home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
g77-0.5.15-src.tgz
/
tar.out
/
fsf
/
g77
/
config
/
rs6000
/
rs6000.md
< prev
next >
Wrap
Text File
|
1996-09-28
|
206KB
|
6,434 lines
;; Machine description for IBM RISC System 6000 (POWER) for GNU C compiler
;; Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Define an insn type attribute. This is used in function unit delay
;; computations.
(define_attr "type" "integer,load,fpload,imul,idiv,branch,compare,delayed_compare,fpcompare,mtjmpr,fp,dmul,sdiv,ddiv,ssqrt,dsqrt,jmpreg"
(const_string "integer"))
;; Length (in bytes).
(define_attr "length" ""
(if_then_else (eq_attr "type" "branch")
(if_then_else (and (ge (minus (pc) (match_dup 0))
(const_int -32768))
(lt (minus (pc) (match_dup 0))
(const_int 32767)))
(const_int 8)
(const_int 12))
(const_int 4)))
;; Processor type -- this attribute must exactly match the processor_type
;; enumeration in rs6000.h.
(define_attr "cpu" "rios1,rios2,ppc601,ppc603,ppc604,ppc620"
(const (symbol_ref "rs6000_cpu_attr")))
; (define_function_unit NAME MULTIPLICITY SIMULTANEITY
; TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])
; Load/Store Unit -- POWER/2 and pure PowerPC only
; (POWER and 601 use Integer Unit)
(define_function_unit "lsu" 1 0
(and (eq_attr "type" "load")
(eq_attr "cpu" "rios2,ppc603,ppc604,ppc620"))
2 0)
(define_function_unit "lsu" 1 0
(and (eq_attr "type" "fpload")
(eq_attr "cpu" "rios2,ppc603,ppc604,ppc620"))
2 0)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "load")
(eq_attr "cpu" "rios1,ppc601"))
2 0)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "fpload")
(eq_attr "cpu" "rios1,ppc601"))
3 0)
; Integer Unit (RIOS1, PPC601, PPC603)
; Trivial operations take one cycle which need not be listed here.
(define_function_unit "iu" 1 0
(and (eq_attr "type" "imul")
(eq_attr "cpu" "rios1"))
3 3)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "imul")
(eq_attr "cpu" "ppc601,ppc603"))
5 5)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "idiv")
(eq_attr "cpu" "rios1"))
19 19)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "idiv")
(eq_attr "cpu" "ppc601"))
36 36)
(define_function_unit "iu" 1 0
(and (eq_attr "type" "idiv")
(eq_attr "cpu" "ppc603"))
37 36)
; RIOS2 has two integer units: a primary one which can perform all
; operations and a secondary one which is fed in lock step with the first
; and can perform "simple" integer operations.
(define_function_unit "iu2" 2 0
(and (eq_attr "type" "integer")
(eq_attr "cpu" "rios2"))
1 0
[(eq_attr "type" "imul,idiv")])
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "imul")
(eq_attr "cpu" "rios2"))
2 2
[(eq_attr "type" "integer")])
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "idiv")
(eq_attr "cpu" "rios2"))
13 13
[(eq_attr "type" "integer")])
; PPC604 has three integer units: one primary and two secondary.
(define_function_unit "iu3" 3 0
(and (eq_attr "type" "integer")
(eq_attr "cpu" "ppc604,ppc620"))
1 0
[(eq_attr "type" "imul,idiv")])
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "imul")
(eq_attr "cpu" "ppc604,ppc620"))
4 2
[(eq_attr "type" "integer")])
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "idiv")
(eq_attr "cpu" "ppc604,ppc620"))
20 19
[(eq_attr "type" "integer")])
; Branch Processing Unit
(define_function_unit "bpu" 1 0
(eq_attr "type" "compare")
4 0)
(define_function_unit "bpu" 1 0
(eq_attr "type" "delayed_compare")
5 0)
(define_function_unit "bpu" 1 0
(and (eq_attr "type" "fpcompare")
(eq_attr "cpu" "rios1,rios2"))
8 0)
(define_function_unit "bpu" 1 0
(and (eq_attr "type" "fpcompare")
(eq_attr "cpu" "ppc601,ppc603,ppc604,ppc620"))
4 0)
(define_function_unit "bpu" 1 0
(and (eq_attr "type" "mtjmpr")
(eq_attr "cpu" "rios1,rios2"))
5 0)
(define_function_unit "bpu" 1 0
(and (eq_attr "type" "mtjmpr")
(eq_attr "cpu" "ppc601,ppc603,ppc604,ppc620"))
4 0)
; Floating Point Unit (RIOS1, PPC601, PPC603, PPC604).
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "fp,dmul")
(eq_attr "cpu" "rios1"))
2 0)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "fp")
(eq_attr "cpu" "ppc601"))
4 0)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "fp")
(eq_attr "cpu" "ppc603,ppc604,ppc620"))
3 0)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "dmul")
(eq_attr "cpu" "ppc601"))
5 5)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "dmul")
(eq_attr "cpu" "ppc603"))
4 2)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "dmul")
(eq_attr "cpu" "ppc604,ppc620"))
3 0)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "sdiv,ddiv")
(eq_attr "cpu" "rios1"))
19 19)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "sdiv")
(eq_attr "cpu" "ppc601"))
17 17)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "sdiv")
(eq_attr "cpu" "ppc603,ppc604,ppc620"))
18 18)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "ddiv")
(eq_attr "cpu" "ppc601,ppc604,ppc620"))
31 31)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "ddiv")
(eq_attr "cpu" "ppc603"))
33 33)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "ssqrt")
(eq_attr "cpu" "ppc620"))
31 31)
(define_function_unit "fpu" 1 0
(and (eq_attr "type" "dsqrt")
(eq_attr "cpu" "ppc620"))
31 31)
; RIOS2 has two symmetric FPUs.
(define_function_unit "fpu2" 2 0
(and (eq_attr "type" "fp")
(eq_attr "cpu" "rios2"))
2 0)
(define_function_unit "fpu2" 2 0
(and (eq_attr "type" "dmul")
(eq_attr "cpu" "rios2"))
2 0)
(define_function_unit "fpu2" 2 0
(and (eq_attr "type" "sdiv,ddiv")
(eq_attr "cpu" "rios2"))
17 17)
(define_function_unit "fpu2" 2 0
(and (eq_attr "type" "ssqrt,dsqrt")
(eq_attr "cpu" "rios2"))
26 26)
;; Start with fixed-point load and store insns. Here we put only the more
;; complex forms. Basic data transfer is done later.
(define_expand "zero_extendqidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "")))]
"TARGET_POWERPC64"
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(zero_extend:DI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))]
"TARGET_POWERPC64"
"@
lbz%U1%X1 %0,%1
rldicl %0,%1,0,56"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"rldicl. %2,%1,0,56"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(zero_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"rldicl. %0,%1,0,56"
[(set_attr "type" "compare")])
(define_insn "extendqidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")))]
"TARGET_POWERPC64"
"extsb %0,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"extsb. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(sign_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"extsb. %0,%1"
[(set_attr "type" "compare")])
(define_expand "zero_extendhidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))]
"TARGET_POWERPC64"
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(zero_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))]
"TARGET_POWERPC64"
"@
lhz%U1%X1 %0,%1
rldicl %0,%1,0,48"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"rldicl. %2,%1,0,48"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(zero_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"rldicl. %0,%1,0,48"
[(set_attr "type" "compare")])
(define_expand "extendhidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))]
"TARGET_POWERPC64"
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(sign_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))]
"TARGET_POWERPC64"
"@
lha%U1%X1 %0,%1
extsh %0,%1"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"extsh. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(sign_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"extsh. %0,%1"
[(set_attr "type" "compare")])
(define_expand "zero_extendsidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))]
"TARGET_POWERPC64"
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(zero_extend:DI (match_operand:SI 1 "reg_or_mem_operand" "m,r")))]
"TARGET_POWERPC64"
"@
lwz%U1%X1 %0,%1
rldicl %0,%1,0,32"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"rldicl. %2,%1,0,32"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(zero_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"rldicl. %0,%1,0,32"
[(set_attr "type" "compare")])
(define_expand "extendsidi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))]
"TARGET_POWERPC64"
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(sign_extend:DI (match_operand:SI 1 "reg_or_mem_operand" "m,r")))]
"TARGET_POWERPC64"
"@
lwa%U1%X1 %0,%1
extsw %0,%1"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:DI 2 "=r"))]
"TARGET_POWERPC64"
"extsw. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(sign_extend:DI (match_dup 1)))]
"TARGET_POWERPC64"
"extsw. %0,%1"
[(set_attr "type" "compare")])
(define_expand "zero_extendqisi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(zero_extend:SI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))]
""
"@
lbz%U1%X1 %0,%1
{rlinm|rlwinm} %0,%1,0,0xff"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
""
"{andil.|andi.} %2,%1,0xff"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_dup 1)))]
""
"{andil.|andi.} %0,%1,0xff"
[(set_attr "type" "compare")])
(define_expand "extendqisi2"
[(use (match_operand:SI 0 "gpc_reg_operand" ""))
(use (match_operand:QI 1 "gpc_reg_operand" ""))]
""
"
{
if (TARGET_POWERPC)
emit_insn (gen_extendqisi2_ppc (operands[0], operands[1]));
else if (TARGET_POWER)
emit_insn (gen_extendqisi2_power (operands[0], operands[1]));
else
emit_insn (gen_extendqisi2_no_power (operands[0], operands[1]));
DONE;
}")
(define_insn "extendqisi2_ppc"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")))]
"TARGET_POWERPC"
"extsb %0,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
"TARGET_POWERPC"
"extsb. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extend:SI (match_dup 1)))]
"TARGET_POWERPC"
"extsb. %0,%1"
[(set_attr "type" "compare")])
(define_expand "extendqisi2_power"
[(parallel [(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(clobber (scratch:SI))])
(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))
(clobber (scratch:SI))])]
"TARGET_POWER"
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendqisi2_no_power"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
"! TARGET_POWER && ! TARGET_POWERPC"
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "zero_extendqihi2"
[(set (match_operand:HI 0 "gpc_reg_operand" "")
(zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:HI 0 "gpc_reg_operand" "=r,r")
(zero_extend:HI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))]
""
"@
lbz%U1%X1 %0,%1
{rlinm|rlwinm} %0,%1,0,0xff"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:HI 2 "=r"))]
""
"{andil.|andi.} %2,%1,0xff"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(zero_extend:HI (match_dup 1)))]
""
"{andil.|andi.} %0,%1,0xff"
[(set_attr "type" "compare")])
(define_expand "extendqihi2"
[(use (match_operand:HI 0 "gpc_reg_operand" ""))
(use (match_operand:QI 1 "gpc_reg_operand" ""))]
""
"
{
if (TARGET_POWERPC)
emit_insn (gen_extendqihi2_ppc (operands[0], operands[1]));
else if (TARGET_POWER)
emit_insn (gen_extendqihi2_power (operands[0], operands[1]));
else
emit_insn (gen_extendqihi2_no_power (operands[0], operands[1]));
DONE;
}")
(define_insn "extendqihi2_ppc"
[(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")))]
"TARGET_POWERPC"
"extsb %0,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:HI 2 "=r"))]
"TARGET_POWERPC"
"extsb. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(sign_extend:HI (match_dup 1)))]
"TARGET_POWERPC"
"extsb. %0,%1"
[(set_attr "type" "compare")])
(define_expand "extendqihi2_power"
[(parallel [(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(clobber (scratch:SI))])
(parallel [(set (match_operand:HI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))
(clobber (scratch:SI))])]
"TARGET_POWER"
"
{ operands[0] = gen_lowpart (SImode, operands[0]);
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendqihi2_no_power"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(set (match_operand:HI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
"! TARGET_POWER && ! TARGET_POWERPC"
"
{ operands[0] = gen_lowpart (SImode, operands[0]);
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(zero_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))]
""
"@
lhz%U1%X1 %0,%1
{rlinm|rlwinm} %0,%1,0,0xffff"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
""
"{andil.|andi.} %2,%1,0xffff"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_dup 1)))]
""
"{andil.|andi.} %0,%1,0xffff"
[(set_attr "type" "compare")])
(define_expand "extendhisi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(sign_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))]
""
"@
lha%U1%X1 %0,%1
{exts|extsh} %0,%1"
[(set_attr "type" "load,*")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
""
"{exts.|extsh.} %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extend:SI (match_dup 1)))]
""
"{exts.|extsh.} %0,%1"
[(set_attr "type" "compare")])
;; Fixed-point arithmetic insns.
;; Discourage ai/addic because of carry but provide it in an alternative
;; allowing register zero as source.
(define_insn "addsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,?r,r")
(plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,b,r,b")
(match_operand:SI 2 "add_operand" "r,I,I,J")))]
""
"@
{cax|add} %0,%1,%2
{cal %0,%2(%1)|addi %0,%1,%2}
{ai|addic} %0,%1,%2
{cau|addis} %0,%1,%u2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r,r"))]
""
"@
{cax.|add.} %3,%1,%2
{ai.|addic.} %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
{cax.|add.} %0,%1,%2
{ai.|addic.} %0,%1,%2"
[(set_attr "type" "compare")])
;; Split an add that we can't do in one insn into two insns, each of which
;; does one 16-bit part. This is used by combine. Note that the low-order
;; add should be last in case the result gets used in an address.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]
""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
"
{
int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;
if (low & 0x8000)
high++, low |= 0xffff0000;
operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16);
operands[4] = gen_rtx (CONST_INT, VOIDmode, low);
}")
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"nor %0,%1,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
""
"nor. %2,%1,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (match_dup 1)))]
""
"nor. %0,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(minus:SI (match_operand:SI 1 "reg_or_short_operand" "rI")
(match_operand:SI 2 "gpc_reg_operand" "r")))]
"! TARGET_POWERPC"
"{sf%I1|subf%I1c} %0,%2,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(minus:SI (match_operand:SI 1 "reg_or_short_operand" "r,I")
(match_operand:SI 2 "gpc_reg_operand" "r,r")))]
"TARGET_POWERPC"
"@
subf %0,%2,%1
subfic %0,%2,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"! TARGET_POWERPC"
"{sf.|subfc.} %3,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"TARGET_POWERPC"
"subf. %3,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(minus:SI (match_dup 1) (match_dup 2)))]
"! TARGET_POWERPC"
"{sf.|subfc.} %0,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(minus:SI (match_dup 1) (match_dup 2)))]
"TARGET_POWERPC"
"subf. %0,%2,%1"
[(set_attr "type" "compare")])
(define_expand "subsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(minus:SI (match_operand:SI 1 "reg_or_short_operand" "")
(match_operand:SI 2 "reg_or_cint_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) == CONST_INT)
{
emit_insn (gen_addsi3 (operands[0], operands[1],
negate_rtx (SImode, operands[2])));
DONE;
}
}")
;; For SMIN, SMAX, UMIN, and UMAX, we use DEFINE_EXPAND's that involve a doz[i]
;; instruction and some auxiliary computations. Then we just have a single
;; DEFINE_INSN for doz[i] and the define_splits to make them if made by
;; combine.
(define_expand "sminsi3"
[(set (match_dup 3)
(if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_short_operand" ""))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(minus:SI (match_dup 2) (match_dup 3)))]
"TARGET_POWER"
"
{ operands[3] = gen_reg_rtx (SImode); }")
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(smin:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_short_operand" "")))
(clobber (match_operand:SI 3 "gpc_reg_operand" ""))]
"TARGET_POWER"
[(set (match_dup 3)
(if_then_else:SI (gt:SI (match_dup 1) (match_dup 2))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))
(set (match_dup 0) (minus:SI (match_dup 2) (match_dup 3)))]
"")
(define_expand "smaxsi3"
[(set (match_dup 3)
(if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_short_operand" ""))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_dup 3) (match_dup 1)))]
"TARGET_POWER"
"
{ operands[3] = gen_reg_rtx (SImode); }")
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(smax:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_short_operand" "")))
(clobber (match_operand:SI 3 "gpc_reg_operand" ""))]
"TARGET_POWER"
[(set (match_dup 3)
(if_then_else:SI (gt:SI (match_dup 1) (match_dup 2))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))
(set (match_dup 0) (plus:SI (match_dup 3) (match_dup 1)))]
"")
(define_expand "uminsi3"
[(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "")
(const_int -2147483648)))
(set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "")
(const_int -2147483648)))
(set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4))
(const_int 0)
(minus:SI (match_dup 4) (match_dup 3))))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(minus:SI (match_dup 2) (match_dup 3)))]
"TARGET_POWER"
"
{ operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); }")
(define_expand "umaxsi3"
[(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "")
(const_int -2147483648)))
(set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "")
(const_int -2147483648)))
(set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4))
(const_int 0)
(minus:SI (match_dup 4) (match_dup 3))))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_dup 3) (match_dup 1)))]
"TARGET_POWER"
"
{ operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); }")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))]
"TARGET_POWER"
"doz%I2 %0,%1,%2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1)))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"TARGET_POWER"
"doz%I2. %3,%1,%2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1)))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(if_then_else:SI (gt (match_dup 1) (match_dup 2))
(const_int 0)
(minus:SI (match_dup 2) (match_dup 1))))]
"TARGET_POWER"
"doz%I2. %0,%1,%2"
[(set_attr "type" "delayed_compare")])
;; We don't need abs with condition code because such comparisons should
;; never be done.
(define_insn "abssi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))]
"TARGET_POWER"
"abs %0,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))))]
"TARGET_POWER"
"nabs %0,%1")
(define_insn "negsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"neg %0,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 2 "=r"))]
""
"neg. %2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (match_dup 1)))]
""
"neg. %0,%1"
[(set_attr "type" "compare")])
(define_insn "ffssi2"
[(set (match_operand:SI 0 "register_operand" "=&r")
(ffs:SI (match_operand:SI 1 "register_operand" "r")))]
""
"neg %0,%1\;and %0,%0,%1\;{cntlz|cntlzw} %0,%0\;{sfi|subfic} %0,%0,32"
[(set_attr "length" "16")])
(define_expand "mulsi3"
[(use (match_operand:SI 0 "gpc_reg_operand" ""))
(use (match_operand:SI 1 "gpc_reg_operand" ""))
(use (match_operand:SI 2 "reg_or_short_operand" ""))]
""
"
{
if (TARGET_POWER)
emit_insn (gen_mulsi3_mq (operands[0], operands[1], operands[2]));
else
emit_insn (gen_mulsi3_no_mq (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "mulsi3_mq"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(clobber (match_scratch:SI 3 "=q,q"))]
"TARGET_POWER"
"@
{muls|mullw} %0,%1,%2
{muli|mulli} %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn "mulsi3_no_mq"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))]
"! TARGET_POWER"
"@
mullw %0,%1,%2
mulli %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))
(clobber (match_scratch:SI 4 "=q"))]
"TARGET_POWER"
"{muls.|mullw.} %3,%1,%2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"! TARGET_POWER"
"mullw. %3,%1,%2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(mult:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 4 "=q"))]
"TARGET_POWER"
"{muls.|mullw.} %0,%1,%2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(mult:SI (match_dup 1) (match_dup 2)))]
"! TARGET_POWER"
"mullw. %0,%1,%2"
[(set_attr "type" "delayed_compare")])
;; Operand 1 is divided by operand 2; quotient goes to operand
;; 0 and remainder to operand 3.
;; ??? At some point, see what, if anything, we can do about if (x % y == 0).
(define_expand "divmodsi4"
[(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "gpc_reg_operand" "")))
(set (match_operand:SI 3 "gpc_reg_operand" "")
(mod:SI (match_dup 1) (match_dup 2)))])]
"TARGET_POWER || (! TARGET_POWER && ! TARGET_POWERPC)"
"
{
if (! TARGET_POWER && ! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_divss_call ());
emit_move_insn (operands[0], gen_rtx (REG, SImode, 3));
emit_move_insn (operands[3], gen_rtx (REG, SImode, 4));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r")))
(set (match_operand:SI 3 "gpc_reg_operand" "=q")
(mod:SI (match_dup 1) (match_dup 2)))]
"TARGET_POWER"
"divs %0,%1,%2"
[(set_attr "type" "idiv")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r")))]
"TARGET_POWERPC"
"divw %0,%1,%2"
[(set_attr "type" "idiv")])
(define_expand "udivsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(udiv:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "gpc_reg_operand" "")))]
"TARGET_POWERPC || (! TARGET_POWER && ! TARGET_POWERPC)"
"
{
if (! TARGET_POWER && ! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_quous_call ());
emit_move_insn (operands[0], gen_rtx (REG, SImode, 3));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(udiv:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r")))]
"TARGET_POWERPC"
"divwu %0,%1,%2"
[(set_attr "type" "idiv")])
;; For powers of two we can do srai/aze for divide and then adjust for
;; modulus. If it isn't a power of two, FAIL on POWER so divmodsi4 will be
;; used; for PowerPC, force operands into register and do a normal divide;
;; for AIX common-mode, use quoss call on register operands.
(define_expand "divsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_cint_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) == CONST_INT
&& exact_log2 (INTVAL (operands[2])) >= 0)
;
else if (TARGET_POWER && ! TARGET_POWERPC)
FAIL;
else
operands[2] = force_reg (SImode, operands[2]);
if (! TARGET_POWER && ! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_quoss_call ());
emit_move_insn (operands[0], gen_rtx (REG, SImode, 3));
DONE;
}
}")
(define_expand "modsi3"
[(use (match_operand:SI 0 "gpc_reg_operand" ""))
(use (match_operand:SI 1 "gpc_reg_operand" ""))
(use (match_operand:SI 2 "reg_or_cint_operand" ""))]
""
"
{
int i = exact_log2 (INTVAL (operands[2]));
rtx temp1;
rtx temp2;
if (GET_CODE (operands[2]) != CONST_INT || i < 0)
FAIL;
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
emit_insn (gen_divsi3 (temp1, operands[1], operands[2]));
emit_insn (gen_ashlsi3 (temp2, temp1, GEN_INT (i)));
emit_insn (gen_subsi3 (operands[0], operands[1], temp2));
DONE;
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "N")))]
"exact_log2 (INTVAL (operands[2])) >= 0"
"{srai|srawi} %0,%1,%p2\;{aze|addze} %0,%0"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "N"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"exact_log2 (INTVAL (operands[2])) >= 0"
"{srai|srawi} %3,%1,%p2\;{aze.|addze.} %3,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "N"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(div:SI (match_dup 1) (match_dup 2)))]
"exact_log2 (INTVAL (operands[2])) >= 0"
"{srai|srawi} %0,%1,%p2\;{aze.|addze.} %0,%0"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(udiv:SI
(plus:DI (ashift:DI
(zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 32))
(zero_extend:DI (match_operand:SI 4 "register_operand" "2")))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(set (match_operand:SI 2 "register_operand" "=*q")
(umod:SI
(plus:DI (ashift:DI
(zero_extend:DI (match_dup 1)) (const_int 32))
(zero_extend:DI (match_dup 4)))
(match_dup 3)))]
"TARGET_POWER"
"div %0,%1,%3"
[(set_attr "type" "idiv")])
;; To do unsigned divide we handle the cases of the divisor looking like a
;; negative number. If it is a constant that is less than 2**31, we don't
;; have to worry about the branches. So make a few subroutines here.
;;
;; First comes the normal case.
(define_expand "udivmodsi4_normal"
[(set (match_dup 4) (const_int 0))
(parallel [(set (match_operand:SI 0 "" "")
(udiv:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4))
(const_int 32))
(zero_extend:DI (match_operand:SI 1 "" "")))
(match_operand:SI 2 "" "")))
(set (match_operand:SI 3 "" "")
(umod:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4))
(const_int 32))
(zero_extend:DI (match_dup 1)))
(match_dup 2)))])]
"TARGET_POWER"
"
{ operands[4] = gen_reg_rtx (SImode); }")
;; This handles the branches.
(define_expand "udivmodsi4_tests"
[(set (match_operand:SI 0 "" "") (const_int 0))
(set (match_operand:SI 3 "" "") (match_operand:SI 1 "" ""))
(set (match_dup 5) (compare:CCUNS (match_dup 1) (match_operand:SI 2 "" "")))
(set (pc) (if_then_else (ltu (match_dup 5) (const_int 0))
(label_ref (match_operand:SI 4 "" "")) (pc)))
(set (match_dup 0) (const_int 1))
(set (match_dup 3) (minus:SI (match_dup 1) (match_dup 2)))
(set (match_dup 6) (compare:CC (match_dup 2) (const_int 0)))
(set (pc) (if_then_else (lt (match_dup 6) (const_int 0))
(label_ref (match_dup 4)) (pc)))]
"TARGET_POWER"
"
{ operands[5] = gen_reg_rtx (CCUNSmode);
operands[6] = gen_reg_rtx (CCmode);
}")
(define_expand "udivmodsi4"
[(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(udiv:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_cint_operand" "")))
(set (match_operand:SI 3 "gpc_reg_operand" "")
(umod:SI (match_dup 1) (match_dup 2)))])]
""
"
{
rtx label = 0;
if (! TARGET_POWER)
if (! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_divus_call ());
emit_move_insn (operands[0], gen_rtx (REG, SImode, 3));
emit_move_insn (operands[3], gen_rtx (REG, SImode, 4));
DONE;
}
else
FAIL;
if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) < 0)
{
operands[2] = force_reg (SImode, operands[2]);
label = gen_label_rtx ();
emit (gen_udivmodsi4_tests (operands[0], operands[1], operands[2],
operands[3], label));
}
else
operands[2] = force_reg (SImode, operands[2]);
emit (gen_udivmodsi4_normal (operands[0], operands[1], operands[2],
operands[3]));
if (label)
emit_label (label);
DONE;
}")
;; AIX architecture-independent common-mode multiply (DImode),
;; divide/modulus, and quotient subroutine calls. Input operands in R3 and
;; R4; results in R3 and somtimes R4; link register always clobbered by bla
;; instruction; R0 sometimes clobbered; also, MQ sometimes clobbered but
;; assumed unused if generating common-mode, so ignore.
(define_insn "mulh_call"
[(set (reg:SI 3)
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI (reg:SI 3))
(sign_extend:DI (reg:SI 4)))
(const_int 32))))
(clobber (match_scratch:SI 0 "=l"))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __mulh")
(define_insn "mull_call"
[(set (reg:DI 3)
(mult:DI (sign_extend:DI (reg:SI 3))
(sign_extend:DI (reg:SI 4))))
(clobber (match_scratch:SI 0 "=l"))
(clobber (reg:SI 0))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __mull")
(define_insn "divss_call"
[(set (reg:SI 3)
(div:SI (reg:SI 3) (reg:SI 4)))
(set (reg:SI 4)
(mod:SI (reg:SI 3) (reg:SI 4)))
(clobber (match_scratch:SI 0 "=l"))
(clobber (reg:SI 0))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __divss")
(define_insn "divus_call"
[(set (reg:SI 3)
(udiv:SI (reg:SI 3) (reg:SI 4)))
(set (reg:SI 4)
(umod:SI (reg:SI 3) (reg:SI 4)))
(clobber (match_scratch:SI 0 "=l"))
(clobber (reg:SI 0))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __divus")
(define_insn "quoss_call"
[(set (reg:SI 3)
(div:SI (reg:SI 3) (reg:SI 4)))
(clobber (match_scratch:SI 0 "=l"))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __quoss")
(define_insn "quous_call"
[(set (reg:SI 3)
(udiv:SI (reg:SI 3) (reg:SI 4)))
(clobber (match_scratch:SI 0 "=l"))
(clobber (reg:SI 0))]
"! TARGET_POWER && ! TARGET_POWERPC"
"bla __quous")
(define_insn "andsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r")
(and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r")
(match_operand:SI 2 "and_operand" "?r,L,K,J")))
(clobber (match_scratch:CC 3 "=X,X,x,x"))]
""
"@
and %0,%1,%2
{rlinm|rlwinm} %0,%1,0,%m2,%M2
{andil.|andi.} %0,%1,%b2
{andiu.|andis.} %0,%1,%u2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x")
(compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r")
(match_operand:SI 2 "and_operand" "r,K,J,L"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r,r,r,r"))]
""
"@
and. %3,%1,%2
{andil.|andi.} %3,%1,%b2
{andiu.|andis.} %3,%1,%u2
{rlinm.|rlwinm.} %3,%1,0,%m2,%M2"
[(set_attr "type" "compare,compare,compare,delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x,x,x")
(compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r")
(match_operand:SI 2 "and_operand" "r,K,J,L"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r")
(and:SI (match_dup 1) (match_dup 2)))]
""
"@
and. %0,%1,%2
{andil.|andi.} %0,%1,%b2
{andiu.|andis.} %0,%1,%u2
{rlinm.|rlwinm.} %0,%1,0,%m2,%M2"
[(set_attr "type" "compare,compare,compare,delayed_compare")])
;; Take a AND with a constant that cannot be done in a single insn and try to
;; split it into two insns. This does not verify that the insns are valid
;; since this need not be done as combine will do it.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(and:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "non_and_cint_operand" "")))]
""
[(set (match_dup 0) (and:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (and:SI (match_dup 0) (match_dup 4)))]
"
{
int maskval = INTVAL (operands[2]);
int i, transitions, last_bit_value;
int orig = maskval, first_c = maskval, second_c;
/* We know that MASKVAL must have more than 2 bit-transitions. Start at
the low-order bit and count for the third transition. When we get there,
make a first mask that has everything to the left of that position
a one. Then make the second mask to turn off whatever else is needed. */
for (i = 1, transitions = 0, last_bit_value = maskval & 1; i < 32; i++)
{
if (((maskval >>= 1) & 1) != last_bit_value)
last_bit_value ^= 1, transitions++;
if (transitions > 2)
{
first_c |= (~0) << i;
break;
}
}
second_c = orig | ~ first_c;
operands[3] = gen_rtx (CONST_INT, VOIDmode, first_c);
operands[4] = gen_rtx (CONST_INT, VOIDmode, second_c);
}")
(define_insn "iorsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r")
(ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r")
(match_operand:SI 2 "logical_operand" "r,K,J")))]
""
"@
or %0,%1,%2
{oril|ori} %0,%1,%b2
{oriu|oris} %0,%1,%u2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"or. %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (match_dup 1) (match_dup 2)))]
""
"or. %0,%1,%2"
[(set_attr "type" "compare")])
;; Split an IOR that we can't do in one insn into two insns, each of which
;; does one 16-bit part. This is used by combine.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ior:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "non_logical_cint_operand" "")))]
""
[(set (match_dup 0) (ior:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (ior:SI (match_dup 0) (match_dup 4)))]
"
{
operands[3] = gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[2]) & 0xffff0000);
operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff);
}")
(define_insn "xorsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r")
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r")
(match_operand:SI 2 "logical_operand" "r,K,J")))]
""
"@
xor %0,%1,%2
{xoril|xori} %0,%1,%b2
{xoriu|xoris} %0,%1,%u2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"xor. %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(xor:SI (match_dup 1) (match_dup 2)))]
""
"xor. %0,%1,%2"
[(set_attr "type" "compare")])
;; Split an XOR that we can't do in one insn into two insns, each of which
;; does one 16-bit part. This is used by combine.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "non_logical_cint_operand" "")))]
""
[(set (match_dup 0) (xor:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (xor:SI (match_dup 0) (match_dup 4)))]
"
{
operands[3] = gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[2]) & 0xffff0000);
operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff);
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r"))))]
""
"eqv %0,%1,%2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"eqv. %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (xor:SI (match_dup 1) (match_dup 2))))]
""
"eqv. %0,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r")))]
""
"andc %0,%2,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"andc. %3,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_dup 1)) (match_dup 2)))]
""
"andc. %0,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r")))]
""
"orc %0,%2,%1")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"orc. %3,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_dup 1)) (match_dup 2)))]
""
"orc. %0,%2,%1"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))]
""
"nand %0,%1,%2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"nand. %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))]
""
"nand. %0,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))]
""
"nor %0,%1,%2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"nor. %3,%1,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))]
""
"nor. %0,%1,%2"
[(set_attr "type" "compare")])
;; maskir insn. We need four forms because things might be in arbitrary
;; orders. Don't define forms that only set CR fields because these
;; would modify an input register.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))
(match_operand:SI 1 "gpc_reg_operand" "0"))
(and:SI (match_dup 2)
(match_operand:SI 3 "gpc_reg_operand" "r"))))]
"TARGET_POWER"
"maskir %0,%3,%2")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))
(match_operand:SI 1 "gpc_reg_operand" "0"))
(and:SI (match_operand:SI 3 "gpc_reg_operand" "r")
(match_dup 2))))]
"TARGET_POWER"
"maskir %0,%3,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(match_operand:SI 3 "gpc_reg_operand" "r"))
(and:SI (not:SI (match_dup 2))
(match_operand:SI 1 "gpc_reg_operand" "0"))))]
"TARGET_POWER"
"maskir %0,%3,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(and:SI (not:SI (match_dup 2))
(match_operand:SI 1 "gpc_reg_operand" "0"))))]
"TARGET_POWER"
"maskir %0,%3,%2")
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))
(match_operand:SI 1 "gpc_reg_operand" "0"))
(and:SI (match_dup 2)
(match_operand:SI 3 "gpc_reg_operand" "r")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1))
(and:SI (match_dup 2) (match_dup 3))))]
"TARGET_POWER"
"maskir. %0,%3,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))
(match_operand:SI 1 "gpc_reg_operand" "0"))
(and:SI (match_operand:SI 3 "gpc_reg_operand" "r")
(match_dup 2)))
(const_int 0)))
(set (match_operand:SI 0 "register_operand" "=r")
(ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1))
(and:SI (match_dup 3) (match_dup 2))))]
"TARGET_POWER"
"maskir. %0,%3,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(match_operand:SI 3 "gpc_reg_operand" "r"))
(and:SI (not:SI (match_dup 2))
(match_operand:SI 1 "gpc_reg_operand" "0")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_dup 2) (match_dup 3))
(and:SI (not:SI (match_dup 2)) (match_dup 1))))]
"TARGET_POWER"
"maskir. %0,%3,%2"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(and:SI (not:SI (match_dup 2))
(match_operand:SI 1 "gpc_reg_operand" "0")))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_dup 3) (match_dup 2))
(and:SI (not:SI (match_dup 2)) (match_dup 1))))]
"TARGET_POWER"
"maskir. %0,%3,%2"
[(set_attr "type" "compare")])
;; Rotate and shift insns, in all their variants. These support shifts,
;; field inserts and extracts, and various combinations thereof.
(define_insn "insv"
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(match_operand:SI 1 "const_int_operand" "i")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "gpc_reg_operand" "r"))]
""
"*
{
int start = INTVAL (operands[2]) & 31;
int size = INTVAL (operands[1]) & 31;
operands[4] = gen_rtx (CONST_INT, VOIDmode, 32 - start - size);
operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1);
return \"{rlimi|rlwimi} %0,%3,%4,%h2,%h1\";
}")
(define_insn "extzv"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")
(match_operand:SI 3 "const_int_operand" "i")))]
""
"*
{
int start = INTVAL (operands[3]) & 31;
int size = INTVAL (operands[2]) & 31;
if (start + size >= 32)
operands[3] = const0_rtx;
else
operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size);
return \"{rlinm|rlwinm} %0,%1,%3,%s2,31\";
}")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")
(match_operand:SI 3 "const_int_operand" "i"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=r"))]
""
"*
{
int start = INTVAL (operands[3]) & 31;
int size = INTVAL (operands[2]) & 31;
/* If the bitfield being tested fits in the upper or lower half of a
word, it is possible to use andiu. or andil. to test it. This is
useful because the condition register set-use delay is smaller for
andi[ul]. than for rlinm. This doesn't work when the starting bit
position is 0 because the LT and GT bits may be set wrong. */
if ((start > 0 && start + size <= 16) || start >= 16)
{
operands[3] = gen_rtx (CONST_INT, VOIDmode,
((1 << (16 - (start & 15)))
- (1 << (16 - (start & 15) - size))));
if (start < 16)
return \"{andiu.|andis.} %4,%1,%3\";
else
return \"{andil.|andi.} %4,%1,%3\";
}
if (start + size >= 32)
operands[3] = const0_rtx;
else
operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size);
return \"{rlinm.|rlwinm.} %4,%1,%3,%s2,31\";
}"
[(set_attr "type" "compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")
(match_operand:SI 3 "const_int_operand" "i"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extract:SI (match_dup 1) (match_dup 2) (match_dup 3)))]
""
"*
{
int start = INTVAL (operands[3]) & 31;
int size = INTVAL (operands[2]) & 31;
if (start >= 16 && start + size == 32)
{
operands[3] = gen_rtx (CONST_INT, VOIDmode, (1 << (32 - start)) - 1);
return \"{andil.|andi.} %0,%1,%3\";
}
if (start + size >= 32)
operands[3] = const0_rtx;
else
operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size);
return \"{rlinm.|rlwinm.} %0,%1,%3,%s2,31\";
}"
[(set_attr "type" "delayed_compare")])
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")))]
""
"{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffffffff")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffffffff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(rotate:SI (match_dup 1) (match_dup 2)))]
""
"{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffffffff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(match_operand:SI 3 "mask_operand" "L")))]
""
"{rl%I2nm|rlw%I2nm} %0,%1,%h2,%m3,%M3")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (and:SI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=r"))]
""
"{rl%I2nm.|rlw%I2nm.} %4,%1,%h2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC (and:SI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (rotate:SI (match_dup 1) (match_dup 2)) (match_dup 3)))]
""
"{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI
(subreg:QI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))]
""
"{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xff")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI
(subreg:QI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI
(subreg:QI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (subreg:QI (rotate:SI (match_dup 1) (match_dup 2)) 0)))]
""
"{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI
(subreg:HI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))]
""
"{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffff")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI
(subreg:HI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
""
"{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (zero_extend:SI
(subreg:HI
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")) 0))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (subreg:HI (rotate:SI (match_dup 1) (match_dup 2)) 0)))]
""
"{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffff"
[(set_attr "type" "delayed_compare")])
;; Note that we use "sle." instead of "sl." so that we can set
;; SHIFT_COUNT_TRUNCATED.
(define_expand "ashlsi3"
[(use (match_operand:SI 0 "gpc_reg_operand" ""))
(use (match_operand:SI 1 "gpc_reg_operand" ""))
(use (match_operand:SI 2 "reg_or_cint_operand" ""))]
""
"
{
if (TARGET_POWER)
emit_insn (gen_ashlsi3_power (operands[0], operands[1], operands[2]));
else
emit_insn (gen_ashlsi3_no_power (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "ashlsi3_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i")))
(clobber (match_scratch:SI 3 "=q,X"))]
"TARGET_POWER"
"@
sle %0,%1,%2
{sli|slwi} %0,%1,%h2"
[(set_attr "length" "8")])
(define_insn "ashlsi3_no_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")))]
"! TARGET_POWER"
"slw%I2 %0,%1,%h2"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r,r"))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
sle. %3,%1,%2
{sli.|slwi.} %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"! TARGET_POWER"
"slw%I2. %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ashift:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
sle. %0,%1,%2
{sli.|slwi.} %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashift:SI (match_dup 1) (match_dup 2)))]
"! TARGET_POWER"
"slw%I2. %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L")))]
"includes_lshift_p (operands[2], operands[3])"
"{rlinm|rlwinm} %0,%h1,%h2,%m3,%M3")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=r"))]
"includes_lshift_p (operands[2], operands[3])"
"{rlinm.|rlwinm.} %4,%h1,%h2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (ashift:SI (match_dup 1) (match_dup 2)) (match_dup 3)))]
"includes_lshift_p (operands[2], operands[3])"
"{rlinm.|rlwinm.} %0,%h1,%h2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
;; The AIX assembler mis-handles "sri x,x,0", so write that case as
;; "sli x,x,0".
(define_expand "lshrsi3"
[(use (match_operand:SI 0 "gpc_reg_operand" ""))
(use (match_operand:SI 1 "gpc_reg_operand" ""))
(use (match_operand:SI 2 "reg_or_cint_operand" ""))]
""
"
{
if (TARGET_POWER)
emit_insn (gen_lshrsi3_power (operands[0], operands[1], operands[2]));
else
emit_insn (gen_lshrsi3_no_power (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "lshrsi3_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i")))
(clobber (match_scratch:SI 3 "=q,X"))]
"TARGET_POWER"
"@
sre %0,%1,%2
{s%A2i|s%A2wi} %0,%1,%h2")
(define_insn "lshrsi3_no_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")))]
"! TARGET_POWER"
"srw%I2 %0,%1,%h2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r,r"))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
sre. %3,%1,%2
{s%A2i.|s%A2wi.} %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"! TARGET_POWER"
"srw%I2. %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(lshiftrt:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
sre. %0,%1,%2
{s%A2i.|s%A2wi.} %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(lshiftrt:SI (match_dup 1) (match_dup 2)))]
"! TARGET_POWER"
"srw%I2. %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L")))]
"includes_rshift_p (operands[2], operands[3])"
"{rlinm|rlwinm} %0,%1,%s2,%m3,%M3")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=r"))]
"includes_rshift_p (operands[2], operands[3])"
"{rlinm.|rlwinm.} %4,%1,%s2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i"))
(match_operand:SI 3 "mask_operand" "L"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (lshiftrt:SI (match_dup 1) (match_dup 2)) (match_dup 3)))]
"includes_rshift_p (operands[2], operands[3])"
"{rlinm.|rlwinm.} %0,%1,%s2,%m3,%M3"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI
(subreg:QI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0)))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))"
"{rlinm|rlwinm} %0,%1,%s2,0xff")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(zero_extend:SI
(subreg:QI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))"
"{rlinm.|rlwinm.} %3,%1,%s2,0xff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(zero_extend:SI
(subreg:QI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (subreg:QI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))"
"{rlinm.|rlwinm.} %0,%1,%s2,0xff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI
(subreg:HI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0)))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))"
"{rlinm|rlwinm} %0,%1,%s2,0xffff")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(zero_extend:SI
(subreg:HI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))"
"{rlinm.|rlwinm.} %3,%1,%s2,0xffff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(zero_extend:SI
(subreg:HI
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "i")) 0))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (subreg:HI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))]
"includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))"
"{rlinm.|rlwinm.} %0,%1,%s2,0xffff"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 1)
(match_operand:SI 1 "gpc_reg_operand" "r"))
(ashiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 31)))]
"TARGET_POWER"
"rrib %0,%1,%2")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 1)
(match_operand:SI 1 "gpc_reg_operand" "r"))
(lshiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 31)))]
"TARGET_POWER"
"rrib %0,%1,%2")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 1)
(match_operand:SI 1 "gpc_reg_operand" "r"))
(zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 1)
(const_int 0)))]
"TARGET_POWER"
"rrib %0,%1,%2")
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "reg_or_cint_operand" "")))]
""
"
{
if (TARGET_POWER)
emit_insn (gen_ashrsi3_power (operands[0], operands[1], operands[2]));
else
emit_insn (gen_ashrsi3_no_power (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "ashrsi3_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i")))
(clobber (match_scratch:SI 3 "=q,X"))]
"TARGET_POWER"
"@
srea %0,%1,%2
{srai|srawi} %0,%1,%h2")
(define_insn "ashrsi3_no_power"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri")))]
"! TARGET_POWER"
"sraw%I2 %0,%1,%h2")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r,r"))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
srea. %3,%1,%2
{srai.|srawi.} %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=r"))]
"! TARGET_POWER"
"sraw%I2. %3,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,i"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ashiftrt:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 4 "=q,X"))]
"TARGET_POWER"
"@
srea. %0,%1,%2
{srai.|srawi.} %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashiftrt:SI (match_dup 1) (match_dup 2)))]
"! TARGET_POWER"
"sraw%I2. %0,%1,%h2"
[(set_attr "type" "delayed_compare")])
;; Floating-point insns, excluding normal data motion.
;;
;; PowerPC has a full set of single-precision floating point instructions.
;;
;; For the POWER architecture, we pretend that we have both SFmode and
;; DFmode insns, while, in fact, all fp insns are actually done in double.
;; The only conversions we will do will be when storing to memory. In that
;; case, we will use the "frsp" instruction before storing.
;;
;; Note that when we store into a single-precision memory location, we need to
;; use the frsp insn first. If the register being stored isn't dead, we
;; need a scratch register for the frsp. But this is difficult when the store
;; is done by reload. It is not incorrect to do the frsp on the register in
;; this case, we just lose precision that we would have otherwise gotten but
;; is not guaranteed. Perhaps this should be tightened up at some point.
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(float_extend:DF (match_operand:SF 1 "gpc_reg_operand" "f")))]
""
"*
{
if (REGNO (operands[0]) == REGNO (operands[1]))
return \"\";
else
return \"fmr %0,%1\";
}"
[(set_attr "type" "fp")])
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(float_truncate:SF (match_operand:DF 1 "gpc_reg_operand" "f")))]
""
"frsp %0,%1"
[(set_attr "type" "fp")])
(define_insn "negsf2"
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (match_operand:SF 1 "gpc_reg_operand" "f")))]
""
"fneg %0,%1"
[(set_attr "type" "fp")])
(define_insn "abssf2"
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(abs:SF (match_operand:SF 1 "gpc_reg_operand" "f")))]
""
"fabs %0,%1"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (abs:SF (match_operand:SF 1 "gpc_reg_operand" "f"))))]
""
"fnabs %0,%1"
[(set_attr "type" "fp")])
(define_expand "addsf3"
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(plus:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fadds %0,%1,%2"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fa|fadd} %0,%1,%2"
[(set_attr "type" "fp")])
(define_expand "subsf3"
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(minus:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(minus:SF (match_operand:SF 1 "gpc_reg_operand" "f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fsubs %0,%1,%2"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(minus:SF (match_operand:SF 1 "gpc_reg_operand" "f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fs|fsub} %0,%1,%2"
[(set_attr "type" "fp")])
(define_expand "mulsf3"
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(mult:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fmuls %0,%1,%2"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fm|fmul} %0,%1,%2"
[(set_attr "type" "fp")])
(define_expand "divsf3"
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(div:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(div:SF (match_operand:SF 1 "gpc_reg_operand" "f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fdivs %0,%1,%2"
[(set_attr "type" "sdiv")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(div:SF (match_operand:SF 1 "gpc_reg_operand" "f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fd|fdiv} %0,%1,%2"
[(set_attr "type" "sdiv")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fmadds %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fma|fmadd} %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f")))]
"TARGET_POWERPC"
"fmsubs %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f")))]
"! TARGET_POWERPC"
"{fms|fmsub} %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f"))))]
"TARGET_POWERPC"
"fnmadds %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f"))))]
"! TARGET_POWERPC"
"{fnma|fnmadd} %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f"))))]
"TARGET_POWERPC"
"fnmsubs %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f")
(match_operand:SF 2 "gpc_reg_operand" "f"))
(match_operand:SF 3 "gpc_reg_operand" "f"))))]
"! TARGET_POWERPC"
"{fnms|fnmsub} %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_expand "sqrtsf2"
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "")))]
"TARGET_PPC_GPOPT || TARGET_POWER2"
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))]
"TARGET_PPC_GPOPT"
"fsqrts %0,%1"
[(set_attr "type" "ssqrt")])
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))]
"TARGET_POWER2"
"fsqrt %0,%1"
[(set_attr "type" "dsqrt")])
;; For SMIN, SMAX, UMIN, and UMAX, we use DEFINE_EXPAND's that involve a fsel
;; instruction and some auxiliary computations. Then we just have a single
;; DEFINE_INSN for fsel and the define_splits to make them if made by
;; combine.
(define_expand "maxsf3"
[(set (match_dup 3)
(minus:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))
(set (match_operand:SF 0 "gpc_reg_operand" "")
(if_then_else:SF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"TARGET_PPC_GFXOPT"
"
{ operands[3] = gen_reg_rtx (SFmode); }")
(define_split
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(smax:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))
(clobber (match_operand:SF 3 "gpc_reg_operand" ""))]
"TARGET_PPC_GFXOPT"
[(set (match_dup 3)
(minus:SF (match_dup 1) (match_dup 2)))
(set (match_operand:SF 0 "gpc_reg_operand" "")
(if_then_else:SF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"")
(define_expand "minsf3"
[(set (match_dup 3)
(minus:SF (match_operand:SF 2 "gpc_reg_operand" "")
(match_operand:SF 1 "gpc_reg_operand" "")))
(set (match_operand:SF 0 "gpc_reg_operand" "")
(if_then_else:SF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"TARGET_PPC_GFXOPT"
"
{ operands[3] = gen_reg_rtx (SFmode); }")
(define_split
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(smin:SF (match_operand:SF 1 "gpc_reg_operand" "")
(match_operand:SF 2 "gpc_reg_operand" "")))
(clobber (match_operand:SF 3 "gpc_reg_operand" ""))]
"TARGET_PPC_GFXOPT"
[(set (match_dup 3)
(minus:SF (match_dup 2) (match_dup 1)))
(set (match_operand:SF 0 "gpc_reg_operand" "")
(if_then_else:SF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"")
(define_insn ""
[(set (match_operand:SF 0 "gpc_reg_operand" "=f")
(if_then_else:SF (ge (match_operand:SF 1 "gpc_reg_operand" "f")
(const_int 0))
(match_operand:SF 2 "gpc_reg_operand" "f")
(match_operand:SF 3 "gpc_reg_operand" "f")))]
"TARGET_PPC_GFXOPT"
"fsel %0,%1,%2,%3"
[(set_attr "type" "fp")])
(define_insn "negdf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(neg:DF (match_operand:DF 1 "gpc_reg_operand" "f")))]
""
"fneg %0,%1"
[(set_attr "type" "fp")])
(define_insn "absdf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(abs:DF (match_operand:DF 1 "gpc_reg_operand" "f")))]
""
"fabs %0,%1"
[(set_attr "type" "fp")])
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(neg:DF (abs:DF (match_operand:DF 1 "gpc_reg_operand" "f"))))]
""
"fnabs %0,%1"
[(set_attr "type" "fp")])
(define_insn "adddf3"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(plus:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f")))]
""
"{fa|fadd} %0,%1,%2"
[(set_attr "type" "fp")])
(define_insn "subdf3"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(minus:DF (match_operand:DF 1 "gpc_reg_operand" "f")
(match_operand:DF 2 "gpc_reg_operand" "f")))]
""
"{fs|fsub} %0,%1,%2"
[(set_attr "type" "fp")])
(define_insn "muldf3"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f")))]
""
"{fm|fmul} %0,%1,%2"
[(set_attr "type" "dmul")])
(define_insn "divdf3"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(div:DF (match_operand:DF 1 "gpc_reg_operand" "f")
(match_operand:DF 2 "gpc_reg_operand" "f")))]
""
"{fd|fdiv} %0,%1,%2"
[(set_attr "type" "ddiv")])
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f"))
(match_operand:DF 3 "gpc_reg_operand" "f")))]
""
"{fma|fmadd} %0,%1,%2,%3"
[(set_attr "type" "dmul")])
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f"))
(match_operand:DF 3 "gpc_reg_operand" "f")))]
""
"{fms|fmsub} %0,%1,%2,%3"
[(set_attr "type" "dmul")])
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(neg:DF (plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f"))
(match_operand:DF 3 "gpc_reg_operand" "f"))))]
""
"{fnma|fnmadd} %0,%1,%2,%3"
[(set_attr "type" "dmul")])
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(neg:DF (minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f")
(match_operand:DF 2 "gpc_reg_operand" "f"))
(match_operand:DF 3 "gpc_reg_operand" "f"))))]
""
"{fnms|fnmsub} %0,%1,%2,%3"
[(set_attr "type" "dmul")])
(define_insn "sqrtdf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(sqrt:DF (match_operand:DF 1 "gpc_reg_operand" "f")))]
"TARGET_PPC_GPOPT || TARGET_POWER2"
"fsqrt %0,%1"
[(set_attr "type" "dsqrt")])
;; For SMIN, SMAX, UMIN, and UMAX, we use DEFINE_EXPAND's that involve a fsel
;; instruction and some auxiliary computations. Then we just have a single
;; DEFINE_INSN for fsel and the define_splits to make them if made by
;; combine.
(define_expand "maxdf3"
[(set (match_dup 3)
(minus:DF (match_operand:DF 1 "gpc_reg_operand" "")
(match_operand:DF 2 "gpc_reg_operand" "")))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(if_then_else:DF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"TARGET_PPC_GFXOPT"
"
{ operands[3] = gen_reg_rtx (DFmode); }")
(define_split
[(set (match_operand:DF 0 "gpc_reg_operand" "")
(smax:DF (match_operand:DF 1 "gpc_reg_operand" "")
(match_operand:DF 2 "gpc_reg_operand" "")))
(clobber (match_operand:DF 3 "gpc_reg_operand" ""))]
"TARGET_PPC_GFXOPT"
[(set (match_dup 3)
(minus:DF (match_dup 1) (match_dup 2)))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(if_then_else:DF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"")
(define_expand "mindf3"
[(set (match_dup 3)
(minus:DF (match_operand:DF 2 "gpc_reg_operand" "")
(match_operand:DF 1 "gpc_reg_operand" "")))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(if_then_else:DF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"TARGET_PPC_GFXOPT"
"
{ operands[3] = gen_reg_rtx (DFmode); }")
(define_split
[(set (match_operand:DF 0 "gpc_reg_operand" "")
(smin:DF (match_operand:DF 1 "gpc_reg_operand" "")
(match_operand:DF 2 "gpc_reg_operand" "")))
(clobber (match_operand:DF 3 "gpc_reg_operand" ""))]
"TARGET_PPC_GFXOPT"
[(set (match_dup 3)
(minus:DF (match_dup 2) (match_dup 1)))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(if_then_else:DF (ge (match_dup 3)
(const_int 0))
(match_dup 1)
(match_dup 2)))]
"")
(define_insn ""
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(if_then_else:DF (ge (match_operand:DF 1 "gpc_reg_operand" "f")
(const_int 0))
(match_operand:DF 2 "gpc_reg_operand" "f")
(match_operand:DF 3 "gpc_reg_operand" "f")))]
"TARGET_PPC_GFXOPT"
"fsel %0,%1,%2,%3"
[(set_attr "type" "fp")])
;; Conversions to and from floating-point.
(define_expand "floatsidf2"
[(set (match_dup 2)
(plus:DI (zero_extend:DI
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_dup 3)))
(match_dup 4)))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(minus:DF (subreg:DF (match_dup 2) 0)
(match_dup 5)))]
""
"
{
#if HOST_BITS_PER_INT != BITS_PER_WORD
/* Maybe someone can figure out how to do this in that case. I don't
want to right now. */
abort ();
#endif
operands[2] = gen_reg_rtx (DImode);
operands[3] = gen_rtx (CONST_INT, VOIDmode, 0x80000000);
operands[4] = immed_double_const (0, 0x43300000, DImode);
operands[5] = force_reg (DFmode, immed_double_const (0x43300000,
0x80000000, DFmode));
}")
(define_expand "floatunssidf2"
[(set (match_dup 2)
(plus:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" ""))
(match_dup 3)))
(set (match_operand:DF 0 "gpc_reg_operand" "")
(minus:DF (subreg:DF (match_dup 2) 0)
(match_dup 4)))]
""
"
{
#if HOST_BITS_PER_INT != BITS_PER_WORD
/* Maybe someone can figure out how to do this in that case. I don't
want to right now. */
abort ();
#endif
operands[2] = gen_reg_rtx (DImode);
operands[3] = immed_double_const (0, 0x43300000, DImode);
operands[4] = force_reg (DFmode, immed_double_const (0x43300000, 0, DFmode));
}")
;; For the above two cases, we always split.
(define_split
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(plus:DI (zero_extend:DI
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "logical_operand" "")))
(match_operand:DI 3 "immediate_operand" "")))]
"reload_completed && HOST_BITS_PER_INT == BITS_PER_WORD
&& GET_CODE (operands[3]) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (operands[3]) == 0"
[(set (match_dup 6) (xor:SI (match_dup 1) (match_dup 2)))
(set (match_dup 4) (match_dup 5))]
"
{ operands[4] = operand_subword (operands[0], 0, 0, DImode);
operands[5] = operand_subword (operands[3], 0, 0, DImode);
operands[6] = operand_subword (operands[0], 1, 0, DImode);
}")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(plus:DI (zero_extend:DI
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "logical_operand" "rKJ")))
(match_operand:DI 3 "immediate_operand" "n")))]
"HOST_BITS_PER_INT == BITS_PER_WORD
&& GET_CODE (operands[3]) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (operands[3]) == 0"
"#"
[(set_attr "length" "8")])
(define_split
[(set (match_operand:DI 0 "gpc_reg_operand" "=")
(plus:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" ""))
(match_operand:DI 2 "immediate_operand" "")))]
"reload_completed && HOST_BITS_PER_INT == BITS_PER_WORD
&& GET_CODE (operands[2]) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (operands[2]) == 0"
[(set (match_dup 3) (match_dup 4))
(set (match_dup 5) (match_dup 1))]
"
{ operands[3] = operand_subword (operands[0], 0, 0, DImode);
operands[4] = operand_subword (operands[2], 0, 0, DImode);
operands[5] = operand_subword (operands[0], 1, 0, DImode);
if (rtx_equal_p (operands[1], operands[5]))
{
emit_move_insn (operands[3], operands[4]);
DONE;
}
if (rtx_equal_p (operands[1], operands[3]))
{
rtx temp;
temp = operands[3]; operands[3] = operands[5]; operands[5] = temp;
temp = operands[4]; operands[4] = operands[1]; operands[1] = temp;
}
}")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(plus:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:DI 2 "immediate_operand" "n")))]
"HOST_BITS_PER_INT == BITS_PER_WORD
&& GET_CODE (operands[2]) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (operands[2]) == 0"
"#"
[(set_attr "length" "8")])
(define_expand "fix_truncdfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))]
""
"
{
if (TARGET_POWER2 || TARGET_POWERPC)
{
rtx stack_slot = assign_stack_temp (DImode, 8, 0),
temp = gen_reg_rtx (DImode);
emit_insn (gen_fpcvtsi (temp, operands[1]));
emit_move_insn (stack_slot, temp);
emit_move_insn (operands[0],
operand_subword (stack_slot, 1, 0, DImode));
DONE;
}
else
{
emit_insn (gen_trunc_call (operands[0], operands[1],
gen_rtx (SYMBOL_REF, Pmode, RS6000_ITRUNC)));
DONE;
}
}")
(define_insn "fpcvtsi"
[(set (match_operand:DI 0 "gpc_reg_operand" "=f")
(sign_extend:DI
(fix:SI (match_operand:DF 1 "gpc_reg_operand" "f"))))]
"TARGET_POWER2 || TARGET_POWERPC"
"{fcirz|fctiwz} %0,%1"
[(set_attr "type" "fp")])
(define_expand "fixuns_truncdfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(unsigned_fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))]
"! TARGET_POWER2 && ! TARGET_POWERPC"
"
{
emit_insn (gen_trunc_call (operands[0], operands[1],
gen_rtx (SYMBOL_REF, Pmode, RS6000_UITRUNC)));
DONE;
}")
(define_expand "trunc_call"
[(parallel [(set (match_operand:SI 0 "" "")
(fix:SI (match_operand:DF 1 "" "")))
(use (match_operand:SI 2 "" ""))])]
""
"
{
rtx insns = gen_trunc_call_rtl (operands[0], operands[1], operands[2]);
rtx first = XVECEXP (insns, 0, 0);
rtx last = XVECEXP (insns, 0, XVECLEN (insns, 0) - 1);
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
REG_NOTES (first));
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
emit_insn (insns);
DONE;
}")
(define_expand "trunc_call_rtl"
[(set (reg:DF 33) (match_operand:DF 1 "gpc_reg_operand" ""))
(use (reg:DF 33))
(parallel [(set (reg:SI 3)
(call (mem:SI (match_operand 2 "" "")) (const_int 0)))
(clobber (scratch:SI))])
(set (match_operand:SI 0 "gpc_reg_operand" "")
(reg:SI 3))]
""
"
{
rs6000_trunc_used = 1;
}")
(define_insn "floatdidf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=f")
(float:DF (match_operand:DI 1 "gpc_reg_operand" "f")))]
"TARGET_POWERPC64"
"fcfid %0,%1"
[(set_attr "type" "fp")])
(define_insn "fix_truncdfdi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "=f")
(fix:DI (match_operand:DF 1 "gpc_reg_operand" "f")))]
"TARGET_POWERPC64"
"fctidz %0,%1"
[(set_attr "type" "fp")])
;; Define the DImode operations that can be done in a small number
;; of instructions.
(define_expand "adddi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(plus:DI (match_operand:DI 1 "gpc_reg_operand" "")
(match_operand:DI 2 "reg_or_short_operand" "")))]
""
"
{
if (! TARGET_POWER && ! TARGET_POWERPC64
&& short_cint_operand (operands[2], DImode))
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r")
(match_operand:DI 2 "reg_or_short_operand" "r,I")))]
"TARGET_POWER && ! TARGET_POWERPC64"
"@
{a|addc} %L0,%L1,%L2\;{ae|adde} %0,%1,%2
{ai|addic} %L0,%L1,%2\;{a%G2e|add%G2e} %0,%1"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
"! TARGET_POWER && ! TARGET_POWERPC64"
"addc %L0,%L1,%L2\;adde %0,%1,%2"
[(set_attr "length" "8")])
(define_expand "subdi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(minus:DI (match_operand:DI 1 "reg_or_short_operand" "r,I")
(match_operand:DI 2 "gpc_reg_operand" "r,r")))]
""
"
{
if (! TARGET_POWER && ! TARGET_POWERPC64
&& short_cint_operand (operands[1], DImode))
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(minus:DI (match_operand:DI 1 "reg_or_short_operand" "r,I")
(match_operand:DI 2 "gpc_reg_operand" "r,r")))]
"TARGET_POWER && ! TARGET_POWERPC64"
"@
{sf|subfc} %L0,%L2,%L1\;{sfe|subfe} %0,%2,%1
{sfi|subfic} %L0,%L2,%1\;{sf%G1e|subf%G1e} %0,%2"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(minus:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
"! TARGET_POWER && ! TARGET_POWERPC64"
"subfc %L0,%L2,%L1\;subfe %0,%2,%1"
[(set_attr "length" "8")])
(define_expand "negdi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))]
""
"")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))]
"! TARGET_POWERPC64"
"{sfi|subfic} %L0,%L1,0\;{sfze|subfze} %0,%1"
[(set_attr "length" "8")])
(define_expand "mulsidi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" ""))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))]
""
"
{
if (! TARGET_POWER && ! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_mull_call ());
emit_move_insn (operand_subword (operands[0], 0, 0, DImode),
gen_rtx (REG, SImode, 3));
emit_move_insn (operand_subword (operands[0], 1, 0, DImode),
gen_rtx (REG, SImode, 4));
DONE;
}
else if (TARGET_POWER)
{
emit_insn (gen_mulsidi3_mq (operands[0], operands[1], operands[2]));
DONE;
}
}")
(define_insn "mulsidi3_mq"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))
(clobber (match_scratch:SI 3 "=q"))]
"TARGET_POWER"
"mul %0,%1,%2\;mfmq %L0"
[(set_attr "type" "imul")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=&r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))]
"TARGET_POWERPC && ! TARGET_POWERPC64"
"mulhw %0,%1,%2\;mullw %L0,%1,%2"
[(set_attr "type" "imul")
(set_attr "length" "8")])
(define_expand "smulsi3_highpart"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI
(match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 32))))]
""
"
{
if (! TARGET_POWER && ! TARGET_POWERPC)
{
emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]);
emit_insn (gen_mulh_call ());
emit_move_insn (operands[0], gen_rtx (REG, SImode, 3));
DONE;
}
else if (TARGET_POWER)
{
emit_insn (gen_smulsi3_highpart_mq (operands[0], operands[1], operands[2]));
DONE;
}
}")
(define_insn "smulsi3_highpart_mq"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI
(match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 32))))
(clobber (match_scratch:SI 3 "=q"))]
"TARGET_POWER"
"mul %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (sign_extend:DI
(match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 32))))]
"TARGET_POWERPC"
"mulhw %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn "umulsi3_highpart"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(truncate:SI
(lshiftrt:DI (mult:DI (zero_extend:DI
(match_operand:SI 1 "gpc_reg_operand" "%r"))
(zero_extend:DI
(match_operand:SI 2 "gpc_reg_operand" "r")))
(const_int 32))))]
"TARGET_POWERPC"
"mulhwu %0,%1,%2"
[(set_attr "type" "imul")])
;; If operands 0 and 2 are in the same register, we have a problem. But
;; operands 0 and 1 (the usual case) can be in the same register. That's
;; why we have the strange constraints below.
(define_insn "ashldi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r,&r")
(ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r")
(match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r")))
(clobber (match_scratch:SI 3 "=X,q,q,q"))]
"TARGET_POWER"
"@
{sli|slwi} %0,%L1,%h2\;{cal %L0,0(0)|li %L0,0}
sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2
sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2
sl%I2q %L0,%L1,%h2\;sll%I2q %0,%1,%h2"
[(set_attr "length" "8")])
(define_insn "lshrdi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r,r,&r")
(lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r")
(match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r")))
(clobber (match_scratch:SI 3 "=X,q,q,q"))]
"TARGET_POWER"
"@
{cal %0,0(0)|li %0,0}\;{s%A2i|s%A2wi} %L0,%1,%h2
sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2
sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2
sr%I2q %0,%1,%h2\;srl%I2q %L0,%L1,%h2"
[(set_attr "length" "8")])
;; Shift by a variable amount is too complex to be worth open-coding. We
;; just handle shifts by constants.
(define_expand "ashrdi3"
[(parallel [(set (match_operand:DI 0 "gpc_reg_operand" "")
(ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "general_operand" "")))
(clobber (match_scratch:SI 3 ""))])]
"TARGET_POWER"
"
{ if (GET_CODE (operands[2]) != CONST_INT)
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "gpc_reg_operand" "=r,r")
(ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "M,i")))
(clobber (match_scratch:SI 3 "=X,q"))]
"TARGET_POWER"
"@
{srai|srawi} %0,%1,31\;{srai|srawi} %L0,%1,%h2
sraiq %0,%1,%h2\;srliq %L0,%L1,%h2"
[(set_attr "length" "8")])
;; PowerPC64 DImode operations.
(define_insn "ffsdi2"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ffs:DI (match_operand:DI 1 "register_operand" "r")))]
"TARGET_POWERPC64"
"neg %0,%1\;and %0,%0,%1\;cntlzd %0,%0\;subfic %0,%0,64"
[(set_attr "length" "16")])
(define_insn "muldi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(mult:DI (match_operand:DI 1 "gpc_reg_operand" "%r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
"TARGET_POWERPC64"
"mulld %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn "smuldi3_highpart"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(truncate:DI
(lshiftrt:TI (mult:TI (sign_extend:TI
(match_operand:DI 1 "gpc_reg_operand" "%r"))
(sign_extend:TI
(match_operand:DI 2 "gpc_reg_operand" "r")))
(const_int 64))))]
"TARGET_POWERPC64"
"mulhd %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn "umuldi3_highpart"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(truncate:DI
(lshiftrt:TI (mult:TI (zero_extend:TI
(match_operand:DI 1 "gpc_reg_operand" "%r"))
(zero_extend:TI
(match_operand:DI 2 "gpc_reg_operand" "r")))
(const_int 64))))]
"TARGET_POWERPC64"
"mulhdu %0,%1,%2"
[(set_attr "type" "imul")])
(define_insn "divdi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(div:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
"TARGET_POWERPC64"
"divd %0,%1,%2"
[(set_attr "type" "idiv")])
(define_insn "udivdi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(udiv:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
"TARGET_POWERPC64"
"divdu %0,%1,%2"
[(set_attr "type" "idiv")])
(define_insn "rotldi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "reg_or_cint_operand" "ri")))]
"TARGET_POWERPC64"
"rld%I2cl %0,%1,%h2,0")
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(clobber (match_scratch:DI 3 "=r"))]
"TARGET_POWERPC64"
"rld%I2cl. %3,%1,%h2,0"
[(set_attr "type" "delayed_compare")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "reg_or_cint_operand" "ri"))
(const_int 0)))
(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(rotate:DI (match_dup 1) (match_dup 2)))]
"TARGET_POWERPC64"
"rld%I2cl. %0,%1,%h2,0"
[(set_attr "type" "delayed_compare")])
;; Now define ways of moving data around.
;;
;; For SI, we special-case integers that can't be loaded in one insn. We
;; do the load 16-bits at a time. We could do this by loading from memory,
;; and this is even supposed to be faster, but it is simpler not to get
;; integers in the TOC.
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "any_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) != REG)
operands[1] = force_reg (SImode, operands[1]);
if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT
&& ! LEGITIMATE_CONSTANT_POOL_ADDRESS_P (operands[1]))
{
/* If we are to limit the number of things we put in the TOC and
this is a symbol plus a constant we can add in one insn,
just put the sumbol in the TOC and add the constant. Don't do
this if reload is in progress. */
if (GET_CODE (operands[1]) == CONST
&& TARGET_NO_SUM_IN_TOC && ! reload_in_progress
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
&& add_operand (XEXP (XEXP (operands[1], 0), 1), SImode)
&& (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
|| GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
&& ! side_effects_p (operands[0]))
{
rtx sym = force_const_mem (SImode, XEXP (XEXP (operands[1], 0), 0));
rtx other = XEXP (XEXP (operands[1], 0), 1);
emit_insn (gen_addsi3 (operands[0], force_reg (SImode, sym), other));
DONE;
}
operands[1] = force_const_mem (SImode, operands[1]);
if (! memory_address_p (SImode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], SImode,
XEXP (operands[1], 0));
}
if (GET_CODE (operands[1]) == CONST_INT
&& (unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000
&& (INTVAL (operands[1]) & 0xffff) != 0)
{
emit_move_insn (operands[0],
gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[1]) & 0xffff0000));
emit_insn (gen_iorsi3 (operands[0], operands[0],
gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[1]) & 0xffff)));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,m,r,r,r,r,*q,*c*l,*h")
(match_operand:SI 1 "input_operand" "r,m,r,I,J,R,*h,r,r,0"))]
"gpc_reg_operand (operands[0], SImode)
|| gpc_reg_operand (operands[1], SImode)"
"@
mr %0,%1
{l%U1%X1|lwz%U1%X1} %0,%1
{st%U0%X0|stw%U0%X0} %1,%0
{lil|li} %0,%1
{liu|lis} %0,%u1
{cal|la} %0,%1(%*)
mf%1 %0
mt%0 %1
mt%0 %1
cror 0,0,0"
[(set_attr "type" "*,load,*,*,*,*,*,*,mtjmpr,*")])
;; Split a load of a large constant into the appropriate two-insn
;; sequence.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
"(unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000
&& (INTVAL (operands[1]) & 0xffff) != 0"
[(set (match_dup 0)
(match_dup 2))
(set (match_dup 0)
(ior:SI (match_dup 0)
(match_dup 3)))]
"
{
operands[2] = gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[1]) & 0xffff0000);
operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff);
}")
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_dup 1))]
""
"mr. %0,%1"
[(set_attr "type" "compare")])
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "any_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) != REG)
operands[1] = force_reg (HImode, operands[1]);
if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT)
{
operands[1] = force_const_mem (HImode, operands[1]);
if (! memory_address_p (HImode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], HImode,
XEXP (operands[1], 0));
}
}")
(define_insn ""
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r,r,*q,*c*l,*h")
(match_operand:HI 1 "input_operand" "r,m,r,i,*h,r,r,0"))]
"gpc_reg_operand (operands[0], HImode)
|| gpc_reg_operand (operands[1], HImode)"
"@
mr %0,%1
lhz%U1%X1 %0,%1
sth%U0%X0 %1,%0
{lil|li} %0,%w1
mf%1 %0
mt%0 %1
mt%0 %1
cror 0,0,0"
[(set_attr "type" "*,load,*,*,*,*,mtjmpr,*")])
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "any_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) != REG)
operands[1] = force_reg (QImode, operands[1]);
if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT)
{
operands[1] = force_const_mem (QImode, operands[1]);
if (! memory_address_p (QImode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], QImode,
XEXP (operands[1], 0));
}
}")
(define_insn ""
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r,r,*q,*c*l,*h")
(match_operand:QI 1 "input_operand" "r,m,r,i,*h,r,r,0"))]
"gpc_reg_operand (operands[0], QImode)
|| gpc_reg_operand (operands[1], QImode)"
"@
mr %0,%1
lbz%U1%X1 %0,%1
stb%U0%X0 %1,%0
{lil|li} %0,%1
mf%1 %0
mt%0 %1
mt%0 %1
cror 0,0,0"
[(set_attr "type" "*,load,*,*,*,*,mtjmpr,*")])
;; Here is how to move condition codes around. When we store CC data in
;; an integer register or memory, we store just the high-order 4 bits.
;; This lets us not shift in the most common case of CR0.
(define_expand "movcc"
[(set (match_operand:CC 0 "nonimmediate_operand" "")
(match_operand:CC 1 "nonimmediate_operand" ""))]
""
"")
(define_insn ""
[(set (match_operand:CC 0 "nonimmediate_operand" "=y,x,y,r,r,r,r,m")
(match_operand:CC 1 "nonimmediate_operand" "y,r,r,x,y,r,m,r"))]
"register_operand (operands[0], CCmode)
|| register_operand (operands[1], CCmode)"
"@
mcrf %0,%1
mtcrf 128,%1
{rlinm|rlwinm} %1,%1,%F0,0xffffffff\;mtcrf %R0,%1\;{rlinm|rlwinm} %1,%1,%f0,0xffffffff
mfcr %0
mfcr %0\;{rlinm|rlwinm} %0,%0,%f1,0xf0000000
mr %0,%1
{l%U1%X1|lwz%U1%X1} %0,%1
{st%U0%U1|stw%U0%U1} %1,%0"
[(set_attr "type" "*,*,*,compare,*,*,load,*")
(set_attr "length" "*,*,12,*,8,*,*,*")])
;; For floating-point, we normally deal with the floating-point registers.
;; The sole exception is that parameter passing can produce floating-point
;; values in fixed-point registers. Unless the value is a simple constant
;; or already in memory, we deal with this by allocating memory and copying
;; the value explicitly via that memory location.
(define_expand "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand" "")
(match_operand:SF 1 "any_operand" ""))]
""
"
{
/* If we are called from reload, we might be getting a SUBREG of a hard
reg. So expand it. */
if (GET_CODE (operands[0]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[0])) == REG
&& REGNO (SUBREG_REG (operands[0])) < FIRST_PSEUDO_REGISTER)
operands[0] = alter_subreg (operands[0]);
if (GET_CODE (operands[1]) == SUBREG
&& GET_CODE (SUBREG_REG (operands[1])) == REG
&& REGNO (SUBREG_REG (operands[1])) < FIRST_PSEUDO_REGISTER)
operands[1] = alter_subreg (operands[1]);
if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 32)
{
/* If this is a store to memory or another integer register do the
move directly. Otherwise store to a temporary stack slot and
load from there into a floating point register. */
if (GET_CODE (operands[0]) == MEM
|| (GET_CODE (operands[0]) == REG
&& (REGNO (operands[0]) < 32
|| (reload_in_progress
&& REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))))
{
emit_move_insn (operand_subword (operands[0], 0, 0, SFmode),
operand_subword (operands[1], 0, 0, SFmode));
DONE;
}
else
{
rtx stack_slot = assign_stack_temp (SFmode, 4, 0);
emit_move_insn (stack_slot, operands[1]);
emit_move_insn (operands[0], stack_slot);
DONE;
}
}
if (GET_CODE (operands[0]) == MEM)
{
/* If operands[1] is a register, it may have double-precision data
in it, so truncate it to single precision. We need not do
this for POWERPC. */
if (! TARGET_POWERPC && GET_CODE (operands[1]) == REG)
{
rtx newreg = reload_in_progress ? operands[1] : gen_reg_rtx (SFmode);
emit_insn (gen_truncdfsf2 (newreg,
gen_rtx (SUBREG, DFmode, operands[1], 0)));
operands[1] = newreg;
}
operands[1] = force_reg (SFmode, operands[1]);
}
if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32)
{
if (GET_CODE (operands[1]) == MEM
#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT && ! defined(REAL_IS_NOT_DOUBLE)
|| GET_CODE (operands[1]) == CONST_DOUBLE
#endif
|| (GET_CODE (operands[1]) == REG
&& (REGNO (operands[1]) < 32
|| (reload_in_progress
&& REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER))))
{
emit_move_insn (operand_subword (operands[0], 0, 0, SFmode),
operand_subword (operands[1], 0, 0, SFmode));
DONE;
}
else
{
rtx stack_slot = assign_stack_temp (SFmode, 4, 0);
emit_move_insn (stack_slot, operands[1]);
emit_move_insn (operands[0], stack_slot);
DONE;
}
}
if (CONSTANT_P (operands[1]))
{
operands[1] = force_const_mem (SFmode, operands[1]);
if (! memory_address_p (SFmode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], SFmode,
XEXP (operands[1], 0));
}
}")
(define_split
[(set (match_operand:SF 0 "gpc_reg_operand" "")
(match_operand:SF 1 "easy_fp_constant" ""))]
"reload_completed && REGNO (operands[0]) <= 31"
[(set (match_dup 2) (match_dup 3))]
"
{ operands[2] = operand_subword (operands[0], 0, 0, SFmode);
operands[3] = operand_subword (operands[1], 0, 0, SFmode); }")
(define_insn ""
[(set (match_operand:SF 0 "fp_reg_or_mem_operand" "=f,f,m")
(match_operand:SF 1 "input_operand" "f,m,f"))]
"gpc_reg_operand (operands[0], SFmode)
|| gpc_reg_operand (operands[1], SFmode)"
"@
fmr %0,%1
lfs%U1%X1 %0,%1
stfs%U0%X0 %1,%0"
[(set_attr "type" "fp,fpload,*")])
(define_expand "movdf"
[(set (match_operand:DF 0 "nonimmediate_operand" "")
(match_operand:DF 1 "any_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
{
emit_move_insn (operand_subword (operands[0], 1, 1, DFmode),
operand_subword_force (operands[1], 1, DFmode));
emit_move_insn (operand_subword (operands[0], 0, 1, DFmode),
operand_subword_force (operands[1], 0, DFmode));
DONE;
}
if (GET_CODE (operands[0]) != REG)
operands[1] = force_reg (DFmode, operands[1]);
if (CONSTANT_P (operands[1]) && ! easy_fp_constant (operands[1], DFmode))
{
operands[1] = force_const_mem (DFmode, operands[1]);
if (! memory_address_p (DFmode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], DFmode,
XEXP (operands[1], 0));
}
}")
(define_split
[(set (match_operand:DF 0 "gpc_reg_operand" "")
(match_operand:DF 1 "easy_fp_constant" ""))]
"reload_completed && REGNO (operands[0]) <= 31"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
"
{ operands[2] = operand_subword (operands[0], 0, 0, DFmode);
operands[3] = operand_subword (operands[1], 0, 0, DFmode);
operands[4] = operand_subword (operands[0], 1, 0, DFmode);
operands[5] = operand_subword (operands[1], 1, 0, DFmode); }")
;; Don't have reload use general registers to load a constant. First,
;; it might not work if the output operand has is the equivalent of
;; a non-offsettable memref, but also it is less efficient than loading
;; the constant into an FP register, since it will probably be used there.
;; The "??" is a kludge until we can figure out a more reasonable way
;; of handling these non-offsettable values.
(define_insn ""
[(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m")
(match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))]
"! TARGET_POWERPC64 && (register_operand (operands[0], DFmode)
|| register_operand (operands[1], DFmode))"
"*
{
switch (which_alternative)
{
case 0:
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
return \"mr %L0,%L1\;mr %0,%1\";
else
return \"mr %0,%1\;mr %L0,%L1\";
case 1:
/* If the low-address word is used in the address, we must load it
last. Otherwise, load it first. Note that we cannot have
auto-increment in that case since the address register is known to be
dead. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands [1], 0))
return \"{l|lwz} %L0,%L1\;{l|lwz} %0,%1\";
else
return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\";
case 2:
return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\";
case 3:
return \"#\";
case 4:
return \"fmr %0,%1\";
case 5:
return \"lfd%U1%X1 %0,%1\";
case 6:
return \"stfd%U0%X0 %1,%0\";
}
}"
[(set_attr "type" "*,load,*,*,fp,fpload,*")
(set_attr "length" "8,8,8,8,*,*,*")])
(define_insn ""
[(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m")
(match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))]
"TARGET_POWERPC64 && (register_operand (operands[0], DFmode)
|| register_operand (operands[1], DFmode))"
"@
mr %0,%1
ld%U1%X1 %0,%1
sd%U0%X0 %1,%0
#
fmr %0,%1
lfd%U1%X1 %0,%1
stfd%U0%X0 %1,%0"
[(set_attr "type" "*,load,*,*,fp,fpload,*")])
;; Next come the multi-word integer load and store and the load and store
;; multiple insns.
(define_expand "movdi"
[(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[1]) == CONST_DOUBLE
|| GET_CODE (operands[1]) == CONST_INT)
{
emit_move_insn (operand_subword (operands[0], 0, 0, DImode),
operand_subword (operands[1], 0, 0, DImode));
emit_move_insn (operand_subword (operands[0], 1, 0, DImode),
operand_subword (operands[1], 1, 0, DImode));
DONE;
}
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
/* Stores between FPR and any non-FPR registers must go through a
temporary stack slot. */
if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
&& ((FP_REGNO_P (REGNO (operands[0]))
&& ! FP_REGNO_P (REGNO (operands[1])))
|| (FP_REGNO_P (REGNO (operands[1]))
&& ! FP_REGNO_P (REGNO (operands[0])))))
{
rtx stack_slot = assign_stack_temp (DImode, 8, 0);
emit_move_insn (stack_slot, operands[1]);
emit_move_insn (operands[0], stack_slot);
DONE;
}
}")
(define_insn ""
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,f,f,m")
(match_operand:DI 1 "input_operand" "r,m,r,f,m,f"))]
"! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode)
|| gpc_reg_operand (operands[1], DImode))"
"*
{
switch (which_alternative)
{
case 0:
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
return \"mr %L0,%L1\;mr %0,%1\";
else
return \"mr %0,%1\;mr %L0,%L1\";
case 1:
/* If the low-address word is used in the address, we must load it
last. Otherwise, load it first. Note that we cannot have
auto-increment in that case since the address register is known to be
dead. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands [1], 0))
return \"{l|lwz} %L0,%L1\;{l|lwz} %0,%1\";
else
return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\";
case 2:
return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\";
case 3:
return \"fmr %0,%1\";
case 4:
return \"lfd%U1%X1 %0,%1\";
case 5:
return \"stfd%U0%X0 %1,%0\";
}
}"
[(set_attr "type" "*,load,*,fp,fpload,*")
(set_attr "length" "8,8,8,*,*,*")])
(define_insn ""
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,r,r,r,f,f,m,r,*h")
(match_operand:DI 1 "input_operand" "r,m,r,I,J,R,f,m,f,*h,r"))]
"TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode)
|| gpc_reg_operand (operands[1], DImode))"
"@
mr %0,%1
ld%U1%X1 %0,%1
sd%U0%X0 %1,%0
li %0,%1
lis %0,%u1
{cal|la} %0,%1(%*)
fmr %0,%1
lfd%U1%X1 %0,%1
stfd%U0%X0 %1,%0
mf%1 %0
mt%0 %1"
[(set_attr "type" "*,load,*,*,*,*,fp,fpload,*,*,mtjmpr")])
;; TImode is similar, except that we usually want to compute the address into
;; a register and use lsi/stsi (the exception is during reload). MQ is also
;; clobbered in stsi for POWER, so we need a SCRATCH for it.
(define_expand "movti"
[(parallel [(set (match_operand:TI 0 "general_operand" "")
(match_operand:TI 1 "general_operand" ""))
(clobber (scratch:SI))])]
"TARGET_POWER || TARGET_POWERPC64"
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (TImode, operands[1]);
if (GET_CODE (operands[0]) == MEM
&& GET_CODE (XEXP (operands[0], 0)) != REG
&& ! reload_in_progress)
operands[0] = change_address (operands[0], TImode,
copy_addr_to_reg (XEXP (operands[0], 0)));
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) != REG
&& ! reload_in_progress)
operands[1] = change_address (operands[1], TImode,
copy_addr_to_reg (XEXP (operands[1], 0)));
}")
;; We say that MQ is clobbered in the last alternative because the first
;; alternative would never get used otherwise since it would need a reload
;; while the 2nd alternative would not. We put memory cases first so they
;; are preferred. Otherwise, we'd try to reload the output instead of
;; giving the SCRATCH mq.
(define_insn ""
[(set (match_operand:TI 0 "reg_or_mem_operand" "=Q,m,????r,????r,????r")
(match_operand:TI 1 "reg_or_mem_operand" "r,r,r,Q,m"))
(clobber (match_scratch:SI 2 "=q,q#X,X,X,X"))]
"TARGET_POWER && ! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode)
|| gpc_reg_operand (operands[1], TImode))"
"*
{
switch (which_alternative)
{
case 0:
return \"{stsi|stswi} %1,%P0,16\";
case 1:
return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\;{st|stw} %Y1,%Y0\;{st|stw} %Z1,%Z0\";
case 2:
/* Normally copy registers with lowest numbered register copied first.
But copy in the other order if the first register of the output
is the second, third, or fourth register in the input. */
if (REGNO (operands[0]) >= REGNO (operands[1]) + 1
&& REGNO (operands[0]) <= REGNO (operands[1]) + 3)
return \"mr %Z0,%Z1\;mr %Y0,%Y1\;mr %L0,%L1\;mr %0,%1\";
else
return \"mr %0,%1\;mr %L0,%L1\;mr %Y0,%Y1\;mr %Z0,%Z1\";
case 3:
/* If the address is not used in the output, we can use lsi. Otherwise,
fall through to generating four loads. */
if (! reg_overlap_mentioned_p (operands[0], operands[1]))
return \"{lsi|lswi} %0,%P1,16\";
/* ... fall through ... */
case 4:
/* If the address register is the same as the register for the lowest-
addressed word, load it last. Similarly for the next two words.
Otherwise load lowest address to highest. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands[1], 0))
return \"{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %0,%1\";
else if (refers_to_regno_p (REGNO (operands[0]) + 1,
REGNO (operands[0]) + 2, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %L0,%L1\";
else if (refers_to_regno_p (REGNO (operands[0]) + 2,
REGNO (operands[0]) + 3, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Z0,%Z1\;{l|lwz} %Y0,%Y1\";
else
return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\";
}
}"
[(set_attr "type" "*,load,load,*,*")
(set_attr "length" "*,16,16,*,16")])
(define_insn ""
[(set (match_operand:TI 0 "nonimmediate_operand" "=r,r,m")
(match_operand:TI 1 "input_operand" "r,m,r"))]
"TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode)
|| gpc_reg_operand (operands[1], TImode))"
"*
{
switch (which_alternative)
{
case 0:
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
if (REGNO (operands[0]) == REGNO (operands[1]) + 1)
return \"mr %L0,%L1\;mr %0,%1\";
else
return \"mr %0,%1\;mr %L0,%L1\";
case 1:
/* If the low-address word is used in the address, we must load it
last. Otherwise, load it first. Note that we cannot have
auto-increment in that case since the address register is known to be
dead. */
if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands [1], 0))
return \"ld %L0,%L1\;ld %0,%1\";
else
return \"ld%U1 %0,%1\;ld %L0,%L1\";
case 2:
return \"std%U0 %1,%0\;std %L1,%L0\";
}
}"
[(set_attr "type" "*,load,*")
(set_attr "length" "8,8,8")])
(define_expand "load_multiple"
[(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))
(use (match_operand:SI 2 "" ""))])]
"TARGET_POWER"
"
{
int regno;
int count;
rtx from;
int i;
/* Support only loading a constant number of fixed-point registers from
memory and only bother with this if more than two; the machine
doesn't support more than eight. */
if (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) <= 2
|| INTVAL (operands[2]) > 8
|| GET_CODE (operands[1]) != MEM
|| GET_CODE (operands[0]) != REG
|| REGNO (operands[0]) >= 32)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[0]);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count));
from = force_reg (SImode, XEXP (operands[1], 0));
for (i = 0; i < count; i++)
XVECEXP (operands[3], 0, i)
= gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i),
gen_rtx (MEM, SImode, plus_constant (from, i * 4)));
}")
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "indirect_operand" "Q"))])]
"TARGET_POWER"
"*
{
/* We have to handle the case where the pseudo used to contain the address
is assigned to one of the output registers. In that case, do the
lsi, but then load the correct value. This is a bit of a mess, but is
the best we can do.
We set the length attribute to the maximum possible size (8 bytes). */
static char result[100];
char newload[40];
int i;
strcpy (result, \"{lsi|lswi} %1,%P2,%N0\");
for (i = 0; i < XVECLEN (operands[0], 0); i++)
if (refers_to_regno_p (REGNO (operands[1]) + i,
REGNO (operands[1]) + i + 1, operands[2], 0))
{
sprintf (newload, \"\;{l|lwz} %d,%d(%d)\",
REGNO (operands[1]) + i,
i * 4, REGNO (XEXP (operands[2], 0)));
strcat (result, newload);
}
return result;
}"
[(set_attr "type" "load")
(set_attr "length" "8")])
(define_expand "store_multiple"
[(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))
(clobber (scratch:SI))
(use (match_operand:SI 2 "" ""))])]
"TARGET_POWER"
"
{
int regno;
int count;
rtx to;
int i;
/* Support only storing a constant number of fixed-point registers to
memory and only bother with this if more than two; the machine
doesn't support more than eight. */
if (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) <= 2
|| INTVAL (operands[2]) > 8
|| GET_CODE (operands[0]) != MEM
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) >= 32)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1));
to = force_reg (SImode, XEXP (operands[0], 0));
XVECEXP (operands[3], 0, 0)
= gen_rtx (SET, VOIDmode, gen_rtx (MEM, SImode, to), operands[1]);
XVECEXP (operands[3], 0, 1) = gen_rtx (CLOBBER, VOIDmode,
gen_rtx (SCRATCH, SImode));
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 1)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, plus_constant (to, i * 4)),
gen_rtx (REG, SImode, regno + i));
}")
(define_insn ""
[(match_parallel 0 "store_multiple_operation"
[(set (match_operand:SI 1 "indirect_operand" "=Q")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(clobber (match_scratch:SI 3 "=q"))])]
"TARGET_POWER"
"{stsi|stswi} %2,%P1,%O0")
;; Define insns that do load or store with update. Some of these we can
;; get by using pre-decrement or pre-increment, but the hardware can also
;; do cases where the increment is not the size of the object.
;;
;; In all these cases, we use operands 0 and 1 for the register being
;; incremented because those are the operands that local-alloc will
;; tie and these are the pair most likely to be tieable (and the ones
;; that will benefit the most).
(define_insn ""
[(set (match_operand:DI 3 "gpc_reg_operand" "=r,r")
(mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0")
(match_operand:DI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:DI 0 "gpc_reg_operand" "=b,b")
(plus:DI (match_dup 1) (match_dup 2)))]
"TARGET_POWERPC64"
"@
ldux %3,%0,%2
ldu %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0")
(match_operand:DI 2 "reg_or_short_operand" "r,I")))
(match_operand:DI 3 "gpc_reg_operand" "r,r"))
(set (match_operand:DI 0 "gpc_reg_operand" "=b,b")
(plus:DI (match_dup 1) (match_dup 2)))]
"TARGET_POWERPC64"
"@
stdux %3,%0,%2
stdu %3,%2(%0)")
(define_insn ""
[(set (match_operand:SI 3 "gpc_reg_operand" "=r,r")
(mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
{lux|lwzux} %3,%0,%2
{lu|lwzu} %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
{stux|stwux} %3,%0,%2
{stu|stwu} %3,%2(%0)")
(define_insn ""
[(set (match_operand:HI 3 "gpc_reg_operand" "=r,r")
(mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lhzux %3,%0,%2
lhzu %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 3 "gpc_reg_operand" "=r,r")
(zero_extend:SI
(mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lhzux %3,%0,%2
lhzu %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 3 "gpc_reg_operand" "=r,r")
(sign_extend:SI
(mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lhaux %3,%0,%2
lhau %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(match_operand:HI 3 "gpc_reg_operand" "r,r"))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
sthux %3,%0,%2
sthu %3,%2(%0)")
(define_insn ""
[(set (match_operand:QI 3 "gpc_reg_operand" "=r,r")
(mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lbzux %3,%0,%2
lbzu %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 3 "gpc_reg_operand" "=r,r")
(zero_extend:SI
(mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lbzux %3,%0,%2
lbzu %3,%2(%0)"
[(set_attr "type" "load")])
(define_insn ""
[(set (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(match_operand:QI 3 "gpc_reg_operand" "r,r"))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
stbux %3,%0,%2
stbu %3,%2(%0)")
(define_insn ""
[(set (match_operand:SF 3 "gpc_reg_operand" "=f,f")
(mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lfsux %3,%0,%2
lfsu %3,%2(%0)"
[(set_attr "type" "fpload")])
(define_insn ""
[(set (mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(match_operand:SF 3 "gpc_reg_operand" "f,f"))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
stfsux %3,%0,%2
stfsu %3,%2(%0)")
(define_insn ""
[(set (match_operand:DF 3 "gpc_reg_operand" "=f,f")
(mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
lfdux %3,%0,%2
lfdu %3,%2(%0)"
[(set_attr "type" "fpload")])
(define_insn ""
[(set (mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0")
(match_operand:SI 2 "reg_or_short_operand" "r,I")))
(match_operand:DF 3 "gpc_reg_operand" "f,f"))
(set (match_operand:SI 0 "gpc_reg_operand" "=b,b")
(plus:SI (match_dup 1) (match_dup 2)))]
""
"@
stfdux %3,%0,%2
stfdu %3,%2(%0)")
;; Next come insns related to the calling sequence.
;;
;; First, an insn to allocate new stack space for dynamic use (e.g., alloca).
;; We move the back-chain and decrement the stack pointer.
(define_expand "allocate_stack"
[(set (reg:SI 1)
(minus:SI (reg:SI 1) (match_operand:SI 0 "reg_or_short_operand" "")))]
""
"
{ rtx chain = gen_reg_rtx (SImode);
rtx stack_bot = gen_rtx (MEM, Pmode, stack_pointer_rtx);
emit_move_insn (chain, stack_bot);
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, operands[0]));
emit_move_insn (stack_bot, chain);
DONE;
}")
;; These patterns say how to save and restore the stack pointer. We need not
;; save the stack pointer at function level since we are careful to
;; preserve the backchain. At block level, we have to restore the backchain
;; when we restore the stack pointer.
;;
;; For nonlocal gotos, we must save both the stack pointer and its
;; backchain and restore both. Note that in the nonlocal case, the
;; save area is a memory location.
(define_expand "save_stack_function"
[(use (const_int 0))]
""
"")
(define_expand "restore_stack_function"
[(use (const_int 0))]
""
"")
(define_expand "restore_stack_block"
[(set (match_dup 2) (mem:SI (match_operand:SI 0 "register_operand" "")))
(set (match_dup 0) (match_operand:SI 1 "register_operand" ""))
(set (mem:SI (match_dup 0)) (match_dup 2))]
""
"
{ operands[2] = gen_reg_rtx (SImode); }")
(define_expand "save_stack_nonlocal"
[(match_operand:DI 0 "memory_operand" "")
(match_operand:SI 1 "register_operand" "")]
""
"
{
rtx temp = gen_reg_rtx (SImode);
/* Copy the backchain to the first word, sp to the second. */
emit_move_insn (temp, gen_rtx (MEM, SImode, operands[1]));
emit_move_insn (operand_subword (operands[0], 0, 0, DImode), temp);
emit_move_insn (operand_subword (operands[0], 1, 0, DImode), operands[1]);
DONE;
}")
(define_expand "restore_stack_nonlocal"
[(match_operand:SI 0 "register_operand" "")
(match_operand:DI 1 "memory_operand" "")]
""
"
{
rtx temp = gen_reg_rtx (SImode);
/* Restore the backchain from the first word, sp from the second. */
emit_move_insn (temp, operand_subword (operands[1], 0, 0, DImode));
emit_move_insn (operands[0], operand_subword (operands[1], 1, 0, DImode));
emit_move_insn (gen_rtx (MEM, SImode, operands[0]), temp);
DONE;
}")
;; A function pointer is a pointer to a data area whose first word contains
;; the actual address of the function, whose second word contains a pointer
;; to its TOC, and whose third word contains a value to place in the static
;; chain register (r11). Note that if we load the static chain, our
;; "trampoline" need not have any executable code.
;;
;; operands[0] is an SImode pseudo in which we place the address of the
;; function.
;; operands[1] is the address of data area of the function to call
(define_expand "call_via_ptr"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(mem:SI (match_operand:SI 1 "gpc_reg_operand" "")))
(set (mem:SI (plus:SI (reg:SI 1) (const_int 20)))
(reg:SI 2))
(set (reg:SI 2)
(mem:SI (plus:SI (match_dup 1)
(const_int 4))))
(set (reg:SI 11)
(mem:SI (plus:SI (match_dup 1)
(const_int 8))))
(use (reg:SI 2))
(use (reg:SI 11))]
""
"")
(define_expand "call"
[(parallel [(call (mem:SI (match_operand:SI 0 "address_operand" ""))
(match_operand 1 "" ""))
(clobber (scratch:SI))])]
""
"
{
if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT)
abort ();
operands[0] = XEXP (operands[0], 0);
if (GET_CODE (operands[0]) != SYMBOL_REF)
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_call_via_ptr (temp, force_reg (SImode, operands[0])));
operands[0] = temp;
}
}")
(define_expand "call_value"
[(parallel [(set (match_operand 0 "" "")
(call (mem:SI (match_operand:SI 1 "address_operand" ""))
(match_operand 2 "" "")))
(clobber (scratch:SI))])]
""
"
{
if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT)
abort ();
operands[1] = XEXP (operands[1], 0);
if (GET_CODE (operands[1]) != SYMBOL_REF)
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_call_via_ptr (temp, force_reg (SImode, operands[1])));
operands[1] = temp;
}
}")
;; Call to function in current module. No TOC pointer reload needed.
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "current_file_function_operand" "s"))
(match_operand 1 "" "g"))
(clobber (match_scratch:SI 2 "=l"))]
""
"bl %z0")
;; Call to function which may be in another module. Restore the TOC
;; pointer (r2) after the call.
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "call_operand" "l,s"))
(match_operand 1 "" "fg,fg"))
(clobber (match_scratch:SI 2 "=l,l"))]
""
"@
{brl|blrl}\;{l|lwz} 2,20(1)
bl %z0\;%."
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand 0 "" "=fg")
(call (mem:SI (match_operand:SI 1 "current_file_function_operand" "s"))
(match_operand 2 "" "g")))
(clobber (match_scratch:SI 3 "=l"))]
""
"bl %z1")
(define_insn ""
[(set (match_operand 0 "" "=fg,fg")
(call (mem:SI (match_operand:SI 1 "call_operand" "l,s"))
(match_operand 2 "" "fg,fg")))
(clobber (match_scratch:SI 3 "=l,l"))]
""
"@
{brl|blrl}\;{l|lwz} 2,20(1)
bl %z1\;%."
[(set_attr "length" "8")])
;; Call subroutine returning any type.
(define_expand "untyped_call"
[(parallel [(call (match_operand 0 "" "")
(const_int 0))
(match_operand 1 "" "")
(match_operand 2 "" "")])]
""
"
{
int i;
emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx));
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
/* The optimizer does not know that the call sets the function value
registers we stored in the result block. We avoid problems by
claiming that all hard registers are used and clobbered at this
point. */
emit_insn (gen_blockage ());
DONE;
}")
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] 0)]
""
"")
;; Compare insns are next. Note that the RS/6000 has two types of compares,
;; signed & unsigned, and one type of branch.
;;
;; Start with the DEFINE_EXPANDs to generate the rtl for compares, scc
;; insns, and branches. We store the operands of compares until we see
;; how it is used.
(define_expand "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "gpc_reg_operand" "")
(match_operand:SI 1 "reg_or_short_operand" "")))]
""
"
{
/* Take care of the possibility that operands[1] might be negative but
this might be a logical operation. That insn doesn't exist. */
if (GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) < 0)
operands[1] = force_reg (SImode, operands[1]);
rs6000_compare_op0 = operands[0];
rs6000_compare_op1 = operands[1];
rs6000_compare_fp_p = 0;
DONE;
}")
(define_expand "cmpsf"
[(set (cc0) (compare (match_operand:SF 0 "gpc_reg_operand" "")
(match_operand:SF 1 "gpc_reg_operand" "")))]
""
"
{
rs6000_compare_op0 = operands[0];
rs6000_compare_op1 = operands[1];
rs6000_compare_fp_p = 1;
DONE;
}")
(define_expand "cmpdf"
[(set (cc0) (compare (match_operand:DF 0 "gpc_reg_operand" "")
(match_operand:DF 1 "gpc_reg_operand" "")))]
""
"
{
rs6000_compare_op0 = operands[0];
rs6000_compare_op1 = operands[1];
rs6000_compare_fp_p = 1;
DONE;
}")
(define_expand "beq"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (eq (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "bne"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (ne (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "blt"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (lt (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "bgt"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (gt (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "ble"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (le (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "bge"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (ge (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "bgtu"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (gtu (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "bltu"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (ltu (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "bgeu"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (geu (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "bleu"
[(set (match_dup 2) (match_dup 1))
(set (pc)
(if_then_else (leu (match_dup 2)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
;; For SNE, we would prefer that the xor/abs sequence be used for integers.
;; For SEQ, likewise, except that comparisons with zero should be done
;; with an scc insns. However, due to the order that combine see the
;; resulting insns, we must, in fact, allow SEQ for integers. Fail in
;; the cases we don't want to handle.
(define_expand "seq"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(eq:SI (match_dup 2) (const_int 0)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "sne"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ne:SI (match_dup 2) (const_int 0)))]
""
"
{ if (! rs6000_compare_fp_p)
FAIL;
operands[1] = gen_rtx (COMPARE, CCFPmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCFPmode);
}")
;; A > 0 is best done using the portable sequence, so fail in that case.
(define_expand "sgt"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(gt:SI (match_dup 2) (const_int 0)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx)
FAIL;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
;; A < 0 is best done in the portable way for A an integer.
(define_expand "slt"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(lt:SI (match_dup 2) (const_int 0)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx)
FAIL;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "sge"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ge:SI (match_dup 2) (const_int 0)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
;; A <= 0 is best done the portable way for A an integer.
(define_expand "sle"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(le:SI (match_dup 2) (const_int 0)))]
""
"
{ enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;
if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx)
FAIL;
operands[1] = gen_rtx (COMPARE, mode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (mode);
}")
(define_expand "sgtu"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(gtu:SI (match_dup 2) (const_int 0)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "sltu"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ltu:SI (match_dup 2) (const_int 0)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "sgeu"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(geu:SI (match_dup 2) (const_int 0)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
(define_expand "sleu"
[(set (match_dup 2) (match_dup 1))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(leu:SI (match_dup 2) (const_int 0)))]
""
"
{ operands[1] = gen_rtx (COMPARE, CCUNSmode,
rs6000_compare_op0, rs6000_compare_op1);
operands[2] = gen_reg_rtx (CCUNSmode);
}")
;; Here are the actual compare insns.
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=y")
(compare:CC (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))]
""
"{cmp%I2|cmpw%I2} %0,%1,%2"
[(set_attr "type" "compare")])
;; If we are comparing a register for equality with a large constant,
;; we can do this with an XOR followed by a compare. But we need a scratch
;; register for the result of the XOR.
(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")
(compare:CC (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))
(clobber (match_operand:SI 3 "gpc_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
"
{
/* Get the constant we are comparing against, C, and see what it looks like
sign-extended to 16 bits. Then see what constant could be XOR'ed
with C to get the sign-extended value. */
int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;
operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);
}")
(define_insn ""
[(set (match_operand:CCUNS 0 "cc_reg_operand" "=y")
(compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_u_short_operand" "rI")))]
""
"{cmpl%I2|cmplw%I2} %0,%1,%W2"
[(set_attr "type" "compare")])
;; The following two insns don't exist as single insns, but if we provide
;; them, we can swap an add and compare, which will enable us to overlap more
;; of the required delay between a compare and branch. We generate code for
;; them by splitting.
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=y")
(compare:CC (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "short_cint_operand" "i")))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))]
""
"#"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CCUNS 3 "cc_reg_operand" "=y")
(compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "u_short_cint_operand" "i")))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))]
""
"#"
[(set_attr "length" "8")])
(define_split
[(set (match_operand:CC 3 "cc_reg_operand" "")
(compare:CC (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "short_cint_operand" "")))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))]
""
[(set (match_dup 3) (compare:CC (match_dup 1) (match_dup 2)))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))])
(define_split
[(set (match_operand:CCUNS 3 "cc_reg_operand" "")
(compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "u_short_cint_operand" "")))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))]
""
[(set (match_dup 3) (compare:CCUNS (match_dup 1) (match_dup 2)))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))])
(define_insn ""
[(set (match_operand:CCFP 0 "cc_reg_operand" "=y")
(compare:CCFP (match_operand:SF 1 "gpc_reg_operand" "f")
(match_operand:SF 2 "gpc_reg_operand" "f")))]
""
"fcmpu %0,%1,%2"
[(set_attr "type" "fpcompare")])
(define_insn ""
[(set (match_operand:CCFP 0 "cc_reg_operand" "=y")
(compare:CCFP (match_operand:DF 1 "gpc_reg_operand" "f")
(match_operand:DF 2 "gpc_reg_operand" "f")))]
""
"fcmpu %0,%1,%2"
[(set_attr "type" "fpcompare")])
;; Now we have the scc insns. We can do some combinations because of the
;; way the machine works.
;;
;; Note that this is probably faster if we can put an insn between the
;; mfcr and rlinm, but this is tricky. Let's leave it for now. In most
;; cases the insns below which don't use an intermediate CR field will
;; be used instead.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(match_operator:SI 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)]))]
""
"%D1mfcr %0\;{rlinm|rlwinm} %0,%0,%J1,1"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC (match_operator:SI 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)])
(const_int 0)))
(set (match_operand:SI 3 "gpc_reg_operand" "=r")
(match_op_dup 1 [(match_dup 2) (const_int 0)]))]
""
"%D1mfcr %3\;{rlinm.|rlwinm.} %3,%3,%J1,1"
[(set_attr "type" "delayed_compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashift:SI (match_operator:SI 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)])
(match_operand:SI 3 "const_int_operand" "n")))]
""
"*
{
int is_bit = ccr_bit (operands[1], 1);
int put_bit = 31 - (INTVAL (operands[3]) & 31);
int count;
if (is_bit >= put_bit)
count = is_bit - put_bit;
else
count = 32 - (put_bit - is_bit);
operands[4] = gen_rtx (CONST_INT, VOIDmode, count);
operands[5] = gen_rtx (CONST_INT, VOIDmode, put_bit);
return \"%D1mfcr %0\;{rlinm|rlwinm} %0,%0,%4,%5,%5\";
}"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(ashift:SI (match_operator:SI 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)])
(match_operand:SI 3 "const_int_operand" "n"))
(const_int 0)))
(set (match_operand:SI 4 "gpc_reg_operand" "=r")
(ashift:SI (match_op_dup 1 [(match_dup 2) (const_int 0)])
(match_dup 3)))]
""
"*
{
int is_bit = ccr_bit (operands[1], 1);
int put_bit = 31 - (INTVAL (operands[3]) & 31);
int count;
if (is_bit >= put_bit)
count = is_bit - put_bit;
else
count = 32 - (put_bit - is_bit);
operands[5] = gen_rtx (CONST_INT, VOIDmode, count);
operands[6] = gen_rtx (CONST_INT, VOIDmode, put_bit);
return \"%D1mfcr %4\;{rlinm.|rlwinm.} %4,%4,%5,%6,%6\";
}"
[(set_attr "type" "delayed_compare")
(set_attr "length" "12")])
;; If we are comparing the result of two comparisons, this can be done
;; using creqv or crxor.
(define_insn ""
[(set (match_operand:CCEQ 0 "cc_reg_operand" "=y")
(compare:CCEQ (match_operator 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)])
(match_operator 3 "scc_comparison_operator"
[(match_operand 4 "cc_reg_operand" "y")
(const_int 0)])))]
"REGNO (operands[2]) != REGNO (operands[4])"
"*
{
enum rtx_code code1, code2;
code1 = GET_CODE (operands[1]);
code2 = GET_CODE (operands[3]);
if ((code1 == EQ || code1 == LT || code1 == GT
|| code1 == LTU || code1 == GTU
|| (code1 != NE && GET_MODE (operands[2]) == CCFPmode))
!=
(code2 == EQ || code2 == LT || code2 == GT
|| code2 == LTU || code2 == GTU
|| (code2 != NE && GET_MODE (operands[4]) == CCFPmode)))
return \"%C1%C3crxor %E0,%j1,%j3\";
else
return \"%C1%C3creqv %E0,%j1,%j3\";
}"
[(set_attr "length" "12")])
;; There is a 3 cycle delay between consecutive mfcr instructions
;; so it is useful to combine 2 scc instructions to use only one mfcr.
(define_peephole
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(match_operator:SI 1 "scc_comparison_operator"
[(match_operand 2 "cc_reg_operand" "y")
(const_int 0)]))
(set (match_operand:SI 3 "gpc_reg_operand" "=r")
(match_operator:SI 4 "scc_comparison_operator"
[(match_operand 5 "cc_reg_operand" "y")
(const_int 0)]))]
"REGNO (operands[2]) != REGNO (operands[5])"
"%D1%D4mfcr %3\;{rlinm|rlwinm} %0,%3,%J1,1\;{rlinm|rlwinm} %3,%3,%J4,1"
[(set_attr "length" "20")])
;; There are some scc insns that can be done directly, without a compare.
;; These are faster because they don't involve the communications between
;; the FXU and branch units. In fact, we will be replacing all of the
;; integer scc insns here or in the portable methods in emit_store_flag.
;;
;; Also support (neg (scc ..)) since that construct is used to replace
;; branches, (plus (scc ..) ..) since that construct is common and
;; takes no more insns than scc, and (and (neg (scc ..)) ..) in the
;; cases where it is no more expensive than (neg (scc ..)).
;; Have reload force a constant into a register for the simple insns that
;; otherwise won't accept constants. We do this because it is faster than
;; the cmp/mfcr sequence we would otherwise generate.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r")
(eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")))
(clobber (match_scratch:SI 3 "=r,&r,r,r,r"))]
""
"@
xor %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0
{sfi|subfic} %3,%1,0\;{ae|adde} %0,%3,%1
{xoril|xori} %0,%1,%b2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0
{xoriu|xoris} %0,%1,%u2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0
{sfi|subfic} %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae|adde} %0,%3,%0"
[(set_attr "length" "12,8,12,12,12")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x,x,x,x,x")
(compare:CC
(eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r")
(eq:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 3 "=r,&r,r,r,r"))]
""
"@
xor %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0
{sfi|subfic} %3,%1,0\;{ae.|adde.} %0,%3,%1
{xoril|xori} %0,%1,%b2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0
{xoriu|xoris} %0,%1,%u2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0
{sfi|subfic} %0,%1,%2\;{sfi|subfic} %3,%0,0\;{ae.|adde.} %0,%3,%0"
[(set_attr "type" "compare")
(set_attr "length" "12,8,12,12,12")])
;; We have insns of the form shown by the first define_insn below. If
;; there is something inside the comparison operation, we must split it.
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_operator 1 "comparison_operator"
[(match_operand:SI 2 "" "")
(match_operand:SI 3
"reg_or_cint_operand" "")])
(match_operand:SI 4 "gpc_reg_operand" "")))
(clobber (match_operand:SI 5 "register_operand" ""))]
"! gpc_reg_operand (operands[2], SImode)"
[(set (match_dup 5) (match_dup 2))
(set (match_dup 2) (plus:SI (match_op_dup 1 [(match_dup 2) (match_dup 3)])
(match_dup 4)))])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r")
(plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))
(match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r")))
(clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))]
""
"@
xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3
{sfi|subfic} %4,%1,0\;{aze|addze} %0,%3
{xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3
{xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3
{sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3"
[(set_attr "length" "12,8,12,12,12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x,x")
(compare:CC
(plus:SI
(eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))
(match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))]
""
"@
xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3
{sfi|subfic} %4,%1,0\;{aze.|addze.} %0,%3
{xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3
{xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3
{sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12,8,12,12,12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x,x,x,x")
(compare:CC
(plus:SI
(eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))
(match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r")
(plus:SI (eq:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))]
""
"@
xor %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3
{sfi|subfic} %4,%1,0\;{aze.|addze.} %4,%3
{xoril|xori} %4,%1,%b2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3
{xoriu|xoris} %4,%1,%u2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3
{sfi|subfic} %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12,8,12,12,12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r")
(neg:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r")
(match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))))]
""
"@
xor %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0
{ai|addic} %0,%1,-1\;{sfe|subfe} %0,%0,%0
{xoril|xori} %0,%1,%b2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0
{xoriu|xoris} %0,%1,%u2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0
{sfi|subfic} %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0"
[(set_attr "length" "12,8,12,12,12")])
;; This is what (plus (ne X (const_int 0)) Y) looks like.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (lshiftrt:SI
(neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))
(const_int 31))
(match_operand:SI 2 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{ai|addic} %3,%1,-1\;{aze|addze} %0,%2"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (lshiftrt:SI
(neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))
(const_int 31))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{ai|addic} %3,%1,-1\;{aze.|addze.} %3,%2"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (lshiftrt:SI
(neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))
(const_int 31))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_dup 1))) (const_int 31))
(match_dup 2)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{ai|addic} %3,%1,-1\;{aze.|addze.} %0,%2"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O")))
(clobber (match_scratch:SI 3 "=r,X"))]
"TARGET_POWER"
"@
doz %3,%2,%1\;{sfi|subfic} %0,%3,0\;{ae|adde} %0,%0,%3
{ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{sri|srwi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x,x")
(compare:CC
(le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(le:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 3 "=r,X"))]
"TARGET_POWER"
"@
doz %3,%2,%1\;{sfi|subfic} %0,%3,0\;{ae.|adde.} %0,%0,%3
{ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{sri.|srwi.} %0,%0,31"
[(set_attr "type" "compare,delayed_compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O"))
(match_operand:SI 3 "gpc_reg_operand" "r,r")))
(clobber (match_scratch:SI 4 "=&r,&r"))]
"TARGET_POWER"
"@
doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3
{srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze|addze} %0,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
"TARGET_POWER"
"@
doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3
{srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (le:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
"TARGET_POWER"
"@
doz %4,%2,%1\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3
{srai|srawi} %4,%1,31\;{sf|subfc} %4,%1,%4\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(neg:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,O"))))]
"TARGET_POWER"
"@
doz %0,%2,%1\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0
{ai|addic} %0,%1,-1\;{aze|addze} %0,%0\;{srai|srawi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(leu:SI (match_dup 1) (match_dup 2)))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{aze|addze} %0,%3"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (leu:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;nand %0,%0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (neg:SI
(leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(and:SI (neg:SI
(leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x")
(compare:CC
(and:SI (neg:SI
(leu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (neg:SI (leu:SI (match_dup 1) (match_dup 2))) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r"))]
""
"{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))]
"TARGET_POWER"
"doz%I2 %0,%1,%2\;nabs %0,%0\;{sri|srwi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(lt:SI (match_dup 1) (match_dup 2)))]
"TARGET_POWER"
"doz%I2 %0,%1,%2\;nabs %0,%0\;{sri.|srwi.} %0,%0,31"
[(set_attr "type" "delayed_compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze|addze} %0,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (lt:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{ai|addic} %4,%4,-1\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))))]
"TARGET_POWER"
"doz%I2 %0,%1,%2\;nabs %0,%0\;{srai|srawi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))]
""
"@
{sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;neg %0,%0
{ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0\;neg %0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC
(ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ltu:SI (match_dup 1) (match_dup 2)))]
""
"@
{sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;neg. %0,%0
{ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0\;neg. %0,%0"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r")
(plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,r,P,P"))
(match_operand:SI 3 "reg_or_short_operand" "r,I,r,I")))
(clobber (match_scratch:SI 4 "=&r,r,&r,r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %4,%4,%3
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %4,%4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (ltu:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(neg:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))))]
""
"@
{sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0
{ai|addic} %0,%1,%n2\;{sfe|subfe} %0,%0,%0"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))
(clobber (match_scratch:SI 3 "=r"))]
"TARGET_POWER"
"doz%I2 %3,%1,%2\;{sfi|subfic} %0,%3,0\;{ae|adde} %0,%0,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ge:SI (match_dup 1) (match_dup 2)))
(clobber (match_scratch:SI 3 "=r"))]
"TARGET_POWER"
"doz%I2 %3,%1,%2\;{sfi|subfic} %0,%3,0\;{ae.|adde.} %0,%0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze|addze} %0,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (ge:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz%I2 %4,%1,%2\;{sfi|subfic} %4,%4,0\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))))]
"TARGET_POWER"
"doz%I2 %0,%1,%2\;{ai|addic} %0,%0,-1\;{sfe|subfe} %0,%0,%0"
[(set_attr "length" "12")])
;; This is (and (neg (ge X (const_int 0))) Y).
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (neg:SI
(lshiftrt:SI
(not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 31)))
(match_operand:SI 2 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{srai|srawi} %3,%1,31\;andc %0,%2,%3"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(and:SI (neg:SI
(lshiftrt:SI
(not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 31)))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{srai|srawi} %3,%1,31\;andc. %3,%2,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(and:SI (neg:SI
(lshiftrt:SI
(not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(const_int 31)))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (neg:SI (lshiftrt:SI (not:SI (match_dup 1))
(const_int 31)))
(match_dup 2)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{srai|srawi} %3,%1,31\;andc. %0,%2,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))]
""
"@
{sf|subfc} %0,%2,%1\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0
{ai|addic} %0,%1,%n2\;{cal %0,0(0)|li %0,0}\;{ae|adde} %0,%0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x,x")
(compare:CC
(geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(geu:SI (match_dup 1) (match_dup 2)))]
""
"@
{sf|subfc} %0,%2,%1\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0
{ai|addic} %0,%1,%n2\;{cal %0,0(0)|li %0,0}\;{ae.|adde.} %0,%0,%0"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(match_operand:SI 3 "gpc_reg_operand" "r,r")))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{aze|addze} %0,%3
{ai|addic} %4,%1,%n2\;{aze|addze} %0,%3"
[(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{aze.|addze.} %4,%3
{ai|addic} %4,%1,%n2\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (geu:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{aze.|addze.} %0,%3
{ai|addic} %4,%1,%n2\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "8")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "r,I"))))]
""
"@
{sf|subfc} %0,%2,%1\;{sfe|subfe} %0,%0,%0\;nand %0,%0,%0
{sfi|subfic} %0,%1,-1\;a%I2 %0,%0,%2\;{sfe|subfe} %0,%0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(and:SI (neg:SI
(geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))
(match_operand:SI 3 "gpc_reg_operand" "r,r")))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc %0,%3,%4"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC
(and:SI (neg:SI
(geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc. %4,%3,%4"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x")
(compare:CC
(and:SI (neg:SI
(geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(and:SI (neg:SI (geu:SI (match_dup 1) (match_dup 2))) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{sf|subfc} %4,%2,%1\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4
{ai|addic} %4,%1,%n2\;{sfe|subfe} %4,%4,%4\;andc. %0,%3,%4"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)))]
""
"{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{sri|srwi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 2 "cc_reg_operand" "=x")
(compare:CC
(gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gt:SI (match_dup 1) (const_int 0)))]
""
"{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{sri.|srwi.} %0,%0,31"
[(set_attr "type" "delayed_compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r")))]
"TARGET_POWER"
"doz %0,%2,%1\;nabs %0,%0\;{sri|srwi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gt:SI (match_dup 1) (match_dup 2)))]
"TARGET_POWER"
"doz %0,%2,%1\;nabs %0,%0\;{sri.|srwi.} %0,%0,31"
[(set_attr "type" "delayed_compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze|addze} %0,%2"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze.|addze.} %0,%2"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 4 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (gt:SI (match_dup 1) (const_int 0)) (match_dup 2)))
(clobber (match_scratch:SI 3 "=&r"))]
""
"{a|addc} %3,%1,%1\;{sfe|subfe} %3,%1,%3\;{aze.|addze.} %3,%2"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r"))
(match_operand:SI 3 "gpc_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze|addze} %0,%3"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze.|addze.} %4,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x")
(compare:CC
(plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r"))
(match_operand:SI 3 "gpc_reg_operand" "r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(plus:SI (gt:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r"))]
"TARGET_POWER"
"doz %4,%2,%1\;{ai|addic} %4,%4,-1\;{aze.|addze.} %0,%3"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0))))]
""
"{sfi|subfic} %0,%1,0\;{ame|addme} %0,%0\;{srai|srawi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "r"))))]
"TARGET_POWER"
"doz %0,%2,%1\;nabs %0,%0\;{srai|srawi} %0,%0,31"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI")))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;neg %0,%0"
[(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:CC 3 "cc_reg_operand" "=x")
(compare:CC
(gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(gtu:SI (match_dup 1) (match_dup 2)))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0\;neg. %0,%0"
[(set_attr "type" "compare")
(set_attr "length" "12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r")
(plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r")
(match_operand:SI 2 "reg_or_short_operand" "I,r,rI"))
(match_operand:SI 3 "reg_or_short_operand" "r,r,I")))
(clobber (match_scratch:SI 4 "=&r,&r,&r"))]
""
"@
{ai|addic} %4,%1,%k2\;{aze|addze} %0,%3
{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3
{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf%I3|subf%I3c} %0,%4,%3"
[(set_attr "length" "8,12,12")])
(define_insn ""
[(set (match_operand:CC 0 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "I,r"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{ai|addic} %4,%1,%k2\;{aze.|addze.} %0,%3
{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3"
[(set_attr "type" "compare")
(set_attr "length" "8,12")])
(define_insn ""
[(set (match_operand:CC 5 "cc_reg_operand" "=x,x")
(compare:CC
(plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")
(match_operand:SI 2 "reg_or_short_operand" "I,r"))
(match_operand:SI 3 "gpc_reg_operand" "r,r"))
(const_int 0)))
(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (gtu:SI (match_dup 1) (match_dup 2)) (match_dup 3)))
(clobber (match_scratch:SI 4 "=&r,&r"))]
""
"@
{ai|addic} %4,%1,%k2\;{aze.|addze.} %0,%3
{sf%I2|subf%I2c} %4,%1,%2\;{sfe|subfe} %4,%4,%4\;{sf.|subfc.} %0,%4,%3"
[(set_attr "type" "compare")
(set_attr "length" "8,12")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))))]
""
"{sf%I2|subf%I2c} %0,%1,%2\;{sfe|subfe} %0,%0,%0"
[(set_attr "length" "8")])
;; Define both directions of branch and return. If we need a reload
;; register, we'd rather use CR0 since it is much easier to copy a
;; register CC value to there.
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "branch_comparison_operator"
[(match_operand 2
"cc_reg_operand" "x,?y")
(const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (get_attr_length (insn) == 8)
return \"%C1bc %t1,%j1,%l0\";
else
return \"%C1bc %T1,%j1,$+8\;b %l0\";
}"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_comparison_operator"
[(match_operand 1
"cc_reg_operand" "x,?y")
(const_int 0)])
(return)
(pc)))]
"direct_return ()"
"{%C0bcr|%C0bclr} %t0,%j0"
[(set_attr "length" "8")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "branch_comparison_operator"
[(match_operand 2
"cc_reg_operand" "x,?y")
(const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (get_attr_length (insn) == 8)
return \"%C1bc %T1,%j1,%l0\";
else
return \"%C1bc %t1,%j1,$+8\;b %l0\";
}"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_comparison_operator"
[(match_operand 1
"cc_reg_operand" "x,?y")
(const_int 0)])
(pc)
(return)))]
"direct_return ()"
"{%C0bcr|%C0bclr} %T0,%j0"
[(set_attr "length" "8")])
;; Unconditional branch and return.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"b %l0")
(define_insn "return"
[(return)]
"direct_return ()"
"{br|blr}"
[(set_attr "type" "jmpreg")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "c,l"))]
""
"@
bctr
{br|blr}"
[(set_attr "type" "jmpreg")])
;; Table jump for switch statements:
(define_expand "tablejump"
[(set (match_dup 3)
(plus:SI (match_operand:SI 0 "" "")
(match_dup 2)))
(parallel [(set (pc) (match_dup 3))
(use (label_ref (match_operand 1 "" "")))])]
""
"
{ operands[0] = force_reg (SImode, operands[0]);
operands[2] = force_reg (SImode, gen_rtx (LABEL_REF, VOIDmode, operands[1]));
operands[3] = gen_reg_rtx (SImode);
}")
(define_insn ""
[(set (pc)
(match_operand:SI 0 "register_operand" "c,l"))
(use (label_ref (match_operand 1 "" "")))]
""
"@
bctr
{br|blr}")
(define_insn "nop"
[(const_int 0)]
""
"{cror 0,0,0|nop}")
;; Define the subtract-one-and-jump insns, starting with the template
;; so loop.c knows what to generate.
(define_expand "decrement_and_branchsi"
[(parallel [(set (pc) (if_then_else (ne (match_operand:SI 0 "register_operand" "c")
(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0) (plus:SI (match_dup 0) (const_int -1)))])]
""
"")
;; We need to be able to do this for any operand, including MEM, or we
;; will cause reload to blow up since we don't allow output reloads on
;; JUMP_INSNs.
(define_insn ""
[(set (pc)
(if_then_else (ne (match_operand:SI 1 "register_operand" "0,*r,*r")
(const_int 1))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_operand:SI 0 "register_operand" "=c,*r,m*q*c*l")
(plus:SI (match_dup 1) (const_int -1)))
(clobber (match_scratch:CC 3 "=X,&x,&x"))
(clobber (match_scratch:SI 4 "=X,X,r"))]
""
"*
{
if (which_alternative != 0)
return \"#\";
else if (get_attr_length (insn) == 8)
return \"{bdn|bdnz} %l2\";
else
return \"bdz $+8\;b %l2\";
}"
[(set_attr "type" "branch")
(set_attr "length" "*,12,16")])
;; Similar, but we can use GE since we have a REG_NONNEG.
(define_insn ""
[(set (pc)
(if_then_else (ge (match_operand:SI 1 "register_operand" "0,*r,*r")
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_operand:SI 0 "register_operand" "=c,*r,m*q*c*l")
(plus:SI (match_dup 1) (const_int -1)))
(clobber (match_scratch:CC 3 "=X,&x,&X"))
(clobber (match_scratch:SI 4 "=X,X,r"))]
"find_reg_note (insn, REG_NONNEG, 0)"
"*
{
if (which_alternative != 0)
return \"#\";
else if (get_attr_length (insn) == 8)
return \"{bdn|bdnz} %l2\";
else
return \"bdz $+8\;b %l2\";
}"
[(set_attr "type" "branch")
(set_attr "length" "*,12,16")])
(define_insn ""
[(set (pc)
(if_then_else (eq (match_operand:SI 1 "register_operand" "0,*r,*r")
(const_int 1))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_operand:SI 0 "register_operand" "=c,*r,m*q*c*l")
(plus:SI (match_dup 1) (const_int -1)))
(clobber (match_scratch:CC 3 "=X,&x,&x"))
(clobber (match_scratch:SI 4 "=X,X,r"))]
""
"*
{
if (which_alternative != 0)
return \"#\";
else if (get_attr_length (insn) == 8)
return \"bdz %l2\";
else
return \"{bdn|bdnz} $+8\;b %l2\";
}"
[(set_attr "type" "branch")
(set_attr "length" "*,12,16")])
(define_split
[(set (pc)
(if_then_else (match_operator 2 "comparison_operator"
[(match_operand:SI 1 "gpc_reg_operand" "")
(const_int 1)])
(match_operand 5 "" "")
(match_operand 6 "" "")))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(plus:SI (match_dup 1) (const_int -1)))
(clobber (match_scratch:CC 3 ""))
(clobber (match_scratch:SI 4 ""))]
"reload_completed"
[(parallel [(set (match_dup 3)
(compare:CC (plus:SI (match_dup 1) (const_int -1))
(const_int 0)))
(set (match_dup 0) (plus:SI (match_dup 1) (const_int -1)))])
(set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))]
"
{ operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3],
const0_rtx); }")
(define_split
[(set (pc)
(if_then_else (match_operator 2 "comparison_operator"
[(match_operand:SI 1 "gpc_reg_operand" "")
(const_int 1)])
(match_operand 5 "" "")
(match_operand 6 "" "")))
(set (match_operand:SI 0 "general_operand" "")
(plus:SI (match_dup 1) (const_int -1)))
(clobber (match_scratch:CC 3 ""))
(clobber (match_scratch:SI 4 ""))]
"reload_completed && ! gpc_reg_operand (operands[0], SImode)"
[(parallel [(set (match_dup 3)
(compare:CC (plus:SI (match_dup 1) (const_int -1))
(const_int 0)))
(set (match_dup 4) (plus:SI (match_dup 1) (const_int -1)))])
(set (match_dup 0) (match_dup 4))
(set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))]
"
{ operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3],
const0_rtx); }")