
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

FCOrderedCollection

Inherits From: FCCollection : Object
Declared In: FCOrderedCollection.h

Class Description
FCOrderedCollection is a subclass of FCCollection that implements the behavior of an ordered
collection.    "Order" is defined as each object in the collection having a unique index with which it
can be accessed.

All collection subclasses which require an ordering are subclasses of this class. This includes lists,
stacks, queues, and sorted sets.

FCOrderedCollection uses a List object as its object storage medium, and thus is fast at adding

objects and retrieving objects sequentially, but will take O(n) to determine if an object is a member
of the collection. Some subclasses have optimized the membership check; see the class
documentation for the instantiable FCOrderedCollection subclasses.

FCOrderedCollection is an abstract superclass.    You cannot instantiate it directly; in fact, some of
its methods are simply stubs in the superclass and return errors when invoked.    Its basic purpose
is to provide common methods and an orthogonal interface to its eight instantiable subclasses, all
of which fully adhere to the interface described here.    In the documentation below, the term
"collection" refers to any non-abstract subclass of FCOrderedCollection.

FCOrderedCollection inherits from FCCollection.    The interface documented here only covers the
methods that are new or different in FCOrderedCollection, but all the methods in FCCollection will
work on an FCUnorderedCollection as well.    Refer to the documentation on FCCollection to
complete the description of an FCUnorderedCollection.

Instance Variables
Inherited from Object
None declared in this class.

Inherited from FCCollection
id _fc_contents ;
Class _fc_class ;

SEL _fc_sortSelector ;
BOOL _fc_archiveByReference ;

Declared in FCOrderedCollection
None declared in this class.

Method Types

Creating instances +alloc
+allocFromZone:

Asking About the Contents -firstObject
-lastObject
-objectAt:
-indexOf:
-indexOfEqualObject:

Changing the Contents -removeFirstObject
-removeLastObject
-removeObjectAt:

Making Related Collections -copyFrom:to:
Iterating -loopIndex:
Comparing and Sorting -sortByCompare:

Class Methods

alloc
+ alloc;

This method cannot be used to create an FCOrderedCollection object. FCOrderedCollection is an
abstract superclass, you should call alloc only on its instantiable subclasses. The method is
implemented only to prevent you from using it; if you do use it, it generates an error message.

allocFromZone:
+ allocFromZone:(NXZone *)zone;

This method cannot be used to create an FCOrderedCollection object. FCOrderedCollection is an
abstract superclass, you should call allocFromZone: only on its instantiable subclasses. The
method is implemented only to prevent you from using it; if you do use it, it generates an error
message.

Instance Methods

copyFrom:to:
- copyFrom:(unsigned)first to:(unsigned)last;

Returns a new collection object which contains the subset of objects from positions first to last in
the receiving collection. Returns nil if the indices are out of bounds.
See also:    - collectObjects:    (FCCollection)

firstObject
- firstObject;

Returns the id of the first object in the collection, or nil if the collection is empty.
See also:    - lastObject, -objectAt:

indexOf:
- (unsigned)indexOf:anObject;

Returns the index of the first occurrence of anObject in the collection, or NX_NOT_IN_LIST if
anObject isn't in the collection.

indexOfEqualObject:
- (unsigned)indexOfEqualObject:anObject;

Returns the index of the first object in the collection which thinks itself equal to anObject . Equality
is tested by sending the isEqual: message to all the elements in the collection.

Returns NX_NOT_IN_LIST if no objects think themselves equal.
See also:    - contains:

lastObject
- lastObject;

Returns the id of the last object in the collection, or nil if the collection is empty.
See also:    - firstObject, -objectAt:

loopIndex:
- (unsigned)loopIndex:(FCLoopState *)loopState;

Returns an unsigned integer representation of the opaque loopState loop counter. You can use this

integer as an index into the collection; e.g., [employees objectAt:[employees
loopIndex:loopState]].
See also:    - startLoop:    (FCCollection), - nextObject:    (FCCollection), FOR_EACH()   
(FCCollection), FOR_EACH_EXCEPT_FIRST()    (FCCollection), FOR_EACH_SELECTED()   
(FCCollection), FOR_EACH_BACKWARDS()

objectAt:
- objectAt:(unsigned)index;

Returns the id of the object located at slot index , or nil if index is beyond the end of the
collection.
See also:    - firstObject, -lastObject, - count    (FCCollection)

removeFirstObject
- removeFirstObject;

Removes the first object from the collection and returns it. Returns nil if the collection is empty.
See also:    - removeLastObject, - removeObjectAt:

removeLastObject

- removeLastObject;

Removes the last object from the collection and returns it. Returns nil if the collection is empty.
See also:    - removeFirstObject, - removeObjectAt:

removeObjectAt:
- removeObjectAt:(unsigned)index;

Removes the object located at index and returns it. If there's no object at index , this method
returns nil .

The positions of the remaining objects in the collection are adjusted so there's no gap.
See also:    - removeFirstObject, - removeLastObject, - removeObject:    (FCCollection)

sortByCompare:
- sortByCompare:(SEL)theSelector;

Sorts the objects in the collection. Objects are compared by sending them the theSelector
message, which must take an id (of the comparison object) as its sole argument.    The return
values for the theSelector method should be of type FCCompareType ; FC_COMPARE_EQUAL_TO,
FC_COMPARE_GREATER_THAN, or FC_COMPARE_LESS_THAN, depending on whether the receiving
object is equal to, greater than, or less than the argument object, respectively.

For example, the following method in the Employee class would allow employees to be sorted by
age:

 - (FCCompareType)compareAge:otherEmployee
{
 return compareInts([self age], [otherEmployee age]);
}

The actual sort would be done by calling [employees sortByCompare:@selector(compareAge:)].
See also:    compareFloats(), compareChars(), compareStrings(), compareShorts(),
compareInts(), compareLongs()

Macros

FOR_EACH_BACKWARDS()
FOR_EACH_BACKWARDS(item , collection , block)

Loops backwards through collection one object at a time, placing each object in item , then
executing block . The advantage of going backwards is that you can safely add elements to the
end of the collection or delete the current element while in the loop. (If you attempt either of these
while looping forwards you will loop infinitely or skip elements, respectively.)

Here's an example of deleting all employees who make over $10:
 FOR_EACH_BACKWARDS(person, employees, {
 if ([person salary] > 10.0)
 [employees removeObject:person];
})

FOR_EACH_BACKWARDS() loops can be nested to arbitrary depth.
See also:    - startLoop:, - nextObject:, FOR_EACH()    (FCCollection),
FOR_EACH_EXCEPT_FIRST()    (FCCollection), FOR_EACH_SELECTED()    (FCCollection)

