home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
eispack-1.0-src.tgz
/
tar.out
/
contrib
/
eispack
/
tql1.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
4KB
|
136 lines
subroutine tql1(n,d,e,ierr)
c
integer i,j,l,m,n,ii,l1,l2,mml,ierr
double precision d(n),e(n)
double precision c,c2,c3,dl1,el1,f,g,h,p,r,s,s2,tst1,tst2,pythag
c
c this subroutine is a translation of the algol procedure tql1,
c num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and
c wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 227-240(1971).
c
c this subroutine finds the eigenvalues of a symmetric
c tridiagonal matrix by the ql method.
c
c on input
c
c n is the order of the matrix.
c
c d contains the diagonal elements of the input matrix.
c
c e contains the subdiagonal elements of the input matrix
c in its last n-1 positions. e(1) is arbitrary.
c
c on output
c
c d contains the eigenvalues in ascending order. if an
c error exit is made, the eigenvalues are correct and
c ordered for indices 1,2,...ierr-1, but may not be
c the smallest eigenvalues.
c
c e has been destroyed.
c
c ierr is set to
c zero for normal return,
c j if the j-th eigenvalue has not been
c determined after 30 iterations.
c
c calls pythag for dsqrt(a*a + b*b) .
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
ierr = 0
if (n .eq. 1) go to 1001
c
do 100 i = 2, n
100 e(i-1) = e(i)
c
f = 0.0d0
tst1 = 0.0d0
e(n) = 0.0d0
c
do 290 l = 1, n
j = 0
h = dabs(d(l)) + dabs(e(l))
if (tst1 .lt. h) tst1 = h
c .......... look for small sub-diagonal element ..........
do 110 m = l, n
tst2 = tst1 + dabs(e(m))
if (tst2 .eq. tst1) go to 120
c .......... e(n) is always zero, so there is no exit
c through the bottom of the loop ..........
110 continue
c
120 if (m .eq. l) go to 210
130 if (j .eq. 30) go to 1000
j = j + 1
c .......... form shift ..........
l1 = l + 1
l2 = l1 + 1
g = d(l)
p = (d(l1) - g) / (2.0d0 * e(l))
r = pythag(p,1.0d0)
d(l) = e(l) / (p + dsign(r,p))
d(l1) = e(l) * (p + dsign(r,p))
dl1 = d(l1)
h = g - d(l)
if (l2 .gt. n) go to 145
c
do 140 i = l2, n
140 d(i) = d(i) - h
c
145 f = f + h
c .......... ql transformation ..........
p = d(m)
c = 1.0d0
c2 = c
el1 = e(l1)
s = 0.0d0
mml = m - l
c .......... for i=m-1 step -1 until l do -- ..........
do 200 ii = 1, mml
c3 = c2
c2 = c
s2 = s
i = m - ii
g = c * e(i)
h = c * p
r = pythag(p,e(i))
e(i+1) = s * r
s = e(i) / r
c = p / r
p = c * d(i) - s * g
d(i+1) = h + s * (c * g + s * d(i))
200 continue
c
p = -s * s2 * c3 * el1 * e(l) / dl1
e(l) = s * p
d(l) = c * p
tst2 = tst1 + dabs(e(l))
if (tst2 .gt. tst1) go to 130
210 p = d(l) + f
c .......... order eigenvalues ..........
if (l .eq. 1) go to 250
c .......... for i=l step -1 until 2 do -- ..........
do 230 ii = 2, l
i = l + 2 - ii
if (p .ge. d(i-1)) go to 270
d(i) = d(i-1)
230 continue
c
250 i = 1
270 d(i) = p
290 continue
c
go to 1001
c .......... set error -- no convergence to an
c eigenvalue after 30 iterations ..........
1000 ierr = l
1001 return
end