home *** CD-ROM | disk | FTP | other *** search
/ Geek Gadgets 1 / ADE-1.bin / ade-dist / g77-0.5.15-src.tgz / tar.out / fsf / g77 / config / i960 / i960.h < prev    next >
C/C++ Source or Header  |  1996-09-28  |  58KB  |  1,505 lines

  1. /* Definitions of target machine for GNU compiler, for Intel 80960
  2.    Copyright (C) 1992, 1993 Free Software Foundation, Inc.
  3.    Contributed by Steven McGeady, Intel Corp.
  4.    Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
  5.    Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
  6.  
  7. This file is part of GNU CC.
  8.  
  9. GNU CC is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2, or (at your option)
  12. any later version.
  13.  
  14. GNU CC is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. GNU General Public License for more details.
  18.  
  19. You should have received a copy of the GNU General Public License
  20. along with GNU CC; see the file COPYING.  If not, write to
  21. the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
  22.  
  23. /* Note that some other tm.h files may include this one and then override
  24.    many of the definitions that relate to assembler syntax.  */
  25.  
  26. /* Names to predefine in the preprocessor for this target machine.  */
  27. #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
  28.  
  29. /* Name to predefine in the preprocessor for processor variations.  */
  30. #define    CPP_SPEC "%{mic*:-D__i960\
  31.             %{mka:-D__i960KA}%{mkb:-D__i960KB}\
  32.             %{msa:-D__i960SA}%{msb:-D__i960SB}\
  33.             %{mmc:-D__i960MC}\
  34.             %{mca:-D__i960CA}%{mcc:-D__i960CC}\
  35.             %{mcf:-D__i960CF}}\
  36.     %{mka:-D__i960KA__ -D__i960_KA__}\
  37.     %{mkb:-D__i960KB__ -D__i960_KB__}\
  38.     %{msa:-D__i960SA__ -D__i960_SA__}\
  39.     %{msb:-D__i960SB__ -D__i960_SB__}\
  40.     %{mmc:-D__i960MC__ -D__i960_MC__}\
  41.     %{mca:-D__i960CA__ -D__i960_CA__}\
  42.     %{mcc:-D__i960CC__ -D__i960_CC__}\
  43.     %{mcf:-D__i960CF__ -D__i960_CF__}\
  44.     %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
  45.         %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
  46.  
  47. /* -mic* options make characters signed by default.  */
  48. /* Use #if rather than ?: because MIPS C compiler rejects ?: in
  49.    initializers.  */
  50. #if DEFAULT_SIGNED_CHAR
  51. #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
  52. #else
  53. #define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
  54. #endif
  55.  
  56. /* Specs for the compiler, to handle processor variations.  */
  57. #define CC1_SPEC \
  58.     "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
  59.     %{mbout:%{g*:-gstabs}}\
  60.     %{mcoff:%{g*:-gcoff}}\
  61.     %{!mbout:%{!mcoff:%{g*:-gstabs}}}"
  62.  
  63. /* Specs for the assembler, to handle processor variations.
  64.    For compatibility with Intel's gnu960 tool chain, pass -A options to
  65.    the assembler.  */
  66. #define ASM_SPEC \
  67.     "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
  68.     %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
  69.     %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
  70.     %{mlink-relax:-linkrelax}"
  71.  
  72. /* Specs for the linker, to handle processor variations.
  73.    For compatibility with Intel's gnu960 tool chain, pass -F and -A options
  74.    to the linker.  */
  75. #define LINK_SPEC \
  76.     "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
  77.     %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
  78.     %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
  79.     %{mbout:-Fbout}%{mcoff:-Fcoff}\
  80.     %{mlink-relax:-relax}"
  81.  
  82. /* Specs for the libraries to link with, to handle processor variations.
  83.    Compatible with Intel's gnu960 tool chain.  */
  84. #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
  85.       %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
  86.  
  87. /* Show we can debug even without a frame pointer.  */
  88. #define CAN_DEBUG_WITHOUT_FP
  89.  
  90. /* Do leaf procedure and tail call optimizations for -O2 and higher.  */
  91. #define OPTIMIZATION_OPTIONS(LEVEL)        \
  92. {                        \
  93.   if ((LEVEL) >= 2)                \
  94.     {                        \
  95.       target_flags |= TARGET_FLAG_LEAFPROC;    \
  96.       target_flags |= TARGET_FLAG_TAILCALL;    \
  97.     }                        \
  98. }
  99.  
  100. /* Print subsidiary information on the compiler version in use.  */
  101. #define TARGET_VERSION fprintf (stderr," (intel 80960)");
  102.  
  103. /* Generate DBX debugging information.  */
  104. #define DBX_DEBUGGING_INFO
  105.  
  106. /* Generate SDB style debugging information.  */
  107. #define SDB_DEBUGGING_INFO
  108.  
  109. /* Generate DBX_DEBUGGING_INFO by default.  */
  110. #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
  111.  
  112. /* Redefine this to print in hex and adjust values like GNU960.  The extra
  113.    bit is used to handle the type long double.  Gcc does not support long
  114.    double in sdb output, but we do support the non-standard format.  */
  115. #define PUT_SDB_TYPE(A) \
  116.   fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
  117.  
  118. /* Run-time compilation parameters selecting different hardware subsets.  */
  119.  
  120. /* 960 architecture with floating-point.  */
  121. #define TARGET_FLAG_NUMERICS    0x01
  122. #define TARGET_NUMERICS        (target_flags & TARGET_FLAG_NUMERICS)
  123.  
  124. /* 960 architecture with memory management.  */
  125. /* ??? Not used currently.  */
  126. #define    TARGET_FLAG_PROTECTED    0x02
  127. #define    TARGET_PROTECTED    (target_flags & TARGET_FLAG_PROTECTED)
  128.  
  129. /* The following three are mainly used to provide a little sanity checking
  130.    against the -mARCH flags given.  */
  131.  
  132. /* Nonzero if we should generate code for the KA and similar processors.
  133.    No FPU, no microcode instructions.  */
  134. #define TARGET_FLAG_K_SERIES    0x04
  135. #define TARGET_K_SERIES        (target_flags & TARGET_FLAG_K_SERIES)
  136.  
  137. /* Nonzero if we should generate code for the MC processor.
  138.    Not really different from KB for our purposes.  */
  139. #define    TARGET_FLAG_MC        0x08
  140. #define TARGET_MC         (target_flags & TARGET_FLAG_MC)
  141.  
  142. /* Nonzero if we should generate code for the CA processor.
  143.    Enables different optimization strategies.  */
  144. #define    TARGET_FLAG_C_SERIES    0x10
  145. #define    TARGET_C_SERIES     (target_flags & TARGET_FLAG_C_SERIES)
  146.  
  147. /* Nonzero if we should generate leaf-procedures when we find them.
  148.    You may not want to do this because leaf-proc entries are
  149.    slower when not entered via BAL - this would be true when
  150.    a linker not supporting the optimization is used.  */
  151. #define    TARGET_FLAG_LEAFPROC    0x20
  152. #define    TARGET_LEAFPROC        (target_flags & TARGET_FLAG_LEAFPROC)
  153.  
  154. /* Nonzero if we should perform tail-call optimizations when we find them.
  155.    You may not want to do this because the detection of cases where
  156.    this is not valid is not totally complete.  */
  157. #define    TARGET_FLAG_TAILCALL    0x40
  158. #define    TARGET_TAILCALL        (target_flags & TARGET_FLAG_TAILCALL)
  159.  
  160. /* Nonzero if use of a complex addressing mode is a win on this implementation.
  161.    Complex addressing modes are probably not worthwhile on the K-series,
  162.    but they definitely are on the C-series.  */
  163. #define    TARGET_FLAG_COMPLEX_ADDR 0x80
  164. #define    TARGET_COMPLEX_ADDR    (target_flags & TARGET_FLAG_COMPLEX_ADDR)
  165.  
  166. /* Align code to 8 byte boundaries for faster fetching.  */
  167. #define    TARGET_FLAG_CODE_ALIGN    0x100
  168. #define    TARGET_CODE_ALIGN    (target_flags  & TARGET_FLAG_CODE_ALIGN)
  169.  
  170. /* Append branch prediction suffixes to branch opcodes.  */
  171. /* ??? Not used currently.  */
  172. #define    TARGET_FLAG_BRANCH_PREDICT 0x200
  173. #define    TARGET_BRANCH_PREDICT    (target_flags  & TARGET_FLAG_BRANCH_PREDICT)
  174.  
  175. /* Forces prototype and return promotions.  */
  176. /* ??? This does not work.  */
  177. #define    TARGET_FLAG_CLEAN_LINKAGE 0x400
  178. #define    TARGET_CLEAN_LINKAGE    (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
  179.  
  180. /* For compatibility with iC960 v3.0.  */
  181. #define    TARGET_FLAG_IC_COMPAT3_0 0x800 
  182. #define    TARGET_IC_COMPAT3_0    (target_flags & TARGET_FLAG_IC_COMPAT3_0)
  183.  
  184. /* For compatibility with iC960 v2.0.  */
  185. #define    TARGET_FLAG_IC_COMPAT2_0 0x1000
  186. #define    TARGET_IC_COMPAT2_0    (target_flags & TARGET_FLAG_IC_COMPAT2_0)
  187.  
  188. /* If no unaligned accesses are to be permitted.  */
  189. #define    TARGET_FLAG_STRICT_ALIGN 0x2000
  190. #define    TARGET_STRICT_ALIGN    (target_flags & TARGET_FLAG_STRICT_ALIGN)
  191.  
  192. /* For compatibility with iC960 assembler.  */
  193. #define    TARGET_FLAG_ASM_COMPAT    0x4000
  194. #define    TARGET_ASM_COMPAT    (target_flags & TARGET_FLAG_ASM_COMPAT)
  195.  
  196. /* For compatibility with the gcc960 v1.2 compiler.  Use the old structure
  197.    alignment rules.  Also, turns on STRICT_ALIGNMENT.  */
  198. #define TARGET_FLAG_OLD_ALIGN    0x8000
  199. #define TARGET_OLD_ALIGN    (target_flags & TARGET_FLAG_OLD_ALIGN)
  200.  
  201. extern int target_flags;
  202.  
  203. /* Macro to define tables used to set the flags.
  204.    This is a list in braces of pairs in braces,
  205.    each pair being { "NAME", VALUE }
  206.    where VALUE is the bits to set or minus the bits to clear.
  207.    An empty string NAME is used to identify the default VALUE.  */
  208.  
  209. /* ??? Not all ten of these architecture variations actually exist, but I
  210.    am not sure which are real and which aren't.  */
  211.  
  212. #define TARGET_SWITCHES  \
  213.   { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
  214.     {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
  215.             TARGET_FLAG_COMPLEX_ADDR)},\
  216. /*  {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
  217.             TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
  218.     {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
  219.     {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
  220.             TARGET_FLAG_COMPLEX_ADDR)},\
  221. /*  {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
  222.             TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
  223.     {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
  224.             TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
  225.     {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
  226.             TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
  227. /*  {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
  228.             TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
  229.     {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
  230.             TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
  231.             TARGET_FLAG_CODE_ALIGN)}, */    \
  232.     {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
  233.             TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
  234.     {"numerics", (TARGET_FLAG_NUMERICS)},        \
  235.     {"soft-float", -(TARGET_FLAG_NUMERICS)},        \
  236.     {"leaf-procedures", TARGET_FLAG_LEAFPROC},        \
  237.     {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)},    \
  238.     {"tail-call",TARGET_FLAG_TAILCALL},            \
  239.     {"no-tail-call",-(TARGET_FLAG_TAILCALL)},        \
  240.     {"complex-addr",TARGET_FLAG_COMPLEX_ADDR},        \
  241.     {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)},    \
  242.     {"code-align",TARGET_FLAG_CODE_ALIGN},        \
  243.     {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)},    \
  244.     {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)},    \
  245.     {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)},    \
  246.     {"ic-compat", TARGET_FLAG_IC_COMPAT2_0},        \
  247.     {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0},        \
  248.     {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0},        \
  249.     {"asm-compat",TARGET_FLAG_ASM_COMPAT},        \
  250.     {"intel-asm",TARGET_FLAG_ASM_COMPAT},        \
  251.     {"strict-align", TARGET_FLAG_STRICT_ALIGN},        \
  252.     {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)},    \
  253.     {"old-align", TARGET_FLAG_OLD_ALIGN},        \
  254.     {"no-old-align", -(TARGET_FLAG_OLD_ALIGN)},        \
  255.     {"link-relax", 0},                    \
  256.     {"no-link-relax", 0},                \
  257.     { "", TARGET_DEFAULT}}
  258.  
  259. /* Override conflicting target switch options.
  260.    Doesn't actually detect if more than one -mARCH option is given, but
  261.    does handle the case of two blatantly conflicting -mARCH options.  */
  262. #define OVERRIDE_OPTIONS                    \
  263. {                                \
  264.   if (TARGET_K_SERIES && TARGET_C_SERIES)            \
  265.     {                                \
  266.       warning ("conflicting architectures defined - using C series", 0); \
  267.       target_flags &= ~TARGET_FLAG_K_SERIES;            \
  268.     }                                \
  269.   if (TARGET_K_SERIES && TARGET_MC)                \
  270.     {                                \
  271.       warning ("conflicting architectures defined - using K series", 0); \
  272.       target_flags &= ~TARGET_FLAG_MC;                \
  273.     }                                \
  274.   if (TARGET_C_SERIES && TARGET_MC)                \
  275.     {                                \
  276.       warning ("conflicting architectures defined - using C series", 0);\
  277.       target_flags &= ~TARGET_FLAG_MC;                \
  278.     }                                \
  279.   if (TARGET_IC_COMPAT3_0)                    \
  280.     {                                \
  281.       flag_short_enums = 1;                    \
  282.       flag_signed_char = 1;                    \
  283.       target_flags |= TARGET_FLAG_CLEAN_LINKAGE;        \
  284.       if (TARGET_IC_COMPAT2_0)                    \
  285.     {                            \
  286.       warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
  287.       target_flags &= ~TARGET_FLAG_IC_COMPAT2_0;        \
  288.     }                            \
  289.     }                                \
  290.   if (TARGET_IC_COMPAT2_0)                    \
  291.     {                                \
  292.       flag_signed_char = 1;                    \
  293.       target_flags |= TARGET_FLAG_CLEAN_LINKAGE;        \
  294.     }                                \
  295.   i960_initialize ();                        \
  296. }
  297.  
  298. /* Don't enable anything by default.  The user is expected to supply a -mARCH
  299.    option.  If none is given, then -mkb is added by CC1_SPEC.  */
  300. #define TARGET_DEFAULT 0
  301.  
  302. /* Target machine storage layout.  */
  303.  
  304. /* Define this if most significant bit is lowest numbered
  305.    in instructions that operate on numbered bit-fields.  */
  306. #define BITS_BIG_ENDIAN 0
  307.  
  308. /* Define this if most significant byte of a word is the lowest numbered.
  309.    The i960 case be either big endian or little endian.  We only support
  310.    little endian, which is the most common.  */
  311. #define BYTES_BIG_ENDIAN 0
  312.  
  313. /* Define this if most significant word of a multiword number is lowest
  314.    numbered.  */
  315. #define WORDS_BIG_ENDIAN 0
  316.  
  317. /* Number of bits in an addressable storage unit.  */
  318. #define BITS_PER_UNIT 8
  319.  
  320. /* Bitfields cannot cross word boundaries.  */
  321. #define BITFIELD_NBYTES_LIMITED 1
  322.  
  323. /* Width in bits of a "word", which is the contents of a machine register.
  324.    Note that this is not necessarily the width of data type `int';
  325.    if using 16-bit ints on a 68000, this would still be 32.
  326.    But on a machine with 16-bit registers, this would be 16.  */
  327. #define BITS_PER_WORD 32
  328.  
  329. /* Width of a word, in units (bytes).  */
  330. #define UNITS_PER_WORD 4
  331.  
  332. /* Width in bits of a pointer.  See also the macro `Pmode' defined below.  */
  333. #define POINTER_SIZE 32
  334.  
  335. /* Width in bits of a long double.  Identical to double for now.  */
  336. #define    LONG_DOUBLE_TYPE_SIZE    64
  337.  
  338. /* Allocation boundary (in *bits*) for storing pointers in memory.  */
  339. #define POINTER_BOUNDARY 32
  340.  
  341. /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
  342. #define PARM_BOUNDARY 32
  343.  
  344. /* Boundary (in *bits*) on which stack pointer should be aligned.  */
  345. #define STACK_BOUNDARY 128
  346.  
  347. /* Allocation boundary (in *bits*) for the code of a function.  */
  348. #define FUNCTION_BOUNDARY 128
  349.  
  350. /* Alignment of field after `int : 0' in a structure.  */
  351. #define EMPTY_FIELD_BOUNDARY 32
  352.  
  353. /* This makes zero-length anonymous fields lay the next field
  354.    at a word boundary.  It also makes the whole struct have
  355.    at least word alignment if there are any bitfields at all.  */
  356. #define PCC_BITFIELD_TYPE_MATTERS 1
  357.  
  358. /* Every structure's size must be a multiple of this.  */
  359. #define STRUCTURE_SIZE_BOUNDARY 8
  360.  
  361. /* No data type wants to be aligned rounder than this.
  362.    Extended precision floats gets 4-word alignment.  */
  363. #define BIGGEST_ALIGNMENT 128
  364.  
  365. /* Define this if move instructions will actually fail to work
  366.    when given unaligned data.
  367.    80960 will work even with unaligned data, but it is slow.  */
  368. #define STRICT_ALIGNMENT TARGET_OLD_ALIGN
  369.  
  370. /* Specify alignment for string literals (which might be higher than the
  371.    base type's minimal alignment requirement.  This allows strings to be
  372.    aligned on word boundaries, and optimizes calls to the str* and mem*
  373.    library functions.  */
  374. #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
  375.   (TREE_CODE (EXP) == STRING_CST    \
  376.    && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
  377.    ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP)))        \
  378.    : (ALIGN))
  379.  
  380. /* Macros to determine size of aggregates (structures and unions
  381.    in C).  Normally, these may be defined to simply return the maximum
  382.    alignment and simple rounded-up size, but on some machines (like
  383.    the i960), the total size of a structure is based on a non-trivial
  384.    rounding method.  */
  385.  
  386. #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED)        \
  387.   ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE)    \
  388.    ? i960_round_align ((SPECIFIED), TYPE_SIZE (TYPE))        \
  389.    : MAX ((COMPUTED), (SPECIFIED)))
  390.  
  391. #define ROUND_TYPE_SIZE(TYPE, SIZE, ALIGN)            \
  392.   ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE)    \
  393.    ? (tree) i960_round_size (SIZE)                \
  394.    : round_up ((SIZE), (ALIGN)))
  395.  
  396. /* Standard register usage.  */
  397.  
  398. /* Number of actual hardware registers.
  399.    The hardware registers are assigned numbers for the compiler
  400.    from 0 to just below FIRST_PSEUDO_REGISTER.
  401.    All registers that the compiler knows about must be given numbers,
  402.    even those that are not normally considered general registers.
  403.  
  404.    Registers 0-15 are the global registers (g0-g15).
  405.    Registers 16-31 are the local registers (r0-r15).
  406.    Register 32-35 are the fp registers (fp0-fp3).
  407.    Register 36 is the condition code register.
  408.    Register 37 is unused.  */
  409.  
  410. #define FIRST_PSEUDO_REGISTER 38
  411.  
  412. /* 1 for registers that have pervasive standard uses and are not available
  413.    for the register allocator.  On 80960, this includes the frame pointer
  414.    (g15), the previous FP (r0), the stack pointer (r1), the return
  415.    instruction pointer (r2), and the argument pointer (g14).  */
  416. #define FIXED_REGISTERS  \
  417.  {0, 0, 0, 0, 0, 0, 0, 0,    \
  418.   0, 0, 0, 0, 0, 0, 1, 1,    \
  419.   1, 1, 1, 0, 0, 0, 0, 0,    \
  420.   0, 0, 0, 0, 0, 0, 0, 0,    \
  421.   0, 0, 0, 0, 1, 1}
  422.  
  423. /* 1 for registers not available across function calls.
  424.    These must include the FIXED_REGISTERS and also any
  425.    registers that can be used without being saved.
  426.    The latter must include the registers where values are returned
  427.    and the register where structure-value addresses are passed.
  428.    Aside from that, you can include as many other registers as you like.  */
  429.  
  430. /* On the 80960, note that:
  431.     g0..g3 are used for return values,
  432.     g0..g7 may always be used for parameters,
  433.     g8..g11 may be used for parameters, but are preserved if they aren't,
  434.     g12 is always preserved, but otherwise unused,
  435.     g13 is the struct return ptr if used, or temp, but may be trashed,
  436.     g14 is the leaf return ptr or the arg block ptr otherwise zero,
  437.         must be reset to zero before returning if it was used,
  438.     g15 is the frame pointer,
  439.     r0 is the previous FP,
  440.     r1 is the stack pointer,
  441.     r2 is the return instruction pointer,
  442.     r3-r15 are always available,
  443.     r3 is clobbered by calls in functions that use the arg pointer
  444.     r4-r11 may be clobbered by the mcount call when profiling
  445.     r4-r15 if otherwise unused may be used for preserving global registers
  446.     fp0..fp3 are never available.  */
  447. #define CALL_USED_REGISTERS  \
  448.  {1, 1, 1, 1, 1, 1, 1, 1,    \
  449.   0, 0, 0, 0, 0, 1, 1, 1,    \
  450.   1, 1, 1, 0, 0, 0, 0, 0,    \
  451.   0, 0, 0, 0, 0, 0, 0, 0,    \
  452.   1, 1, 1, 1, 1, 1}
  453.  
  454. /* If no fp unit, make all of the fp registers fixed so that they can't
  455.    be used.  */
  456. #define    CONDITIONAL_REGISTER_USAGE    \
  457.   if (! TARGET_NUMERICS) {                        \
  458.      fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
  459.   }                                    \
  460.  
  461. /* Return number of consecutive hard regs needed starting at reg REGNO
  462.    to hold something of mode MODE.
  463.    This is ordinarily the length in words of a value of mode MODE
  464.    but can be less for certain modes in special long registers.
  465.  
  466.    On 80960, ordinary registers hold 32 bits worth, but can be ganged
  467.    together to hold double or extended precision floating point numbers,
  468.    and the floating point registers hold any size floating point number */
  469. #define HARD_REGNO_NREGS(REGNO, MODE)   \
  470.   ((REGNO) < 32                            \
  471.    ? (((MODE) == VOIDmode)                    \
  472.       ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
  473.    : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
  474.  
  475. /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
  476.    On 80960, the cpu registers can hold any mode but the float registers
  477.    can only hold SFmode, DFmode, or TFmode.  */
  478. extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
  479. #define HARD_REGNO_MODE_OK(REGNO, MODE) \
  480.   ((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
  481.  
  482. /* Value is 1 if it is a good idea to tie two pseudo registers
  483.    when one has mode MODE1 and one has mode MODE2.
  484.    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
  485.    for any hard reg, then this must be 0 for correct output.  */
  486.  
  487. #define MODES_TIEABLE_P(MODE1, MODE2) \
  488.   ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
  489.  
  490. /* Specify the registers used for certain standard purposes.
  491.    The values of these macros are register numbers.  */
  492.  
  493. /* 80960 pc isn't overloaded on a register that the compiler knows about.  */
  494. /* #define PC_REGNUM  */
  495.  
  496. /* Register to use for pushing function arguments.  */
  497. #define STACK_POINTER_REGNUM 17
  498.  
  499. /* Actual top-of-stack address is same as
  500.    the contents of the stack pointer register.  */
  501. #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
  502.  
  503. /* Base register for access to local variables of the function.  */
  504. #define FRAME_POINTER_REGNUM 15
  505.  
  506. /* Value should be nonzero if functions must have frame pointers.
  507.    Zero means the frame pointer need not be set up (and parms
  508.    may be accessed via the stack pointer) in functions that seem suitable.
  509.    This is computed in `reload', in reload1.c.  */
  510. /* ??? It isn't clear to me why this is here.  Perhaps because of a bug (since
  511.    fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
  512.    caused this to fail.  */
  513. #define FRAME_POINTER_REQUIRED (! leaf_function_p ())
  514.  
  515. /* C statement to store the difference between the frame pointer
  516.    and the stack pointer values immediately after the function prologue.
  517.  
  518.    Since the stack grows upward on the i960, this must be a negative number.
  519.    This includes the 64 byte hardware register save area and the size of
  520.    the frame.  */
  521.  
  522. #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
  523.   do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
  524.  
  525. /* Base register for access to arguments of the function.  */
  526. #define ARG_POINTER_REGNUM 14
  527.  
  528. /* Register in which static-chain is passed to a function.
  529.    On i960, we use r3.  */
  530. #define STATIC_CHAIN_REGNUM 19
  531.  
  532. /* Functions which return large structures get the address
  533.    to place the wanted value at in g13.  */
  534.  
  535. #define STRUCT_VALUE_REGNUM 13 
  536.  
  537. /* The order in which to allocate registers.  */
  538.  
  539. #define    REG_ALLOC_ORDER    \
  540. {  4, 5, 6, 7, 0, 1, 2, 3, 13,     /* g4, g5, g6, g7, g0, g1, g2, g3, g13  */ \
  541.   20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11  */    \
  542.   28, 29, 30, 31, 19, 8, 9, 10,     /* r12, r13, r14, r15, r3, g8, g9, g10  */ \
  543.   11, 12,             /* g11, g12  */                \
  544.   32, 33, 34, 35,         /* fp0, fp1, fp2, fp3  */            \
  545.   /* We can't actually allocate these.  */                    \
  546.   16, 17, 18, 14, 15, 36, 37}     /* r0, r1, r2, g14, g15, cc  */
  547.  
  548. /* Define the classes of registers for register constraints in the
  549.    machine description.  Also define ranges of constants.
  550.  
  551.    One of the classes must always be named ALL_REGS and include all hard regs.
  552.    If there is more than one class, another class must be named NO_REGS
  553.    and contain no registers.
  554.  
  555.    The name GENERAL_REGS must be the name of a class (or an alias for
  556.    another name such as ALL_REGS).  This is the class of registers
  557.    that is allowed by "g" or "r" in a register constraint.
  558.    Also, registers outside this class are allocated only when
  559.    instructions express preferences for them.
  560.  
  561.    The classes must be numbered in nondecreasing order; that is,
  562.    a larger-numbered class must never be contained completely
  563.    in a smaller-numbered class.
  564.  
  565.    For any two classes, it is very desirable that there be another
  566.    class that represents their union.  */
  567.    
  568. /* The 80960 has four kinds of registers, global, local, floating point,
  569.    and condition code.  The cc register is never allocated, so no class
  570.    needs to be defined for it.  */
  571.  
  572. enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
  573.   FP_REGS, ALL_REGS, LIM_REG_CLASSES };
  574.  
  575. /* 'r' includes floating point registers if TARGET_NUMERICS.  'd' never
  576.    does.  */
  577. #define    GENERAL_REGS    ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
  578.  
  579. #define N_REG_CLASSES (int) LIM_REG_CLASSES
  580.  
  581. /* Give names of register classes as strings for dump file.  */
  582.  
  583. #define REG_CLASS_NAMES                            \
  584. { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS",    \
  585.   "FP_REGS", "ALL_REGS" }
  586.  
  587. /* Define which registers fit in which classes.
  588.    This is an initializer for a vector of HARD_REG_SET
  589.    of length N_REG_CLASSES.  */
  590.  
  591. #define REG_CLASS_CONTENTS    \
  592. { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
  593.  
  594. /* The same information, inverted:
  595.    Return the class number of the smallest class containing
  596.    reg number REGNO.  This could be a conditional expression
  597.    or could index an array.  */
  598.  
  599. #define REGNO_REG_CLASS(REGNO)    \
  600.   ((REGNO) < 16 ? GLOBAL_REGS    \
  601.    : (REGNO) < 32 ? LOCAL_REGS    \
  602.    : (REGNO) < 36 ? FP_REGS    \
  603.    : NO_REGS)
  604.  
  605. /* The class value for index registers, and the one for base regs.
  606.    There is currently no difference between base and index registers on the
  607.    i960, but this distinction may one day be useful.  */
  608. #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
  609. #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
  610.  
  611. /* Get reg_class from a letter such as appears in the machine description.
  612.    'f' is a floating point register (fp0..fp3)
  613.    'l' is a local register (r0-r15)
  614.    'b' is a global register (g0-g15)
  615.    'd' is any local or global register
  616.    'r' or 'g' are pre-defined to the class GENERAL_REGS.  */
  617. /* 'l' and 'b' are probably never used.  Note that 'd' and 'r' are *not*
  618.    the same thing, since 'r' may include the fp registers.  */
  619. #define REG_CLASS_FROM_LETTER(C) \
  620.   (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
  621.     (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
  622.  
  623. /* The letters I, J, K, L and M in a register constraint string
  624.    can be used to stand for particular ranges of immediate operands.
  625.    This macro defines what the ranges are.
  626.    C is the letter, and VALUE is a constant value.
  627.    Return 1 if VALUE is in the range specified by C.
  628.  
  629.    For 80960:
  630.     'I' is used for literal values 0..31
  631.        'J' means literal 0
  632.     'K' means 0..-31.  */
  633.  
  634. #define CONST_OK_FOR_LETTER_P(VALUE, C)                  \
  635.   ((C) == 'I' ? (((unsigned) (VALUE)) <= 31)                \
  636.    : (C) == 'J' ? ((VALUE) == 0)                    \
  637.       : (C) == 'K' ? ((VALUE) > -32 && (VALUE) <= 0)            \
  638.     : 0)
  639.  
  640. /* Similar, but for floating constants, and defining letters G and H.
  641.    Here VALUE is the CONST_DOUBLE rtx itself.
  642.    For the 80960, G is 0.0 and H is 1.0.  */
  643.  
  644. #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)        \
  645.   ((TARGET_NUMERICS) &&                    \
  646.    (((C) == 'G' && ((VALUE) == CONST0_RTX (DFmode)    \
  647.             || (VALUE) == CONST0_RTX (SFmode))) \
  648.     || ((C) == 'H' && ((VALUE) == CONST1_RTX (DFmode)    \
  649.                || (VALUE) == CONST1_RTX (SFmode)))))
  650.  
  651. /* Given an rtx X being reloaded into a reg required to be
  652.    in class CLASS, return the class of reg to actually use.
  653.    In general this is just CLASS; but on some machines
  654.    in some cases it is preferable to use a more restrictive class.  */
  655.  
  656. /* On 960, can't load constant into floating-point reg except
  657.    0.0 or 1.0.
  658.  
  659.    Any hard reg is ok as a src operand of a reload insn.  */
  660.  
  661. #define PREFERRED_RELOAD_CLASS(X,CLASS)            \
  662.   (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER    \
  663.    ? (CLASS)                            \
  664.    : ((CLASS) == FP_REGS && CONSTANT_P (X)            \
  665.       && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
  666.       && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
  667.       ? NO_REGS                            \
  668.       : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
  669.  
  670. #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
  671.   secondary_reload_class (CLASS, MODE, IN)
  672.  
  673. /* Return the maximum number of consecutive registers
  674.    needed to represent mode MODE in a register of class CLASS.  */
  675. /* On 80960, this is the size of MODE in words,
  676.    except in the FP regs, where a single reg is always enough.  */
  677. #define CLASS_MAX_NREGS(CLASS, MODE)                    \
  678.   ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
  679.  
  680. /* Stack layout; function entry, exit and calling.  */
  681.  
  682. /* Define this if pushing a word on the stack
  683.    makes the stack pointer a smaller address.  */
  684. /* #define STACK_GROWS_DOWNWARD */
  685.  
  686. /* Define this if the nominal address of the stack frame
  687.    is at the high-address end of the local variables;
  688.    that is, each additional local variable allocated
  689.    goes at a more negative offset in the frame.  */
  690. /* #define FRAME_GROWS_DOWNWARD */
  691.  
  692. /* Offset within stack frame to start allocating local variables at.
  693.    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
  694.    first local allocated.  Otherwise, it is the offset to the BEGINNING
  695.    of the first local allocated.
  696.  
  697.    The i960 has a 64 byte register save area, plus possibly some extra
  698.    bytes allocated for varargs functions.  */
  699. #define STARTING_FRAME_OFFSET 64
  700.  
  701. /* If we generate an insn to push BYTES bytes,
  702.    this says how many the stack pointer really advances by.
  703.    On 80960, don't define this because there are no push insns.  */
  704. /* #define PUSH_ROUNDING(BYTES) BYTES */
  705.  
  706. /* Offset of first parameter from the argument pointer register value.  */
  707. #define FIRST_PARM_OFFSET(FNDECL) 0
  708.  
  709. /* When a parameter is passed in a register, no stack space is
  710.    allocated for it.  However, when args are passed in the
  711.    stack, space is allocated for every register parameter.  */
  712. #define MAYBE_REG_PARM_STACK_SPACE 48
  713. #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE)    \
  714.   i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
  715. #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
  716. #define OUTGOING_REG_PARM_STACK_SPACE
  717.  
  718. /* Keep the stack pointer constant throughout the function.  */
  719. #define ACCUMULATE_OUTGOING_ARGS
  720.  
  721. /* Value is 1 if returning from a function call automatically
  722.    pops the arguments described by the number-of-args field in the call.
  723.    FUNTYPE is the data type of the function (as a tree),
  724.    or for a library call it is an identifier node for the subroutine name.  */
  725.  
  726. #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
  727.  
  728. /* Define how to find the value returned by a library function
  729.    assuming the value has mode MODE.  */
  730.  
  731. #define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
  732.  
  733. /* 1 if N is a possible register number for a function value
  734.    as seen by the caller.
  735.    On 80960, returns are in g0..g3 */
  736.  
  737. #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
  738.  
  739. /* 1 if N is a possible register number for function argument passing.
  740.    On 80960, parameters are passed in g0..g11 */
  741.  
  742. #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
  743.  
  744. /* Perform any needed actions needed for a function that is receiving a
  745.    variable number of arguments. 
  746.  
  747.    CUM is as above.
  748.  
  749.    MODE and TYPE are the mode and type of the current parameter.
  750.  
  751.    PRETEND_SIZE is a variable that should be set to the amount of stack
  752.    that must be pushed by the prolog to pretend that our caller pushed
  753.    it.
  754.  
  755.    Normally, this macro will push all remaining incoming registers on the
  756.    stack and set PRETEND_SIZE to the length of the registers pushed.  */
  757.  
  758. #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
  759.   i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
  760.  
  761. /* Define a data type for recording info about an argument list
  762.    during the scan of that argument list.  This data type should
  763.    hold all necessary information about the function itself
  764.    and about the args processed so far, enough to enable macros
  765.    such as FUNCTION_ARG to determine where the next arg should go.
  766.  
  767.    On 80960, this is two integers, which count the number of register
  768.    parameters and the number of stack parameters seen so far.  */
  769.  
  770. struct cum_args { int ca_nregparms; int ca_nstackparms; };
  771.  
  772. #define CUMULATIVE_ARGS struct cum_args
  773.  
  774. /* Define the number of registers that can hold parameters.
  775.    This macro is used only in macro definitions below and/or i960.c.  */
  776. #define NPARM_REGS 12
  777.  
  778. /* Define how to round to the next parameter boundary.
  779.    This macro is used only in macro definitions below and/or i960.c.  */
  780. #define ROUND_PARM(X, MULTIPLE_OF)    \
  781.   ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
  782.  
  783. /* Initialize a variable CUM of type CUMULATIVE_ARGS
  784.    for a call to a function whose data type is FNTYPE.
  785.    For a library call, FNTYPE is 0.
  786.  
  787.    On 80960, the offset always starts at 0; the first parm reg is g0.  */
  788.  
  789. #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME)    \
  790.   ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
  791.  
  792. /* Update the data in CUM to advance over an argument
  793.    of mode MODE and data type TYPE.
  794.    CUM should be advanced to align with the data type accessed and
  795.    also the size of that data type in # of regs.
  796.    (TYPE is null for libcalls where that information may not be available.)  */
  797.  
  798. #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
  799.   i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
  800.  
  801. /* Indicate the alignment boundary for an argument of the specified mode and
  802.    type.  */
  803. #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)                \
  804.   (((TYPE) != 0)                            \
  805.    ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY)                \
  806.       ? PARM_BOUNDARY                            \
  807.       : TYPE_ALIGN (TYPE))                        \
  808.    : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY)            \
  809.       ? PARM_BOUNDARY                            \
  810.       : GET_MODE_ALIGNMENT (MODE)))
  811.  
  812. /* Determine where to put an argument to a function.
  813.    Value is zero to push the argument on the stack,
  814.    or a hard register in which to store the argument.
  815.  
  816.    MODE is the argument's machine mode.
  817.    TYPE is the data type of the argument (as a tree).
  818.     This is null for libcalls where that information may
  819.     not be available.
  820.    CUM is a variable of type CUMULATIVE_ARGS which gives info about
  821.     the preceding args and about the function being called.
  822.    NAMED is nonzero if this argument is a named parameter
  823.     (otherwise it is an extra parameter matching an ellipsis).  */
  824.  
  825. extern struct rtx_def *i960_function_arg ();
  826. #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
  827.   i960_function_arg(&CUM, MODE, TYPE, NAMED)
  828.  
  829. /* Define how to find the value returned by a function.
  830.    VALTYPE is the data type of the value (as a tree).
  831.    If the precise function being called is known, FUNC is its FUNCTION_DECL;
  832.    otherwise, FUNC is 0.  */
  833.  
  834. #define FUNCTION_VALUE(TYPE, FUNC) \
  835.   gen_rtx (REG, TYPE_MODE (TYPE), 0)
  836.  
  837. /* Force aggregates and objects larger than 16 bytes to be returned in memory,
  838.    since we only have 4 registers available for return values.  */
  839.  
  840. #define RETURN_IN_MEMORY(TYPE) \
  841.   (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
  842.  
  843. /* Don't default to pcc-struct-return, because we have already specified
  844.    exactly how to return structures in the RETURN_IN_MEMORY macro.  */
  845. #define DEFAULT_PCC_STRUCT_RETURN 0
  846.  
  847. /* For an arg passed partly in registers and partly in memory,
  848.    this is the number of registers used.
  849.    This never happens on 80960.  */
  850.  
  851. #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
  852.  
  853. /* Output the label for a function definition.
  854.   This handles leaf functions and a few other things for the i960.  */
  855.  
  856. #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)    \
  857.   i960_function_name_declare (FILE, NAME, DECL)
  858.  
  859. /* This macro generates the assembly code for function entry.
  860.    FILE is a stdio stream to output the code to.
  861.    SIZE is an int: how many units of temporary storage to allocate.
  862.    Refer to the array `regs_ever_live' to determine which registers
  863.    to save; `regs_ever_live[I]' is nonzero if register number I
  864.    is ever used in the function.  This macro is responsible for
  865.    knowing which registers should not be saved even if used.  */
  866.  
  867. #define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
  868.  
  869. /* Output assembler code to FILE to increment profiler label # LABELNO
  870.    for profiling a function entry.  */
  871.  
  872. #define FUNCTION_PROFILER(FILE, LABELNO)    \
  873.   output_function_profiler ((FILE), (LABELNO));
  874.  
  875. /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
  876.    the stack pointer does not matter.  The value is tested only in
  877.    functions that have frame pointers.
  878.    No definition is equivalent to always zero.  */
  879.  
  880. #define    EXIT_IGNORE_STACK 1
  881.  
  882. /* This macro generates the assembly code for function exit,
  883.    on machines that need it.  If FUNCTION_EPILOGUE is not defined
  884.    then individual return instructions are generated for each
  885.    return statement.  Args are same as for FUNCTION_PROLOGUE.
  886.  
  887.    The function epilogue should not depend on the current stack pointer!
  888.    It should use the frame pointer only.  This is mandatory because
  889.    of alloca; we also take advantage of it to omit stack adjustments
  890.    before returning.  */
  891.  
  892. #define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
  893.  
  894. /* Addressing modes, and classification of registers for them.  */
  895.  
  896. /* #define HAVE_POST_INCREMENT */
  897. /* #define HAVE_POST_DECREMENT */
  898.  
  899. /* #define HAVE_PRE_DECREMENT */
  900. /* #define HAVE_PRE_INCREMENT */
  901.  
  902. /* Macros to check register numbers against specific register classes.  */
  903.  
  904. /* These assume that REGNO is a hard or pseudo reg number.
  905.    They give nonzero only if REGNO is a hard reg of the suitable class
  906.    or a pseudo reg currently allocated to a suitable hard reg.
  907.    Since they use reg_renumber, they are safe only once reg_renumber
  908.    has been allocated, which happens in local-alloc.c.  */
  909.  
  910. #define REGNO_OK_FOR_INDEX_P(REGNO) \
  911.   ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
  912. #define REGNO_OK_FOR_BASE_P(REGNO) \
  913.   ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
  914. #define REGNO_OK_FOR_FP_P(REGNO) \
  915.   ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
  916.  
  917. /* Now macros that check whether X is a register and also,
  918.    strictly, whether it is in a specified class.
  919.  
  920.    These macros are specific to the 960, and may be used only
  921.    in code for printing assembler insns and in conditions for
  922.    define_optimization.  */
  923.  
  924. /* 1 if X is an fp register.  */
  925.  
  926. #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
  927.  
  928. /* Maximum number of registers that can appear in a valid memory address.  */
  929. #define    MAX_REGS_PER_ADDRESS 2
  930.  
  931. #define CONSTANT_ADDRESS_P(X)   \
  932.   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF        \
  933.    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST        \
  934.    || GET_CODE (X) == HIGH)
  935.  
  936. /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
  937.    is a legitimate general operand.
  938.    It is given that X satisfies CONSTANT_P.
  939.  
  940.    Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.  */
  941.  
  942. #define LEGITIMATE_CONSTANT_P(X) \
  943.   ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), VOIDmode))
  944.  
  945. /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
  946.    and check its validity for a certain class.
  947.    We have two alternate definitions for each of them.
  948.    The usual definition accepts all pseudo regs; the other rejects
  949.    them unless they have been allocated suitable hard regs.
  950.    The symbol REG_OK_STRICT causes the latter definition to be used.
  951.  
  952.    Most source files want to accept pseudo regs in the hope that
  953.    they will get allocated to the class that the insn wants them to be in.
  954.    Source files for reload pass need to be strict.
  955.    After reload, it makes no difference, since pseudo regs have
  956.    been eliminated by then.  */
  957.  
  958. #ifndef REG_OK_STRICT
  959.  
  960. /* Nonzero if X is a hard reg that can be used as an index
  961.    or if it is a pseudo reg.  */
  962. #define REG_OK_FOR_INDEX_P(X) \
  963.   (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  964. /* Nonzero if X is a hard reg that can be used as a base reg
  965.    or if it is a pseudo reg.  */
  966. #define REG_OK_FOR_BASE_P(X) \
  967.   (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
  968.  
  969. #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
  970. #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
  971.  
  972. #else
  973.  
  974. /* Nonzero if X is a hard reg that can be used as an index.  */
  975. #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
  976. /* Nonzero if X is a hard reg that can be used as a base reg.  */
  977. #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
  978.  
  979. #endif
  980.  
  981. /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
  982.    that is a valid memory address for an instruction.
  983.    The MODE argument is the machine mode for the MEM expression
  984.    that wants to use this address.
  985.  
  986.     On 80960, legitimate addresses are:
  987.         base                ld    (g0),r0
  988.         disp    (12 or 32 bit)        ld    foo,r0
  989.         base + index            ld    (g0)[g1*1],r0
  990.         base + displ            ld    0xf00(g0),r0
  991.         base + index*scale + displ    ld    0xf00(g0)[g1*4],r0
  992.         index*scale + base        ld    (g0)[g1*4],r0
  993.         index*scale + displ        ld    0xf00[g1*4],r0
  994.         index*scale            ld    [g1*4],r0
  995.         index + base + displ        ld    0xf00(g0)[g1*1],r0
  996.  
  997.     In each case, scale can be 1, 2, 4, 8, or 16.  */
  998.  
  999. /* Returns 1 if the scale factor of an index term is valid. */
  1000. #define SCALE_TERM_P(X)                            \
  1001.   (GET_CODE (X) == CONST_INT                        \
  1002.    && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4         \
  1003.        || INTVAL(X) == 8 || INTVAL (X) == 16))
  1004.  
  1005.  
  1006. #ifdef REG_OK_STRICT
  1007. #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
  1008.   { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
  1009. #else
  1010. #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
  1011.   { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
  1012. #endif
  1013.  
  1014. /* Try machine-dependent ways of modifying an illegitimate address
  1015.    to be legitimate.  If we find one, return the new, valid address.
  1016.    This macro is used in only one place: `memory_address' in explow.c.
  1017.  
  1018.    OLDX is the address as it was before break_out_memory_refs was called.
  1019.    In some cases it is useful to look at this to decide what needs to be done.
  1020.  
  1021.    MODE and WIN are passed so that this macro can use
  1022.    GO_IF_LEGITIMATE_ADDRESS.
  1023.  
  1024.    It is always safe for this macro to do nothing.  It exists to recognize
  1025.    opportunities to optimize the output.  */
  1026.  
  1027. /* On 80960, convert non-canonical addresses to canonical form.  */
  1028.  
  1029. extern struct rtx_def *legitimize_address ();
  1030. #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)    \
  1031. { rtx orig_x = (X);                \
  1032.   (X) = legitimize_address (X, OLDX, MODE);    \
  1033.   if ((X) != orig_x && memory_address_p (MODE, X)) \
  1034.     goto WIN; }
  1035.  
  1036. /* Go to LABEL if ADDR (a legitimate address expression)
  1037.    has an effect that depends on the machine mode it is used for.
  1038.    On the 960 this is never true.  */
  1039.  
  1040. #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
  1041.  
  1042. /* Specify the machine mode that this machine uses
  1043.    for the index in the tablejump instruction.  */
  1044. #define CASE_VECTOR_MODE SImode
  1045.  
  1046. /* Define this if the tablejump instruction expects the table
  1047.    to contain offsets from the address of the table.
  1048.    Do not define this if the table should contain absolute addresses.  */
  1049. /* #define CASE_VECTOR_PC_RELATIVE */
  1050.  
  1051. /* Specify the tree operation to be used to convert reals to integers.  */
  1052. #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
  1053.  
  1054. /* This is the kind of divide that is easiest to do in the general case.  */
  1055. #define EASY_DIV_EXPR TRUNC_DIV_EXPR
  1056.  
  1057. /* Define this as 1 if `char' should by default be signed; else as 0.  */
  1058. #define DEFAULT_SIGNED_CHAR 0
  1059.  
  1060. /* Allow and ignore #sccs directives.  */
  1061. #define    SCCS_DIRECTIVE
  1062.  
  1063. /* Max number of bytes we can move from memory to memory
  1064.    in one reasonably fast instruction.  */
  1065. #define MOVE_MAX 16
  1066.  
  1067. /* Define if operations between registers always perform the operation
  1068.    on the full register even if a narrower mode is specified.  */
  1069. #define WORD_REGISTER_OPERATIONS
  1070.  
  1071. /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
  1072.    will either zero-extend or sign-extend.  The value of this macro should
  1073.    be the code that says which one of the two operations is implicitly
  1074.    done, NIL if none.  */
  1075. #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
  1076.  
  1077. /* Nonzero if access to memory by bytes is no faster than for words.
  1078.    Defining this results in worse code on the i960.  */
  1079.  
  1080. #define SLOW_BYTE_ACCESS 0
  1081.  
  1082. /* We assume that the store-condition-codes instructions store 0 for false
  1083.    and some other value for true.  This is the value stored for true.  */
  1084.  
  1085. #define STORE_FLAG_VALUE 1
  1086.  
  1087. /* Define this to be nonzero if shift instructions ignore all but the low-order
  1088.    few bits. */
  1089. #define SHIFT_COUNT_TRUNCATED 1
  1090.  
  1091. /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
  1092.    is done just by pretending it is already truncated.  */
  1093. #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
  1094.  
  1095. /* Specify the machine mode that pointers have.
  1096.    After generation of rtl, the compiler makes no further distinction
  1097.    between pointers and any other objects of this machine mode.  */
  1098. #define Pmode SImode
  1099.  
  1100. /* Specify the widest mode that BLKmode objects can be promoted to */
  1101. #define    MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
  1102.  
  1103. /* These global variables are used to pass information between
  1104.    cc setter and cc user at insn emit time.  */
  1105.  
  1106. extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
  1107.  
  1108. /* Define the function that build the compare insn for scc and bcc.  */
  1109.  
  1110. extern struct rtx_def *gen_compare_reg ();
  1111.  
  1112. /* Add any extra modes needed to represent the condition code.
  1113.  
  1114.    Also, signed and unsigned comparisons are distinguished, as
  1115.    are operations which are compatible with chkbit insns.  */
  1116. #define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
  1117.  
  1118. /* Define the names for the modes specified above.  */
  1119. #define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
  1120.  
  1121. /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
  1122.    return the mode to be used for the comparison.  For floating-point, CCFPmode
  1123.    should be used.  CC_NOOVmode should be used when the first operand is a
  1124.    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
  1125.    needed.  */
  1126. #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
  1127.  
  1128. /* A function address in a call instruction is a byte address
  1129.    (for indexing purposes) so give the MEM rtx a byte's mode.  */
  1130. #define FUNCTION_MODE SImode
  1131.  
  1132. /* Define this if addresses of constant functions
  1133.    shouldn't be put through pseudo regs where they can be cse'd.
  1134.    Desirable on machines where ordinary constants are expensive
  1135.    but a CALL with constant address is cheap.  */
  1136. #define NO_FUNCTION_CSE
  1137.  
  1138. /* Use memcpy, etc. instead of bcopy.  */
  1139.  
  1140. #ifndef WIND_RIVER
  1141. #define    TARGET_MEM_FUNCTIONS    1
  1142. #endif
  1143.  
  1144. /* Compute the cost of computing a constant rtl expression RTX
  1145.    whose rtx-code is CODE.  The body of this macro is a portion
  1146.    of a switch statement.  If the code is computed here,
  1147.    return it with a return statement.  Otherwise, break from the switch.  */
  1148.  
  1149. /* Constants that can be (non-ldconst) insn operands are cost 0.  Constants
  1150.    that can be non-ldconst operands in rare cases are cost 1.  Other constants
  1151.    have higher costs.  */
  1152.  
  1153. #define CONST_COSTS(RTX, CODE, OUTER_CODE)                \
  1154.   case CONST_INT:                            \
  1155.     if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32)            \
  1156.     || power2_operand (RTX, VOIDmode))                \
  1157.       return 0;                             \
  1158.     else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0)            \
  1159.       return 1;                                \
  1160.   case CONST:                                \
  1161.   case LABEL_REF:                            \
  1162.   case SYMBOL_REF:                            \
  1163.     return (TARGET_FLAG_C_SERIES ? 6 : 8);                \
  1164.   case CONST_DOUBLE:                            \
  1165.     if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode)    \
  1166.     || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
  1167.       return 1;                                \
  1168.     return 12;
  1169.  
  1170. /* The i960 offers addressing modes which are "as cheap as a register".
  1171.    See i960.c (or gcc.texinfo) for details.  */
  1172.  
  1173. #define ADDRESS_COST(RTX) \
  1174.   (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
  1175.  
  1176. /* Control the assembler format that we output.  */
  1177.  
  1178. /* Output at beginning of assembler file.  */
  1179.  
  1180. #define ASM_FILE_START(file)
  1181.  
  1182. /* Output to assembler file text saying following lines
  1183.    may contain character constants, extra white space, comments, etc.  */
  1184.  
  1185. #define ASM_APP_ON ""
  1186.  
  1187. /* Output to assembler file text saying following lines
  1188.    no longer contain unusual constructs.  */
  1189.  
  1190. #define ASM_APP_OFF ""
  1191.  
  1192. /* Output before read-only data.  */
  1193.  
  1194. #define TEXT_SECTION_ASM_OP ".text"
  1195.  
  1196. /* Output before writable data.  */
  1197.  
  1198. #define DATA_SECTION_ASM_OP ".data"
  1199.  
  1200. /* How to refer to registers in assembler output.
  1201.    This sequence is indexed by compiler's hard-register-number (see above).  */
  1202.  
  1203. #define REGISTER_NAMES {                        \
  1204.     "g0", "g1", "g2",  "g3",  "g4",  "g5",  "g6",  "g7",        \
  1205.     "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp",        \
  1206.     "pfp","sp", "rip", "r3",  "r4",  "r5",  "r6",  "r7",        \
  1207.     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",        \
  1208.     "fp0","fp1","fp2", "fp3", "cc", "fake" }
  1209.  
  1210. /* How to renumber registers for dbx and gdb.
  1211.    In the 960 encoding, g0..g15 are registers 16..31.  */
  1212.  
  1213. #define DBX_REGISTER_NUMBER(REGNO)                    \
  1214.   (((REGNO) < 16) ? (REGNO) + 16                    \
  1215.    : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
  1216.  
  1217. /* Don't emit dbx records longer than this.  This is an arbitrary value.  */
  1218. #define DBX_CONTIN_LENGTH 1500
  1219.  
  1220. /* This is how to output a note to DBX telling it the line number
  1221.    to which the following sequence of instructions corresponds. */
  1222.  
  1223. #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE)            \
  1224. { if (write_symbols == SDB_DEBUG) {                \
  1225.     fprintf ((FILE), "\t.ln    %d\n",                \
  1226.          (sdb_begin_function_line                \
  1227.           ? (LINE) - sdb_begin_function_line : 1));        \
  1228.   } else if (write_symbols == DBX_DEBUG) {            \
  1229.     fprintf((FILE),"\t.stabd    68,0,%d\n",(LINE));    \
  1230.   } }
  1231.  
  1232. /* This is how to output the definition of a user-level label named NAME,
  1233.    such as the label on a static function or variable NAME.  */
  1234.  
  1235. #define ASM_OUTPUT_LABEL(FILE,NAME)    \
  1236.   do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
  1237.  
  1238. /* This is how to output a command to make the user-level label named NAME
  1239.    defined for reference from other files.  */
  1240.  
  1241. #define ASM_GLOBALIZE_LABEL(FILE,NAME)        \
  1242. { fputs ("\t.globl ", FILE);            \
  1243.   assemble_name (FILE, NAME);            \
  1244.   fputs ("\n", FILE); }
  1245.  
  1246. /* This is how to output a reference to a user-level label named NAME.
  1247.    `assemble_name' uses this.  */
  1248.  
  1249. #define ASM_OUTPUT_LABELREF(FILE,NAME)    fprintf (FILE, "_%s", NAME)
  1250.  
  1251. /* This is how to output an internal numbered label where
  1252.    PREFIX is the class of label and NUM is the number within the class.  */
  1253.  
  1254. #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)    \
  1255.   fprintf (FILE, "%s%d:\n", PREFIX, NUM)
  1256.  
  1257. /* This is how to store into the string LABEL
  1258.    the symbol_ref name of an internal numbered label where
  1259.    PREFIX is the class of label and NUM is the number within the class.
  1260.    This is suitable for output with `assemble_name'.  */
  1261.  
  1262. #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)    \
  1263.   sprintf (LABEL, "*%s%d", PREFIX, NUM)
  1264.  
  1265. /* This is how to output an assembler line defining a `double' constant.  */
  1266.  
  1267. #define ASM_OUTPUT_DOUBLE(FILE,VALUE)  i960_output_double(FILE, VALUE)
  1268.  
  1269. /* This is how to output an assembler line defining a `float' constant.  */
  1270.  
  1271. #define ASM_OUTPUT_FLOAT(FILE,VALUE)  i960_output_float(FILE, VALUE)
  1272.  
  1273. /* This is how to output an assembler line defining an `int' constant.  */
  1274.  
  1275. #define ASM_OUTPUT_INT(FILE,VALUE)  \
  1276. ( fprintf (FILE, "\t.word "),            \
  1277.   output_addr_const (FILE, (VALUE)),        \
  1278.   fprintf (FILE, "\n"))
  1279.  
  1280. /* Likewise for `char' and `short' constants.  */
  1281.  
  1282. #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
  1283. ( fprintf (FILE, "\t.short "),            \
  1284.   output_addr_const (FILE, (VALUE)),        \
  1285.   fprintf (FILE, "\n"))
  1286.  
  1287. #define ASM_OUTPUT_CHAR(FILE,VALUE)  \
  1288. ( fprintf (FILE, "\t.byte "),            \
  1289.   output_addr_const (FILE, (VALUE)),        \
  1290.   fprintf (FILE, "\n"))
  1291.  
  1292. /* This is how to output an assembler line for a numeric constant byte.  */
  1293.  
  1294. #define ASM_OUTPUT_BYTE(FILE,VALUE)    \
  1295.   fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
  1296.  
  1297. #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
  1298.   fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
  1299.  
  1300. /* This is how to output an insn to pop a register from the stack.
  1301.    It need not be very fast code.  */
  1302.  
  1303. #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
  1304.   fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
  1305.  
  1306. /* This is how to output an element of a case-vector that is absolute.  */
  1307.  
  1308. #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
  1309.   fprintf (FILE, "\t.word L%d\n", VALUE)
  1310.  
  1311. /* This is how to output an element of a case-vector that is relative.  */
  1312.  
  1313. #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)  \
  1314.   fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
  1315.  
  1316. /* This is how to output an assembler line that says to advance the
  1317.    location counter to a multiple of 2**LOG bytes.  */
  1318.  
  1319. #define ASM_OUTPUT_ALIGN(FILE,LOG)    \
  1320.   fprintf (FILE, "\t.align %d\n", (LOG))
  1321.  
  1322. #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
  1323.   fprintf (FILE, "\t.space %d\n", (SIZE))
  1324.  
  1325. /* This says how to output an assembler line
  1326.    to define a global common symbol.  */
  1327.  
  1328. /* For common objects, output unpadded size... gld960 & lnk960 both
  1329.    have code to align each common object at link time.  Also, if size
  1330.    is 0, treat this as a declaration, not a definition - i.e.,
  1331.    do nothing at all.  */
  1332.  
  1333. #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
  1334. { if ((SIZE) != 0)                    \
  1335.     {                            \
  1336.       fputs (".globl ", (FILE)),            \
  1337.       assemble_name ((FILE), (NAME)),            \
  1338.       fputs ("\n.comm ", (FILE)),            \
  1339.       assemble_name ((FILE), (NAME)),            \
  1340.       fprintf ((FILE), ",%d\n", (SIZE));        \
  1341.     }                            \
  1342. }
  1343.  
  1344. /* This says how to output an assembler line to define a local common symbol.
  1345.    Output unpadded size, with request to linker to align as requested.
  1346.    0 size should not be possible here.  */
  1347.  
  1348. #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)  \
  1349. ( fputs (".bss\t", (FILE)),            \
  1350.   assemble_name ((FILE), (NAME)),        \
  1351.   fprintf ((FILE), ",%d,%d\n", (SIZE),        \
  1352.        ((ALIGN) <= 8 ? 0            \
  1353.         : ((ALIGN) <= 16 ? 1        \
  1354.            : ((ALIGN) <= 32 ? 2        \
  1355.           : ((ALIGN <= 64 ? 3 : 4)))))))
  1356.  
  1357. /* Output text for an #ident directive.  */
  1358. #define    ASM_OUTPUT_IDENT(FILE, STR)  fprintf(FILE, "\t# %s\n", STR);
  1359.  
  1360. /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true.  */
  1361.  
  1362. #define    ASM_OUTPUT_ALIGN_CODE(FILE)        \
  1363. { if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
  1364.  
  1365. /* Store in OUTPUT a string (made with alloca) containing
  1366.    an assembler-name for a local static variable named NAME.
  1367.    LABELNO is an integer which is different for each call.  */
  1368.  
  1369. #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)    \
  1370.     ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),    \
  1371.       sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
  1372.  
  1373. /* Define the parentheses used to group arithmetic operations
  1374.    in assembler code.  */
  1375.  
  1376. #define ASM_OPEN_PAREN "("
  1377. #define ASM_CLOSE_PAREN ")"
  1378.  
  1379. /* Define results of standard character escape sequences.  */
  1380. #define TARGET_BELL    007
  1381. #define TARGET_BS    010
  1382. #define TARGET_TAB    011
  1383. #define TARGET_NEWLINE    012
  1384. #define TARGET_VT    013
  1385. #define TARGET_FF    014
  1386. #define TARGET_CR    015
  1387.  
  1388. /* Output assembler code to FILE to initialize this source file's
  1389.    basic block profiling info, if that has not already been done.  */
  1390.  
  1391. #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
  1392. { fprintf (FILE, "\tld    LPBX0,g12\n");            \
  1393.   fprintf (FILE, "\tcmpobne    0,g12,LPY%d\n",LABELNO);\
  1394.   fprintf (FILE, "\tlda    LPBX0,g12\n");            \
  1395.   fprintf (FILE, "\tcall    ___bb_init_func\n");    \
  1396.   fprintf (FILE, "LPY%d:\n",LABELNO); }
  1397.  
  1398. /* Output assembler code to FILE to increment the entry-count for
  1399.    the BLOCKNO'th basic block in this source file.  */
  1400.  
  1401. #define BLOCK_PROFILER(FILE, BLOCKNO) \
  1402. { int blockn = (BLOCKNO);                \
  1403.   fprintf (FILE, "\tld    LPBX2+%d,g12\n", 4 * blockn);    \
  1404.   fprintf (FILE, "\taddo    g12,1,g12\n");        \
  1405.   fprintf (FILE, "\tst    g12,LPBX2+%d\n", 4 * blockn); }
  1406.  
  1407. /* Print operand X (an rtx) in assembler syntax to file FILE.
  1408.    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
  1409.    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
  1410.  
  1411. #define PRINT_OPERAND(FILE, X, CODE)  \
  1412.   i960_print_operand (FILE, X, CODE);
  1413.  
  1414. /* Print a memory address as an operand to reference that memory location.  */
  1415.  
  1416. #define PRINT_OPERAND_ADDRESS(FILE, ADDR)    \
  1417.   i960_print_operand_addr (FILE, ADDR)
  1418.  
  1419. /* Output assembler code for a block containing the constant parts
  1420.    of a trampoline, leaving space for the variable parts.  */
  1421.  
  1422. /* On the i960, the trampoline contains three instructions:
  1423.      ldconst _function, r4
  1424.      ldconst static addr, r3
  1425.      jump (r4)  */
  1426.  
  1427. #define TRAMPOLINE_TEMPLATE(FILE)                    \
  1428. {                                    \
  1429.   ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000));    \
  1430.   ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));    \
  1431.   ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000));    \
  1432.   ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000));    \
  1433.   ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000));    \
  1434. }
  1435.  
  1436. /* Length in units of the trampoline for entering a nested function.  */
  1437.  
  1438. #define TRAMPOLINE_SIZE 20
  1439.  
  1440. /* Emit RTL insns to initialize the variable parts of a trampoline.
  1441.    FNADDR is an RTX for the address of the function's pure code.
  1442.    CXT is an RTX for the static chain value for the function.  */
  1443.  
  1444. #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)            \
  1445. {                                    \
  1446.   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)),    \
  1447.           FNADDR);                        \
  1448.   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)),    \
  1449.           CXT);                            \
  1450. }
  1451.  
  1452. #if 0
  1453. /* Promote char and short arguments to ints, when want compatibility with
  1454.    the iC960 compilers.  */
  1455.  
  1456. /* ??? In order for this to work, all users would need to be changed
  1457.    to test the value of the macro at run time.  */
  1458. #define PROMOTE_PROTOTYPES    TARGET_CLEAN_LINKAGE
  1459. /* ??? This does not exist.  */
  1460. #define PROMOTE_RETURN        TARGET_CLEAN_LINKAGE
  1461. #endif
  1462.  
  1463. /* Instruction type definitions.  Used to alternate instructions types for
  1464.    better performance on the C series chips.  */
  1465.  
  1466. enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
  1467.  
  1468. /* Holds the insn type of the last insn output to the assembly file.  */
  1469.  
  1470. extern enum insn_types i960_last_insn_type;
  1471.  
  1472. /* Parse opcodes, and set the insn last insn type based on them.  */
  1473.  
  1474. #define ASM_OUTPUT_OPCODE(FILE, INSN)    i960_scan_opcode (INSN)
  1475.  
  1476. /* Table listing what rtl codes each predicate in i960.c will accept.  */
  1477.  
  1478. #define PREDICATE_CODES \
  1479.   {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,    \
  1480.               LABEL_REF, SUBREG, REG, MEM}},        \
  1481.   {"arith_operand", {SUBREG, REG, CONST_INT}},                \
  1482.   {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}},            \
  1483.   {"signed_arith_operand", {SUBREG, REG, CONST_INT}},            \
  1484.   {"literal", {CONST_INT}},                        \
  1485.   {"fp_literal_one", {CONST_DOUBLE}},                    \
  1486.   {"fp_literal_double", {CONST_DOUBLE}},                \
  1487.   {"fp_literal", {CONST_DOUBLE}},                    \
  1488.   {"signed_literal", {CONST_INT}},                    \
  1489.   {"symbolic_memory_operand", {SUBREG, MEM}},                \
  1490.   {"eq_or_neq", {EQ, NE}},                        \
  1491.   {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT,    \
  1492.                CONST_DOUBLE, CONST}},                \
  1493.   {"power2_operand", {CONST_INT}},                    \
  1494.   {"cmplpower2_operand", {CONST_INT}},
  1495.  
  1496. /* Define functions in i960.c and used in insn-output.c.  */
  1497.  
  1498. extern char *i960_output_ldconst ();
  1499. extern char *i960_output_call_insn ();
  1500. extern char *i960_output_ret_insn ();
  1501.  
  1502. /* Defined in reload.c, and used in insn-recog.c.  */
  1503.  
  1504. extern int rtx_equal_function_value_matters;
  1505.