home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fish 'n' More 2
/
fishmore-publicdomainlibraryvol.ii1991xetec.iso
/
fish
/
applications
/
xlispstat
/
src
/
src2.lzh
/
XLisp-Stat
/
svdecomp.c
< prev
next >
Wrap
C/C++ Source or Header
|
1990-10-02
|
7KB
|
279 lines
/* svdecomp - SVD decomposition routines. */
/* Taken from Numerical Recipies. */
/* XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney */
/* Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz */
/* You may give out copies of this software; for conditions see the */
/* file COPYING included with this distribution. */
#include "xlisp.h"
#include "osdef.h"
#ifdef ANSI
#include "xlproto.h"
#include "xlsproto.h"
#else
#include "xlfun.h"
#include "xlsfun.h"
#endif ANSI
#ifdef ANSI
double PYTHAG(double,double);
void sort_sv(int,int,int,RMatrix,RVector,RMatrix);
#else
double PYTHAG();
void sort_sv();
#endif ANSI
static double PYTHAG(a, b)
double a, b;
{
double at = fabs(a), bt = fabs(b), ct, result;
if (at > bt) { ct = bt / at; result = at * sqrt(1.0 + ct * ct); }
else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); }
else result = 0.0;
return(result);
}
#define SWAPD(a, b) (temp = (a), (a) = (b), (b) = temp)
static void sort_sv(m, n, k, a, w, v)
int m, n, k;
RMatrix a, v;
RVector w;
{
int i, j;
double temp;
for (i = k; (i < n - 1) && (w[i] < w[i+1]); i++) {
SWAPD(w[i], w[i+1]);
for (j = 0; j < m; j++) SWAPD(a[j][i], a[j][i+1]);
for (j = 0; j < n; j++) SWAPD(v[j][i], v[j][i+1]);
}
}
static double maxarg1, maxarg2;
#undef Max /* defined in xlsdef.h JKL */
#define Max(a, b) (maxarg1 = (a), maxarg2 = (b), (maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
#define SIGN(a, b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
svdcmp(a, m, n, w, v)
RMatrix a, v;
RVector w;
int m, n;
{
int flag, i, its, j, jj, k, l, nm;
double c, f, h, s, x, y, z;
double anorm = 0.0, g = 0.0, scale = 0.0;
RVector rv1;
if (m < n) return(FALSE); /* flag an error if m < n */
rv1 = rvector(n);
/* Householder reduction to bidiagonal form */
for (i = 0; i < n; i++) {
/* left-hand reduction */
l = i + 1;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m) {
for (k = i; k < m; k++) scale += fabs(a[k][i]);
if (scale) {
for (k = i; k < m; k++) {
a[k][i] /= scale;
s += a[k][i] * a[k][i];
}
f = a[i][i];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][i] = f - g;
if (i != n - 1) {
for (j = l; j < n; j++) {
for (s = 0.0, k = i; k < m; k++) s += a[k][i] * a[k][j];
f = s / h;
for (k = i; k < m; k++) a[k][j] += f * a[k][i];
}
}
for (k = i; k < m; k++) a[k][i] *= scale;
}
}
w[i] = scale * g;
/* right-hand reduction */
g = s = scale = 0.0;
if (i < m && i != n - 1) {
for (k = l; k < n; k++) scale += fabs(a[i][k]);
if (scale) {
for (k = l; k < n; k++) {
a[i][k] /= scale;
s += a[i][k] * a[i][k];
}
f = a[i][l];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][l] = f - g;
for (k = l; k < n; k++) rv1[k] = a[i][k] / h;
if (i != m - 1) {
for (j = l; j < m; j++) {
for (s = 0.0, k = l; k < n; k++) s += a[j][k] * a[i][k];
for (k = l; k < n; k++) a[j][k] += s * rv1[k];
}
}
for (k = l; k < n; k++) a[i][k] *= scale;
}
}
anorm = Max(anorm, (fabs(w[i]) + fabs(rv1[i])));
}
/* accumulate the right-hand transformation */
for (i = n - 1; i >= 0; i--) {
if (i < n - 1) {
if (g) {
for (j = l; j < n; j++)
v[j][i] = (a[i][j] / a[i][l]) / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < n; k++) s += a[i][k] * v[k][j];
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
}
}
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
/* accumulate the left-hand transformation */
for (i = n - 1; i >= 0; i--) {
l = i + 1;
g = w[i];
if (i < n - 1)
for (j = l; j < n; j++) a[i][j] = 0.0;
if (g) {
g = 1.0 / g;
if (i != n - 1) {
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < m; k++) s += a[k][i] * a[k][j];
f = (s / a[i][i]) * g;
for (k = i; k < m; k++) a[k][j] += f * a[k][i];
}
}
for (j = i; j < m; j++) a[j][i] *= g;
}
else {
for (j = i; j < m; j++) a[j][i] = 0.0;
}
++a[i][i];
}
/* diagonalize the bidiagonal form */
for (k = n - 1; k >= 0; k--) { /* loop over singular values */
for (its = 0; its < 30; its++) { /* loop over allowed iterations */
flag = 1;
for (l = k; l >= 0; l--) { /* test for splitting */
nm = l - 1;
if (fabs(rv1[l]) + anorm == anorm) {
flag = 0;
break;
}
if (fabs(w[nm]) + anorm == anorm) break;
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++) {
f = s * rv1[i];
if (fabs(f) + anorm != anorm) {
g = w[i];
h = PYTHAG(f, g);
w[i] = h;
if (h == 0.0) {
char s[100];
sprintf(s, "h = %f, f = %f, g = %f\n", f, g);
stdputstr(s);
}
h = 1.0 / h;
c = g * h;
s = (- f * h);
for (j = 0; j < m; j++) {
y = a[j][nm];
z = a[j][i];
a[j][nm] = y * c + z * s;
a[j][i] = z * c - y * s;
}
}
}
}
z = w[k];
if (l == k) { /* convergence */
if (z < 0.0) { /* make singular value nonnegative */
w[k] = -z;
for (j = 0; j < n; j++) v[j][k] = (-v[j][k]);
}
sort_sv(m, n, k, a, w, v);
break;
}
if (its >= 30) {
free_vector((Vector)rv1); /* cast added JKL */
return(FALSE); /* return an error flag */
}
/* shift from bottom 2 x 2 minor */
x = w[l];
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = PYTHAG(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
/* next QR transformation */
c = s = 1.0;
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = PYTHAG(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y = y * c;
for (jj = 0; jj < n; jj++) {
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x * c + z * s;
v[jj][i] = z * c - x * s;
}
z = PYTHAG(f, h);
w[j] = z;
if (z) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = (c * g) + (s * y);
x = (c * y) - (s * g);
for (jj = 0; jj < m; jj++) {
y = a[jj][j];
z = a[jj][i];
a[jj][j] = y * c + z * s;
a[jj][i] = z * c - y * s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
free_vector((Vector)rv1); /* cast added JKL */
return(TRUE);
}