home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Gold Fish 3
/
goldfish_volume_3.bin
/
files
/
dev
/
basic
/
ace
/
include
/
mathfunc.h
< prev
next >
Wrap
Text File
|
1994-10-22
|
1KB
|
66 lines
{ Derived mathematical functions.
Taken from Appendix E of the AmigaBASIC Manual.
Date: 27th December 1993 }
'..SECANT
DEF SEC(X)=1/COS(X)
'..COSECANT
DEF CSC(X)=1/SIN(X)
'..COTANGENT
DEF COT(X)=1/TAN(X)
'..INVERSE SINE
DEF ARCSIN(X)=ATN(X/SQR(-X*X+1))
'..INVERSE COSINE
DEF ARCCOS(X)=-ATN(X/SQR(-X*X+1))+1.5708
'..INVERSE SECANT
DEF ARCSEC(X)=ATN(X/SQR(X*X-1))+SGN(SGN(X)-1)*1.5708
'..INVERSE COSECANT
DEF ARCCSC(X)=ATN(X/SQR(X*X-1))+(SGN(X)-1)*1.5708
'..INVERSE COTANGENT
DEF ARCCOT(X)=ATN(X)+1.5708
'..HYPERBOLIC SINE
DEF SINH(X)=(EXP(X)-EXP(-X))/2
'..HYPERBOLIC COSINE
DEF COSH(X)=(EXP(X)+EXP(-X))/2
'..HYPERBOLIC TANGENT
DEF TANH(X)=(EXP(-X)/EXP(X)+EXP(-X))*2+1
'..HYPERBOLIC SECANT
DEF SECH(X)=2/(EXP(X)+EXP(-X))
'..HYPERBOLIC COSECANT
DEF CSCH(X)=2/(EXP(X)-EXP(-X))
'..HYPERBOLIC COTANGENT
DEF COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1
'..INVERSE HYPERBOLIC SINE
DEF ARCSINH(X)=LOG(X+SQR(X*X+1))
'..INVERSE HYPERBOLIC COSINE
DEF ARCCOSH(X)=LOG(X+SQR(X*X-1))
'..INVERSE HYPERBOLIC TANGENT
DEF ARCTANH(X)=LOG((1+X)/(1-X))/2
'..INVERSE HYPERBOLIC SECANT
DEF ARCSECH(X)=LOG((SQR(-X*X+1)+1)/X)
'..INVERSE HYPERBOLIC COSECANT
DEF ARCCSCH(X)=LOG(SGN(X)*SQR(X*X+1)+1)/X
'..INVERSE HYPERBOLIC COTANGENT
DEF ARCCOTH(X)=LOG((X+1)/(X-1))/2