
Altering Execution
There are several ways to alter the execution of your program with GDB commands.

Assignment to Variables
Continuing at a Different Address
Returning from a Function

Artificial Arrays
It’s often useful to print out several successive objects of the same type in memory (for
example, a section of an array, or an array of dynamically determined size for which only
a pointer exists in the program).

This can be done by constructing an “artificial array” with the binary operator @. The left
operand of @ should be the first element of the desired array, as an individual object. The
right operand should be the length of the array. The result is an array value whose
elements are all of the type of the left argument. The first element is actually the left
argument; the second element comes from bytes of memory immediately following those
that hold the first element, and so on. For example, if a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of @ must reside in memory. Array values made with @ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions.

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structure, the elements of interest may not actually be adjacent—for example, if you
are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable as a counter in an expression that prints the first
interesting value and then repeat that expression using a carriage return. For instance,
suppose you have an array dtab of pointers to structures, and you are interested in the
values of a field fv in each structure. Here is an example of what you might type:

set $i=0
p dtab[$i++]->fv
<CR>
<CR>

Assignment to Variables
To alter the value of a variable, evaluate an assignment expression. For example:

print x=4

would store the value 4 into the variable x, and then print the value of the assignment
expression (which is 4).

If you aren’t interested in seeing the value of the assignment, use the set command
instead of the print command. set is the same as print except that the expression’s value
isn’t printed and isn’t put in the value history. The expression is evaluated only for side
effects.

GDB allows more implicit conversions in assignments than C does; you can freely store
an integer value into a pointer variable or vice versa, and any structure can be converted
to any other structure that’s the same length or shorter.

All the other C assignment operators such as += and ++ are supported as well.

To store into arbitrary places in memory, use the {...} construct to generate a value of
specified type at a specified address. For example:

set {int}0x830400 = 4

Automatic Display
If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the “automatic display list” so that GDB will print
its value each time the program stops. Each expression added to the list is given a number
to identify it; to remove an expression from the list, you specify that number. The
automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

showing item numbers, expressions, and their current values.

display exp
Add the expression exp to the list of expressions to display each time the
program stops.

display/fmt exp
Add the expression exp to the automatic display list, and display it in the
format fmt. fmt should specify only a display format, not a size or count.

display/fmt addr
Add the expression addr as a memory address to be examined each time the
program stops. fmt should be either i or s, or it should include a unit size or a
number of units. See the section “Examining Memory.”

undisplay [n ...]
delete display [arg ...]

Remove item number n from the list of expressions to display. With no
argument, cancels all automatic-display expressions.

display Display the current values of the expressions on the list, just as is done when
the program stops.

info display
Print the list of expressions to display automatically, each one with its item
number, but without showing the values.

enable display [arg ...]
Enable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to resume displaying. No argument
means enable all automatic-display expressions.

disable display [arg ...]
Disable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to stop displaying. No argument
means disable all automatic-display expressions.

Backtraces
A backtrace is a summary of how the program got where it is. It shows one line per
frame, for many frames, starting with the currently executing frame (frame 0) followed
by its caller (frame 1), and on up the stack.

Each line in a backtrace shows the frame number, the program counter, the function and
its arguments, and the source file name and line number (if known). For example:

(gdb) backtrace
#0 0x3eb6 in fflush ()
#1 0x24b0 in _fwalk ()
#2 0x2500 in _cleanup ()
#3 0x2312 in exit ()

backtrace [n]
Print a backtrace of the entire stack: one line per frame for all frames in the
stack. You can stop the backtrace at any time by typing the system interrupt
character, normally Control-C. With a positive argument, the command prints
the innermost n frames; with a negative argument, it prints the outermost n
frames. You can abbreviate this command as bt. Two aliases for this command
are where and info stack.

Break Conditions
The simplest sort of breakpoint breaks every time the program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is simply a Boolean
expression. A breakpoint with a condition evaluates the expression each time the program
reaches it, and the program stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you want
to stop when the assertion is violated—that is, when the condition is false. In C, if you
want to test an assertion expressed by the condition assert, you should set the condition !
assert on the appropriate breakpoint.

Break conditions may have side effects, and may even call functions in your program.
This can be useful, for example, to activate functions that log program process or to use
your own print functions to format special data structure. The effects are completely
predictable unless there’s another enabled breakpoint at the same address. (In that case,
GDB might see the other breakpoint first and stop the program without checking the
condition of this one.) Note that breakpoint commands are usually more convenient and
flexible than break conditions for the purpose of performing side effects when a
breakpoint is reached (see the section “Executing Commands at a Breakpoint”).

Break conditions can be specified when a breakpoint is set, by using if in the arguments
to the break command (see the section “Setting Breakpoints”). They can also be changed
at any time with the condition command:

condition bnum expression
Specify expression as the break condition for breakpoint number bnum. From
now on, this breakpoint will stop the program only if the value of expression is
true (nonzero, in C). GDB checks expression immediately for syntactic
correctness and to determine whether symbols in it have referents in the
context of your breakpoint. GDB does not actually evaluate expression at the
time the condition command is given, however.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special feature is provided for one kind of condition: to prevent the breakpoint from
doing anything until it has been reached a certain number of times. This is done with the
“ignore count” of the breakpoint. When the program reaches a breakpoint whose ignore
count is positive, then instead of stopping, it just decrements the ignore count by 1 and
continues.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, it won’t stop.

To make the breakpoint stop the next time it’s reached, specify a count of 0.

continue n
Continue execution of the program, setting the ignore count of the breakpoint
that the program stopped at to n minus 1. Continuing through the breakpoint
doesn’t itself count as one of n. Thus, the program won’t stop at this
breakpoint until the nth time it’s hit.

This command is allowed only when the program stopped due to a breakpoint.
At other times, the argument to cont is ignored.

If a breakpoint has a positive ignore count and a condition, the condition isn’t checked.
Once the ignore count reaches 0, the condition will start to be checked.

You could achieve the effect of the ignore count with a condition such as $foo--<= 0
using a debugger convenience variable that’s decremented each time. That’s why the
ignore count is considered a special case of a condition. See the section “Convenience
Variables.”

Breakpoint Menus
In Objective-C and C++, classes can use the same names for their methods or member
functions. This is called overloading. When a function name or method name is
overloaded, break function is not enough to tell GDB where you want a breakpoint. In
this instance, GDB offers you a menu of numbered choices for different possible
breakpoints and waits for your selection.

Breakpoints
A breakpoint makes your program stop whenever a certain point in the program is
reached. You set breakpoints explicitly with GDB commands, specifying the place where
the program should stop by line number, function name, or exact address in the program.
You can add various other conditions to control whether the program will stop.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint.

Each breakpoint is assigned a number when it’s created; these numbers are successive
integers starting with 1. In many of the commands for controlling various features of
breakpoints, you use the breakpoint number to say which breakpoint you want to change.
Each breakpoint may be “enabled” or “disabled;” if disabled, it has no effect on the
program until you enable it again.

The info breakpoints command prints a list of all breakpoints set and not cleared,
showing their numbers, their location in the program, and any special features in use for
them. Disabled breakpoints are included in the list, but marked as disabled. info
breakpoints with a breakpoint number as its argument lists only that breakpoint. The
convenience variable $_ and the default address for the x command are set to the address
of the last breakpoint listed (see the section “Examining Memory”). The info
breakpoints command can be abbreviated as info break.

Breakpoints can’t be used in a program if any other process is running that program.
Attempting to run or continue the program with a breakpoint in this case will cause GDB
to stop it. When this happens, you must remove or disable the breakpoints, and then
continue.

Setting Breakpoints
Watchpoints
Clearing Breakpoints
Disabling Breakpoints
Break Conditions
Executing Commands at a Breakpoint
Breakpoint Menus

Clearing Breakpoints
It’s often necessary to eliminate a breakpoint once it has done its job and you no longer
want the program to stop there. This is called clearing (or deleting) the breakpoint. A
breakpoint that has been cleared no longer exists in any sense.

With the clear command you can clear breakpoints according to where they are in the
program. With the delete command you can clear individual breakpoints by specifying
their breakpoint numbers.

It isn’t necessary to clear a breakpoint to proceed past it. GDB automatically ignores
breakpoints in the first instruction to be executed when you continue execution at the
same address where the program stopped.

clear Clear any breakpoints at the next instruction to be executed in the selected
stack frame (see the section “Selecting a Frame”). When the innermost frame
is selected, this is a good way to clear a breakpoint that the program just
stopped at.

clear function
clear file:function

Clear any breakpoints set at entry to the function.

clear linenum
clear file:linenum

Clear any breakpoints set at or within the code of the specified line.

delete [breakpoints] [bnum ...]
Clear the breakpoints whose numbers are specified as arguments. If no
argument is specified, delete all breakpoints (GDB asks confirmation unless
you have set confirm off). A deleted breakpoint is forgotten completely.

Command Descriptions
This section describes commands and options that are useful in debugging Objective-C
code. Some of these are new commands that have been implemented in OPENSTEP, and
some are previously existing GDB commands that have been extended in OPENSTEP.

The info Command

The info command takes two additional options:

info classes [regexp]
Display all Objective-C classes in your application or those matching the
regular expression regexp.

info selectors [regexp]
Display all Objective-C selector names (or those matching the regular
expression regexp) and also each selector’s unique number.

If you don’t limit the command’s scope by entering a regular expression, the resulting list
can be quite long. To terminate a listing at any point and return to the GDB prompt, type
Control-C.

Two standard info command options have been extended. The info types command
recognizes and lists the Objective-C id type. The info line command recognizes
Objective-C method names as line specifications.

The print Command

The print command has been extended to allow the evaluation of Objective-C objects
and message expressions. Consider, for example, this program excerpt:

@implementation Fruit : NSObject
{
 char *color;
 int diameter;
}

+ create {
 id newInstance;
 newInstance = [super new]; // creates instance of Fruit
 [newInstance color:"green"]; // set the color
 [newInstance diameter:1]; // set the diameter
 return newInstance; // return the new instance
}
. . .
@end

Once this code has been executed, you can use GDB to examine newInstance by
entering:

print newInstance

The output looks something like this (of course, the address wouldn’t be the same):

$1 = (id) 0x1a0200

As declared, newInstance is a pointer to an Objective-C object. To see the structure this
variable points to, enter:

print *newInstance

GDB displays:

$3 = {
 isa = 0x120b4;
 color = 0x26bf "green";
 diameter = 1;
}

This structure contains the instance variables defined above for objects of the Fruit class.
It also contains a pointer, called isa, that points to its class object. To see the identity of
this class, enter:

print *newInstance->isa

GDB displays:

$4 = {
 isa = 0x12090;
 super_class = 0x124a4;
 name = 0x125a2 "Fruit";
 version = 0;
 info = 17;
 instance_size = 12;
 ivars = 0x1203c;
 methods = 0x120ec;
 cache = 0x22080;
}

The instance variable name verifies that this is an instance of the Fruit class.

You can also evaluate a message expression with the print command. As a by-product of
the evaluation, the message is sent to the receiving object. For example, the following
command sets the color of the Fruit object to red:

print [newInstance color: "red"]

The set Command

The set command can be used to evaluate and send a message expression. For example,
the following command sets the color of the Fruit object to red:

set [newInstance color: "red"]

The step Command

The step command has been extended to let you step through the execution of an
Objective-C message. By repeatedly executing the step command, you can watch the
chain of events that make up the execution of a message.

If you step into a message and don’t want to follow the details of its execution, enter:

finish

This command completes the execution of the message and stops the program at the next
statement. To avoid stepping into the message in the first place, use the next command
rather than step. The next command instructs GDB to execute the current command and
stop only when control returns to the current stack frame.

Command Files
A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with #) may also be included. An empty line in a command file does nothing; it
doesn’t cause the last command to be repeated, as it would from the terminal.

When GDB starts, it automatically executes its “init files” (command files named
gdb.ini). GDB first reads the init file (if any) in your home directory and then the init file
(if any) in the current working directory. (The init files aren’t executed if the -nx option is
given.) You can also request the execution of a command file with the source command:

source file
Execute the command file file.

The lines in a command file are executed sequentially. They aren’t printed as they’re
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they’re doing omit the messages when used in a command file.

Commands for Controlled Output
During the execution of a command file or a user-defined command, the only output that
appears is what’s explicitly printed by the commands of the definition. This section
describes three additional commands useful for generating exactly the output you want.

echo text Print text. Nonprinting characters can be included in text using C escape
sequences, such as \n to print a newline. No newline will be printed unless
you specify one. In addition to the standard C escape sequences, a backslash
followed by a space stands for a space. This is useful for display a string with
space at the beginning or the end, since leading and trailing space are
otherwise trimmed from all arguments.

A backslash at the end of text is ignored. It’s useful for producing a string
ending in spaces, since trailing spaces are trimmed from all arguments. A
backslash at the beginning preserves leading spaces in the same way, because
the escape sequence backslash-space stands for a space. Thus, to print “
variable foo = ”, do

echo \ variable foo = \

output expression
Print just the value of expression. A newline character isn’t printed, and the
value isn’t entered in the value history.

output/fmt expression
Print the value of expression in format fmt. See “Output Formats” for more
information.

printf format-string, arg [, arg] ...
Print the values of the arguments, under the control of format-string. This
command is identical in its operation to its C library equivalent. The only
backslash-escape sequences that you can use in the format string are the
simple ones that consist of the backslash followed by a letter.

Compiling Your Program for Debugging

To debug a program effectively, you need to ask for debugging information when you
compile it. This information in the object file describes the data type of each variable or
function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify the -g option when you run the compiler. We
recommend that you always use -g when you compile a program. You may think the
program is correct, but there’s no sense in pushing your luck.

The GNU C compiler supports debugging with optimization (by using the -O compiler
option). Although GDB provides the capability to debug programs compiled with
optimization, the debugger may provide confusing or misleading information when
debugging optimized programs. The intention is to provide some recourse in those
situations where debugging optimized programs is necessary. However, debugging
optimized programs should not be done routinely on some processors.

With these warnings in mind, it can still be useful to debug optimized programs, provided
that you’re aware of the limitations of the debugger in these circumstances. Most
importantly, the debugger should be able to provide correct backtraces of your program’s
function call stack. This is often all that is needed to find the problem. Printing the values
of variables, however, may give incorrect results, since the debugger has insufficient
information to be sure where a variable resides at any given time. Variables declared
volatile will always have correct values, and global variables will almost always be
correct; local variables, however, are likely to be incorrectly reported.

Variables declared register are optimized by the compiler even when optimizing is not
requested with the -O compiler option—these may also give misleading results. To
ensure a completely predictable debugging environment, it’s best to compile without the -
O flag and with the compiler option “-Dregister=”. This option causes the C
preprocessor to effectively delete all register declarations from your program for this
compilation. (In fact, with the GNU C compiler, there’s no need to declare any variables
to be register variables. When optimizing, the GNU C compiler may place any variable
in a register whether it’s declared register or not. On the other hand, declaring variables
to be register variables may make it more difficult to debug your program when not
optimizing. Therefore, the use of the register declaration is discouraged.)

.

The GNU Source-Level Debugger
.

Introduction
Summary of GDB
Compiling Your Program for Debugging
Running GDB

Specifying Files to Debug
Specifying GDB Modes
Editing GDB Commands

Expansion of Variable, Function, and Method Names
History Substitution in Commands
Emacs Command-Line Editing

Startup Files
GDB Commands for Specifying and Examining Files
Running Your Program Under GDB

Your Program’s Arguments
Your Program’s Environment
Your Program’s Working Directory
Your Program’s Input and Output
Debugging an Already Running Process

Stopping and Continuing
Windows Exceptions
Signals
Breakpoints

Setting Breakpoints
Watchpoints
Clearing Breakpoints
Disabling Breakpoints
Break Conditions
Executing Commands at a Breakpoint
Breakpoint Menus

Continuing
Stepping

Examining the Stack
Stack Frames
Backtraces
Selecting a Frame
Information about a Frame

Examining Source Files
Printing Source Lines
Searching Source Files
Specifying Source Directories

Examining Data
Expressions
Program Variables
Artificial Arrays
Output Formats
Examining Memory
Automatic Display
Value History
Convenience Variables
Registers
Miscellaneous Data Commands

Examining the Symbol Table
Setting Variables
Status Inquiries

Debugging PostScript Code
Debugging Objective-C Code

Method Names in Commands
Command Descriptions

The info Command
The print Command
The set Command
The step Command

Debugging Threads
Altering Execution

Assignment to Variables
Continuing at a Different Address
Returning from a Function

Defining and Executing Sequences of Commands
User-Defined Commands
Command Files
Commands for Controlled Output

Miscellaneous Commands
Legal Considerations

Continuing
After your program stops, most likely you’ll want it to run some more if the bug you’re
looking for hasn’t happened yet. You can do this with the continue command:

continue Continue running the program at the place where it stopped.

If the program stopped at a breakpoint, the place to continue running is the address of the
breakpoint. You might expect that continuing would just stop at the same breakpoint
immediately. In fact, continue takes special care to prevent that from happening. You
don’t need to clear the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program stopped at,
by means of an argument to the continue command. See the section “Break Conditions.”

You can use fg as a synonym for continue.

If the program stopped because of a signal other than SIGINT or SIGTRAP, continuing
will cause the program to see that signal. You may not want this to happen. For example,
if the program stopped due to some sort of memory reference error, you might store
correct values into the erroneous variables and continue, hoping to see more execution;
but the program would probably terminate immediately as a result of the fatal signal once
it sees the signal. To prevent this, you can continue with signal 0. You can also act in
advance to prevent the program from seeing certain kinds of signals, using the handle
command (see the section “Signals.”)

Continuing at a Different Address
jump linenum

Resume execution at line number linenum. Execution may stop immediately if
there’s a breakpoint there.

The jump command doesn’t change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than the
program counter. If linenum is in a different function from the one currently
executing, the results may be wild if the two functions expect different
patterns of arguments or of local variables. For this reason, the jump
command requests confirmation if the specified line isn’t in the function
currently executing.

jump *address
Resume execution at the instruction at address address.

A somewhat similar effect can be obtained by storing a new value into the register $pc.
For example:

set $pc = 0x485000

specifies the address at which execution will resume, but doesn’t resume execution. That
doesn’t happen until you use the cont command or a stepping command.

Convenience Variables
GDB provides “convenience variables” that you can use within GDB to hold a value for
future reference. These variables exist entirely within GDB; they aren’t part of your
program, and setting a convenience variable has no effect on further execution of your
program. That’s why you can use them freely.

Convenience variables have names starting with $. Any name starting with $ can be used
for a convenience variable, unless it’s one of the predefined set of register names (see the
section “Registers”).

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Convenience variables don’t need to be explicitly declared; using a convenience variable
for the first time creates it. However, its value is void until you assign it a value. You can
alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, even if it already has a value of a different type. The convenience variable
as an expression has whatever type its current value has.

One way to use a convenience variable is as a counter to be incremented or a pointer to
be advanced. For example:

set $i = 0
print bar[$i++]->contents
 repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to
be useful.

$_ The variable $_ (single underscore) is automatically set by the x command to
the last address examined (see the section “Examining Memory”). Other
commands which provide a default address for x to examine also set $_ to that
address; these commands include info line and info breakpoint.

$__ The variable $__ (two underscores) is automatically set by the x command to
the value found in the last address examined.

Debugging Objective-C Code
This section provides information about some commands and command options that are useful
for debugging Objective-C code.

The syntax accepted by certain GDB commands, such as break, is determined by the
programming language being debugged. By default, the language is set to C, so you can always
use C syntax in GDB commands. When the language is set to Objective-C, you can use syntax
that is specific to Objective-C (for example, the use of colons in method names and the message-
sending syntax) in addition to C syntax.

GDB tries to set the language it accepts in its commands according to which language the
program being debugged uses. If the program’s source files have the extension .m or .M, then
GDB assumes that the program is written in Objective-C and sets the language it accepts
accordingly. The show language command displays what the language is currently set to. You
can use the set language command to override the value. To set the language to Objective-C,
enter this command:

set language objective-c

The set language command is particularly useful if you’re debugging a mixed-language
program. For example, if you’re stopped in a C module and you want to send a message to an
Objective-C object, you won’t be able to because GDB won’t recognize the square bracket
syntax as an Objective-C message. You must first set the language to Objective-C, then send the
message.

Method Names in Commands
Command Descriptions

Debugging PostScript Code
This section describes three commands that are useful when debugging PostScript source files.

These commands aren’t built-in commands; rather, the OPENSTEP environment defines
them in a system gdb.ini file located in your home directory. This file is read when you
start running GDB.

showps, shownops
The showps and shownops commands turn on and off (respectively) the
display of PostScript code being sent from your application to the Window
Server. Your application must be running before you can issue either of these
commands.

flushps The flushps command sends pending PostScript code to the Window Server.
This command lets you flush the application’s output buffer, causing any
PostScript code waiting there to be interpreted immediately. Your application
must be running before you can issue this command.

traceevents
Trace PostScript events. When an event is queued, it is logged to standard
error.

tracenoevents
Turn off tracing of PostScript events.

waitps Wait until the DPS context’s destination is ready to receive more input.

Debugging Threads
The following commands have been provided in the OPENSTEP version of GDB to support the
debugging of threads.

info threads
List all threads that exist in the program being debugged.

thread thread
Select a thread. For example, thread 2 selects thread 2.

thread apply thread command
Apply the GDB command command to thread numbered thread. For example,
thread apply 2 bt prints a backtrace for thread 2.

thread apply all command
Apply a command to all threads.

Debugging an Already Running Process
GDB can debug an already running process that was started outside GDB. To do this you must
use the attach command instead of the run command.

The attach command requires one argument, which is the process ID of the process you
want to debug.

attach [arg]
Attach to a process or file outside of GDB. The command may take as
argument a process id or a device file.

The first thing GDB does after arranging to debug the process is to stop it. You can
examine and modify an attached process with all the GDB commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, use
the cont (continue) command after attaching.

If you exit GDB or use the run command while you have an attached process, you kill
that process. You’ll be asked for confirmation if you try to do either of these things.

Defining and Executing Sequences of Commands
GDB provides two ways to store sequences of commands for execution as a unit: user-defined
commands and command files.

User-Defined Commands
Command Files
Commands for Controlled Output

Disabling Breakpoints
Rather than clearing a breakpoint, you might prefer to disable it. This makes the
breakpoint inoperative as if it had been cleared, but remembers the information about the
breakpoint so that you can enable it again later.

You enable and disable breakpoints with the enable and disable commands, specifying
one or more breakpoint numbers as arguments. Use info breakpoints to print a list of
breakpoints if you don’t know which breakpoint numbers to use.

A breakpoint can have any of four states of enablement:

• Disabled. The breakpoint has no effect on the program.

• Enabled. The breakpoint will stop the program. A breakpoint made with the break
command starts out in this state.

• Enabled once. The breakpoint will stop the program, but when it does so it will
become disabled.

• Enabled for deletion. The breakpoint will stop the program, but immediately afterward
it is deleted permanently. A breakpoint made with the tbreak command starts out in
this state.

You can enable and disable breakpoints with the following commands:

enable [breakpoints] bnum ...
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping the program, until you specify otherwise.

enable [breakpoints] once bnum ...
Enable the specified breakpoints temporarily. Each will remain enabled only
until the next time it stops the program (unless you use one of these
commands to specify a different state before that time comes). Also see the
tbreak command, which sets a breakpoint and enables it once.

enable [breakpoints] delete bnum ...
Enable the specified breakpoints to work once and then die. Each of the
breakpoints will be deleted the next time it stops the program (unless you use
one of these commands to specify a different state before that time comes).

disable [breakpoints] bnum ...
Disable the specified breakpoints. A disabled breakpoint has no effect but isn’t
forgotten. All options such as ignore counts, conditions, and commands are
remembered in case the breakpoint is enabled again later.

Aside from the automatic disablement or deletion of a breakpoint when it stops the

program, which happens only in certain states, the state of enablement of a breakpoint
changes only when one of the above commands is used (except if the breakpoint is set
with tbreak).

Editing GDB Commands

GDB provides a history buffer that stores previously executed commands. You can call
any of these commands back to the command line for editing and reexecution. For
example, by pressing the up-arrow key repeatedly, you can step back through each of the
commands that were issued since the beginning of the session; the down-arrow key steps
forward through the history buffer.

Expansion of Variable, Function, and Method Names

GDB supports command-line expansion of variable, function and method names. Type
Esc-Esc or Tab to expand the current word on the command line to a matching name. If
there is more than one match, the unique part is expanded and a beep occurs. To display
all possible completions, type Tab again or type Esc-l.

Sometimes the string you need, while logically a “word,” may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To allow word
completion in this situation, you may enclose words in single quote marks in GDB
commands. Single quotes are commonly needed in typing the name of a C++ function.

History Substitution in Commands

GDB supports the csh history substitution mechanism. For example, !foo retrieves the
last command you typed that begins with foo. History substitution is supported across
gdb sessions by writing the command history to a .gdb_history file in the current
directory. Automatic creation of this history file can be disabled with the command:

set history save off

History substitution can be controlled with the set history filename, set history size, set
history save, and set history expansion commands.

Emacs Command-Line Editing

You can use standard Emacs editing commands to edit the contents of the command line.
All the basic Emacs command sequences work, as well as the arrow keys. The left and
right arrow keys move the cursor along the command line, and the up and down arrow
keys take you backward and forward through the command history.

The following list of Emacs commands shows the default key combination associated
with each command and a description of what that command does.

Insertion-Point Motion Commands

Control-B Move back one character
Control-F Move forward one character
Esc b Move back one word
Esc f Move forward one word
Control-A Move to beginning of line
Control-E Move to end of line

Deletion and Restoration Commands

Control-D Delete current character
Delete Delete previous character
Esc d Delete current word
Esc Delete Delete previous word
Control-K Kill forward to end of line
Control-W Kill region
Control-Y Restore previous kill from buffer
Esc Y Rotate the kill ring and yank the new top

Search Commands

Control-S Search forward
Control-R Search backward
Esc Exit search mode

History Commands

Esc < Move to beginning of history file
Esc > Move to end of history file
Control-N Go to next history file entry
Control-P Go to previous history file entry

Miscellaneous Commands

Control-_ Undo the last edit.
Control-C Interrupt a program or cancel command
Control-L Clear screen
Control-Q Insert a literal character
Esc Tab Insert a Tab
Control-T Transpose characters
Esc T Transpose words

Most of these commands are self-explanatory; the ones requiring more discussion are

presented below.

Both delete commands and kill commands erase characters from the command line. Text
that’s erased by a kill key (Control-K or Control-W) is placed in the “kill buffer.” If you
want to restore this text, use the “yank” command, Control-Y. The yank command inserts
the restored text at the current insertion point. In contrast, text that’s erased by one of the
delete commands (Control-D, Delete, Esc d, and Esc Delete) isn’t placed in the kill
buffer, so it can’t be restored by the yank command.

To enter a character that would otherwise be interpreted as an editing command, you must
precede it with Control-Q. For example, to enter Control-D and have it interpreted as a
literal rather than as the command to delete the current character, type:

Control-Q Control-D

Examining Data
The most common way to examine data in your program is with the print command
(abbreviated p) or its synonym inspect:

print exp This command evaluates and prints the value of any valid expression of the
language the program is written in (currently, C, C++, and Objective-C).
Variables accessible are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

exp is any valid expression, and the value of exp is printed in a format
appropriate to its data type. To print data in another format, you can cast exp to
the desired type or use the x command.

$num gets previous value number num. $ and $$ are the last two values. $
$num refers to the num’th value back from the last one. Names starting with $
refer to registers (with the values they would have if the program were to
return to the stack frame now selected, restoring all registers saved by frames
farther in) or else to debugger convenience variables (any such name that isn’t
a known register). Use assignment expressions to give values to convenience
variables.

{type}adrexp refers to a datum of data type type, located at address adrexp. @
is a binary operator for treating consecutive data objects anywhere in memory
as an array. foo@num gives an array whose first element is foo, whose second
element is stored in the space following where foo is stored, etc. foo must be
an expression whose value resides in memory.

exp may be preceded with /fmt, where fmt is a format letter but no count or
size letter (see the description of the x command).

print-object object
Print object by sending description to it. object must be an Objective-C
object. You can abbreviate this command as po.

set exp The set command works like the print command, except that the expression’s
value isn’t displayed. This is useful for modifying the state of your program.
For example:

set x=3
set close_all_files()

Another way to examine data is with the x command (see “Examining Memory”). It
examines data in memory at a specified address and prints it in a specified format.

If you are interested in information about types or about how the fields of a struct or class
are declared, use the ptype command rather than print.

Expressions
Program Variables
Artificial Arrays
Output Formats
Examining Memory
Automatic Display
Value History
Convenience Variables
Registers
Miscellaneous Commands

Examining Memory
The command x (for “examine”) can be used to examine memory under explicit control
of formats, without reference to the program’s data types.

x is followed by a slash and an output format specification, followed by an expression for
an address:

x/nfu addr

The expression addr doesn’t need to have a pointer value (though it may); it’s used as an
integer, as the address of a byte of memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use the defaults for nfu, you need not type the slash. Several commands
set convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, or s (null-terminated
string) or i (machine instruction). The default is x (hexadecimal) initially, or
the format from the last time you used print or x.

u, the unit size
These letters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (two bytes each).

w Examine words (four bytes each).

g Examine giant words (eight bytes).

If neither the manner of printing nor the size of unit is specified, the default is the same as
was used last. If you don’t want to use any letters after the slash, you can omit the slash
as well.

You can also omit the address to examine. Then the address used is just after the last unit
examined. This is why string and instruction formats actually compute a unit-size based
on the data: so that the next string or instruction examined will start in the right place.
The print command sometimes sets the default address for the x command; when the
value printed resides in memory, the default is set to examine the same location. info line

also sets the default for x to the address of the start of the machine code for the specified
line and info breakpoints sets it to the address of the last breakpoint listed.

When you repeat an x command by pressing the Return key, the address specified
previously (if any) is ignored; instead, the command examines successive locations in
memory rather than the same one.

You can examine several consecutive units of memory with one command by writing a
repeat count after the slash (before the format letters, if any). The repeat count must be a
decimal integer. It has the same effect as repeating the x command that many times
except that the output may be more compact with several units per line.

x/10i $pc

Prints ten instructions starting with the one to be executed next in the selected frame.
After doing this, you could print another ten following instructions with

x/10

in which the format and address are allowed to default.

The addresses and contents printed by the x command aren’t put in the value history
because there’s often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the
convenience variables $_ and $__ (that is, $ followed by one or two underscores).

After an x command, the last address examined is available for use in expressions in the
convenience variable $_. The contents of that address, as examined, are available in the
convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this isn’t the same as the last address printed if several units were
printed on the last line of output.

Examining Source Files
GDB knows which source files your program was compiled from, and can print parts of their
text. When your program stops, GDB spontaneously prints the line it stopped in. Likewise, when
you select a stack frame (see the section “Selecting a Frame”), GDB prints the line in which
execution in that frame has stopped. You can also print parts of source files by explicit command.

Printing Source Lines
Searching Source Files
Specifying Source Directories

Examining the Stack
When your program has stopped, the first thing you need to know is where it stopped and how it
got there.

Each time your program performs a function call, the information about where in the
program the call was made from is saved in a block of data called a stack frame. The
frame also contains the arguments of the call and the local variables of the function that
was called. All the stack frames are allocated in a region of memory called the call stack.
When your program stops, the GDB commands for examining the stack allow you to see
all this information.

Stack Frames
Backtraces
Selecting a Frame
Information about a Frame

Examining the Symbol Table
The commands described in this section allow you to make inquiries for information about the
symbols (names of variables, functions, and types) defined in your program. GDB finds this
information in the symbol table contained in the executable file; it’s inherent in the text of your
program and doesn’t change as the program executes.

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files. File names are recorded in object files as debugging
symbols, but GDB would ordinarily parse a typical file name, like foo.c as three words
“foo”, “.”, and “c”. To allow GDB to recognize foo.c as a single symbol, enclose it in
single quotes; for example p 'foo.c'::x looks up the value of x in the scope of the file
foo.c.

whatis [exp]
With no argument, print the data type of $, the last value in the value history.
With an argument, print the data type of expression exp. exp isn’t actually
evaluated, and any operations inside it that have side effects (such as
assignments or function calls) don’t take place.

info address symbol
Describe where the data for symbol is stored. For register variables, this says
which register. For other automatic variables, this prints the stack-frame offset
at which the variable is always stored. Note the contrast with print &symbol,
which doesn’t work at all for register variables, and which for automatic
variables prints the exact address of the current instantiation of the variable.

info functions [regexp]
With no argument, print the names and data types of all defined functions.
With an argument, print the names and data types of all defined functions
whose names contain a match for regular expression regexp. For example,
info fun step finds all functions whose names include step; info fun ^step
finds those whose names start with step. You can list method selectors instead
of functions (using the info selectors command) if you are debugging
Objective-C code.

info source
Show the name of the current source file—that is, the source file for the
function containing the current point of execution—and the language it was
written in.

info sources
Print the names of all source files in the program for which there is debugging
information, organized into two lists: files whose symbols have already been
read, and files whose symbols will be read when needed.

info types [regexp]
With no argument, print all data types that are defined in the program. With an
argument, print all data types that are defined in the program whose names
contain a match for regular expression regexp.

This command differs from ptype in two ways: first, like whatis, it does not
print a detailed description; second, it lists all source files where a type is
defined.

If you’re debugging Objective-C code, use info classes to list just the classes.

info variables [regexp]
With no argument, print the names and data types of all top-level variables
that are declared outside functions. With an argument, print the names and
data types of all variables declared outside functions, whose names contain a
match for regular expression regexp.

ptype typename
Print a description of data type typename. typename may be the name of a
type, or for C code it may have the form class class-name struct struct-tag,
union union-tag or enum enum-tag. The selected stack frame’s lexical context
is used to look up the name.

ptype [exp]
Print a description of the type of expression exp. ptype differs from whatis by
printing a detailed description, instead of just the name of the type.

Setting Variables
Status Inquiries

0 All exceptions
1 Error, warning, and informational exceptions
2 Error and warning exceptions
3 Error exceptions only
4 No exceptions

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute when the program stops
due to that breakpoint. For example, you might want to print the values of certain
expressions, or enable other breakpoints.

commands bnum
Specify commands for breakpoint number bnum. The commands themselves
appear on the following lines. if and while statements are allowed inside the
commands list. Type a line containing just end to terminate the commands.

To remove all commands from a breakpoint, use the command commands
and follow it immediately by end; that is, give no commands.

Breakpoint commands can be used to start up the program again. Simply use the
continue command, or step , or any other command that resumes execution. However,
any remaining breakpoint commands are ignored. When the program stops again, GDB
will act according to why that stop took place.

If the first command specified is silent, the usual message about stopping at a breakpoint
isn’t printed. This may be desirable for breakpoints that are to print a specific message
and then continue. If the remaining commands also print nothing, you’ll see no sign that
the breakpoint was reached at all. silent isn’t really a command; it’s meaningful only at
the beginning of the commands for a breakpoint.

The commands echo, output, and printf, which allow you to print precisely controlled
output, are often useful in silent breakpoints. See the section “Commands for Controlled
Output.”

Here’s how you could use breakpoint commands to print the value of x at entry to foo
whenever it’s positive. We assume that the newly created breakpoint is number 4; break
will print the number that’s assigned.

break foo if x>0
commands 4
silent
printf "x is %d\n",x
cont
end

or

break foo
commands 4
silent
if (x > 0)
 printf "x is %d\n",x
 end
cont
end

One application for breakpoint commands is to correct one bug so you can test another.
Put a breakpoint just after the erroneous line of code, give it a condition to detect the case
in which something erroneous has been done, and give it commands to assign correct
values to any variables that need them. End with the cont command so that the program
doesn’t stop, and start with the silent command so that no output is produced. Here’s an
example:

break 403
commands 5
silent
set x = y + 4
cont
end

One deficiency in the operation of breakpoints that continue automatically appears when
your program uses raw mode for the terminal. GDB reverts to its own terminal modes
(not raw) before executing commands, and then must switch back to raw mode when
your program is continued. This causes any pending terminal input to be lost.

You could get around this problem by putting the actions in the breakpoint condition
instead of in commands. For example,

condition 5 (x = y + 4), 0

is a condition expression that will change x as needed, then always have the value 0 so
the program won’t stop. Loss of input is avoided here because break conditions are
evaluated without changing the terminal modes. When you want to have nontrivial
conditions for performing the side effects, the operators &&, ||, and ?: may be useful.

Expressions
Many different GDB commands accept an expression and compute its value. Any kind of
constant, variable, or operator defined by the programming language you’re using is legal
in an expression in GDB. This includes conditional expressions, function calls, casts, and
string constants. It unfortunately does not include symbols defined by preprocessor
#define constants.

GDB supports three kinds of operators in addition to those of programming languages:

file-or-function::variable-name
:: allows you to specify a variable in terms of the file or function it’s defined
in. Use single quotes around a filename to ensure that GDB parses it as one
word (for example 'foo.c').

@ @ is a binary operator for treating parts of memory as arrays. See the section
“Artificial Arrays” for more information.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around nonunary operators, just as in a cast). This construct is
allowed no matter what kind of data is officially supposed to reside at addr.

GDB Commands for Specifying and Examining Files
Usually you specify the files for GDB to work with by giving arguments when you invoke GDB.
But occasionally it’s necessary to change to a different file during a GDB session. Or you may
run GDB and forget to specify the files you want to use. In these situations the GDB commands
to specify new files are useful.

add-file [file] [address]
Adds symbols from executable file file to the symbol table.

add-module address
Add the object file at address address.

info files Print the names of the executable files currently in use by GDB, and the file
from which symbols were loaded.

kill Cancel running the program under GDB.

load file Dynamically load file into the running program, and record its symbols for
access from GDB.

path path
Add one or more directories to the beginning of the search path for executable
files. $cwd in the path means the current working directory. This path is like
the $PATH shell variable; it is a list of directories, separated by colons. These
directories are searched to find fully linked executable files and separately
compiled object files as needed.

update-files [file]
Rereads symbols from file file. Use this if a symbol file has change since you
started executing your program.

While file-specifying commands allow both absolute and relative file names as
arguments, GDB always converts the file name to an absolute one and remembers it that
way.

Information about a Frame
There are several other commands to print information about the selected stack frame.

frame [n] This command prints a brief description of the selected stack frame. With an
argument, this command is used to select a stack frame (the argument can be a
stack frame number or the address of a frame); with no argument, it doesn’t
change which frame is selected, but still prints the same information. You can
abbreviate this command as f.

info frame
This command prints a verbose description of the selected stack frame,
including the address of the frame, the addresses of the next frame down
(called by this frame) and the next frame up (caller of this frame), the address
of the frame’s arguments, the program counter saved in it (the address of
execution in the caller frame), and which registers were saved in the frame.
The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command.

info args Print the arguments of the selected frame, each on a separate line.

info locals Print the local variables of the selected frame, each on a separate line.

Legal Considerations
Permission is granted to make and distribute verbatim copies of this chapter provided its
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled “GDB General
Public License” (below) is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the section
entitled “GDB General Public License” may be included in a translation approved by the
author instead of in the original English.

Distribution

GNU software is free; this means that everyone is free to use it and free to redistribute it
on a free basis. GNU software is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that
a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of GNU software that they might get from you.
The precise conditions are found in the GNU General Public License that appears
following this section.

You may obtain a complete machine-readable copy of any OPENSTEP-modified source
code for Free Software Foundation software under the terms of Free Software
Foundation’s general public licenses, without charge except for the cost of media,
shipping and handling, upon written request to Technical Services at NeXT Software, Inc.

When making a request, please specify which GNU software programs you’re interested
in receiving. GNU programs released by NeXT currently include:

gcc GNU compiler
gdb GNU debugger
gas GNU assembler
emacs GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including GNU
software that’s not part of the OPENSTEP software release), you can order it from the
Free Software Foundation. Though GNU software itself is free, the distribution service is
not. For further information, write to:

Free Software Foundation
675 Mass. Ave.

Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes to support the
Foundation’s purpose: the development of more free software to distribute.

GDB General Public License

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right
to share GDB. To make sure that you get the rights we want you to have, we need to
make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GDB,
that you receive source code or else can get it if you want it, that you can change GDB or
use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GDB, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is
no warranty for GDB. If GDB is modified by someone else and passed on, we want its
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GDB.

Copying Policies

1. You may copy and distribute verbatim copies of GDB source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice “Copyright (c) 1988 Free Software Foundation, Inc.” (or with
whatever year is appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other recipients
of the GDB program a copy of this License Agreement along with the program. You
may charge a distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GDB or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the files
and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part
contains or is a derivative of GDB or any part thereof, to be licensed at no charge to all
third parties on terms identical to those contained in this License Agreement (except
that you may choose to grant more extensive warranty protection to some or all third
parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on a
volume of a storage or distribution medium does not bring the other program under the
scope of these terms.

3. You may copy and distribute GDB (or a portion or derivative of it, under Paragraph 2)
in object code or executable form under the terms of Paragraphs 1 and 2 above
provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party
free (except for a nominal shipping charge) a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Paragraphs 1 and 2
above; or,

• accompany it with the information you received as to where the corresponding source
code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

For an executable file, complete source code means all the source code for all modules it
contains; but, as a special exception, it need not include source code for modules which
are standard libraries that accompany the operating system on which the executable file
runs.

4. You may not copy, sublicense, distribute or transfer GDB except as expressly provided
under this License Agreement. Any attempt otherwise to copy, sublicense, distribute or
transfer GDB is void and your rights to use the program under this License agreement
shall be automatically terminated. However, parties who have received computer
software programs from you with this License Agreement will not have their licenses
terminated so long as such parties remain in full compliance.

5. If you wish to incorporate parts of GDB into other free programs whose distribution

conditions are different, write to the Free Software Foundation at 675 Mass. Ave.,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and
reuse of software.

Your comments and suggestions about our licensing policies and our software are
welcome! Please contact the Free Software Foundation, Inc., 675 Mass. Ave.,
Cambridge, MA 02139, or call (617)876-3296.

No Warranty

BECAUSE GDB IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY
NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE
FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER PARTIES
PROVIDE GDB “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GDB IS WITH YOU. SHOULD GDB PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GDB AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS) GDB, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

Method Names in Commands
The following commands have been extended to accept Objective-C method names as
line specifications:

clear
break
info line
jump
list

For example, to set a breakpoint at the create instance method of class Fruit in the
program currently being debugged, enter:

break -[Fruit create]

It’s also possible to specify just a method name:

break create

If your program’s source files contain more than one create method, you’ll be presented
with a numbered list of classes that implement that method. Indicate your choice by
number, or type 0 to exit if none apply. To narrow the scope of GDB’s search, you can
use a preceding plus or minus sign to specify whether you’re referring to a class or an
instance method. For example, to list the ten program lines around the initialize class
method, enter

list +[NSText initialize]

or

list +initialize

You must specify the complete method name, including any colons. For example, to
clear a breakpoint established at the makeKeyAndOrderFront: method of the
NSWindow class, enter:

clear -[NSWindow makeKeyAndOrderFront:]

If you don’t know the exact method name, you can use the info selectors command to
find out. Use info selectors followed by a regular expression to narrow the search. For
example, to find out all the methods that contain the string “set” enter:

info selectors set

To find only the methods that begin with “set,” use the carat:

info selectors ^set

To find only the instance methods that begin with “set,” include the minus sign:

info selectors -^set

Miscellaneous Commands
make [args]

Run the make program using the rest of the line as arguments.

select-frame
Select the frame at fp, pc.

shell [command]
Execute the rest of the line as a shell command. With no arguments, run an
inferior shell.

Miscellaneous Data Commands
call arg Call a function in the inferior process. The argument is the function name and

arguments, in standard C notation. The result is printed and saved in the value
history, if it isn’t void.

disassemble [arg [arg]]
Disassemble a specified section of memory. The default is the function
surrounding the pc of the selected frame. With a single argument, the function
surrounding that address is dumped. Two arguments are taken as a range of
memory to dump.

Output Formats
GDB normally prints all values according to their data types. Sometimes this isn’t what
you want. For example, you might want to print a number in hexadecimal, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or an instruction. These things can be done with output formats.

The simplest use of output formats is to specify how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary.

a Print as an address, both absolute in hexadecimal and then relative to a symbol
defined at an address below it.

c Regard as an integer and print as a character constant.

f Regard the bits of the value as a floating-point number and print using typical
floating-point syntax.

For example, to print the program counter in hexadecimal (see the section “Registers”),
type

p/x $pc

No space is required before the slash because command names in GDB can’t contain a
slash.

To reprint the last value in the value history with a different format, you can use the print
command with just a format and no expression. For example, p/x reprints the last value in
hexadecimal.

Printing Source Lines
To print lines from a source file, use the list command (abbreviated l). There are several
ways to specify what part of the file you want to print.

Here are the most commonly used forms of the list command:

list linenum
Print lines centered around linenum in the current source file.

list function
Print lines centered around the beginning of function.

list Print more lines. If the last lines printed were printed with a list command,
this prints lines following the last lines printed; however, if the last line
printed was a solitary line printed as part of displaying a stack frame (see the
section “Examining the Stack”), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the list command. You
can change this using set listsize:

set listsize count
Make the list command display count source lines (unless the list argument
explicitly specifies some other number).

show listsize
Display the number of lines that list prints.

You can repeat a list command by pressing the Return key; however, any argument that
was used is discarded, so this is equivalent to typing simply list. An exception is made for
an argument of -; that argument is preserved in repetition so that each repetition moves up
in the file.

In general, the list command expects you to supply zero, one, or two linespecs. Linespecs
specify source lines; there are several ways of writing them but the effect is always to
specify some source line. The possible arguments for list are as follows:

list ,last Print lines ending with last.

list first, Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list linespec
Print lines centered around the line specified by linespec (described below).

list first,last
Print lines from first to last. Both arguments are linespecs.

Program Variables
The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see the section
“Selecting a Frame”); they must be either global (or static) or visible according to the
scope rules of the programming language from the point of execution in that frame. This
means that in the function

foo (a)
 int a;
{
 bar (a);
 {
 int b = test ();
 bar (b);
 }
}

the variable a is usable whenever the program is executing within the function foo(), but
the variable b is usable only while the program is executing inside the block in which b is
declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can
specify a static variable in a particular function or file, using the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word. For
example, to print a global value of x defined in f2.c:

(gdb) 'f2.c'::x

This use of colon-colon is very rarely in conflict with the very similar use of the same
notation in C++. GDB also supports use of the C++ scope resolution operator in GDB
expressions.

Warning: Occasionally, a local variable may appear to have the wrong value at
certain points in a function—just after entry to a new scope, and just
before exit. You may see this problem when you are stepping by machine
instructions. This is because on most machines it takes more than one
instruction to set up a stack frame (including local variable definitions); if
you are stepping by machine instructions, variables may appear to have
the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack

frame; after you begin stepping through that group of instructions, local
variable definitions may be gone.

Registers
Machine register contents can be referred to in expressions as variables with names
starting with $.

The names $pc and $sp are used for the program counter register and the stack pointer.
$fp is used for a register that contains a pointer to the current stack frame. To see a list of
all the registers, use the command info registers.

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system isn’t the same one
that your program normally sees. For example, the registers of the 68882 floating-point
coprocessor are always saved in “extended” format, but all C programs expect to work
with “double” format. In such cases, GDB normally works with the virtual format only
(the format that makes sense for your program), but the info registers command prints
the data in both formats.

Register values are relative to the selected stack frame (see the section “Selecting a
Frame”). This means that you get the value that the register would contain if all stack
frames farther in were exited and their saved registers restored. In order to see the real
contents of all registers, you must select the innermost frame (with frame 0).

Some registers are never saved (typically those numbered 0 or 1) because they’re used for
returning function values; for these registers, relativization makes no difference.

info registers [regname]
With no argument, print the names and relativized values of all registers
except floating-point registers. With an argument, print the relativized value of
register regname. regname may be any register name valid on the machine
you’re using, with or without the initial $.

info all-registers
Print the names and values of all registers, including floating-point registers.

For example, you could print the program counter in hexadecimal with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add 4 to the stack pointer with

set $sp += 4

The last is a way of removing one word from the stack. This assumes that the innermost
stack frame is selected. Setting $sp isn’t allowed when other stack frames are selected.

. (dot) Wild card, any character
^ (carat) Beginning of string
$ (dollar) End of string
* (star) Any number of the preceeding character

Returning from a Function
return [exp]

You can make any function call return immediately by using the return
command.

First select the stack frame that you want to return from (see the section
“Selecting a Frame”). Then type the return command. If you want to specify
the value to be returned, give that as an argument.

The selected stack frame (and any other frames inside it) is popped, leaving its
caller as the innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values of functions.

The return command doesn’t resume execution; it leaves the program stopped
in the state that would exist if the function had just returned. Contrast this with
the finish command, which resumes execution until the selected stack frame
returns naturally.

Running GDB
In the OPENSTEP development environment, you’re likely to use GDB by running it in the
Project Builder Launch panel. In this panel, you enter commands at the GDB prompt, and
debugger output appears on subsequent lines. (You can also run GDB as a subprocess in the
GNU Emacs editor, as described later in this chapter.) Although Project Builder provides an
interface and shortcuts to many common GDB commands, this chapter describes only the GDB
command-line interface. For more information on Project Builder’s interface for the debugger,
see Project Builder’s on-line help. (Choose How To from the Help menu and click the Basic
Debugging box.).

To start GDB from within a shell window, enter the following command:

gdb name [processID]

name is the name of your executable program. processID is the ID of an already running
process that you want to debug. See the rest of this section for information about optional
command-line arguments and switches. Once started, GDB reads commands from the
terminal until you quit by giving the quit command.

A GDB command is a single line of input. There’s no limit to how long it can be. It starts
with a command name, optionally followed by arguments (some commands don’t allow
arguments).

GDB command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are allowed. For example, s is equivalent to
step even though there are other commands whose names start with s. Possible command
abbreviations are stated in the documentation of the individual commands.

A blank line as input to GDB means to repeat the previous command verbatim. Certain
commands don’t allow themselves to be repeated this way; these are commands for
which unintentional repetition might cause trouble and which you’re unlikely to want to
repeat. Certain others (list and x) act differently when repeated because that’s more
useful.

A line of input starting with # is a comment; it does nothing. This is useful mainly in
command files (see the section “Command Files”).

GDB prompts for commands by displaying the (gdb) prompt. You can change the prompt
with the set prompt command (this is most useful when debugging GDB itself):

set prompt newprompt

To exit GDB, use the quit command (abbreviated q) or type Control-D. Control-C won’t
exit from GDB, but rather will terminate the action of any GDB command that is in
progress and return to GDB command level. It’s safe to type Control-C at any time
because GDB doesn’t allow it to take effect until it’s safe. If your program is running,

typing Control-C will interrupt the program and return you to the GDB prompt.

Specifying Files to Debug
Specifying GDB Modes
Editing GDB Commands

Running Your Program Under GDB
To start your program under GDB, use the run command. The program must already have been
specified with an argument to the gdb command (see “Specifying Files to Debug”); what run
does is create an inferior process, load the program into it, and set it in motion.

The execution of a program is affected by certain types of information it receives from its
superior. GDB provides ways to specify these, which you must do before starting the
program. (You can change them after starting the program, but such changes don’t affect
the program unless you start it over again.) The types of information are:

The arguments You specify the arguments to give the program by passing
them as arguments to the run command. You can also use the
set args command.

The environment The program normally inherits its environment from GDB, but
you can use the GDB commands set environment and unset
environment to change parts of the environment that will be
given to the program.

The working directory The program inherits its working directory from GDB. You
can set GDB’s working directory with the cd command in
GDB.

The standard input and output
Your program normally uses the same device for standard
input and standard output as GDB is using.

After the run command, the debugger does nothing but wait for your program to stop.
See the section “Stopping and Continuing” for more information.

If the modification time of your symbol file has changed since the last time GDB read its
symbols, GDB discards its symbol table and reads it again. When it does this, GDB tries
to retain your current breakpoints.

Debugging an Already Running Process

Searching Source Files
The forward-search command (or its alias, search) and the reverse-search command
are useful when you want to locate text within the current source file.

forward-search regexp
search regexp

This command checks each line, starting with the one following the last line
listed, for a match for regexp, which must be a regular expression. It lists the
line that’s found. You can abbreviate this command as fo.

reverse-search regexp
The command checks each line, starting with the one before the last line listed
and going backward, for a match for regexp. It lists the line that’s found. You
can abbreviate this command as rev.

Selecting a Frame
Most commands for examining the stack and other data in the program work on
whichever stack frame is selected at the moment. Below are the commands for selecting a
stack frame.

frame n Select and print frame number n. Recall that frame 0 is the innermost
(currently executing) frame, frame 1 is the frame that called the innermost
one, and so on. The highest-numbered frame is main’s frame.

frame addr
Select and print the frame at address addr. This is useful mainly if the
chaining of stack frames has been damaged by a bug, making it impossible for
GDB to assign numbers properly to all frames. In addition, this can be useful
if the program has multiple stacks and switches between them.

up n Select and print the frame n frames up from the frame previously selected. For
positive numbers n, this advances toward the outermost frame, to higher frame
numbers, to frames that have existed longer. n defaults to 1.

up-silently n
Same as the up command, but doesn’t print anything (this is useful in
command scripts).

down n Select and print the frame n frames down from the frame previously selected.
For positive numbers n, this advances toward the innermost frame, to lower
frame numbers, to frames that were created more recently. n defaults to 1.

down-silently n
Same as the down command, but doesn’t print anything (this is useful in
command scripts).

All these commands (except up-silently and down-silently) end by printing some
information about the frame that has been selected: the frame number, the function name,
the arguments, the source file and line number of execution in that frame, and the text of
that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input_file (argv[i]);

After such a printout, the list command with no arguments will print ten lines centered on
the point of execution in the frame. See the section “Printing Source Lines.”

Setting Breakpoints
Breakpoints are set with the break command (abbreviated b). There are several ways to
specify where the breakpoint should go:

break function
Set a breakpoint at entry to function. You can also set a breakpoint at the entry
to a method, as described in the section “Method Names in Commands.”

break linenum
Set a breakpoint at linenum in the current source file (the last file whose
source text was printed). This breakpoint will stop the program just before it
executes any of the code from that line.

break +offset
break -offset

Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected frame.

break file:linenum
Set a breakpoint at linenum in file.

break file:function
Set a breakpoint at entry to function found in file. Specifying a file name as
well as a function name is superfluous except when multiple files contain
identically named functions.

break *address
Set a breakpoint at address. You can use this to set breakpoints in parts of the
program that don’t have debugging information or source files.

break Set a breakpoint at the next instruction to be executed in the selected stack
frame (see the section “Examining the Stack”). In any selected frame but
the innermost, this makes your program stop as soon as control returns to that
frame. This is similar to the effect of the finish command in the frame inside
of the selected frame—except that finish does not leave an active breakpoint.
If you use break without an argument in the innermost frame, GDB stops the
next time it reaches the current location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least
one instruction has been executed. If it did not do this, you would be unable to
proceed past a breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed when your program
stopped.

break [args] if cond
Set a breakpoint with condition cond; evaluate the expression cond each time

the breakpoint is reached, and stop only if the value is nonzero. args stands for
one of the possible arguments described above (or no argument) specifying
where to break. See the section “Break Conditions” for more information.

tbreak [args]
Set a breakpoint enabled only for one stop. args are the same as in the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted the first time it’s hit.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

GDB allows you to set any number of breakpoints at the same place in the program. This
can be useful when the breakpoints are conditional (see the section “Break Conditions”).

Setting Variables

set Perform an assignment var = exp. You must type the =. var may be a debugger
convenience variable (a name starting with $), a register (one of a few standard names
starting with $), or an actual variable in the program being debugged. exp is any
expression. Use set variable for variables with names identical to set subcommands.

With a subcommand listed below, the set command modifies parts of the GDB
environment (you can see these environment settings with show and its
subcommands). In general, use on (or no argument) to enable a feature, and
off to disable it.

set args arg ...
Set arguments to give the program being debugged when it is started. Follow
this command with any number of arguments to be passed to the program.

set autoload-breakpoints on/off
Set automatic resetting of breakpoints in dynamic code.

set autoload-symbols on/off
Set automatic loading of symbols of dynamic code.

set catch-user-commands-errors on/off
Set whether to ignore errors in user commands.

set complaints num
Set the maximum number of complaints about incorrect symbols.

set confirm on/off
Set whether to confirm potentially dangerous operations.

set demangle-style on/off
Set the current C++ demangling style.

set editing on/off
Set command-line editing.

set environment var value
Set environment variable and value to give the program. Arguments are var
value where var is the variable name and value is the value. Values of
environment variables are uninterpreted strings. This command does not affect
the program until the next run command.

set force_cpluplus on/off
Set if you know better than debugger about C++.

set history expansion on/off
Set history expansion on command input.

set history filename file
Set the filename in which to record the command history (the list of previous
commands of which a record is kept).

set history ignoredups on/off
Set whether history condenses sequences of identical commands.

set history save on/off
Set whether the history record is saved when you exit gdb.

set history size size
Set the size of the command history (the number of previous commands to
keep a record of).

set input-radix num
Set the default input radix for entering values.

set language
Set the programming language to be used in debugging.

set lazy-read on/off
Set whether inferior’s memory is read lazily.

set listsize num
Set the number of source lines GDB will print by default with list.

set output-radix num
Set the default output radix for print values.

set pass-ctrlc on/off
Set whether a Control-C should be passed to the program being debugged or
should halt the program within GDB.

set print address on/off
Set printing of addresses.

set print array on/off
Set pretty printing of arrays.

set print asm-demangle on/off
Set demangling of C++ names in disassembly listings.

set print demangle on/off

Set demangling of encoded C++ names when displaying symbols.

set print elements size
Set limit on string chars or array elements to print. The value 0 causes there to
be no limit.

set print max-symbolic-offset max-offset
Set the largest offset that will be printed in symbol+1234 form.

set print null-stop on/off
Set printing of character arrays to stop at first null character.

set print object on/off
Set printing of object’s derived type based on vtable info.

set print pretty on/off
Set pretty printing of structures.

set print repeats size
Set threshold for repeated print elements.

set print sevenbit-strings on/off
Set printing of 8-bit characters in strings as \nnn.

set print symbol-filename on/off
Set printing of file name and line number with symbols.

set print union on/off
Set printing of unions interior to structures.

set print vtbl on/off
Set printing of C++ virtual function tables.

set prompt string
Set GDB’s prompt. The argument is an unquoted string.

set radix on/off
Set the default input and output number radix.

set report-exception level
Print a message for all exceptions with the specified severity level.

set signal-exception level
Translate exceptions with the specified severity level into signals and handle
them according to the signal-handler for that signal.

set symbol-reloading on/off
Set dynamic symbol table reloading multiple times in one run.

set verbose on/off
Set whether verbose printing of informational messages is enabled or disabled.

set view-host host
Set the host to connect to when viewing.

set view-program name
Set the name of the program to connect to when viewing.

set variable var = exp
Same as set; use set variable in cases where var is identical to one of the set
subcommands.

Signals
A signal is an asynchronous event that can happen in a program. The operating system defines
the possible kinds of signals, and gives each kind a name and a number. For example, SIGINT is
the signal a program gets when you type Control-C; and SIGSEGV is the signal a program gets
when it attempts an illegal memory reference.

Some signals are a normal part of the functioning of the program. Others indicate errors; these
signals are fatal (that is, they kill the program immediately) if the program hasn’t specified in
advance some other way to handle the signal. SIGINT doesn’t indicate an error in the program,
but it’s normally fatal, so it can carry out the purpose of Control-C; to kill the program.

GDB can detect any occurrence of a signal in the program running under GDB’s control. You
can tell GDB in advance what to do for each kind of signal.

You specify how GDB handles signals with the handle command. You must specify which
signal you’re talking about with its number.

info signals [signalnum]
Print a table of all the kinds of signals and how GDB has been told to handle each
one. You can use this to see the signal numbers of all the defined types of signals.
Specify a signal number in order to print information about that signal only.

This command prints the full list of signals available on UNIX, but Microsoft
Windows only recognizes seven of them: SIGINT, SIGILL, SIGFPE, SIGSEGV,
SIGTERM, SIGBREAK, and SIGABRT. Microsoft Windows uses exceptions, which
GDB translates into one of these seven signals. You can control this behavior with the
set signal-exception command. For more information, see the section “Windows
Exceptions”.

handle signalnum keywords
Change the way GDB handles signal signalnum. The keywords say what change to
make.

The keywords allowed by the handle command can be abbreviated. Their full names are:

stop GDB should stop the program when this signal happens. This implies the print
keyword as well.

print GDB should print a message when this signal happens.

nostop GDB shouldn’t stop the program when this signal happens. It may still print a
message telling you that the signal has come in.

noprint GDB shouldn’t mention the occurrence of the signal at all. This implies the nostop
keyword as well.

pass GDB should allow the program to see this signal; the program will be able to handle
the signal or may be terminated if the signal is fatal and not handled.

nopass GDB shouldn’t allow the program to see the signal.

When a signal has been set to stop the program, the program can’t see the signal until you
continue. It will see the signal then, if pass is in effect for the signal in question at that time. In
other words, after GDB reports a signal, you can use the handle command with pass or nopass to
control whether that signal will be seen by the program when you later continue it.

You can also use the signal command to prevent the program from seeing a signal, to cause it to
see a signal it normally wouldn’t see, or to give it any signal at any time. See the section
“Continuing”.

Specifying Files to Debug
GDB needs to know the file name of the program to be debugged.

gdb progm

specifies progm as the executable program.

If you need to specify more precisely the files to debugged, you can do so with the
following command-line options:

-symbol file
-s file Read symbol table from file.

-exec file
-e file Use file as the executable file to execute when appropriate.

-se file Read symbol table from file and use it as the executable file.

-command file
-x file Execute GDB commands from file.

-directory directory
-d directory

Add directory to the path to search for source files.

-readnow
-r Read each symbol file’s entire symbol table immediately, rather than the

default, which is to read it incrementally as it’s needed. This makes startup
slower, but makes future operations faster.

All the options and command line arguments given are processed in sequential order. The
order makes a difference when the -x command is used.

Specifying GDB Modes

The following additional command-line options can be used to affect certain aspects of
the behavior of GDB:

-nx | -n Don’t execute commands from the gdb.ini init files. Normally, the commands
in these files are executed after all the command options and arguments have
been processed. (See the section “Command Files” for more information.)

-q Quiet. Don’t print the usual introductory messages. These messages are also
suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the command files
specified with -x (and gdb.ini, if not inhibited). Exit with nonzero status if an
error occurs in executing the GDB commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to
download and run a program on another computer; to make this more useful,
the message “Program exited normally” is not issued when running in batch
mode.

-cd directory
Run GDB using directory as its working directory instead of the current
directory.

-fullname | -f
This option is used when Emacs runs GDB as a subprocess. It tells GDB to
produce the full file name and line number each time a stack frame is
displayed (which includes each time the program stops).

Specifying Source Directories
Executable programs sometimes don’t record the directories of the source files they were
compiled from, just the names. Even when they do, the directories could be moved
between the compilation and your debugging session. GDB remembers a list of
pathnames of directories in which it will search for source files; this list is called the
source path (note that GDB doesn’t use the environment variable PATH to search for
source files). Each time GDB wants a source file, it tries each directory in the list, starting
from the beginning, until it finds a file with the desired name.

When you start GDB, its source path is set to $cdir:$cwd (the current working directory,
and the directory in which the source file was compiled into object code). To add other
directories, use the directory command:

directory driveletter:dirname
Add directory with the pathname dirname on the drive driveletter to the
beginning of the source path. Several directory names may be given to this
command separated by a colon or whitespace. You may specify a directory
that is already in the source path; this move it forward so GDB searches it
sooner.

directory Reset the source path to $cdir:$cwd, the default. This requires confirmation.

Stack Frames
The call stack is divided into contiguous pieces called frames; each frame is the data
associated with one call to one function. The frame contains the arguments given to the
function, the function’s local variables, and the address at which the function is
executing.

When your program is started, the stack has only one frame, that of the function main().
This is called the initial frame, or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the
innermost frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a
convention for choosing the address of one of those bytes to serve as the address of the
frame. Usually this address is kept in a register called the frame pointer register while
execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for the innermost
frame, 1 for the frame that called it, and so on upward. These numbers don’t really exist
in your program; they simply give you a way of talking about stack frames in GDB
commands.

At any given time, one of the stack frames is selected by GDB; many GDB commands
refer implicitly to this selected frame. In particular, whenever you ask GDB for the value
of a variable in the program, the value is found in the selected frame. You can select any
frame using the frame , up , and down commands; subsequent commands will operate on
that frame.

When the program stops, GDB automatically selects the currently executing frame and
describes it briefly, as the frame command does (see the section “Information about a
Frame”).

Note: The Win32 operating system has some functions that set up their own private
stack. If you happen to stop in one of those functions when debugging, your
program’s stack is effectively hidden from GDB, so GDB cannot show you
information about the current stack frame or show you a backtrace. When this
happens, if you single-step the program by machine instruction (stepi) for a while,
it eventually returns to your code or to library code that can be debugged.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the GCC option -fomit-frame-pointer generates functions without
a frame.) This is occasionally done with heavily used library functions to save the frame
setup time. GDB has limited facilities for dealing with these function invocations. If the
innermost function invocation has no stack frame, GDB nevertheless regards it as though

it had a separate frame, which is numbered zero as usual, allowing correct tracing of the
function call chain. However, GDB has no provision for frameless functions elsewhere in
the stack.

Startup Files
At startup, GDB reads configuration information from startup files in the following order:

1. ($HOME)/gdb.ini (your home directory startup file)
2. ./gdb.ini (the current directory’s startup file)

To make your own customizations to GDB, put GDB commands in your home directory’s
gdb.ini startup file. To make further customizations required for any specific project, put
commands in a gdb.ini startup file within that project’s directory. The startup files aren’t
executed if you use the -nx option.

For more information about making customizations to GDB, see “Defining and
Executing Sequences of Commands.”

Status Inquiries
info address var

Describe where the specified variable is stored.

info all-registers
List of all registers, including floating-point registers, and their contents.

info args Provide information about the argument variables of the current stack frame.

info breakpoints [num]
Provide information about the status of all breakpoints, or of breakpoint
number num. The second column displays y for enabled breakpoints, n for
disabled, o for enabled once (disable when hit), or d for enabled but delete
when hit. The address and the file/line number are also displayed.

The convenience variable $_ and the default examine address for x are set to
the address of the last breakpoint listed. The convenience variable $bpnum
contains the number of the last breakpoint set.

info classes [regexp]
Show all Objective-C classes or those matching the regular expression regexp.

info copying
Show conditions for redistributing copies of GDB.

info display
Show expressions to display when program stops, with code numbers.

info files Show the names of targets and files being debugged. Shows the entire stack of
targets currently in use (including the process, if any), as well as the symbol
file name.

info float Show the status of the floating-point unit.

info frame [addr]
Provide information about the selected stack frame, or the frame at addr.

info handle
Show what debugger does when program gets various signals.

info functions [regexp]
Show all function names, or those matching regexp .

info line [line_spec]
Core addresses of the code for a source line. line_spec can be specified as

linenum, to list around that line in current file,
file:linenum, to list around that line in that file,
function, to list around beginning of that function, or
file:function, to distinguish among like-named static functions.

The default is to describe the last source line that was listed.

This sets the default address for x to the line’s first instruction so that x/i
suffices to start examining the machine code. The address is also stored as the
value of $_.

info locals
Provide information about the local variables of the current stack frame.

info program
Show the execution status of the program.

info registers [register_name]
Show a list of registers and their contents for the selected stack frame. A
register name as argument means describe only that register.

info selectors [regexp]
Show all Objective-C selectors or those matching the regular expression
regexp.

info set Show all GDB settings.

info signals [sig_num]
Show what GDB does when the program gets various signals. Specify a signal
number to print information about that signal only.

info sources
Show the names of source files in the program.

info source
Provide information about the current source file.

info stack [count]
Provide a backtrace of the stack, or of the innermost count frames.

info target
Same as info files.

info terminal
Print inferior’s saved terminal status.

info types [regexp]
Show all type names, or those matching regexp .

info variables [regexp]
Show all global and static variable names, or those matching regexp .

info warranty
Show information pertaining to warranty.

info watchpoints [num]
Provide information about the status of all watchpoints, or of watchpoint
number num. The second column displays y for enabled watchpoints or n for
disabled ones.

show autoload-breakpoints
Show automatic resetting of breakpoints in dynamic code.

show autoload-symbols
Show automatic loading of symbols of dynamic code.

show args Show arguments to give program being debugged when it is started.

show catch-user-commands-errors
Show whether to ignore errors in user commands.

show commands
Show the status of the command editor.

show complaints
Show the maximum number of complaints about incorrect symbols.

show copying
Show conditions for redistributing copies of GDB.

show confirm
Show whether to confirm potentially dangerous operations.

show convenience
Show the debugger convenience variables. These variables are created when
you assign them values; thus, print $foo=1 gives $foo the value 1. Values may
be of any type.

A few convenience variables are given values automatically: $_ holds the
last address examined with x or info lines, and $__ holds the contents of the
last address examined with x.

show demangle-style on/off
Show the current C++ demangling style.

show directories
Current search path for finding source files. $cwd in the path means the
current working directory. $cdir in the path means the compilation directory
of the source file.

show editing
Show command-line editing.

show environment [var]
Show the environment to give the program, or one variable’s value. With an
argument var, prints the value of environment variable var to give the
program being debugged. With no arguments, prints the entire environment to
be given to the program.

show force_cplusplus
Show if you know better than the debugger about C++.

show history expansion
Show history expansion on command input.

show history filename
Show the filename in which to record the command history (the list of
previous commands of which a record is kept).

show history ignoredups
Show whether history condenses sequences of identical commands.

show history save
Show saving of the history record on exit.

show history size
Show the size of the command history (that is, the number of previous
commands to keep a record of).

show input-radix num
Show the default input radix for entering values.

show language
Show the programming language being used in debugging.

show lazy-read
Show if inferior’s memory is read lazily.

show listsize
Show the number of lines printed by list with no argument.

show output-radix num
Show the default output radix for print values.

show paths
Show the current search path for finding object files. $cwd in the path means
the current working directory. This path is like the $PATH shell variable; that
is, a list of directories separated by colons. These directories are searched to
find fully linked executable files and separately compiled object files as
needed.

show print address
Show printing of addresses.

show print array
Show prettyprinting of arrays.

show print asm-demangle
Show demangling of C++ names in disassembly listings.

show print demangle
Show demangling of encoded C++ names when displaying symbols.

show print elements
Show limit on string chars or array elements to print.

show print max-symbolic-offset
Show the largest offset that will be printed in symbol+1234 form.

show print null-stop
Show printing of character arrays to stop at first null character.

show print object
Show printing of object’s derived type based on vtable info.

show print pretty
Show pretty printing of structures.

show print repeats
Show threshold for repeated print elements.

show print sevenbit-strings
Show printing of 8-bit characters in strings as \nnn.

show print symbol-filename
Show printing of file name and line number with symbols.

show print union
Show printing of unions interior to structures.

show print vtbl
Show printing of C++ virtual function tables.

show prompt
Show GDB’s prompt.

show radix
Show the default input and output number radix.

show symbol-reloading
Show if dynamic symbol table reloads multiple times in one run.

show values [idx]
Elements of value history around item number idx (or last ten).

show verbose
Show whether verbosity is on or off.

show version
Report what version of GDB this is.

show view-host
Show host to connect to when viewing.

show view-program
Show name of program to connect to when viewing.

show user
Show definitions of user-defined commands.

show warranty
Show information pertaining to warranty.

Stepping
Stepping means setting your program in motion for a limited time, so that control will
return automatically to the debugger after one line of code or one machine instruction.
Breakpoints are active during stepping and the program will stop for them even if it
hasn’t gone as far as the stepping command specifies.

step [count]
Continue running the program until control reaches a different line, then stop
it and return to the debugger. If an argument is specified, proceed as in step,
but do so count times. If a breakpoint or a signal not related to stepping is
reached before count steps, stepping stops right away. You can abbreviate this
command as s.

next [count]
Similar to step, but any function calls appearing within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the stack level which was executing when the next command
was given. An argument is a repeat count, as in step. You can abbreviate this
command as n.

finish Continue running until just after the selected stack frame returns (or until
there’s some other reason to stop, such as a fatal signal or a breakpoint). Upon
return, the value returned is printed and put in the value history. Contrast this
with the return command, described in the section “Returning from a
Function.”

until Continue running until a source line past the current line in the current stack
frame is reached. This command is used to avoid single stepping through a
loop more than once. It is like the next command, except that when until
encounters a jump, it automatically continues execution until the program
counter is greater than the address of the jump. This means that when you
reach the end of a loop after single stepping through it, until makes your
program continue execution until it exits the loop. In contrast, a next
command at the end of a loop simply steps back to the beginning of the loop.

until linenum
Continue running until line number linenum is reached or the current stack
frame returns. This is equivalent to setting a breakpoint at linenum, executing
a finish command, and deleting the breakpoint. This form of the command
uses breakpoints and hence is quicker than until without an argument.

stepi [count]
Execute one machine instruction, then stop and return to the debugger. It’s
often useful to do display/i $pc when stepping by machine instructions. This
will cause the next instruction to be executed to be displayed automatically at
each stop (see the section “Automatic Display”). An argument is a repeat

count, as in step. You can abbreviate this command as si.

nexti [count]
Proceed one machine instruction, but if it’s a subroutine call, proceed until the
subroutine returns. An argument is a repeat count, as in next. You can
abbreviate this command as ni.

A typical technique for using stepping is to put a breakpoint at the beginning of the
function or the section of the program in which a problem is believed to lie, and then step
through the suspect area examining interesting variables until the problem happens.

The cont command can be used after stepping to resume execution until the next
breakpoint or signal.

Stopping and Continuing
When you run a program normally, it runs until exiting. The purpose of using a debugger is so
that you can stop it before that point, or so that if the program runs into trouble you can find out
why.

Windows Exceptions
Signals
Breakpoints
Continuing
Stepping

Summary of GDB
The purpose of a debugger such as GDB is to allow you to execute another program while
examining what’s going on inside it. We call the other program “your program” or “the program
being debugged.”

GDB can do four kinds of things (plus other things in support of these):

• Start the program, specifying anything that might affect its behavior.

• Make the program stop on specified conditions.

• Examine what has happened—when the program has stopped—so you can see bugs
happen.

• Change things in the program, so you can correct the effects of one bug and go on to
learn about another without having to recompile first.

The GNU Source-Level Debugger
This chapter provides an overview of the GDB debugger and how to use it. The chapter ends
with a discussion of OPENSTEP-specific extensions to GDB. These OPENSTEP extensions
provide full compatibility with standard GDB, while offering the following additional features
useful for developing programs within the OPENSTEP software environment:

• Additional debugger commands
• Extensions to existing debugger commands
• Support for debugging Objective-C code

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section “Legal Considerations” at the end of the chapter for important
related information.

This chapter Copyright Ó 1988, 1989, 1990, 1991, 1992, 1993, 1994, and 1995 by Free
Software Foundation, Inc. and Copyright Ó 1990, 1991, 1992, 1993, 1994, 1995, and
1996 by NeXT Software, Inc.

User-Defined Commands
A “user-defined command” is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command.

define commandname
Define a command named commandname. If there’s already a command by
that name, you’re asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines,
which are given following the define command. if and while statements are
allowed within the definition. The end of the command definition is marked
by a line containing just the command end. For example:

define w
 where
end

document commandname
Create documentation for the user-defined command commandname. The
command commandname must already be defined. This command reads lines
of documentation just as define reads the lines of the command definition.
After the document command is finished, help on command commandname
will print the documentation you have specified.

You may use the document command again to change the documentation of a
command. Redefining the command with define doesn’t change the
documentation, so be sure to keep the documentation up to date.

User-defined commands may take up to 10 arguments. Within the definition of the
command, you refer to the arguments as $arg0, $arg1, and so on up to $arg9. For
example, if you defined a command that took two arguments, you refer to the first one
specified on the command line as $arg0 and the second one as $arg1.

When they’re executed, the commands of the definition aren’t printed. An error in any
command stops execution of the user-defined command.

Commands that would ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they’re doing omit the messages when used in a user-defined
command.

Value History
Every value printed by the print command is saved for the entire session in GDB’s
“value history” so that you can refer to it in other expressions.

The values printed are given “history numbers” for you to refer to them by. These are
successive integers starting with 1. print shows you the history number assigned to a
value by printing $n = before the value, where n is the history number.

To refer to any previous value, use $ followed by the value’s history number. The output
printed by print is designed to remind you of this. $ alone refers to the most recent value
in the history, and $$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It’s enough to type

p *$

If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one with

p *$.next

It might be useful to repeat this command many times by pressing the Return key.

Note that the history records values, not expressions. If the value of x is 4 and you type

print x
set x=5

then the value recorded in the value history by the print command remains 4 even though
x’s value has changed.

Watchpoints
A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints but aside from
that, you can manage a watchpoint like any other breakpoint: you enable, disable, and
delete both breakpoints and watchpoints using the same commands.

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly that other
breakpoints, but this can be well worth it to catch errors where you have no clue what
part of your program is the culprit.

watch expr
Set a watchpoint for this expression.

info watchpoints
Print a list of watchpoints and breakpoints; it is the same as info break.

Warning: In multithreaded programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can only watch the
value of an expression in a single thread. If you are confident that the
expression can only change due to the current thread’s activity (and if you
are also confident that no other thread can become current), then you can
use watchpoints as usual. However, GDB may not notice when a non-
current thread’s activity changes the expression.

Windows Exceptions
Microsoft Windows defines many system-level exceptions. In addition, your program may define
its own exceptions. Exceptions have a severity level associated with them (error, warning, or
informational).

You can set how GDB reports and handles exceptions using these commands:

set report-exception level
Reports exceptions of the specified severity level by printing a message. The default is to
not report any exceptions. level can be one of the following:

0 Report all exceptions
1 Report errors, warnings, and informational exceptions
2 Do not report informational exceptions
3 Report only errors
4 Do not report any exceptions

set signal-exception level
Translates exceptions of the specified severity level into one of the seven signals that
Microsoft Windows understands. level can be one of the values shown above for the set
report-exception command. The default is for only error exceptions to cause a signal.

If signal-exception is set to something other than 4, each exception of the severity indicated is
translated into the corresponding signal shown below. GDB then handles that signal according to
the handling shown by info signals.

SIGSEGV EXCEPTION_ACCESS_VIOLATION
EXCEPTION_ARRAY_BOUNDS_EXCEEDED
EXCEPTION_DATATYPE_MISALIGNMENT
EXCEPTION_GUARD_PAGE
EXCEPTION_IN_PAGE_ERROR
EXCEPTION_STACK_OVERFLOW

SIGILL EXCEPTION_ILLEGAL_INSTRUCTION
EXCEPTION_PRIV_INSTRUCTION

SIGFPE EXCEPTION_FLT_DENORMAL_OPERAND
EXCEPTION_FLT_DIVIDE_BY_ZERO
EXCEPTION_FLT_INEXACT_RESULT
EXCEPTION_FLT_INVALID_OPERAND
EXCEPTION_FLT_OVERFLOW
EXCEPTION_FLT_STACK_CHECK
EXCEPTION_FLT_UNDERFLOW
EXCEPTION_INT_DIVIDE_BY_ZERO
EXCEPTION_INT_OVERFLOW

SIGINT DBG_CTRL_C
DBG_CTRL_BREAK

SIGTRAP EXCEPTION_BREAKPOINT
EXCEPTION_SINGLESTEP

SIGNAL_UNKOWN
All other exceptions.

Suppose you have set report-exception to report all exceptions and signal-exception to translate
all errors into signals, and your program receives EXCEPTION_ACCESS_VIOLATION. You
will receive a message that EXEPTION_ACCESS_VIOLATION was received, and then GDB
reacts according to the exception handler for SIGSEGV. If the handler for SIGSEGV is set to
stop, GDB stops your program. If SIGSEGV is set to print and nostop, you receive a second
message (this one says that SIGSEGV has occurred) and your program continues.

GDB is notified of an exception potentially twice: the first time before the program receives the
exception, and the second time if the program does not have a handler for this exception. When
GDB receives the exception the first time, it reacts according to what you have set for report-
exception and signal-exception (and potentially handle for the associated signal). If you
continue the program (or GDB did not stop the program to begin with), the program receives the
exception and is given a chance to handle the exception. If there is no exception handler, GDB
receives the exception again. In this case, GDB always stops the program and reports the
exception because the it is known to be fatal. If you enter continue, the program will terminate.
You can enter the command signal 0 before continuing to ignore the exception. For more
information, see the section “Continuing”.

Your Program’s Arguments
You specify the arguments to give the program by passing them as arguments to the run
command.
The run command with no arguments uses the same arguments used by the previous run.

With the set args command you can specify the arguments to be used the next time the
program is run. If set args has no arguments, it means to use no arguments the next time
the program is run. If you’ve run your program with arguments and want to run it again
with no arguments, this is the only way to do so.

Your Program’s Environment

Your program’s environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your home
directory, your terminal type, and your search path for programs to run. Usually you set
up environment variables with the shell and they’re inherited by all the other programs
you run. When debugging, it can be useful to try running the program with different
environments without having to start the debugger over again.

set environment varname value
Set the environment variable varname to value (for your program only, not for
GDB itself). value may be any string; any interpretation is supplied by your
program itself.

unset environment varname
Cancel the variable varname from the environment passed to your program
(thereby making the variable not be defined at all, which is different from
giving the variable an empty value). This doesn’t affect the program until the
next run command.

Your Program’s Input and Output
By default, the program you run under GDB uses as its source of input and output the
same terminal that GDB uses. GDB switches to its own terminal modes to interact with
you, but it records the terminal modes your program was using and switches back to them
when you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your
program is using.

Your Program’s Working Directory

Each time you start your program with run, the program inherits its working directory
from the current working directory of GDB. GDB’s working directory is initially
whatever it inherited from its superior, but you can specify the working directory for
GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify files
for GDB to operate on. See the section “Specifying Files to Debug.”

cd dir Set the working directory for GDB and the program being debugged to dir.
The change doesn’t take effect for the program being debugged until the next
time it is started.

pwd Print GDB’s working directory.

