home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The Fred Fish Collection 1.5
/
ffcollection-1-5-1992-11.iso
/
ff_progs
/
educ
/
splines.lzh
/
SPLINES
/
INTERPL.C
< prev
next >
Wrap
C/C++ Source or Header
|
1991-08-16
|
8KB
|
284 lines
/* The routines in this file are copyright (c) 1987 by Helene (Lee) Taran.
* Permission is granted for use and free distribution as long as the
* original author's name is included with the code.
*/
#include "spline.h"
#define ALTSIGN(n,x) ((n) % 2 ? (x) : -(x))
#define VECTOR(n) ((REAL_POINT *)calloc((n),sizeof(REAL_POINT)))
#define MATRIX(n) ((double *)calloc((n)*(n),sizeof(double)))
double G[MAXG]; /* vector of g values */
void *calloc();
/* Init_GValues should be called once before drawing any curves. Computes
* the first MAXG number of Gn values using iteration to save time and
* stack space.
*/
Init_GValues()
{
int n;
G[0] = 0.0;
G[1] = 1.0;
for (n = 2; n < MAXG; n++)
G[n] = (4 * G[n-1] - G[n-2]);
}
Print_GValues() /* only for debugging */
{
int i;
for (i = 0; i < MAXG; i++)
printf("G[%d] = %lf\n",i,G[i]);
}
/* Init_OpenSpline_Matrices : allocates an initializes the L and D matrices
* that are used to create open splines.
*/
Init_OpenSpline_Matrices(n,L,D)
int n; /* size of each of the square matrices */
double *L; /* lower triangular matrix used in LDL^t decomposition */
double *D; /* diagonal matrix used in LDL^t decomposition */
{
int row,col;
for (row = 0; row < n; row++)
for (col = 0; col < n; col++) {
if (row == col) { /* assign values to the diagonal elements */
AssignValue(n,L,row,col,1.0);
AssignValue(n,D,row,col, G[row+2]/G[row+1]);
}
else if (row < col) { /* assign values to the upper triangular region */
AssignValue(n,L,row,col,0.0);
AssignValue(n,D,row,col,0.0);
}
else { /* assign values to the lower triangular region */
AssignValue(n,D,row,col,0.0);
if (col < row-1) AssignValue(n,L,row,col,0.0);
else AssignValue(n,L,row,col,G[row]/G[row+1]);
}
}
}
AssignValue(n,matrix,row,col, value)
int n; /* dimension of NxN matrix */
double *matrix; /* <n> by <n> matrix that will obtain the value */
int row,col; /* where */
double value; /* value being assigned */
{
/* each row is sequence of consequtive columns; first loc = 0,0 */
*(matrix + n * row + col) = value;
}
double Value(n,matrix,row,col)
int n; /* dimension of NxN matrix */
double *matrix; /* <n> by <n> matrix that will obtain the value */
int row,col; /* where */
{
/* each row is a sequence of consequtive columns; first loc = 0,0 */
return(*(matrix + n * row + col));
}
double TValue(n,matrix,row,col) /* return the transpose value */
int n; /* dimension of NxN matrix */
double *matrix; /* <n> by <n> matrix that will obtain the value */
int row,col; /* where */
{
return(*(matrix + n * col + row));
}
Init_ClosedSpline_Matrices(n,L,D)
int n; /* size of each of the square matrices */
double *L; /* lower triangular matrix used in LDL^t decomposition */
double *D; /* diagonal matrix used in LDL^t decomposition */
{
int row,col;
for (row = 0; row < n; row++)
for (col =0; col < n; col++) {
if (row == col) { /* assign diagonal values */
AssignValue(n,L,row,col,1.0);
if (row == n-1)
AssignValue(n,D,row,col, (G[row+2] - G[row] - ALTSIGN(row,1) * 2)/G[row+1]);
else AssignValue(n,D,row,col,G[row+2]/G[row+1]);
}
else if (row < col) { /* assign to upper triangular region */
AssignValue(n,L,row,col,0.0);
AssignValue(n,D,row,col,0.0);
}
else { /* assign to the lower triangular region */
AssignValue(n,D,row,col,0.0);
if (row < n-1)
if (col == row-1) AssignValue(n,L,row,col,G[row]/G[row+1]);
else AssignValue(n,L,row,col,0.0);
else if (col < n-2) AssignValue(n,L,row,col,ALTSIGN(col,-1)/G[col+2]);
else AssignValue(n,L,row,col,(G[row]+ALTSIGN(col,-1))/G[row+1]);
}
}
}
PrintMatrix(n,matrix) /* for debugging only */
int n;
double *matrix;
{
int row, col;
for (row = 0; row < n; row++) {
for (col = 0; col < n; col++)
printf("%lf ",Value(n,matrix,row,col));
printf("\n");
}
}
/* solves for x in the equation LDL^t * x = b and puts the result in <b> */
Solve(n,L,D,b)
int n; /* number of elements in <x> and <b> */
double *L; /* lower triangular matrix : assumed to be initialized */
double *D; /* diagonal matrix assumed to be initialized */
REAL_POINT b[]; /* vector of known point values & result destination */
{
int row, col;
for (row = 1; row < n; row++) /* forward substitution */
for (col = 0; col < row; col++) {
b[row].x -= (Value(n,L,row,col) * b[col].x);
b[row].y -= (Value(n,L,row,col) * b[col].y);
}
b[n-1].x /= Value(n,D,n-1,n-1);
b[n-1].y /= Value(n,D,n-1,n-1);
for (row = n-2; row >= 0; row--) { /* back substitution */
b[row].x /= Value(n,D,row,row);
b[row].y /= Value(n,D,row,row);
for (col = row +1; col < n; col++ ) {
b[row].x -= (TValue(n,L,row,col) * b[col].x);
b[row].y -= (TValue(n,L,row,col) * b[col].y);
}
}
}
PrintPoint(p)
REAL_POINT *p;
{
printf("%lf, %lf\n", p->x, p->y);
}
PrintVector(n,v)
int n;
REAL_POINT v[];
{
int i;
for (i = 0; i < n; i++) PrintPoint(&v[i]);
printf("\n");
}
FillVector(n,v,list,xadj,yadj)
int n; /* size of vectors <= length of list */
REAL_POINT v[]; /* vector to receive the x,y values in list */
DLISTPTR list; /* first element to get the values from */
float xadj, yadj; /* how to adjust the x,y values (1 if no adjustment) */
{
DLISTPTR tmp = list;
int i;
if (n > 0) {
for (i = 0; i < n; i++) {
v[i].x = xadj * (POINT(tmp)->x) ;
v[i].y = yadj * (POINT(tmp)->y) ;
tmp = NEXT(tmp);
}
}
}
/* ListVector : takes a vector of points and makes it into a list
* can be passed to the any of the bspline drawing routines.
*/
DLISTPTR ListVector(n,v)
int n; /* n <= length of <v> */
REAL_POINT v[];
{
DLISTPTR list = (DLISTPTR)calloc(1,sizeof(DLIST_ELEMENT));
DLISTPTR element;
int i;
Init_List(list);
for (i = 0; i < n; i++) {
element = (DLISTPTR)calloc(1,sizeof(DLIST_ELEMENT));
element->contents = &(v[i]);
INSERT_LAST(element,list); /* insert in same order */
}
return(list);
}
Draw_Open_Ispline(w,control_points)
struct Window *w;
DLISTPTR control_points;
{
int n = LENGTH(control_points) -2;
DLISTPTR newpoints;
REAL_POINT *b = VECTOR(n);
double *L = MATRIX(n);
double *D = MATRIX(n);
FillVector(n, b, NEXT(FIRST(control_points)), 6.0, 6.0);
b[0].x -= POINT(FIRST(control_points))->x ;
b[0].y -= POINT(FIRST(control_points))->y ;
b[n-1].x -= POINT(LAST(control_points))->x ;
b[n-1].y -= POINT(LAST(control_points))->y ;
Init_OpenSpline_Matrices(n,L,D);
Solve(n,L,D,b);
newpoints = ListVector(n,b);
MOVE_FIRST(control_points,newpoints);
MOVE_LAST(control_points, newpoints);
Draw_Natural_Bspline(w,newpoints);
MOVE_FIRST(newpoints,control_points);
MOVE_LAST(newpoints,control_points);
ClearList(newpoints,FALSE);
free(newpoints); free(L); free(D); free(b);
}
Draw_Closed_Ispline(w,control_points)
struct Window *w;
DLISTPTR control_points;
{
int n = LENGTH(control_points);
DLISTPTR newpoints;
REAL_POINT *b = VECTOR(n);
double *L = MATRIX(n);
double *D = MATRIX(n);
FillVector(n, b, FIRST(control_points), 6.0, 6.0);
Init_ClosedSpline_Matrices(n,L,D);
Solve(n,L,D,b);
newpoints = ListVector(n,b);
Draw_Closed_Bspline(w,newpoints);
ClearList(newpoints,FALSE);
free(newpoints); free(L); free(D); free(b);
}