home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Simtel MSDOS 1992 September
/
Simtel20_Sept92.cdr
/
msdos
/
fortran
/
linpkdrv.arc
/
SG.FOR
< prev
next >
Wrap
Text File
|
1984-01-05
|
18KB
|
616 lines
C MAIN PROGRAM
INTEGER LUNIT
C ALLOW 5000 UNDERFLOWS.
C CALL TRAPS(0,0,5001,0,0)
C
C OUTPUT UNIT NUMBER
C
LUNIT = 6
C
CALL SGETS(LUNIT)
C
STOP
END
SUBROUTINE SGETS(LUNIT)
C LUNIT IS THE OUTPUT UNIT NUMBER
C
C TESTS
C SGECO,SGEFA,SGESL,SGEDI,SGBCO,SGBFA,SGBSL,SGBDI
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C LINPACK SGECO,SGESL,SGEDI,SGBCO,SGBSL,SGBDI
C EXTERNAL SGEXX,SMACH
C BLAS SAXPY,SDOT,SSCAL,SASUM
C FORTRAN ABS,AMAX1,FLOAT,MAX0,MIN0
C
C INTERNAL VARIABLES
C
REAL A(15,15),AB(43,15),AINV(15,15),ASAVE(15,15)
REAL B(15),BT(15),SDOT,DET(2),DETB(2)
REAL X(15),XB(15),XEXACT(15),XT(15),XTB(15),T,Z(15)
REAL AINORM,ANORM,SMACH,COND,COND1,EN,ENORM,EPS
REAL ETNORM,FNI,FNORM,ONEPX,RCOND,RCONDB,RNORM
REAL RTNORM,Q(8),QS(8),SASUM,XNORM,XTNORM
INTEGER I,IPVT(15),IPVTB(15),IQ(8),I1,I2,J
INTEGER K,KASE,KB,KBFAIL,KOUNT,KP1,KSING,KSUSP(8)
INTEGER L,LDA,LDAB,LUNIT,M,ML,MU,N,NM1,NPRINT
LOGICAL KBF
C
LDA = 15
LDAB = 43
C
C WRITE MATRIX AND SOLUTIONS IF N .LE. NPRINT
C
NPRINT = 3
C
WRITE (LUNIT,460)
WRITE (LUNIT,880)
C
DO 10 I = 1, 8
KSUSP(I) = 0
10 CONTINUE
KSING = 0
KBFAIL = 0
C
C SET EPS TO ROUNDING UNIT
C
EPS = SMACH(1)
WRITE (LUNIT,470) EPS
WRITE (LUNIT,450)
C
C START MAIN LOOP
C
KASE = 1
20 CONTINUE
C
C GENERATE TEST MATRIX
C
CALL SGEXX(A,LDA,N,KASE,LUNIT)
C
C N = 0 SIGNALS NO MORE TEST MATRICES
C
C ...EXIT
IF (N .LE. 0) GO TO 440
ANORM = 0.0E0
DO 30 J = 1, N
ANORM = AMAX1(ANORM,SASUM(N,A(1,J),1))
30 CONTINUE
WRITE (LUNIT,650) ANORM
C
IF (N .GT. NPRINT) GO TO 50
WRITE (LUNIT,450)
DO 40 I = 1, N
WRITE (LUNIT,700) (A(I,J), J = 1, N)
40 CONTINUE
WRITE (LUNIT,450)
50 CONTINUE
C
C GENERATE EXACT SOLUTION
C
XEXACT(1) = 1.0E0
IF (N .GE. 2) XEXACT(2) = 0.0E0
IF (N .LE. 2) GO TO 70
DO 60 I = 3, N
XEXACT(I) = -XEXACT(I-2)
60 CONTINUE
70 CONTINUE
C
C SAVE MATRIX AND GENERATE R.H.S.
C
DO 90 I = 1, N
B(I) = 0.0E0
BT(I) = 0.0E0
DO 80 J = 1, N
ASAVE(I,J) = A(I,J)
B(I) = B(I) + A(I,J)*XEXACT(J)
BT(I) = BT(I) + A(J,I)*XEXACT(J)
80 CONTINUE
X(I) = B(I)
XT(I) = BT(I)
XB(I) = X(I)
XTB(I) = XT(I)
90 CONTINUE
C
C FACTOR AND ESTIMATE CONDITION
C
CALL SGECO(A,LDA,N,IPVT,RCOND,Z)
C
C OUTPUT NULL VECTOR IF N .LE. NPRINT
C
IF (N .GT. NPRINT) GO TO 110
WRITE (LUNIT,720)
DO 100 I = 1, N
WRITE (LUNIT,730) Z(I)
100 CONTINUE
WRITE (LUNIT,450)
110 CONTINUE
C
C FACTOR BAND FORM AND COMPARE
C
KBF = .FALSE.
ML = 0
MU = 0
DO 140 J = 1, N
DO 130 I = 1, N
IF (ASAVE(I,J) .EQ. 0.0E0) GO TO 120
IF (I .LT. J) MU = MAX0(MU,J-I)
IF (I .GT. J) ML = MAX0(ML,I-J)
120 CONTINUE
130 CONTINUE
140 CONTINUE
WRITE (LUNIT,790) ML,MU
IF (2*ML + MU + 1 .LE. LDAB) GO TO 150
WRITE (LUNIT,680)
GO TO 430
150 CONTINUE
M = ML + MU + 1
DO 170 J = 1, N
I1 = MAX0(1,J-MU)
I2 = MIN0(N,J+ML)
DO 160 I = I1, I2
K = I - J + M
AB(K,J) = ASAVE(I,J)
160 CONTINUE
170 CONTINUE
C
CALL SGBCO(AB,LDAB,N,ML,MU,IPVTB,RCONDB,Z)
C
IF (RCONDB .EQ. RCOND) GO TO 180
WRITE (LUNIT,780)
WRITE (LUNIT,820) RCOND,RCONDB
KBF = .TRUE.
180 CONTINUE
KOUNT = 0
DO 190 J = 1, N
IF (AB(M,J) .NE. A(J,J)) KOUNT = KOUNT + 1
IF (IPVTB(J) .NE. IPVT(J)) KOUNT = KOUNT + 1
190 CONTINUE
IF (KOUNT .EQ. 0) GO TO 200
WRITE (LUNIT,780)
WRITE (LUNIT,830) KOUNT
KBF = .TRUE.
200 CONTINUE
C
C TEST FOR SINGULARITY
C
IF (RCOND .GT. 0.0E0) GO TO 210
WRITE (LUNIT,710) RCOND
WRITE (LUNIT,480)
KSING = KSING + 1
GO TO 420
210 CONTINUE
COND = 1.0E0/RCOND
WRITE (LUNIT,500) COND
ONEPX = 1.0E0 + RCOND
IF (ONEPX .EQ. 1.0E0) WRITE (LUNIT,490)
C
C COMPUTE INVERSE, DETERMINANT AND COND1 = TRUE CONDITION
C
DO 230 J = 1, N
DO 220 I = 1, N
AINV(I,J) = A(I,J)
220 CONTINUE
230 CONTINUE
CALL SGEDI(AINV,LDA,N,IPVT,DET,Z,11)
AINORM = 0.0E0
DO 240 J = 1, N
AINORM = AMAX1(AINORM,SASUM(N,AINV(1,J),1))
240 CONTINUE
COND1 = ANORM*AINORM
WRITE (LUNIT,510) COND1
WRITE (LUNIT,750) DET(1)
WRITE (LUNIT,760) DET(2)
C
C SOLVE A*X = B AND TRANS(A)*XT = BT
C
CALL SGESL(A,LDA,N,IPVT,X,0)
CALL SGESL(A,LDA,N,IPVT,XT,1)
C
IF (N .GT. NPRINT) GO TO 270
WRITE (LUNIT,520)
DO 250 I = 1, N
WRITE (LUNIT,740) X(I)
250 CONTINUE
WRITE (LUNIT,530)
DO 260 I = 1, N
WRITE (LUNIT,740) XT(I)
260 CONTINUE
WRITE (LUNIT,450)
270 CONTINUE
C
C MORE BAND COMPARE
C
CALL SGBSL(AB,LDAB,N,ML,MU,IPVTB,XB,0)
CALL SGBSL(AB,LDAB,N,ML,MU,IPVTB,XTB,1)
KOUNT = 0
DO 280 I = 1, N
IF (XB(I) .NE. X(I)) KOUNT = KOUNT + 1
IF (XTB(I) .NE. XT(I)) KOUNT = KOUNT + 1
280 CONTINUE
IF (KOUNT .EQ. 0) GO TO 290
WRITE (LUNIT,780)
WRITE (LUNIT,840) KOUNT
KBF = .TRUE.
290 CONTINUE
CALL SGBDI(AB,LDAB,N,ML,MU,IPVTB,DETB)
IF (DETB(1) .EQ. DET(1) .AND. DETB(2) .EQ. DET(2))
* GO TO 300
WRITE (LUNIT,780)
WRITE (LUNIT,850) DETB
KBF = .TRUE.
300 CONTINUE
C
C RECONSTRUCT A FROM TRIANGULAR FACTORS , L AND U
C
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 330
DO 320 KB = 1, NM1
K = N - KB
KP1 = K + 1
L = IPVT(K)
DO 310 J = KP1, N
T = -A(K,J)
CALL SAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
T = A(L,J)
A(L,J) = A(K,J)
A(K,J) = T
310 CONTINUE
T = -A(K,K)
CALL SSCAL(N-K,T,A(K+1,K),1)
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
320 CONTINUE
330 CONTINUE
C
C COMPUTE ERRORS AND RESIDUALS
C E = X - XEXACT
C ET = XT - XEXACT
C R = B - A*X
C RT = BT - A*XT
C F = A - L*U
C AI = A*INV(A) - I
C
XNORM = SASUM(N,X,1)
XTNORM = SASUM(N,XT,1)
ENORM = 0.0E0
ETNORM = 0.0E0
FNORM = 0.0E0
DO 350 J = 1, N
ENORM = ENORM + ABS(X(J)-XEXACT(J))
ETNORM = ETNORM + ABS(XT(J)-XEXACT(J))
T = -X(J)
CALL SAXPY(N,T,ASAVE(1,J),1,B,1)
BT(J) = BT(J) - SDOT(N,ASAVE(1,J),1,XT,1)
FNI = 0.0E0
DO 340 I = 1, N
FNI = FNI + ABS(ASAVE(I,J)-A(I,J))
340 CONTINUE
IF (FNI .GT. FNORM) FNORM = FNI
350 CONTINUE
RNORM = SASUM(N,B,1)
RTNORM = SASUM(N,BT,1)
C
C A*INV(A) - I
C
AINORM = 0.0E0
DO 380 J = 1, N
DO 360 I = 1, N
B(I) = 0.0E0
360 CONTINUE
DO 370 K = 1, N
T = AINV(K,J)
CALL SAXPY(N,T,ASAVE(1,K),1,B,1)
370 CONTINUE
B(J) = B(J) - 1.0E0
AINORM = AMAX1(AINORM,SASUM(N,B,1))
380 CONTINUE
C
WRITE (LUNIT,540) ENORM,ETNORM
WRITE (LUNIT,550) RNORM,RTNORM
WRITE (LUNIT,660) FNORM
WRITE (LUNIT,670) AINORM
C
C COMPUTE TEST RATIOS
C
Q(1) = COND/COND1
Q(2) = COND1/COND
Q(3) = ENORM/(EPS*COND*XNORM)
Q(4) = ETNORM/(EPS*COND*XTNORM)
Q(5) = RNORM/(EPS*ANORM*XNORM)
Q(6) = RTNORM/(EPS*ANORM*XTNORM)
Q(7) = FNORM/(EPS*ANORM)
Q(8) = AINORM/(EPS*COND)
WRITE (LUNIT,450)
WRITE (LUNIT,560)
WRITE (LUNIT,450)
WRITE (LUNIT,620)
WRITE (LUNIT,630)
WRITE (LUNIT,640)
WRITE (LUNIT,450)
WRITE (LUNIT,690) (Q(I), I = 1, 8)
WRITE (LUNIT,450)
C
C LOOK FOR SUSPICIOUS RATIOS
C
QS(1) = 1.0E0 + 4.0E0*EPS
QS(2) = 10.0E0
EN = FLOAT(N)
IF (N .EQ. 1) EN = 2.0E0
DO 390 I = 3, 8
QS(I) = EN
390 CONTINUE
KOUNT = 0
DO 410 I = 1, 8
IQ(I) = 0
IF (Q(I) .LE. QS(I)) GO TO 400
IQ(I) = 1
KSUSP(I) = KSUSP(I) + 1
KOUNT = KOUNT + 1
400 CONTINUE
410 CONTINUE
IF (KOUNT .EQ. 0) WRITE (LUNIT,860)
IF (KOUNT .NE. 0) WRITE (LUNIT,870) (IQ(I), I = 1, 8)
WRITE (LUNIT,450)
420 CONTINUE
430 CONTINUE
C
IF (.NOT.KBF) WRITE (LUNIT,770)
IF (KBF) KBFAIL = KBFAIL + 1
WRITE (LUNIT,570)
KASE = KASE + 1
GO TO 20
440 CONTINUE
C
C FINISH MAIN LOOP
C
C SUMMARY
C
WRITE (LUNIT,580)
KASE = KASE - 1
WRITE (LUNIT,590) KASE
WRITE (LUNIT,600) KSING
WRITE (LUNIT,800) KBFAIL
WRITE (LUNIT,610) KSUSP
WRITE (LUNIT,810)
RETURN
C
C MOST FORMATS, ALSO SOME IN SGEXX
C
450 FORMAT (1H )
460 FORMAT (29H1LINPACK TESTER, SGE**, SGB**)
470 FORMAT ( / 14H EPSILON =, 1PE13.5)
480 FORMAT ( / 19H EXACT SINGULARITY. /)
490 FORMAT ( / 16H MAYBE SINGULAR. /)
500 FORMAT (14H COND =, 1PE13.5)
510 FORMAT (14H ACTUAL COND =, 1PE13.5)
520 FORMAT ( / 4H X =)
530 FORMAT ( / 5H XT =)
540 FORMAT (14H ERROR NORMS =, 1P2E13.5)
550 FORMAT (14H RESID NORMS =, 1P2E13.5)
560 FORMAT (26H TEST RATIOS.. E = EPSILON)
570 FORMAT ( / 14H ************* /)
580 FORMAT (8H1SUMMARY)
590 FORMAT (18H NUMBER OF TESTS =, I4)
600 FORMAT (30H NUMBER OF SINGULAR MATRICES =, I4)
610 FORMAT (30H NUMBER OF SUSPICIOUS RATIOS =, 8I4)
620 FORMAT (30H COND ACTUAL ERROR ,
* 50H ERROR-T RESID RESID-T A - LU A*AI-I )
630 FORMAT (8(10H -------))
640 FORMAT (30H ACTUAL COND E*COND*X,
* 50H E*COND*X E*A*X E*A*X E*A E*COND )
650 FORMAT (14H NORM(A) =, 1PE13.5)
660 FORMAT (14H NORM(A - LU)=, 1PE13.5)
670 FORMAT (14H NORM(A*AI-I)=, 1PE13.5)
680 FORMAT ( / 19H BAND WIDTH TOO BIG)
690 FORMAT (8(1X, F9.4))
700 FORMAT (1H , 6G11.4)
710 FORMAT (14H 1/COND =, 1PE13.5)
720 FORMAT ( / 7H NULL =)
730 FORMAT (2G14.6)
740 FORMAT (2G14.6)
750 FORMAT (14H DET FRACT =, 2F9.5)
760 FORMAT (14H DET EXPON =, 2F9.0)
770 FORMAT ( / 20H BAND ROUTINES AGREE /)
780 FORMAT ( / 28H BAND ROUTINES DO NOT AGREE,)
790 FORMAT (5H ML =, I2, 6H MU =, I2)
800 FORMAT (26H NUMBER OF BAND FAILURES =, I4)
810 FORMAT ( / 12H END OF TEST)
820 FORMAT (8H RCOND =, 1P2E13.5 /)
830 FORMAT (12H KOUNT(FA) =, I4 /)
840 FORMAT (12H KOUNT(SL) =, I4 /)
850 FORMAT (8H DET =, 4F9.5 /)
860 FORMAT (21H NO SUSPICIOUS RATIOS)
870 FORMAT (I8, 7I10 / 7X, 28H1 INDICATES SUSPICIOUS RATIO)
880 FORMAT (29H THIS VERSION DATED 08/14/78.)
END
SUBROUTINE SGEXX(A,LDA,N,KASE,LUNIT)
INTEGER LDA,N,KASE,LUNIT
REAL A(LDA,1)
C
C GENERATES REAL GENERAL TEST MATRICES
C
C EXTERNAL SMACH
C FORTRAN FLOAT,MAX0
REAL T1,T2
REAL SMACH,HUGE,TINY
INTEGER I,J
C
GO TO (10, 10, 10, 60, 60, 80, 80, 80, 120, 160, 200, 240, 280,
* 320, 360, 410, 460), KASE
C
C KASE 1, 2 AND 3
C
10 CONTINUE
N = 3*KASE
WRITE (LUNIT,20) KASE,N
20 FORMAT (5H KASE, I3, 3X, 16HHILBERT SLICE / 4H N =, I4)
DO 50 J = 1, N
DO 40 I = 1, N
A(I,J) = 0.0E0
IF (I .GT. J + 2) GO TO 30
IF (I .LT. J - 3) GO TO 30
A(I,J) = 1.0E0/FLOAT(I+J-1)
30 CONTINUE
40 CONTINUE
50 CONTINUE
GO TO 470
C
C KASE 4 AND 5
C
60 CONTINUE
N = 1
WRITE (LUNIT,70) KASE,N
70 FORMAT (5H KASE, I3, 3X, 16HMONOELEMENTAL / 4H N =, I4)
IF (KASE .EQ. 4) A(1,1) = 3.0E0
IF (KASE .EQ. 5) A(1,1) = 0.0E0
GO TO 470
C
C KASE 6, 7 AND 8
C
80 CONTINUE
N = 15
WRITE (LUNIT,90) KASE,N
90 FORMAT (5H KASE, I3, 3X, 16HTRIDIAGONAL / 4H N =, I4)
T1 = 1.0E0
T2 = 1.0E0
IF (KASE .EQ. 7) T1 = 100.0E0
IF (KASE .EQ. 8) T2 = 100.0E0
DO 110 I = 1, N
DO 100 J = 1, N
A(I,J) = 0.0E0
IF (I .EQ. J) A(I,I) = 4.0E0
IF (I .EQ. J - 1) A(I,J) = T1
IF (I .EQ. J + 1) A(I,J) = T2
100 CONTINUE
110 CONTINUE
GO TO 470
C
C KASE 9
C
120 CONTINUE
N = 5
WRITE (LUNIT,130) KASE,N
130 FORMAT (5H KASE, I3, 3X, 16HRANK ONE / 4H N =, I4)
DO 150 I = 1, N
DO 140 J = 1, N
A(I,J) = 10.0E0**(I - J)
140 CONTINUE
150 CONTINUE
GO TO 470
C
C KASE 10
C
160 CONTINUE
N = 4
WRITE (LUNIT,170) KASE,N
170 FORMAT (5H KASE, I3, 3X, 16HZERO COLUMN / 4H N =, I4)
DO 190 I = 1, N
DO 180 J = 1, N
T1 = FLOAT(J-3)
T2 = FLOAT(I)
A(I,J) = T1/T2
180 CONTINUE
190 CONTINUE
GO TO 470
C
C KASE 11
C
200 CONTINUE
N = 5
WRITE (LUNIT,210) KASE,N
210 FORMAT (5H KASE, I3, 3X, 16HTEST COND / 4H N =, I4)
DO 230 I = 1, N
DO 220 J = 1, N
IF (I .EQ. J) A(I,J) = FLOAT(I)
IF (I .GT. J) A(I,J) = FLOAT(J-2)
IF (I .LT. J) A(I,J) = FLOAT(I-2)
220 CONTINUE
230 CONTINUE
GO TO 470
C
C KASE 12
C
240 CONTINUE
N = 3
WRITE (LUNIT,250) KASE,N
250 FORMAT (5H KASE, I3, 3X, 16HIDENTITY / 4H N =, I4)
DO 270 I = 1, N
DO 260 J = 1, N
IF (I .EQ. J) A(I,I) = 1.0E0
IF (I .NE. J) A(I,J) = 0.0E0
260 CONTINUE
270 CONTINUE
GO TO 470
C
C KASE 13
C
280 CONTINUE
N = 6
WRITE (LUNIT,290) KASE,N
290 FORMAT (5H KASE, I3, 3X, 16HUPPER TRIANGULAR / 4H N =, I4)
DO 310 I = 1, N
DO 300 J = 1, N
IF (I .GT. J) A(I,J) = 0.0E0
IF (I .LE. J) A(I,J) = FLOAT(J-I+1)
300 CONTINUE
310 CONTINUE
GO TO 470
C
C KASE 14
C
320 CONTINUE
N = 6
WRITE (LUNIT,330) KASE,N
330 FORMAT (5H KASE, I3, 3X, 16HLOWER TRIANGULAR / 4H N =, I4)
DO 350 I = 1, N
DO 340 J = 1, N
IF (I .LT. J) A(I,J) = 0.0E0
IF (I .GE. J) A(I,J) = FLOAT(I-J+1)
340 CONTINUE
350 CONTINUE
GO TO 470
C
C KASE 15
C
360 CONTINUE
N = 5
WRITE (LUNIT,370) KASE,N
370 FORMAT (5H KASE, I3, 3X, 16HNEAR UNDERFLOW / 4H N =, I4)
TINY = SMACH(2)
WRITE (LUNIT,380) TINY
380 FORMAT (14H TINY =, 1PE13.5)
DO 400 I = 1, N
DO 390 J = 1, N
A(I,J) = TINY*FLOAT(J)/FLOAT(MAX0(I,J))
390 CONTINUE
400 CONTINUE
GO TO 470
C
C KASE 16
C
410 CONTINUE
N = 5
WRITE (LUNIT,420) KASE,N
420 FORMAT (5H KASE, I3, 3X, 16HNEAR OVERFLOW / 4H N =, I4)
HUGE = SMACH(3)
WRITE (LUNIT,430) HUGE
430 FORMAT (14H HUGE =, 1PE13.5)
DO 450 I = 1, N
DO 440 J = 1, N
A(I,J) = HUGE*FLOAT(J)/FLOAT(MAX0(I,J))
440 CONTINUE
450 CONTINUE
GO TO 470
C
460 CONTINUE
N = 0
470 CONTINUE
RETURN
C
END