home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Simtel MSDOS 1992 September
/
Simtel20_Sept92.cdr
/
msdos
/
fortran
/
linpklib.arc
/
SPPDI.FOR
< prev
next >
Wrap
Text File
|
1984-01-06
|
4KB
|
129 lines
SUBROUTINE SPPDI(AP,N,DET,JOB)
INTEGER N,JOB
REAL AP(1)
REAL DET(2)
C
C SPPDI COMPUTES THE DETERMINANT AND INVERSE
C OF A REAL SYMMETRIC POSITIVE DEFINITE MATRIX
C USING THE FACTORS COMPUTED BY SPPCO OR SPPFA .
C
C ON ENTRY
C
C AP REAL (N*(N+1)/2)
C THE OUTPUT FROM SPPCO OR SPPFA.
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C JOB INTEGER
C = 11 BOTH DETERMINANT AND INVERSE.
C = 01 INVERSE ONLY.
C = 10 DETERMINANT ONLY.
C
C ON RETURN
C
C AP THE UPPER TRIANGULAR HALF OF THE INVERSE .
C THE STRICT LOWER TRIANGLE IS UNALTERED.
C
C DET REAL(2)
C DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
C OTHERWISE NOT REFERENCED.
C DETERMINANT = DET(1) * 10.0**DET(2)
C WITH 1.0 .LE. DET(1) .LT. 10.0
C OR DET(1) .EQ. 0.0 .
C
C ERROR CONDITION
C
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C AND IF DPOCO OR DPOFA HAS SET INFO .EQ. 0 .
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS SAXPY,SSCAL
C FORTRAN MOD
C
C INTERNAL VARIABLES
C
REAL T
REAL S
INTEGER I,II,J,JJ,JM1,J1,K,KJ,KK,KP1,K1
C
C COMPUTE DETERMINANT
C
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0E0
DET(2) = 0.0E0
S = 10.0E0
II = 0
DO 50 I = 1, N
II = II + I
DET(1) = AP(II)**2*DET(1)
C ...EXIT
IF (DET(1) .EQ. 0.0E0) GO TO 60
10 IF (DET(1) .GE. 1.0E0) GO TO 20
DET(1) = S*DET(1)
DET(2) = DET(2) - 1.0E0
GO TO 10
20 CONTINUE
30 IF (DET(1) .LT. S) GO TO 40
DET(1) = DET(1)/S
DET(2) = DET(2) + 1.0E0
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE(R)
C
IF (MOD(JOB,10) .EQ. 0) GO TO 140
KK = 0
DO 100 K = 1, N
K1 = KK + 1
KK = KK + K
AP(KK) = 1.0E0/AP(KK)
T = -AP(KK)
CALL SSCAL(K-1,T,AP(K1),1)
KP1 = K + 1
J1 = KK + 1
KJ = KK + K
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = AP(KJ)
AP(KJ) = 0.0E0
CALL SAXPY(K,T,AP(K1),1,AP(J1),1)
J1 = J1 + J
KJ = KJ + J
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FORM INVERSE(R) * TRANS(INVERSE(R))
C
JJ = 0
DO 130 J = 1, N
J1 = JJ + 1
JJ = JJ + J
JM1 = J - 1
K1 = 1
KJ = J1
IF (JM1 .LT. 1) GO TO 120
DO 110 K = 1, JM1
T = AP(KJ)
CALL SAXPY(K,T,AP(J1),1,AP(K1),1)
K1 = K1 + K
KJ = KJ + 1
110 CONTINUE
120 CONTINUE
T = AP(JJ)
CALL SSCAL(J,T,AP(J1),1)
130 CONTINUE
140 CONTINUE
RETURN
END