc
	dos.library/CurrentDir
	dos.library/DateStamp
	dos.library/Delay
	dos.library/DeleteFile
	dos.library/DeviceProc
	dos.library/DupLock
	dos.library/Examine
	dos.library/Execute
	dos.library/Exit
	dos.library/ExNext
	dos.library/Info
	dos.library/IoErr
	dos.library/Input
	dos.library/IsInteractive
	dos.library/LoadSeg
	dos.library/Lock
	dos.library/Open
	dos.library/Output
	dos.library/ParentDir
	dos.library/Read
	dos.library/Rename
	dos.library/Seek
	dos.library/SetComment
	dos.library/SetProtection
	dos.library/UnLoadSeg
	dos.library/UnLock
	dos.library/WaitForChar
	dos.library/Write

