
Release 2.1    Copyright ã1993-1994 by Lighthouse Design, Ltd.    All Rights Reserved.

FCUnsortedCollection

Inherits From: FCOrderedCollection : FCCollection : Object
Declared In: FCUnsortedCollection.h

Class Description
FCUnsortedCollection is a subclass of FCOrderedCollection that implements the behavior of an
ordered collection which doesn't automatically sort itself.

This restriction expands the available methods for manipulating the collection; for instance, it
makes no sense to be able to insert an object at a particular position (see - insertObject:at: ,
below) if the collection is just going to move that object into sorted order.

All collection subclasses which require an unsorted collection are subclasses of this class. This
includes lists, stacks, queues, and ordered sets.

FCUnsortedCollection is an abstract superclass.    You cannot instantiate it directly; in fact, some of
its methods are simply stubs in the superclass and return errors when invoked.    Its basic purpose
is to provide common methods and an orthogonal interface to its six instantiable subclasses, all of
which fully adhere to the interface described here.    In the documentation below, the term

"collection" refers to any non-abstract subclass of FCUnsortedCollection.

FCUnsortedCollection inherits from FCOrderedCollection and FCCollection. The interface
documented here only covers the methods that are new or different in FCUnsortedCollection, but
all the methods in FCCollection and FCOrderedCollection will work on an FCUnsortedCollection as
well.    Refer to the documentation on those classes to complete the description of an
FCUnsortedCollection.

Instance Variables
Inherited from Object
None declared in this class.

Inherited from FCCollection
id _fc_contents ;
Class _fc_class ;
SEL _fc_sortSelector ;
BOOL _fc_archiveByReference ;

Inherited from FCOrderedCollection
None declared in this class.

Declared in FCUnsortedCollection
None declared in this class.

Method Types

Creating new instances +alloc
+allocFromZone:

Modifying the Contents -insertObject:at:
-replaceObjectAt:with:
-replaceFrom:to:with:
-replaceFrom:to:withObject:
-reverse
-switchObjectAt:withObjectAt:

Making Related Collections -copyReverse
-copyReverseFromZone:

Class Methods

alloc
+ alloc;

This method cannot be used to create an FCUnsortedCollection object. FCUnsortedCollection is an
abstract superclass, you should call alloc only on its instantiable subclasses. The method is
implemented only to prevent you from using it; if you do use it, it generates an error message.

allocFromZone:
+ allocFromZone:(NXZone *)zone;

This method cannot be used to create an FCUnsortedCollection object. FCUnsortedCollection is an
abstract superclass, you should call allocFromZone: only on its instantiable subclasses. The

method is implemented only to prevent you from using it; if you do use it, it generates an error
message.

Instance Methods

copyReverse
- copyReverse;

Returns a new collection object with the same contents as the receiver, only with the order of the
objects reversed (e.g., the last object in the receiver would be the first object in new collection,
etc.). The objects in the receiving collection aren't copied; therefore, both collections contain
pointers to the same set of objects.
See also:    - reverse, - copy    (FCCollection), - copyAs:    (FCCollection), - deepCopy   
(FCCollection)

copyReverseFromZone:
- copyReverseFromZone:(NXZone *)zone;

Performs the same operation as copyReverse except that the new instance is allocated from zone
.

insertObject:at:
- insertObject:anObject at:(unsigned)index;

Inserts anObject into the collection at index , moving objects down one slot to make room.    If
index equals the value returned by the count method, anObject is inserted at the end of the
collection.    However, the insertion fails and returns nil if index is greater than the value returned
by count or anObject is nil .

If the programmer has set a content class, insertObject:at: will fail if anObject isn't a kind of that
class. If a subclass of FCUnsortedCollection requires unique elements and anObject is already in
the collection, the insertion will also fail. If anObject is successfully inserted into the collection, this
method returns self.
See also:    - count    (FCCollection), - addObject:    (FCCollection), - uniqueElements   
(FCCollection), - setContentClass:    (FCCollection)

replaceFrom:to:with:
- replaceFrom:(unsigned)first to:(unsigned)last with:otherCollection;

Removes the objects from positions first to last and then inserts the objects from otherCollection in
their place.    The collection otherCollection does not have to be the same size as last - first .

If the programmer has set a content class, replaceFrom:to:with: will not insert any objects from
otherCollection that aren't a kind of that class. If a subclass of FCUnsortedCollection requires
unique elements and any objects from otherCollection are already in this collection, those objects
are skipped as well. If otherCollection is successfully inserted into the collection, this method
returns self.    If this method fails or the reciever is the same as otherCollection , it returns nil .
See also:    - replaceObjectAt:with:, - replaceFrom:to:withObject:, - uniqueElements   
(FCCollection), - setContentClass:    (FCCollection)

replaceFrom:to:withObject:
- replaceFrom:(unsigned)first to:(unsigned)last withObject:anObject;

Removes the objects from positions first to last and then inserts last - first + 1 copies of anObject
in their place.

If the programmer has set a content class, replaceFrom:to:withObject: will not insert anObject
if it isn't a kind of that class. If a subclass of FCUnsortedCollection requires unique elements then
anObject will only be inserted once, no matter how many objects are deleted. If anObject is
successfully inserted into the collection, this method returns self.    If this method fails or anObject
is nil , it returns nil .
See also:    - replaceObjectAt:with:, - replaceFrom:to:with:, - uniqueElements   
(FCCollection), - setContentClass:    (FCCollection)

replaceObjectAt:with:
- replaceObjectAt:(unsigned)index with:newObject;

Returns the object at index after replacing it with newObject . If there's no object at index or
newObject is nil , nothing is replaced and nil is returned.

If the programmer has set a content class, replaceObjectAt:with: will fail and return nil if
anObject isn't a kind of that class. If a subclass of FCUnsortedCollection requires unique elements
and anObject is already in the collection somewhere else, the replace will also fail.
See also:    - replaceObject:with:    (FCCollection), - count    (FCCollection), - addObject:   
(FCCollection), - uniqueElements    (FCCollection), - setContentClass:    (FCCollection)

reverse
- reverse;

Reverses the order of the objects in the collection; the old last object will now be the first object,

etc.
See also:    - copyReverse

switchObjectAt:withObjectAt:
- switchObjectAt:(unsigned)index1 withObjectAt:(unsigned)index2;

Switches the positions of the objects at index1 and index2 in the collection.    Returns nil if index1
or index2 is out of bounds.

