home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Simtel MSDOS 1992 September
/
Simtel20_Sept92.cdr
/
msdos
/
fortran
/
linpklib.arc
/
SSVDC.FOR
< prev
next >
Wrap
Text File
|
1984-01-06
|
15KB
|
481 lines
SUBROUTINE SSVDC(X,LDX,N,P,S,E,U,LDU,V,LDV,WORK,JOB,INFO)
INTEGER LDX,N,P,LDU,LDV,JOB,INFO
REAL X(LDX,1),S(1),E(1),U(LDU,1),V(LDV,1),WORK(1)
C
C
C SSVDC IS A SUBROUTINE TO REDUCE A REAL NXP MATRIX X BY
C ORTHOGONAL TRANSFORMATIONS U AND V TO DIAGONAL FORM. THE
C DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X. THE
C COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS,
C AND THE COLUMNS OF V THE RIGHT SINGULAR VECTORS.
C
C ON ENTRY
C
C X REAL(LDX,P), WHERE LDX.GE.N.
C X CONTAINS THE MATRIX WHOSE SINGULAR VALUE
C DECOMPOSITION IS TO BE COMPUTED. X IS
C DESTROYED BY SSVDC.
C
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C N INTEGER.
C N IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C P INTEGER.
C P IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C LDU INTEGER.
C LDU IS THE LEADING DIMENSION OF THE ARRAY U.
C (SEE BELOW).
C
C LDV INTEGER.
C LDV IS THE LEADING DIMENSION OF THE ARRAY V.
C (SEE BELOW).
C
C WORK REAL(N).
C WORK IS A SCRATCH ARRAY.
C
C JOB INTEGER.
C JOB CONTROLS THE COMPUTATION OF THE SINGULAR
C VECTORS. IT HAS THE DECIMAL EXPANSION AB
C WITH THE FOLLOWING MEANING
C
C A.EQ.0 DO NOT COMPUTE THE LEFT SINGULAR
C VECTORS.
C A.EQ.1 RETURN THE N LEFT SINGULAR VECTORS
C IN U.
C A.GE.2 RETURN THE FIRST MIN(N,P) SINGULAR
C VECTORS IN U.
C B.EQ.0 DO NOT COMPUTE THE RIGHT SINGULAR
C VECTORS.
C B.EQ.1 RETURN THE RIGHT SINGULAR VECTORS
C IN V.
C
C ON RETURN
C
C S REAL(MM), WHERE MM=MIN(N+1,P).
C THE FIRST MIN(N,P) ENTRIES OF S CONTAIN THE
C SINGULAR VALUES OF X ARRANGED IN DESCENDING
C ORDER OF MAGNITUDE.
C
C E REAL(P).
C E ORDINARILY CONTAINS ZEROS. HOWEVER SEE THE
C DISCUSSION OF INFO FOR EXCEPTIONS.
C
C U REAL(LDU,K), WHERE LDU.GE.N. IF JOBA.EQ.1 THEN
C K.EQ.N, IF JOBA.GE.2 THEN
C K.EQ.MIN(N,P).
C U CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
C U IS NOT REFERENCED IF JOBA.EQ.0. IF N.LE.P
C OR IF JOBA.EQ.2, THEN U MAY BE IDENTIFIED WITH X
C IN THE SUBROUTINE CALL.
C
C V REAL(LDV,P), WHERE LDV.GE.P.
C V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
C V IS NOT REFERENCED IF JOB.EQ.0. IF P.LE.N,
C THEN V MAY BE IDENTIFIED WITH X IN THE
C SUBROUTINE CALL.
C
C INFO INTEGER.
C THE SINGULAR VALUES (AND THEIR CORRESPONDING
C SINGULAR VECTORS) S(INFO+1),S(INFO+2),...,S(M)
C ARE CORRECT (HERE M=MIN(N,P)). THUS IF
C INFO.EQ.0, ALL THE SINGULAR VALUES AND THEIR
C VECTORS ARE CORRECT. IN ANY EVENT, THE MATRIX
C B = TRANS(U)*X*V IS THE BIDIAGONAL MATRIX
C WITH THE ELEMENTS OF S ON ITS DIAGONAL AND THE
C ELEMENTS OF E ON ITS SUPER-DIAGONAL (TRANS(U)
C IS THE TRANSPOSE OF U). THUS THE SINGULAR
C VALUES OF X AND B ARE THE SAME.
C
C LINPACK. THIS VERSION DATED 03/19/79 .
C G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C ***** USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C EXTERNAL SROT
C BLAS SAXPY,SDOT,SSCAL,SSWAP,SNRM2,SROTG
C FORTRAN ABS,AMAX1,MAX0,MIN0,MOD,SQRT
C
C INTERNAL VARIABLES
C
INTEGER I,ITER,J,JOBU,K,KASE,KK,L,LL,LLS,LM1,LP1,LS,LU,M,MAXIT,
* MM,MM1,MP1,NCT,NCTP1,NCU,NRT,NRTP1
REAL SDOT,T,R
REAL B,C,CS,EL,EMM1,F,G,SNRM2,SCALE,SHIFT,SL,SM,SN,SMM1,T1,TEST,
* ZTEST
LOGICAL WANTU,WANTV
C
C
C SET THE MAXIMUM NUMBER OF ITERATIONS.
C
MAXIT = 30
C
C DETERMINE WHAT IS TO BE COMPUTED.
C
WANTU = .FALSE.
WANTV = .FALSE.
JOBU = MOD(JOB,100)/10
NCU = N
IF (JOBU .GT. 1) NCU = MIN0(N,P)
IF (JOBU .NE. 0) WANTU = .TRUE.
IF (MOD(JOB,10) .NE. 0) WANTV = .TRUE.
C
C REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
C IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
C
INFO = 0
NCT = MIN0(N-1,P)
NRT = MAX0(0,MIN0(P-2,N))
LU = MAX0(NCT,NRT)
IF (LU .LT. 1) GO TO 170
DO 160 L = 1, LU
LP1 = L + 1
IF (L .GT. NCT) GO TO 20
C
C COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
C PLACE THE L-TH DIAGONAL IN S(L).
C
S(L) = SNRM2(N-L+1,X(L,L),1)
IF (S(L) .EQ. 0.0E0) GO TO 10
IF (X(L,L) .NE. 0.0E0) S(L) = SIGN(S(L),X(L,L))
CALL SSCAL(N-L+1,1.0E0/S(L),X(L,L),1)
X(L,L) = 1.0E0 + X(L,L)
10 CONTINUE
S(L) = -S(L)
20 CONTINUE
IF (P .LT. LP1) GO TO 50
DO 40 J = LP1, P
IF (L .GT. NCT) GO TO 30
IF (S(L) .EQ. 0.0E0) GO TO 30
C
C APPLY THE TRANSFORMATION.
C
T = -SDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
CALL SAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
30 CONTINUE
C
C PLACE THE L-TH ROW OF X INTO E FOR THE
C SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
C
E(J) = X(L,J)
40 CONTINUE
50 CONTINUE
IF (.NOT.WANTU .OR. L .GT. NCT) GO TO 70
C
C PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
C MULTIPLICATION.
C
DO 60 I = L, N
U(I,L) = X(I,L)
60 CONTINUE
70 CONTINUE
IF (L .GT. NRT) GO TO 150
C
C COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
C L-TH SUPER-DIAGONAL IN E(L).
C
E(L) = SNRM2(P-L,E(LP1),1)
IF (E(L) .EQ. 0.0E0) GO TO 80
IF (E(LP1) .NE. 0.0E0) E(L) = SIGN(E(L),E(LP1))
CALL SSCAL(P-L,1.0E0/E(L),E(LP1),1)
E(LP1) = 1.0E0 + E(LP1)
80 CONTINUE
E(L) = -E(L)
IF (LP1 .GT. N .OR. E(L) .EQ. 0.0E0) GO TO 120
C
C APPLY THE TRANSFORMATION.
C
DO 90 I = LP1, N
WORK(I) = 0.0E0
90 CONTINUE
DO 100 J = LP1, P
CALL SAXPY(N-L,E(J),X(LP1,J),1,WORK(LP1),1)
100 CONTINUE
DO 110 J = LP1, P
CALL SAXPY(N-L,-E(J)/E(LP1),WORK(LP1),1,X(LP1,J),1)
110 CONTINUE
120 CONTINUE
IF (.NOT.WANTV) GO TO 140
C
C PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
C BACK MULTIPLICATION.
C
DO 130 I = LP1, P
V(I,L) = E(I)
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
C
C SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C
M = MIN0(P,N+1)
NCTP1 = NCT + 1
NRTP1 = NRT + 1
IF (NCT .LT. P) S(NCTP1) = X(NCTP1,NCTP1)
IF (N .LT. M) S(M) = 0.0E0
IF (NRTP1 .LT. M) E(NRTP1) = X(NRTP1,M)
E(M) = 0.0E0
C
C IF REQUIRED, GENERATE U.
C
IF (.NOT.WANTU) GO TO 300
IF (NCU .LT. NCTP1) GO TO 200
DO 190 J = NCTP1, NCU
DO 180 I = 1, N
U(I,J) = 0.0E0
180 CONTINUE
U(J,J) = 1.0E0
190 CONTINUE
200 CONTINUE
IF (NCT .LT. 1) GO TO 290
DO 280 LL = 1, NCT
L = NCT - LL + 1
IF (S(L) .EQ. 0.0E0) GO TO 250
LP1 = L + 1
IF (NCU .LT. LP1) GO TO 220
DO 210 J = LP1, NCU
T = -SDOT(N-L+1,U(L,L),1,U(L,J),1)/U(L,L)
CALL SAXPY(N-L+1,T,U(L,L),1,U(L,J),1)
210 CONTINUE
220 CONTINUE
CALL SSCAL(N-L+1,-1.0E0,U(L,L),1)
U(L,L) = 1.0E0 + U(L,L)
LM1 = L - 1
IF (LM1 .LT. 1) GO TO 240
DO 230 I = 1, LM1
U(I,L) = 0.0E0
230 CONTINUE
240 CONTINUE
GO TO 270
250 CONTINUE
DO 260 I = 1, N
U(I,L) = 0.0E0
260 CONTINUE
U(L,L) = 1.0E0
270 CONTINUE
280 CONTINUE
290 CONTINUE
300 CONTINUE
C
C IF IT IS REQUIRED, GENERATE V.
C
IF (.NOT.WANTV) GO TO 350
DO 340 LL = 1, P
L = P - LL + 1
LP1 = L + 1
IF (L .GT. NRT) GO TO 320
IF (E(L) .EQ. 0.0E0) GO TO 320
DO 310 J = LP1, P
T = -SDOT(P-L,V(LP1,L),1,V(LP1,J),1)/V(LP1,L)
CALL SAXPY(P-L,T,V(LP1,L),1,V(LP1,J),1)
310 CONTINUE
320 CONTINUE
DO 330 I = 1, P
V(I,L) = 0.0E0
330 CONTINUE
V(L,L) = 1.0E0
340 CONTINUE
350 CONTINUE
C
C MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
C
MM = M
ITER = 0
360 CONTINUE
C
C QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
C
C ...EXIT
IF (M .EQ. 0) GO TO 620
C
C IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
C FLAG AND RETURN.
C
IF (ITER .LT. MAXIT) GO TO 370
INFO = M
C ......EXIT
GO TO 620
370 CONTINUE
C
C THIS SECTION OF THE PROGRAM INSPECTS FOR
C NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS. ON
C COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
C
C KASE = 1 IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
C KASE = 2 IF S(L) IS NEGLIGIBLE AND L.LT.M
C KASE = 3 IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
C S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
C KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
C
DO 390 LL = 1, M
L = M - LL
C ...EXIT
IF (L .EQ. 0) GO TO 400
TEST = ABS(S(L)) + ABS(S(L+1))
ZTEST = TEST + ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 380
E(L) = 0.0E0
C ......EXIT
GO TO 400
380 CONTINUE
390 CONTINUE
400 CONTINUE
IF (L .NE. M - 1) GO TO 410
KASE = 4
GO TO 480
410 CONTINUE
LP1 = L + 1
MP1 = M + 1
DO 430 LLS = LP1, MP1
LS = M - LLS + LP1
C ...EXIT
IF (LS .EQ. L) GO TO 440
TEST = 0.0E0
IF (LS .NE. M) TEST = TEST + ABS(E(LS))
IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
ZTEST = TEST + ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 420
S(LS) = 0.0E0
C ......EXIT
GO TO 440
420 CONTINUE
430 CONTINUE
440 CONTINUE
IF (LS .NE. L) GO TO 450
KASE = 3
GO TO 470
450 CONTINUE
IF (LS .NE. M) GO TO 460
KASE = 1
GO TO 470
460 CONTINUE
KASE = 2
L = LS
470 CONTINUE
480 CONTINUE
L = L + 1
C
C PERFORM THE TASK INDICATED BY KASE.
C
GO TO (490,520,540,570), KASE
C
C DEFLATE NEGLIGIBLE S(M).
C
490 CONTINUE
MM1 = M - 1
F = E(M-1)
E(M-1) = 0.0E0
DO 510 KK = L, MM1
K = MM1 - KK + L
T1 = S(K)
CALL SROTG(T1,F,CS,SN)
S(K) = T1
IF (K .EQ. L) GO TO 500
F = -SN*E(K-1)
E(K-1) = CS*E(K-1)
500 CONTINUE
IF (WANTV) CALL SROT(P,V(1,K),1,V(1,M),1,CS,SN)
510 CONTINUE
GO TO 610
C
C SPLIT AT NEGLIGIBLE S(L).
C
520 CONTINUE
F = E(L-1)
E(L-1) = 0.0E0
DO 530 K = L, M
T1 = S(K)
CALL SROTG(T1,F,CS,SN)
S(K) = T1
F = -SN*E(K)
E(K) = CS*E(K)
IF (WANTU) CALL SROT(N,U(1,K),1,U(1,L-1),1,CS,SN)
530 CONTINUE
GO TO 610
C
C PERFORM ONE QR STEP.
C
540 CONTINUE
C
C CALCULATE THE SHIFT.
C
SCALE = AMAX1(ABS(S(M)),ABS(S(M-1)),ABS(E(M-1)),ABS(S(L)),
* ABS(E(L)))
SM = S(M)/SCALE
SMM1 = S(M-1)/SCALE
EMM1 = E(M-1)/SCALE
SL = S(L)/SCALE
EL = E(L)/SCALE
B = ((SMM1 + SM)*(SMM1 - SM) + EMM1**2)/2.0E0
C = (SM*EMM1)**2
SHIFT = 0.0E0
IF (B .EQ. 0.0E0 .AND. C .EQ. 0.0E0) GO TO 550
SHIFT = SQRT(B**2+C)
IF (B .LT. 0.0E0) SHIFT = -SHIFT
SHIFT = C/(B + SHIFT)
550 CONTINUE
F = (SL + SM)*(SL - SM) + SHIFT
G = SL*EL
C
C CHASE ZEROS.
C
MM1 = M - 1
DO 560 K = L, MM1
CALL SROTG(F,G,CS,SN)
IF (K .NE. L) E(K-1) = F
F = CS*S(K) + SN*E(K)
E(K) = CS*E(K) - SN*S(K)
G = SN*S(K+1)
S(K+1) = CS*S(K+1)
IF (WANTV) CALL SROT(P,V(1,K),1,V(1,K+1),1,CS,SN)
CALL SROTG(F,G,CS,SN)
S(K) = F
F = CS*E(K) + SN*S(K+1)
S(K+1) = -SN*E(K) + CS*S(K+1)
G = SN*E(K+1)
E(K+1) = CS*E(K+1)
IF (WANTU .AND. K .LT. N)
* CALL SROT(N,U(1,K),1,U(1,K+1),1,CS,SN)
560 CONTINUE
E(M-1) = F
ITER = ITER + 1
GO TO 610
C
C CONVERGENCE.
C
570 CONTINUE
C
C MAKE THE SINGULAR VALUE POSITIVE.
C
IF (S(L) .GE. 0.0E0) GO TO 580
S(L) = -S(L)
IF (WANTV) CALL SSCAL(P,-1.0E0,V(1,L),1)
580 CONTINUE
C
C ORDER THE SINGULAR VALUE.
C
590 IF (L .EQ. MM) GO TO 600
C ...EXIT
IF (S(L) .GE. S(L+1)) GO TO 600
T = S(L)
S(L) = S(L+1)
S(L+1) = T
IF (WANTV .AND. L .LT. P)
* CALL SSWAP(P,V(1,L),1,V(1,L+1),1)
IF (WANTU .AND. L .LT. N)
* CALL SSWAP(N,U(1,L),1,U(1,L+1),1)
L = L + 1
GO TO 590
600 CONTINUE
ITER = 0
M = M - 1
610 CONTINUE
GO TO 360
620 CONTINUE
RETURN
END