home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fish 'n' More 2
/
fishmore-publicdomainlibraryvol.ii1991xetec.iso
/
fish
/
applications
/
xlispstat
/
src
/
src2.lzh
/
XLisp-Stat
/
lowess.c
< prev
next >
Wrap
C/C++ Source or Header
|
1990-10-04
|
5KB
|
169 lines
/*Translated from RATFOR lowess code of W. S. Cleveland as obtained from NETLIB */
/* XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney */
/* Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz */
/* You may give out copies of this software; for conditions see the */
/* file COPYING included with this distribution. */
#include <stdlib.h>
#include "xlisp.h"
#include "osdef.h"
#ifdef ANSI
#include "xlsproto.h"
#else
#include "xlsfun.h"
#endif ANSI
#ifdef ANSI
double pow2(double),pow3(double),fmax(double,double);
void lowest(double *,double *,int,double,double *,int,int,double *,int,double *,
int *),sort(double *,int);
int compar(double *,double *);
#else
double pow2(),pow3(),fmax();
void lowest(),sort();
int compar();
#endif ANSI
#define FALSE 0
#define TRUE 1
static double pow2(x) double x; { return(x * x); }
static double pow3(x) double x; { return(x * x * x); }
static double fmax(x,y) double x, y; { return (x > y ? x : y); }
int lowess(x, y, n, f, nsteps, delta, ys, rw, res)
double /* *x, *y,*/ f, delta/*, *ys, *rw, *res*/;/* changed JKL */
RVector x, y, ys, rw, res;
int n, nsteps;
{
int iter, ns, ok, nleft, nright, i, j, last, m1, m2;
double d1, d2, denom, alpha, cut, cmad, c9, c1, r;
if (n < 2) { ys[0] = y[0]; return(1); }
ns = max(min((int) (f * n), n), 2); /* at least two, at most n points */
for(iter = 1; iter <= nsteps + 1; iter++){ /* robustness iterations */
nleft = 0; nright = ns - 1;
last = -1; /* index of prev estimated point */
i = 0; /* index of current point */
do {
while(nright < n - 1){
/* move nleft, nright to right if radius decreases */
d1 = x[i] - x[nleft];
d2 = x[nright + 1] - x[i];
/* if d1 <= d2 with x[nright+1] == x[nright], lowest fixes */
if (d1 <= d2) break;
/* radius will not decrease by move right */
nleft++;
nright++;
}
lowest(x, y, n, x[i], &ys[i], nleft, nright, res, (iter > 1), rw, &ok);
/* fitted value at x[i] */
if (! ok) ys[i] = y[i];
/* all weights zero - copy over value (all rw==0) */
if (last < i - 1) { /* skipped points -- interpolate */
denom = x[i] - x[last]; /* non-zero - proof? */
for(j = last + 1; j < i; j = j + 1){
alpha = (x[j] - x[last]) / denom;
ys[j] = alpha * ys[i] + (1.0 - alpha) * ys[last];
}
}
last = i; /* last point actually estimated */
cut = x[last] + delta; /* x coord of close points */
for(i=last + 1; i < n; i++) { /* find close points */
if (x[i] > cut) break; /* i one beyond last pt within cut */
if(x[i] == x[last]) { /* exact match in x */
ys[i] = ys[last];
last = i;
}
}
i = max(last + 1,i - 1);
/* back 1 point so interpolation within delta, but always go forward */
} while(last < n - 1);
for (i = 0; i < n; i++) /* residuals */
res[i] = y[i] - ys[i];
if (iter > nsteps) break; /* compute robustness weights except last time */
for (i = 0; i < n; i++)
rw[i] = fabs(res[i]);
sort(rw,n);
m1 = 1 + n / 2; m2 = n - m1 + 1;
cmad = 3.0 * (rw[m1] + rw[m2]); /* 6 median abs resid */
c9 = .999 * cmad; c1 = .001 * cmad;
for (i = 0; i < n; i++) {
r = fabs(res[i]);
if(r <= c1) rw[i] = 1.0; /* near 0, avoid underflow */
else if(r > c9) rw[i] = 0.0; /* near 1, avoid underflow */
else rw[i] = pow2(1.0 - pow2(r / cmad));
}
}
return(0);
}
static void lowest(x, y, n, xs, ys, nleft, nright, w, userw, rw, ok)
double *x, *y, *w, *rw, xs, *ys;
int n, nleft, nright, userw, *ok;
{
double range, h, h1, h9, a, b, c, r;
int j, nrt;
range = x[n - 1] - x[0];
h = fmax(xs - x[nleft], x[nright] - xs);
h9 = .999 * h;
h1 = .001 * h;
/* compute weights (pick up all ties on right) */
a = 0.0; /* sum of weights */
for(j = nleft; j < n; j++) {
w[j]=0.0;
r = fabs(x[j] - xs);
if (r <= h9) { /* small enough for non-zero weight */
if (r > h1) w[j] = pow3(1.0-pow3(r/h));
else w[j] = 1.0;
if (userw) w[j] = rw[j] * w[j];
a += w[j];
}
else if (x[j] > xs) break; /* get out at first zero wt on right */
}
nrt = j - 1; /* rightmost pt (may be greater than nright because of ties) */
if (a <= 0.0) *ok = FALSE;
else { /* weighted least squares */
*ok = TRUE;
/* make sum of w[j] == 1 */
for (j = nleft; j <= nrt; j++) w[j] = w[j] / a;
if (h > 0.0) { /* use linear fit */
/* find weighted center of x values */
for (j = nleft, a = 0.0; j <= nrt; j++) a += w[j] * x[j];
b = xs - a;
for (j = nleft, c = 0.0; j <= nrt; j++)
c += w[j] * (x[j] - a) * (x[j] - a);
if(sqrt(c) > .001 * range) {
/* points are spread out enough to compute slope */
b = b/c;
for (j = nleft; j <= nrt; j++)
w[j] = w[j] * (1.0 + b*(x[j] - a));
}
}
for (j = nleft, *ys = 0.0; j <= nrt; j++) *ys += w[j] * y[j];
}
}
static int compar(a, b)
double *a,*b;
{
if (*a < *b) return(-1);
else if (*a > *b) return(1);
else return(0);
}
static void sort(x, n)
double *x;
int n;
{
qsort((char *)x, n, sizeof(double), compar); /* cast added JKL */
}