home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
g77-0.5.15-src.tgz
/
tar.out
/
fsf
/
g77
/
config
/
sparc
/
sparc.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
144KB
|
4,820 lines
/* Subroutines for insn-output.c for Sun SPARC.
Copyright (C) 1987, 88, 89, 92, 93, 1994 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
at Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "expr.h"
#include "recog.h"
/* 1 if the caller has placed an "unimp" insn immediately after the call.
This is used in v8 code when calling a function that returns a structure.
v9 doesn't have this. */
#define SKIP_CALLERS_UNIMP_P (!TARGET_V9 && current_function_returns_struct)
/* Global variables for machine-dependent things. */
/* Says what architecture we're compiling for. */
enum arch_type sparc_arch_type;
/* Size of frame. Need to know this to emit return insns from leaf procedures.
ACTUAL_FSIZE is set by compute_frame_size() which is called during the
reload pass. This is important as the value is later used in insn
scheduling (to see what can go in a delay slot).
APPARENT_FSIZE is the size of the stack less the register save area and less
the outgoing argument area. It is used when saving call preserved regs. */
static int apparent_fsize;
static int actual_fsize;
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx sparc_compare_op0, sparc_compare_op1;
/* Count of named arguments (v9 only).
??? INIT_CUMULATIVE_ARGS initializes these, and FUNCTION_ARG_ADVANCE
increments SPARC_ARG_COUNT. They are then used by
FUNCTION_ARG_CALLEE_COPIES to determine if the argument is really a named
argument or not. This hack is necessary because the NAMED argument to the
FUNCTION_ARG_XXX macros is not what it says it is: it does not include the
last named argument. */
int sparc_arg_count;
int sparc_n_named_args;
/* We may need an epilogue if we spill too many registers.
If this is non-zero, then we branch here for the epilogue. */
static rtx leaf_label;
#ifdef LEAF_REGISTERS
/* Vector to say how input registers are mapped to output
registers. FRAME_POINTER_REGNUM cannot be remapped by
this function to eliminate it. You must use -fomit-frame-pointer
to get that. */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
-1, -1, -1, -1, -1, -1, 14, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
8, 9, 10, 11, 12, 13, -1, 15,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99};
#endif
/* Name of where we pretend to think the frame pointer points.
Normally, this is "%fp", but if we are in a leaf procedure,
this is "%sp+something". We record "something" separately as it may be
too big for reg+constant addressing. */
static char *frame_base_name;
static int frame_base_offset;
static rtx find_addr_reg ();
static void sparc_init_modes ();
/* Option handling. */
/* Validate and override various options, and do some machine dependent
initialization. */
void
sparc_override_options ()
{
/* Check for any conflicts in the choice of options. */
/* ??? This stuff isn't really usable yet. */
if (! TARGET_V9)
{
if (target_flags & MASK_CODE_MODEL)
error ("code model support is only available with -mv9");
if (TARGET_INT64)
error ("-mint64 is only available with -mv9");
if (TARGET_LONG64)
error ("-mlong64 is only available with -mv9");
if (TARGET_PTR64)
error ("-mptr64 is only available with -mv9");
if (TARGET_ENV32)
error ("-menv32 is only available with -mv9");
if (TARGET_STACK_BIAS)
error ("-mstack-bias is only available with -mv9");
}
else
{
/* ??? Are there any options that aren't usable with v9.
-munaligned-doubles? */
}
/* Check for conflicts in cpu specification.
If we use -mcpu=xxx, this can be removed. */
if ((TARGET_V8 != 0) + (TARGET_SPARCLITE != 0) + (TARGET_V9 != 0) > 1)
error ("conflicting architectures defined");
/* Do various machine dependent initializations. */
sparc_init_modes ();
}
/* Float conversions (v9 only).
The floating point registers cannot hold DImode values because SUBREG's
on them get the wrong register. "(subreg:SI (reg:DI M int-reg) 0)" is the
same as "(subreg:SI (reg:DI N float-reg) 1)", but gcc doesn't know how to
turn the "0" to a "1". Therefore, we must explicitly do the conversions
to/from int/fp regs. `sparc64_fpconv_stack_slot' is the address of an
8 byte stack slot used during the transfer.
??? I could have used [%fp-16] but I didn't want to add yet another
dependence on this. */
/* ??? Can we use assign_stack_temp here? */
static rtx fpconv_stack_temp;
/* Called once for each function. */
void
sparc64_init_expanders ()
{
fpconv_stack_temp = NULL_RTX;
}
/* Assign a stack temp for fp/int DImode conversions. */
rtx
sparc64_fpconv_stack_temp ()
{
if (fpconv_stack_temp == NULL_RTX)
fpconv_stack_temp =
assign_stack_local (DImode, GET_MODE_SIZE (DImode), 0);
return fpconv_stack_temp;
}
/* Return non-zero only if OP is a register of mode MODE,
or const0_rtx. */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (op == const0_rtx || register_operand (op, mode))
return 1;
if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& CONST_DOUBLE_LOW (op) == 0)
return 1;
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
&& GET_CODE (op) == CONST_DOUBLE
&& fp_zero_operand (op))
return 1;
return 0;
}
/* Nonzero if OP is a floating point value with value 0.0. */
int
fp_zero_operand (op)
rtx op;
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
return REAL_VALUES_EQUAL (r, dconst0);
}
/* Nonzero if OP is an integer register. */
int
intreg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, SImode)
|| (TARGET_V9 && register_operand (op, DImode)));
}
/* Nonzero if OP is a floating point condition code register. */
int
ccfp_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
/* This can happen when recog is called from combine. Op may be a MEM.
Fail instead of calling abort in this case. */
if (GET_CODE (op) != REG || REGNO (op) == 0)
return 0;
if (GET_MODE (op) != mode)
return 0;
#if 0 /* ??? ==> 1 when %fcc1-3 are pseudos first. See gen_compare_reg(). */
if (reg_renumber == 0)
return REGNO (op) >= FIRST_PSEUDO_REGISTER;
return REGNO_OK_FOR_CCFP_P (REGNO (op));
#else
return (unsigned) REGNO (op) - 96 < 4;
#endif
}
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
int
restore_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == REG && GET_MODE (op) == mode
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
}
/* Call insn on SPARC can take a PC-relative constant address, or any regular
memory address. */
int
call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
abort ();
op = XEXP (op, 0);
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}
int
call_operand_address (op, mode)
rtx op;
enum machine_mode mode;
{
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
/* ??? This clause seems to be irrelevant. */
case CONST_DOUBLE:
return GET_MODE (op) == mode;
default:
return 0;
}
}
/* Return truth value of statement that OP is a symbolic memory
operand of mode MODE. */
int
symbolic_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
}
/* Return 1 if the operand is a data segment reference. This includes
the readonly data segment, or in other words anything but the text segment.
This is needed in the medium/anywhere code model on v9. These values
are accessed with MEDANY_BASE_REG. */
int
data_segment_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF :
return ! SYMBOL_REF_FLAG (op);
case PLUS :
/* Assume canonical format of symbol + constant. */
case CONST :
return data_segment_operand (XEXP (op, 0));
default :
return 0;
}
}
/* Return 1 if the operand is a text segment reference.
This is needed in the medium/anywhere code model on v9. */
int
text_segment_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case LABEL_REF :
return 1;
case SYMBOL_REF :
return SYMBOL_REF_FLAG (op);
case PLUS :
/* Assume canonical format of symbol + constant. */
case CONST :
return text_segment_operand (XEXP (op, 0));
default :
return 0;
}
}
/* Return 1 if the operand is either a register or a memory operand that is
not symbolic. */
int
reg_or_nonsymb_mem_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (register_operand (op, mode))
return 1;
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
return 1;
return 0;
}
int
sparc_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (register_operand (op, mode))
return 1;
if (GET_CODE (op) == CONST_INT)
return SMALL_INT (op);
if (GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == LO_SUM)
return (GET_CODE (XEXP (op, 0)) == REG
&& symbolic_operand (XEXP (op, 1), Pmode));
return memory_address_p (mode, op);
}
int
move_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode == DImode && arith_double_operand (op, mode))
return 1;
if (register_operand (op, mode))
return 1;
if (GET_CODE (op) == CONST_INT)
return (SMALL_INT (op) || (INTVAL (op) & 0x3ff) == 0);
if (GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == LO_SUM)
return (register_operand (XEXP (op, 0), Pmode)
&& CONSTANT_P (XEXP (op, 1)));
return memory_address_p (mode, op);
}
int
move_pic_label (op, mode)
rtx op;
enum machine_mode mode;
{
/* Special case for PIC. */
if (flag_pic && GET_CODE (op) == LABEL_REF)
return 1;
return 0;
}
int
memop (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == MEM)
return (mode == VOIDmode || mode == GET_MODE (op));
return 0;
}
/* Return truth value of whether OP is EQ or NE. */
int
eq_or_neq (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
or LTU for non-floating-point. We handle those specially. */
int
normal_comp_operator (op, mode)
rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CCFPmode
|| GET_MODE (XEXP (op, 0)) == CCFPEmode)
return 1;
return (code != NE && code != EQ && code != GEU && code != LTU);
}
/* Return 1 if this is a comparison operator. This allows the use of
MATCH_OPERATOR to recognize all the branch insns. */
int
noov_compare_op (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
/* These are the only branches which work with CC_NOOVmode. */
return (code == EQ || code == NE || code == GE || code == LT);
return 1;
}
/* Nonzero if OP is a comparison operator suitable for use in v9
conditional move or branch on register contents instructions. */
int
v9_regcmp_op (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return (code == EQ || code == NE || code == GE || code == LT
|| code == LE || code == GT);
}
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
int
extend_op (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
}
/* Return nonzero if OP is an operator of mode MODE which can set
the condition codes explicitly. We do not include PLUS and MINUS
because these require CC_NOOVmode, which we handle explicitly. */
int
cc_arithop (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == AND
|| GET_CODE (op) == IOR
|| GET_CODE (op) == XOR)
return 1;
return 0;
}
/* Return nonzero if OP is an operator of mode MODE which can bitwise
complement its second operand and set the condition codes explicitly. */
int
cc_arithopn (op, mode)
rtx op;
enum machine_mode mode;
{
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
and (xor ... (not ...)) to (not (xor ...)). */
return (GET_CODE (op) == AND
|| GET_CODE (op) == IOR);
}
/* Return true if OP is a register, or is a CONST_INT that can fit in a 13
bit immediate field. This is an acceptable SImode operand for most 3
address instructions. */
int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
}
/* Return true if OP is a register, or is a CONST_INT that can fit in an 11
bit immediate field. This is an acceptable SImode operand for the movcc
instructions. */
int
arith11_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& ((unsigned) (INTVAL (op) + 0x400) < 0x800)));
}
/* Return true if OP is a register, or is a CONST_INT that can fit in an 10
bit immediate field. This is an acceptable SImode operand for the movrcc
instructions. */
int
arith10_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& ((unsigned) (INTVAL (op) + 0x200) < 0x400)));
}
/* Return true if OP is a register, is a CONST_INT that fits in a 13 bit
immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit
immediate field.
v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in a 13 bit immediate field. This is an acceptable DImode operand
for most 3 address instructions. */
int
arith_double_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op))
|| (! TARGET_V9
&& GET_CODE (op) == CONST_DOUBLE
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
&& (unsigned) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000)
|| (TARGET_V9
&& GET_CODE (op) == CONST_DOUBLE
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0))));
}
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in an 11 bit immediate field. This is an acceptable DImode
operand for the movcc instructions. */
/* ??? Replace with arith11_operand? */
int
arith11_double_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_DOUBLE
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0x400)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0)))
|| (GET_CODE (op) == CONST_INT
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (INTVAL (op) + 0x400) < 0x800));
}
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in an 10 bit immediate field. This is an acceptable DImode
operand for the movrcc instructions. */
/* ??? Replace with arith10_operand? */
int
arith10_double_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_DOUBLE
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0x200)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0)))
|| (GET_CODE (op) == CONST_INT
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (INTVAL (op) + 0x200) < 0x400));
}
/* Return truth value of whether OP is a integer which fits the
range constraining immediate operands in most three-address insns,
which have a 13 bit immediate field. */
int
small_int (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}
/* Recognize operand values for the umul instruction. That instruction sign
extends immediate values just like all other sparc instructions, but
interprets the extended result as an unsigned number. */
int
uns_small_int (op, mode)
rtx op;
enum machine_mode mode;
{
#if HOST_BITS_PER_WIDE_INT > 32
/* All allowed constants will fit a CONST_INT. */
return (GET_CODE (op) == CONST_INT
&& ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
|| (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000L)));
#else
return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
|| (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
#endif
}
int
uns_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return register_operand (op, mode) || uns_small_int (op, mode);
}
/* Return truth value of statement that OP is a call-clobbered register. */
int
clobbered_register (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
}
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for the cc reg in the proper mode. */
rtx
gen_compare_reg (code, x, y)
enum rtx_code code;
rtx x, y;
{
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
rtx cc_reg;
/* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
fpcc regs (cse can't tell they're really call clobbered regs and will
remove a duplicate comparison even if there is an intervening function
call - it will then try to reload the cc reg via an int reg which is why
we need the movcc patterns). It is possible to provide the movcc
patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two
registers (say %g1,%g5) and it takes about 6 insns. A better fix would be
to tell cse that CCFPE mode registers (even pseudoes) are call
clobbered. */
/* ??? This is an experiment. Rather than making changes to cse which may
or may not be easy/clean, we do our own cse. This is possible because
we will generate hard registers. Cse knows they're call clobbered (it
doesn't know the same thing about pseudos). If we guess wrong, no big
deal, but if we win, great! */
if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
#if 1 /* experiment */
{
int reg;
/* We cycle through the registers to ensure they're all exercised. */
static int next_fpcc_reg = 0;
/* Previous x,y for each fpcc reg. */
static rtx prev_args[4][2];
/* Scan prev_args for x,y. */
for (reg = 0; reg < 4; reg++)
if (prev_args[reg][0] == x && prev_args[reg][1] == y)
break;
if (reg == 4)
{
reg = next_fpcc_reg;
prev_args[reg][0] = x;
prev_args[reg][1] = y;
next_fpcc_reg = (next_fpcc_reg + 1) & 3;
}
cc_reg = gen_rtx (REG, mode, reg + 96);
}
#else
cc_reg = gen_reg_rtx (mode);
#endif /* ! experiment */
else
cc_reg = gen_rtx (REG, mode, 0);
emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
gen_rtx (COMPARE, mode, x, y)));
return cc_reg;
}
/* This function is used for v9 only.
CODE is the code for an Scc's comparison.
OPERANDS[0] is the target of the Scc insn.
OPERANDS[1] is the value we compare against const0_rtx (which hasn't
been generated yet).
This function is needed to turn
(set (reg:SI 110)
(gt (reg:CCX 0 %g0)
(const_int 0)))
into
(set (reg:SI 110)
(gt:DI (reg:CCX 0 %g0)
(const_int 0)))
IE: The instruction recognizer needs to see the mode of the comparison to
find the right instruction. We could use "gt:DI" right in the
define_expand, but leaving it out allows us to handle DI, SI, etc.
We refer to the global sparc compare operands sparc_compare_op0 and
sparc_compare_op1.
??? Some of this is outdated as the scc insns set the mode of the
comparison now.
??? We optimize for the case where op1 is 0 and the comparison allows us to
use the "movrCC" insns. This reduces the generated code from three to two
insns. This way seems too brute force though. Is there a more elegant way
to achieve the same effect?
Currently, this function always returns 1. ??? Can it ever fail? */
int
gen_v9_scc (compare_code, operands)
enum rtx_code compare_code;
register rtx *operands;
{
rtx temp;
if (GET_MODE_CLASS (GET_MODE (sparc_compare_op0)) == MODE_INT
&& sparc_compare_op1 == const0_rtx
&& (compare_code == EQ || compare_code == NE
|| compare_code == LT || compare_code == LE
|| compare_code == GT || compare_code == GE))
{
/* Special case for op0 != 0. This can be done with one instruction if
op0 can be clobbered. We store to a temp, and then clobber the temp,
but the combiner will remove the first insn. */
if (compare_code == NE
&& GET_MODE (operands[0]) == DImode
&& GET_MODE (sparc_compare_op0) == DImode)
{
emit_insn (gen_rtx (SET, VOIDmode, operands[0], sparc_compare_op0));
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
gen_rtx (IF_THEN_ELSE, VOIDmode,
gen_rtx (compare_code, DImode,
sparc_compare_op0, const0_rtx),
const1_rtx,
operands[0])));
return 1;
}
emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
if (GET_MODE (sparc_compare_op0) != DImode)
{
temp = gen_reg_rtx (DImode);
convert_move (temp, sparc_compare_op0, 0);
}
else
{
temp = sparc_compare_op0;
}
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
gen_rtx (IF_THEN_ELSE, VOIDmode,
gen_rtx (compare_code, DImode,
temp, const0_rtx),
const1_rtx,
operands[0])));
return 1;
}
else
{
operands[1] = gen_compare_reg (compare_code,
sparc_compare_op0, sparc_compare_op1);
switch (GET_MODE (operands[1]))
{
case CCmode :
case CCXmode :
case CCFPEmode :
case CCFPmode :
break;
default :
abort ();
}
emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
gen_rtx (IF_THEN_ELSE, VOIDmode,
gen_rtx (compare_code,
GET_MODE (operands[1]),
operands[1], const0_rtx),
const1_rtx, operands[0])));
return 1;
}
}
/* Emit a conditional jump insn for the v9 architecture using comparison code
CODE and jump target LABEL.
This function exists to take advantage of the v9 brxx insns. */
void
emit_v9_brxx_insn (code, op0, label)
enum rtx_code code;
rtx op0, label;
{
emit_jump_insn (gen_rtx (SET, VOIDmode,
pc_rtx,
gen_rtx (IF_THEN_ELSE, VOIDmode,
gen_rtx (code, GET_MODE (op0),
op0, const0_rtx),
gen_rtx (LABEL_REF, VOIDmode, label),
pc_rtx)));
}
/* Return nonzero if a return peephole merging return with
setting of output register is ok. */
int
leaf_return_peephole_ok ()
{
return (actual_fsize == 0);
}
/* Return nonzero if TRIAL can go into the function epilogue's
delay slot. SLOT is the slot we are trying to fill. */
int
eligible_for_epilogue_delay (trial, slot)
rtx trial;
int slot;
{
rtx pat, src;
if (slot >= 1)
return 0;
if (GET_CODE (trial) != INSN
|| GET_CODE (PATTERN (trial)) != SET)
return 0;
if (get_attr_length (trial) != 1)
return 0;
/* In the case of a true leaf function, anything can go into the delay slot.
A delay slot only exists however if the frame size is zero, otherwise
we will put an insn to adjust the stack after the return. */
if (leaf_function)
{
if (leaf_return_peephole_ok ())
return (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE);
return 0;
}
/* Otherwise, only operations which can be done in tandem with
a `restore' insn can go into the delay slot. */
pat = PATTERN (trial);
if (GET_CODE (SET_DEST (pat)) != REG
|| REGNO (SET_DEST (pat)) == 0
|| REGNO (SET_DEST (pat)) >= 32
|| REGNO (SET_DEST (pat)) < 24)
return 0;
src = SET_SRC (pat);
if (arith_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
if (arith_double_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
if (GET_CODE (src) == PLUS)
{
if (register_operand (XEXP (src, 0), SImode)
&& arith_operand (XEXP (src, 1), SImode))
return 1;
if (register_operand (XEXP (src, 1), SImode)
&& arith_operand (XEXP (src, 0), SImode))
return 1;
if (register_operand (XEXP (src, 0), DImode)
&& arith_double_operand (XEXP (src, 1), DImode))
return 1;
if (register_operand (XEXP (src, 1), DImode)
&& arith_double_operand (XEXP (src, 0), DImode))
return 1;
}
if (GET_CODE (src) == MINUS
&& register_operand (XEXP (src, 0), SImode)
&& small_int (XEXP (src, 1), VOIDmode))
return 1;
if (GET_CODE (src) == MINUS
&& register_operand (XEXP (src, 0), DImode)
&& !register_operand (XEXP (src, 1), DImode)
&& arith_double_operand (XEXP (src, 1), DImode))
return 1;
return 0;
}
int
short_branch (uid1, uid2)
int uid1, uid2;
{
unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
if (delta + 1024 < 2048)
return 1;
/* warning ("long branch, distance %d", delta); */
return 0;
}
/* Return non-zero if REG is not used after INSN.
We assume REG is a reload reg, and therefore does
not live past labels or calls or jumps. */
int
reg_unused_after (reg, insn)
rtx reg;
rtx insn;
{
enum rtx_code code, prev_code = UNKNOWN;
while (insn = NEXT_INSN (insn))
{
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
return 1;
code = GET_CODE (insn);
if (GET_CODE (insn) == CODE_LABEL)
return 1;
if (GET_RTX_CLASS (code) == 'i')
{
rtx set = single_set (insn);
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
if (set && in_src)
return 0;
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
return 1;
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
return 0;
}
prev_code = code;
}
return 1;
}
/* The rtx for the global offset table which is a special form
that *is* a position independent symbolic constant. */
static rtx pic_pc_rtx;
/* Ensure that we are not using patterns that are not OK with PIC. */
int
check_pic (i)
int i;
{
switch (flag_pic)
{
case 1:
if (GET_CODE (recog_operand[i]) == SYMBOL_REF
|| (GET_CODE (recog_operand[i]) == CONST
&& ! rtx_equal_p (pic_pc_rtx, recog_operand[i])))
abort ();
case 2:
default:
return 1;
}
}
/* Return true if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (x)
rtx x;
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
/* Legitimize PIC addresses. If the address is already position-independent,
we return ORIG. Newly generated position-independent addresses go into a
reg. This is REG if non zero, otherwise we allocate register(s) as
necessary. */
rtx
legitimize_pic_address (orig, mode, reg)
rtx orig;
enum machine_mode mode;
rtx reg;
{
if (GET_CODE (orig) == SYMBOL_REF)
{
rtx pic_ref, address;
rtx insn;
if (reg == 0)
{
if (reload_in_progress || reload_completed)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (flag_pic == 2)
{
/* If not during reload, allocate another temp reg here for loading
in the address, so that these instructions can be optimized
properly. */
rtx temp_reg = ((reload_in_progress || reload_completed)
? reg : gen_reg_rtx (Pmode));
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
won't get confused into thinking that these two instructions
are loading in the true address of the symbol. If in the
future a PIC rtx exists, that should be used instead. */
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
gen_rtx (HIGH, Pmode,
gen_rtx (UNSPEC, Pmode,
gen_rtvec (1, orig),
0))));
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
gen_rtx (LO_SUM, Pmode, temp_reg,
gen_rtx (UNSPEC, Pmode,
gen_rtvec (1, orig),
0))));
address = temp_reg;
}
else
address = orig;
pic_ref = gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, address));
current_function_uses_pic_offset_table = 1;
RTX_UNCHANGING_P (pic_ref) = 1;
insn = emit_move_insn (reg, pic_ref);
/* Put a REG_EQUAL note on this insn, so that it can be optimized
by loop. */
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
REG_NOTES (insn));
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base, offset;
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
{
if (reload_in_progress || reload_completed)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (GET_CODE (XEXP (orig, 0)) == PLUS)
{
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
}
else
abort ();
if (GET_CODE (offset) == CONST_INT)
{
if (SMALL_INT (offset))
return plus_constant_for_output (base, INTVAL (offset));
else if (! reload_in_progress && ! reload_completed)
offset = force_reg (Pmode, offset);
else
/* If we reach here, then something is seriously wrong. */
abort ();
}
return gen_rtx (PLUS, Pmode, base, offset);
}
else if (GET_CODE (orig) == LABEL_REF)
current_function_uses_pic_offset_table = 1;
return orig;
}
/* Set up PIC-specific rtl. This should not cause any insns
to be emitted. */
void
initialize_pic ()
{
}
/* Emit special PIC prologues and epilogues. */
void
finalize_pic ()
{
/* The table we use to reference PIC data. */
rtx global_offset_table;
/* Labels to get the PC in the prologue of this function. */
rtx l1, l2;
rtx seq;
int orig_flag_pic = flag_pic;
if (current_function_uses_pic_offset_table == 0)
return;
if (! flag_pic)
abort ();
flag_pic = 0;
l1 = gen_label_rtx ();
l2 = gen_label_rtx ();
start_sequence ();
emit_label (l1);
/* Note that we pun calls and jumps here! */
emit_jump_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (LABEL_REF, VOIDmode, l2)),
gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 15), gen_rtx (LABEL_REF, VOIDmode, l2)))));
emit_label (l2);
/* Initialize every time through, since we can't easily
know this to be permanent. */
global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
pic_pc_rtx = gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode,
global_offset_table,
gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode,
gen_rtx (LABEL_REF, VOIDmode, l1),
pc_rtx))));
if (Pmode == DImode)
emit_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
gen_rtx (HIGH, Pmode, pic_pc_rtx)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, Pmode, 1)))));
else
emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
gen_rtx (HIGH, Pmode, pic_pc_rtx)));
emit_insn (gen_rtx (SET, VOIDmode,
pic_offset_table_rtx,
gen_rtx (LO_SUM, Pmode,
pic_offset_table_rtx, pic_pc_rtx)));
emit_insn (gen_rtx (SET, VOIDmode,
pic_offset_table_rtx,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, gen_rtx (REG, Pmode, 15))));
/* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */
LABEL_PRESERVE_P (l1) = 1;
LABEL_PRESERVE_P (l2) = 1;
flag_pic = orig_flag_pic;
seq = gen_sequence ();
end_sequence ();
emit_insn_after (seq, get_insns ());
/* Need to emit this whether or not we obey regdecls,
since setjmp/longjmp can cause life info to screw up. */
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally. */
int
emit_move_sequence (operands, mode)
rtx *operands;
enum machine_mode mode;
{
register rtx operand0 = operands[0];
register rtx operand1 = operands[1];
if (CONSTANT_P (operand1) && flag_pic
&& pic_address_needs_scratch (operand1))
operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0);
/* Handle most common case first: storing into a register. */
if (register_operand (operand0, mode))
{
if (register_operand (operand1, mode)
|| (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
|| (GET_CODE (operand1) == CONST_DOUBLE
&& arith_double_operand (operand1, DImode))
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
/* Only `general_operands' can come here, so MEM is ok. */
|| GET_CODE (operand1) == MEM)
{
/* Run this case quickly. */
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
return 1;
}
}
else if (GET_CODE (operand0) == MEM)
{
if (register_operand (operand1, mode) || operand1 == const0_rtx)
{
/* Run this case quickly. */
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
return 1;
}
if (! reload_in_progress)
{
operands[0] = validize_mem (operand0);
operands[1] = operand1 = force_reg (mode, operand1);
}
}
/* Simplify the source if we need to. Must handle DImode HIGH operators
here because such a move needs a clobber added. */
if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode))
{
if (flag_pic && symbolic_operand (operand1, mode))
{
rtx temp_reg = reload_in_progress ? operand0 : 0;
operands[1] = legitimize_pic_address (operand1, mode, temp_reg);
}
else if (GET_CODE (operand1) == CONST_INT
? (! SMALL_INT (operand1)
&& (INTVAL (operand1) & 0x3ff) != 0)
: (GET_CODE (operand1) == CONST_DOUBLE
? ! arith_double_operand (operand1, DImode)
: 1))
{
/* For DImode values, temp must be operand0 because of the way
HI and LO_SUM work. The LO_SUM operator only copies half of
the LSW from the dest of the HI operator. If the LO_SUM dest is
not the same as the HI dest, then the MSW of the LO_SUM dest will
never be set.
??? The real problem here is that the ...(HI:DImode pattern emits
multiple instructions, and the ...(LO_SUM:DImode pattern emits
one instruction. This fails, because the compiler assumes that
LO_SUM copies all bits of the first operand to its dest. Better
would be to have the HI pattern emit one instruction and the
LO_SUM pattern multiple instructions. Even better would be
to use four rtl insns. */
rtx temp = ((reload_in_progress || mode == DImode)
? operand0 : gen_reg_rtx (mode));
if (TARGET_V9 && mode == DImode)
{
int high_operand = 0;
/* If the operand is already a HIGH, then remove the HIGH so
that we won't get duplicate HIGH operators in this insn.
Also, we must store the result into the original dest,
because that is where the following LO_SUM expects it. */
if (GET_CODE (operand1) == HIGH)
{
operand1 = XEXP (operand1, 0);
high_operand = 1;
}
emit_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, temp,
gen_rtx (HIGH, mode, operand1)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, DImode, 1)))));
/* If this was a high operand, then we are now finished. */
if (high_operand)
return 1;
}
else
emit_insn (gen_rtx (SET, VOIDmode, temp,
gen_rtx (HIGH, mode, operand1)));
operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
}
}
if (GET_CODE (operand1) == LABEL_REF && flag_pic)
{
/* The procedure for doing this involves using a call instruction to
get the pc into o7. We need to indicate this explicitly because
the tablejump pattern assumes that it can use this value also. */
emit_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, operand0,
operand1),
gen_rtx (SET, VOIDmode,
gen_rtx (REG, mode, 15),
pc_rtx))));
return 1;
}
/* Now have insn-emit do whatever it normally does. */
return 0;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
char *
singlemove_string (operands)
rtx *operands;
{
if (GET_CODE (operands[0]) == MEM)
{
if (GET_CODE (operands[1]) != MEM)
return "st %r1,%0";
else
abort ();
}
else if (GET_CODE (operands[1]) == MEM)
return "ld %1,%0";
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long i;
/* Must be SFmode, otherwise this doesn't make sense. */
if (GET_MODE (operands[1]) != SFmode)
abort ();
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, i);
operands[1] = gen_rtx (CONST_INT, VOIDmode, i);
if (CONST_OK_FOR_LETTER_P (i, 'I'))
return "mov %1,%0";
else if ((i & 0x000003FF) != 0)
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
else
return "sethi %%hi(%a1),%0";
}
else if (GET_CODE (operands[1]) == CONST_INT
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
{
int i = INTVAL (operands[1]);
/* If all low order 10 bits are clear, then we only need a single
sethi insn to load the constant. */
if ((i & 0x000003FF) != 0)
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
else
return "sethi %%hi(%a1),%0";
}
/* Operand 1 must be a register, or a 'I' type CONST_INT. */
return "mov %1,%0";
}
/* Return non-zero if it is OK to assume that the given memory operand is
aligned at least to a 8-byte boundary. This should only be called
for memory accesses whose size is 8 bytes or larger. */
int
mem_aligned_8 (mem)
register rtx mem;
{
register rtx addr;
register rtx base;
register rtx offset;
if (GET_CODE (mem) != MEM)
return 0; /* It's gotta be a MEM! */
addr = XEXP (mem, 0);
/* Now that all misaligned double parms are copied on function entry,
we can assume any 64-bit object is 64-bit aligned except those which
are at unaligned offsets from the stack or frame pointer. If the
TARGET_UNALIGNED_DOUBLES switch is given, we do not make this
assumption. */
/* See what register we use in the address. */
base = 0;
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
{
base = XEXP (addr, 0);
offset = XEXP (addr, 1);
}
}
else if (GET_CODE (addr) == REG)
{
base = addr;
offset = const0_rtx;
}
/* If it's the stack or frame pointer, check offset alignment.
We can have improper alignment in the function entry code. */
if (base
&& (REGNO (base) == FRAME_POINTER_REGNUM
|| REGNO (base) == STACK_POINTER_REGNUM))
{
if (((INTVAL (offset) - SPARC_STACK_BIAS) & 0x7) == 0)
return 1;
}
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
is true, in which case we can only assume that an access is aligned if
it is to a constant address, or the address involves a LO_SUM.
We used to assume an address was aligned if MEM_IN_STRUCT_P was true.
That assumption was deleted so that gcc generated code can be used with
memory allocators that only guarantee 4 byte alignment. */
else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr)
|| GET_CODE (addr) == LO_SUM)
return 1;
/* An obviously unaligned address. */
return 0;
}
enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP };
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. This is very similar to the following
output_move_quad function. */
char *
output_move_double (operands)
rtx *operands;
{
register rtx op0 = operands[0];
register rtx op1 = operands[1];
register enum optype optype0;
register enum optype optype1;
rtx latehalf[2];
rtx addreg0 = 0;
rtx addreg1 = 0;
int highest_first = 0;
int no_addreg1_decrement = 0;
/* First classify both operands. */
if (REG_P (op0))
optype0 = REGOP;
else if (offsettable_memref_p (op0))
optype0 = OFFSOP;
else if (GET_CODE (op0) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (op1))
optype1 = REGOP;
else if (CONSTANT_P (op1))
optype1 = CNSTOP;
else if (offsettable_memref_p (op1))
optype1 = OFFSOP;
else if (GET_CODE (op1) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP
|| (optype0 == MEM && optype1 == MEM))
abort ();
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (op0, 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (op1, 0));
/* Ok, we can do one word at a time.
Set up in LATEHALF the operands to use for the
high-numbered (least significant) word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (op0, 4);
else
latehalf[0] = op0;
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (op1, 4);
else if (optype1 == CNSTOP)
{
if (TARGET_V9)
{
if (arith_double_operand (op1, DImode))
{
operands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (op1));
return "mov %1,%0";
}
else
{
/* The only way to handle CONST_DOUBLEs or other 64 bit
constants here is to use a temporary, such as is done
for the V9 DImode sethi insn pattern. This is not
a practical solution, so abort if we reach here.
The md file should always force such constants to
memory. */
abort ();
}
}
else
split_double (op1, &operands[1], &latehalf[1]);
}
else
latehalf[1] = op1;
/* Easy case: try moving both words at once. Check for moving between
an even/odd register pair and a memory location. */
if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
&& (TARGET_V9 || (REGNO (op0) & 1) == 0))
|| (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
&& (TARGET_V9 || (REGNO (op1) & 1) == 0)))
{
register rtx mem,reg;
if (optype0 == REGOP)
mem = op1, reg = op0;
else
mem = op0, reg = op1;
/* In v9, ldd can be used for word aligned addresses, so technically
some of this logic is unneeded. We still avoid ldd if the address
is obviously unaligned though. */
if (mem_aligned_8 (mem)
/* If this is a floating point register higher than %f31,
then we *must* use an aligned load, since `ld' will not accept
the register number. */
|| (TARGET_V9 && REGNO (reg) >= 64))
{
if (FP_REG_P (reg) || ! TARGET_V9)
return (mem == op1 ? "ldd %1,%0" : "std %1,%0");
else
return (mem == op1 ? "ldx %1,%0" : "stx %1,%0");
}
}
if (TARGET_V9)
{
if (optype0 == REGOP && optype1 == REGOP)
{
if (FP_REG_P (op0))
return "fmovd %1,%0";
else
return "mov %1,%0";
}
}
/* If the first move would clobber the source of the second one,
do them in the other order. */
/* Overlapping registers. */
if (optype0 == REGOP && optype1 == REGOP
&& REGNO (op0) == REGNO (latehalf[1]))
{
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Loading into a register which overlaps a register used in the address. */
else if (optype0 == REGOP && optype1 != REGOP
&& reg_overlap_mentioned_p (op0, op1))
{
/* If both halves of dest are used in the src memory address,
add the two regs and put them in the low reg (op0).
Then it works to load latehalf first. */
if (reg_mentioned_p (op0, XEXP (op1, 0))
&& reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
{
rtx xops[2];
xops[0] = latehalf[0];
xops[1] = op0;
output_asm_insn ("add %1,%0,%1", xops);
operands[1] = gen_rtx (MEM, DImode, op0);
latehalf[1] = adj_offsettable_operand (operands[1], 4);
addreg1 = 0;
highest_first = 1;
}
/* Only one register in the dest is used in the src memory address,
and this is the first register of the dest, so we want to do
the late half first here also. */
else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
highest_first = 1;
/* Only one register in the dest is used in the src memory address,
and this is the second register of the dest, so we want to do
the late half last. If addreg1 is set, and addreg1 is the same
register as latehalf, then we must suppress the trailing decrement,
because it would clobber the value just loaded. */
else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
no_addreg1_decrement = 1;
}
/* Normal case: do the two words, low-numbered first.
Overlap case (highest_first set): do high-numbered word first. */
if (! highest_first)
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add %0,-0x4,%0", &addreg0);
if (addreg1 && ! no_addreg1_decrement)
output_asm_insn ("add %0,-0x4,%0", &addreg1);
if (highest_first)
output_asm_insn (singlemove_string (operands), operands);
return "";
}
/* Output assembler code to perform a quadword move insn
with operands OPERANDS. This is very similar to the preceding
output_move_double function. */
char *
output_move_quad (operands)
rtx *operands;
{
register rtx op0 = operands[0];
register rtx op1 = operands[1];
register enum optype optype0;
register enum optype optype1;
rtx wordpart[4][2];
rtx addreg0 = 0;
rtx addreg1 = 0;
/* First classify both operands. */
if (REG_P (op0))
optype0 = REGOP;
else if (offsettable_memref_p (op0))
optype0 = OFFSOP;
else if (GET_CODE (op0) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (op1))
optype1 = REGOP;
else if (CONSTANT_P (op1))
optype1 = CNSTOP;
else if (offsettable_memref_p (op1))
optype1 = OFFSOP;
else if (GET_CODE (op1) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP
|| (optype0 == MEM && optype1 == MEM))
abort ();
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the later words. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (op0, 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (op1, 0));
/* Ok, we can do one word at a time.
Set up in wordpart the operands to use for each word of the arguments. */
if (optype0 == REGOP)
{
wordpart[0][0] = gen_rtx (REG, SImode, REGNO (op0) + 0);
wordpart[1][0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
wordpart[2][0] = gen_rtx (REG, SImode, REGNO (op0) + 2);
wordpart[3][0] = gen_rtx (REG, SImode, REGNO (op0) + 3);
}
else if (optype0 == OFFSOP)
{
wordpart[0][0] = adj_offsettable_operand (op0, 0);
wordpart[1][0] = adj_offsettable_operand (op0, 4);
wordpart[2][0] = adj_offsettable_operand (op0, 8);
wordpart[3][0] = adj_offsettable_operand (op0, 12);
}
else
{
wordpart[0][0] = op0;
wordpart[1][0] = op0;
wordpart[2][0] = op0;
wordpart[3][0] = op0;
}
if (optype1 == REGOP)
{
wordpart[0][1] = gen_rtx (REG, SImode, REGNO (op1) + 0);
wordpart[1][1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
wordpart[2][1] = gen_rtx (REG, SImode, REGNO (op1) + 2);
wordpart[3][1] = gen_rtx (REG, SImode, REGNO (op1) + 3);
}
else if (optype1 == OFFSOP)
{
wordpart[0][1] = adj_offsettable_operand (op1, 0);
wordpart[1][1] = adj_offsettable_operand (op1, 4);
wordpart[2][1] = adj_offsettable_operand (op1, 8);
wordpart[3][1] = adj_offsettable_operand (op1, 12);
}
else if (optype1 == CNSTOP)
{
REAL_VALUE_TYPE r;
long l[4];
/* This only works for TFmode floating point constants. */
if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode)
abort ();
REAL_VALUE_FROM_CONST_DOUBLE (r, op1);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
wordpart[0][1] = GEN_INT (l[0]);
wordpart[1][1] = GEN_INT (l[1]);
wordpart[2][1] = GEN_INT (l[2]);
wordpart[3][1] = GEN_INT (l[3]);
}
else
{
wordpart[0][1] = op1;
wordpart[1][1] = op1;
wordpart[2][1] = op1;
wordpart[3][1] = op1;
}
/* Easy case: try moving the quad as two pairs. Check for moving between
an even/odd register pair and a memory location.
Also handle new v9 fp regs here. */
/* ??? Should also handle the case of non-offsettable addresses here.
We can at least do the first pair as a ldd/std, and then do the third
and fourth words individually. */
if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0)
|| (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0))
{
rtx mem, reg;
if (optype0 == REGOP)
mem = op1, reg = op0;
else
mem = op0, reg = op1;
if (mem_aligned_8 (mem)
/* If this is a floating point register higher than %f31,
then we *must* use an aligned load, since `ld' will not accept
the register number. */
|| (TARGET_V9 && REGNO (reg) >= 64))
{
if (TARGET_V9 && FP_REG_P (reg))
{
if ((REGNO (reg) & 3) != 0)
abort ();
return (mem == op1 ? "ldq %1,%0" : "stq %1,%0");
}
operands[2] = adj_offsettable_operand (mem, 8);
if (mem == op1)
return TARGET_V9 ? "ldx %1,%0;ldx %2,%R0" : "ldd %1,%0;ldd %2,%S0";
else
return TARGET_V9 ? "stx %1,%0;stx %R1,%2" : "std %1,%0;std %S1,%2";
}
}
/* If the first move would clobber the source of the second one,
do them in the other order. */
/* Overlapping registers. */
if (optype0 == REGOP && optype1 == REGOP
&& (REGNO (op0) == REGNO (wordpart[1][3])
|| REGNO (op0) == REGNO (wordpart[1][2])
|| REGNO (op0) == REGNO (wordpart[1][1])))
{
/* Do fourth word. */
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
/* Do the third word. */
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
/* Do the second word. */
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
/* Do lowest-numbered word. */
return singlemove_string (wordpart[0]);
}
/* Loading into a register which overlaps a register used in the address. */
if (optype0 == REGOP && optype1 != REGOP
&& reg_overlap_mentioned_p (op0, op1))
{
/* ??? Not implemented yet. This is a bit complicated, because we
must load which ever part overlaps the address last. If the address
is a double-reg address, then there are two parts which need to
be done last, which is impossible. We would need a scratch register
in that case. */
abort ();
}
/* Normal case: move the four words in lowest to higest address order. */
output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);
/* Make any unoffsettable addresses point at the second word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do the second word. */
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
/* Make any unoffsettable addresses point at the third word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do the third word. */
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
/* Make any unoffsettable addresses point at the fourth word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do the fourth word. */
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add %0,-0xc,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,-0xc,%0", &addreg1);
return "";
}
/* Output assembler code to perform a doubleword move insn with operands
OPERANDS, one of which must be a floating point register. */
char *
output_fp_move_double (operands)
rtx *operands;
{
if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
{
if (TARGET_V9)
return "fmovd %1,%0";
else
return "fmovs %1,%0\n\tfmovs %R1,%R0";
}
else if (GET_CODE (operands[1]) == REG)
abort ();
else
return output_move_double (operands);
}
else if (FP_REG_P (operands[1]))
{
if (GET_CODE (operands[0]) == REG)
abort ();
else
return output_move_double (operands);
}
else abort ();
}
/* Output assembler code to perform a quadword move insn with operands
OPERANDS, one of which must be a floating point register. */
char *
output_fp_move_quad (operands)
rtx *operands;
{
register rtx op0 = operands[0];
register rtx op1 = operands[1];
if (FP_REG_P (op0))
{
if (FP_REG_P (op1))
{
if (TARGET_V9)
return "fmovq %1,%0";
else
return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0";
}
else if (GET_CODE (op1) == REG)
abort ();
else
return output_move_quad (operands);
}
else if (FP_REG_P (op1))
{
if (GET_CODE (op0) == REG)
abort ();
else
return output_move_quad (operands);
}
else
abort ();
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
/* We absolutely can not fudge the frame pointer here, because the
frame pointer must always be 8 byte aligned. It also confuses
debuggers. */
if (GET_CODE (XEXP (addr, 0)) == REG
&& REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG
&& REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
abort ();
}
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
#if 0 /* not currently used */
void
output_sized_memop (opname, mode, signedp)
char *opname;
enum machine_mode mode;
int signedp;
{
static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
char **opnametab, *modename;
if (opname[0] == 'l')
if (signedp)
opnametab = ld_size_suffix_s;
else
opnametab = ld_size_suffix_u;
else
opnametab = st_size_suffix;
modename = opnametab[GET_MODE_SIZE (mode) >> 1];
fprintf (asm_out_file, "\t%s%s", opname, modename);
}
void
output_move_with_extension (operands)
rtx *operands;
{
if (GET_MODE (operands[2]) == HImode)
output_asm_insn ("sll %2,0x10,%0", operands);
else if (GET_MODE (operands[2]) == QImode)
output_asm_insn ("sll %2,0x18,%0", operands);
else
abort ();
}
#endif /* not currently used */
#if 0
/* ??? These are only used by the movstrsi pattern, but we get better code
in general without that, because emit_block_move can do just as good a
job as this function does when alignment and size are known. When they
aren't known, a call to strcpy may be faster anyways, because it is
likely to be carefully crafted assembly language code, and below we just
do a byte-wise copy.
Also, emit_block_move expands into multiple read/write RTL insns, which
can then be optimized, whereas our movstrsi pattern can not be optimized
at all. */
/* Load the address specified by OPERANDS[3] into the register
specified by OPERANDS[0].
OPERANDS[3] may be the result of a sum, hence it could either be:
(1) CONST
(2) REG
(2) REG + CONST_INT
(3) REG + REG + CONST_INT
(4) REG + REG (special case of 3).
Note that (3) is not a legitimate address.
All cases are handled here. */
void
output_load_address (operands)
rtx *operands;
{
rtx base, offset;
if (CONSTANT_P (operands[3]))
{
output_asm_insn ("set %3,%0", operands);
return;
}
if (REG_P (operands[3]))
{
if (REGNO (operands[0]) != REGNO (operands[3]))
output_asm_insn ("mov %3,%0", operands);
return;
}
if (GET_CODE (operands[3]) != PLUS)
abort ();
base = XEXP (operands[3], 0);
offset = XEXP (operands[3], 1);
if (GET_CODE (base) == CONST_INT)
{
rtx tmp = base;
base = offset;
offset = tmp;
}
if (GET_CODE (offset) != CONST_INT)
{
/* Operand is (PLUS (REG) (REG)). */
base = operands[3];
offset = const0_rtx;
}
if (REG_P (base))
{
operands[6] = base;
operands[7] = offset;
if (SMALL_INT (offset))
output_asm_insn ("add %6,%7,%0", operands);
else
output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
}
else if (GET_CODE (base) == PLUS)
{
operands[6] = XEXP (base, 0);
operands[7] = XEXP (base, 1);
operands[8] = offset;
if (SMALL_INT (offset))
output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
else
output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
}
else
abort ();
}
/* Output code to place a size count SIZE in register REG.
ALIGN is the size of the unit of transfer.
Because block moves are pipelined, we don't include the
first element in the transfer of SIZE to REG. */
static void
output_size_for_block_move (size, reg, align)
rtx size, reg;
rtx align;
{
rtx xoperands[3];
xoperands[0] = reg;
xoperands[1] = size;
xoperands[2] = align;
if (GET_CODE (size) == REG)
output_asm_insn ("sub %1,%2,%0", xoperands);
else
{
xoperands[1]
= gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
output_asm_insn ("set %1,%0", xoperands);
}
}
/* Emit code to perform a block move.
OPERANDS[0] is the destination.
OPERANDS[1] is the source.
OPERANDS[2] is the size.
OPERANDS[3] is the alignment safe to use.
OPERANDS[4] is a register we can safely clobber as a temp. */
char *
output_block_move (operands)
rtx *operands;
{
/* A vector for our computed operands. Note that load_output_address
makes use of (and can clobber) up to the 8th element of this vector. */
rtx xoperands[10];
rtx zoperands[10];
static int movstrsi_label = 0;
int i;
rtx temp1 = operands[4];
rtx sizertx = operands[2];
rtx alignrtx = operands[3];
int align = INTVAL (alignrtx);
char label3[30], label5[30];
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = temp1;
/* We can't move more than this many bytes at a time because we have only
one register, %g1, to move them through. */
if (align > UNITS_PER_WORD)
{
align = UNITS_PER_WORD;
alignrtx = gen_rtx (CONST_INT, VOIDmode, UNITS_PER_WORD);
}
/* We consider 8 ld/st pairs, for a total of 16 inline insns to be
reasonable here. (Actually will emit a maximum of 18 inline insns for
the case of size == 31 and align == 4). */
if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8
&& memory_address_p (QImode, plus_constant_for_output (xoperands[0],
INTVAL (sizertx)))
&& memory_address_p (QImode, plus_constant_for_output (xoperands[1],
INTVAL (sizertx))))
{
int size = INTVAL (sizertx);
int offset = 0;
/* We will store different integers into this particular RTX. */
xoperands[2] = rtx_alloc (CONST_INT);
PUT_MODE (xoperands[2], VOIDmode);
/* This case is currently not handled. Abort instead of generating
bad code. */
if (align > UNITS_PER_WORD)
abort ();
if (TARGET_V9 && align >= 8)
{
for (i = (size >> 3) - 1; i >= 0; i--)
{
INTVAL (xoperands[2]) = (i << 3) + offset;
output_asm_insn ("ldx [%a1+%2],%%g1\n\tstx %%g1,[%a0+%2]",
xoperands);
}
offset += (size & ~0x7);
size = size & 0x7;
if (size == 0)
return "";
}
if (align >= 4)
{
for (i = (size >> 2) - 1; i >= 0; i--)
{
INTVAL (xoperands[2]) = (i << 2) + offset;
output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
xoperands);
}
offset += (size & ~0x3);
size = size & 0x3;
if (size == 0)
return "";
}
if (align >= 2)
{
for (i = (size >> 1) - 1; i >= 0; i--)
{
INTVAL (xoperands[2]) = (i << 1) + offset;
output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
xoperands);
}
offset += (size & ~0x1);
size = size & 0x1;
if (size == 0)
return "";
}
if (align >= 1)
{
for (i = size - 1; i >= 0; i--)
{
INTVAL (xoperands[2]) = i + offset;
output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
xoperands);
}
return "";
}
/* We should never reach here. */
abort ();
}
/* If the size isn't known to be a multiple of the alignment,
we have to do it in smaller pieces. If we could determine that
the size was a multiple of 2 (or whatever), we could be smarter
about this. */
if (GET_CODE (sizertx) != CONST_INT)
align = 1;
else
{
int size = INTVAL (sizertx);
while (size % align)
align >>= 1;
}
if (align != INTVAL (alignrtx))
alignrtx = gen_rtx (CONST_INT, VOIDmode, align);
xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align);
xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3]));
ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5]));
/* This is the size of the transfer. Emit code to decrement the size
value by ALIGN, and store the result in the temp1 register. */
output_size_for_block_move (sizertx, temp1, alignrtx);
/* Must handle the case when the size is zero or negative, so the first thing
we do is compare the size against zero, and only copy bytes if it is
zero or greater. Note that we have already subtracted off the alignment
once, so we must copy 1 alignment worth of bytes if the size is zero
here.
The SUN assembler complains about labels in branch delay slots, so we
do this before outputting the load address, so that there will always
be a harmless insn between the branch here and the next label emitted
below. */
{
char pattern[100];
sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]);
output_asm_insn (pattern, xoperands);
}
zoperands[0] = operands[0];
zoperands[3] = plus_constant_for_output (operands[0], align);
output_load_address (zoperands);
/* ??? This might be much faster if the loops below were preconditioned
and unrolled.
That is, at run time, copy enough bytes one at a time to ensure that the
target and source addresses are aligned to the the largest possible
alignment. Then use a preconditioned unrolled loop to copy say 16
bytes at a time. Then copy bytes one at a time until finish the rest. */
/* Output the first label separately, so that it is spaced properly. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));
{
char pattern[200];
register char *ld_suffix = ((align == 1) ? "ub" : (align == 2) ? "uh"
: (align == 8 && TARGET_V9) ? "x" : "");
register char *st_suffix = ((align == 1) ? "b" : (align == 2) ? "h"
: (align == 8 && TARGET_V9) ? "x" : "");
sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]);
output_asm_insn (pattern, xoperands);
}
return "";
}
#endif
/* Output reasonable peephole for set-on-condition-code insns.
Note that these insns assume a particular way of defining
labels. Therefore, *both* sparc.h and this function must
be changed if a new syntax is needed. */
char *
output_scc_insn (operands, insn)
rtx operands[];
rtx insn;
{
static char string[100];
rtx label = 0, next = insn;
int need_label = 0;
/* Try doing a jump optimization which jump.c can't do for us
because we did not expose that setcc works by using branches.
If this scc insn is followed by an unconditional branch, then have
the jump insn emitted here jump to that location, instead of to
the end of the scc sequence as usual. */
do
{
if (GET_CODE (next) == CODE_LABEL)
label = next;
next = NEXT_INSN (next);
if (next == 0)
break;
}
while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);
/* If we are in a sequence, and the following insn is a sequence also,
then just following the current insn's next field will take us to the
first insn of the next sequence, which is the wrong place. We don't
want to optimize with a branch that has had its delay slot filled.
Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
which fails only if NEXT is such a branch. */
if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
&& (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
label = JUMP_LABEL (next);
/* If not optimizing, jump label fields are not set. To be safe, always
check here to whether label is still zero. */
if (label == 0)
{
label = gen_label_rtx ();
need_label = 1;
}
LABEL_NUSES (label) += 1;
operands[2] = label;
/* If we are in a delay slot, assume it is the delay slot of an fpcc
insn since our type isn't allowed anywhere else. */
/* ??? Fpcc instructions no longer have delay slots, so this code is
probably obsolete. */
/* The fastest way to emit code for this is an annulled branch followed
by two move insns. This will take two cycles if the branch is taken,
and three cycles if the branch is not taken.
However, if we are in the delay slot of another branch, this won't work,
because we can't put a branch in the delay slot of another branch.
The above sequence would effectively take 3 or 4 cycles respectively
since a no op would have be inserted between the two branches.
In this case, we want to emit a move, annulled branch, and then the
second move. This sequence always takes 3 cycles, and hence is faster
when we are in a branch delay slot. */
if (final_sequence)
{
strcpy (string, "mov 0,%0\n\t");
strcat (string, output_cbranch (operands[1], 0, 2, 0, 1, 0));
strcat (string, "\n\tmov 1,%0");
}
else
{
strcpy (string, output_cbranch (operands[1], 0, 2, 0, 1, 0));
strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
}
if (need_label)
strcat (string, "\n%l2:");
return string;
}
/* Vectors to keep interesting information about registers where it can easily
be got. We use to use the actual mode value as the bit number, but there
are more than 32 modes now. Instead we use two tables: one indexed by
hard register number, and one indexed by mode. */
/* The purpose of sparc_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
mapped into one sparc_mode_class mode. */
enum sparc_mode_class {
C_MODE, CCFP_MODE,
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE
};
/* Modes for condition codes. */
#define C_MODES ((1 << (int) C_MODE) | (1 << (int) CCFP_MODE))
#define CCFP_MODES (1 << (int) CCFP_MODE)
/* Modes for single-word and smaller quantities. */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for single-float quantities. We must allow any single word or
smaller quantity. This is because the fix/float conversion instructions
take integer inputs/outputs from the float registers. */
#define SF_MODES (S_MODES)
/* Modes for double-float and smaller quantities. */
#define DF_MODES (S_MODES | D_MODES)
/* ??? Sparc64 fp regs cannot hold DImode values. */
#define DF_MODES64 (SF_MODES | DF_MODE /* | D_MODE*/)
/* Modes for double-float only quantities. */
/* ??? Sparc64 fp regs cannot hold DImode values. */
#define DF_ONLY_MODES ((1 << (int) DF_MODE) /*| (1 << (int) D_MODE)*/)
/* Modes for double-float and larger quantities. */
#define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES)
/* Modes for quad-float only quantities. */
#define TF_ONLY_MODES (1 << (int) TF_MODE)
/* Modes for quad-float and smaller quantities. */
#define TF_MODES (DF_MODES | TF_ONLY_MODES)
/* ??? Sparc64 fp regs cannot hold DImode values. */
#define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES)
/* Value is 1 if register/mode pair is acceptable on sparc.
The funny mixture of D and T modes is because integer operations
do not specially operate on tetra quantities, so non-quad-aligned
registers can hold quadword quantities (except %o4 and %i4 because
they cross fixed registers. */
/* This points to either the 32 bit or the 64 bit version. */
int *hard_regno_mode_classes;
static int hard_32bit_mode_classes[] = {
C_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
};
static int hard_64bit_mode_classes[] = {
C_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
/* The remaining registers do not exist on a non-v9 sparc machine.
FP regs f32 to f63. Only the even numbered registers actually exist,
and none can hold SFmode/SImode values. */
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
/* %fcc[0123] */
CCFP_MODE, CCFP_MODE, CCFP_MODE, CCFP_MODE
};
int sparc_mode_class [NUM_MACHINE_MODES];
static void
sparc_init_modes ()
{
int i;
sparc_arch_type = TARGET_V9 ? ARCH_64BIT : ARCH_32BIT;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
switch (GET_MODE_CLASS (i))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (GET_MODE_SIZE (i) <= 4)
sparc_mode_class[i] = 1 << (int) S_MODE;
else if (GET_MODE_SIZE (i) == 8)
sparc_mode_class[i] = 1 << (int) D_MODE;
else if (GET_MODE_SIZE (i) == 16)
sparc_mode_class[i] = 1 << (int) T_MODE;
else if (GET_MODE_SIZE (i) == 32)
sparc_mode_class[i] = 1 << (int) O_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (GET_MODE_SIZE (i) <= 4)
sparc_mode_class[i] = 1 << (int) SF_MODE;
else if (GET_MODE_SIZE (i) == 8)
sparc_mode_class[i] = 1 << (int) DF_MODE;
else if (GET_MODE_SIZE (i) == 16)
sparc_mode_class[i] = 1 << (int) TF_MODE;
else if (GET_MODE_SIZE (i) == 32)
sparc_mode_class[i] = 1 << (int) OF_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_CC:
default:
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
we must explicitly check for them here. */
if (i == (int) CCFPmode || i == (int) CCFPEmode)
sparc_mode_class[i] = 1 << (int) CCFP_MODE;
else if (i == (int) CCmode || i == (int) CC_NOOVmode
#ifdef SPARCV9
|| i == (int) CCXmode
|| i == (int) CCX_NOOVmode
#endif
)
sparc_mode_class[i] = 1 << (int) C_MODE;
else
sparc_mode_class[i] = 0;
break;
}
}
if (TARGET_V9)
hard_regno_mode_classes = hard_64bit_mode_classes;
else
hard_regno_mode_classes = hard_32bit_mode_classes;
}
/* Save non call used registers from LOW to HIGH at BASE+OFFSET.
N_REGS is the number of 4-byte regs saved thus far. This applies even to
v9 int regs as it simplifies the code. */
#ifdef __GNUC__
__inline__
#endif
static int
save_regs (file, low, high, base, offset, n_regs)
FILE *file;
int low, high;
char *base;
int offset;
int n_regs;
{
int i;
if (TARGET_V9 && high <= 32)
{
for (i = low; i < high; i++)
{
if (regs_ever_live[i] && ! call_used_regs[i])
fprintf (file, "\tstx %s,[%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs),
n_regs += 2;
}
}
else
{
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tstd %s,[%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs),
n_regs += 2;
else
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs),
n_regs += 2;
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[i+1], base, offset + 4 * n_regs + 4),
n_regs += 2;
}
}
return n_regs;
}
/* Restore non call used registers from LOW to HIGH at BASE+OFFSET.
N_REGS is the number of 4-byte regs saved thus far. This applies even to
v9 int regs as it simplifies the code. */
#ifdef __GNUC__
__inline__
#endif
static int
restore_regs (file, low, high, base, offset, n_regs)
FILE *file;
int low, high;
char *base;
int offset;
int n_regs;
{
int i;
if (TARGET_V9 && high <= 32)
{
for (i = low; i < high; i++)
{
if (regs_ever_live[i] && ! call_used_regs[i])
fprintf (file, "\tldx [%s+%d], %s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
}
}
else
{
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tldd [%s+%d], %s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
else
fprintf (file, "\tld [%s+%d],%s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tld [%s+%d],%s\n",
base, offset + 4 * n_regs + 4, reg_names[i+1]),
n_regs += 2;
}
}
return n_regs;
}
/* Static variables we want to share between prologue and epilogue. */
/* Number of live general or floating point registers needed to be saved
(as 4-byte quantities). This is only done if TARGET_EPILOGUE. */
static int num_gfregs;
/* Compute the frame size required by the function. This function is called
during the reload pass and also by output_function_prologue(). */
int
compute_frame_size (size, leaf_function)
int size;
int leaf_function;
{
int n_regs = 0, i;
int outgoing_args_size = (current_function_outgoing_args_size
#ifndef SPARCV9
+ REG_PARM_STACK_SPACE (current_function_decl)
#endif
);
if (TARGET_EPILOGUE)
{
/* N_REGS is the number of 4-byte regs saved thus far. This applies
even to v9 int regs to be consistent with save_regs/restore_regs. */
if (TARGET_V9)
{
for (i = 0; i < 8; i++)
if (regs_ever_live[i] && ! call_used_regs[i])
n_regs += 2;
}
else
{
for (i = 0; i < 8; i += 2)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
n_regs += 2;
}
for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
n_regs += 2;
}
/* Set up values for use in `function_epilogue'. */
num_gfregs = n_regs;
if (leaf_function && n_regs == 0
&& size == 0 && current_function_outgoing_args_size == 0)
{
actual_fsize = apparent_fsize = 0;
}
else
{
/* We subtract STARTING_FRAME_OFFSET, remember it's negative.
The stack bias (if any) is taken out to undo its effects. */
apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8;
apparent_fsize += n_regs * 4;
actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8);
}
/* Make sure nothing can clobber our register windows.
If a SAVE must be done, or there is a stack-local variable,
the register window area must be allocated.
??? For v9 we need an additional 8 bytes of reserved space, apparently
it's needed by v8 as well. */
if (leaf_function == 0 || size > 0)
actual_fsize += (16 * UNITS_PER_WORD) + 8;
return SPARC_STACK_ALIGN (actual_fsize);
}
/* Build a (32 bit) big number in a register. */
/* ??? We may be able to use the set macro here too. */
static void
build_big_number (file, num, reg)
FILE *file;
int num;
char *reg;
{
if (num >= 0 || ! TARGET_V9)
{
fprintf (file, "\tsethi %%hi(%d),%s\n", num, reg);
if ((num & 0x3ff) != 0)
fprintf (file, "\tor %s,%%lo(%d),%s\n", reg, num, reg);
}
else /* num < 0 && TARGET_V9 */
{
/* Sethi does not sign extend, so we must use a little trickery
to use it for negative numbers. Invert the constant before
loading it in, then use xor immediate to invert the loaded bits
(along with the upper 32 bits) to the desired constant. This
works because the sethi and immediate fields overlap. */
int asize = num;
int inv = ~asize;
int low = -0x400 + (asize & 0x3FF);
fprintf (file, "\tsethi %%hi(%d),%s\n\txor %s,%d,%s\n",
inv, reg, reg, low, reg);
}
}
/* Output code for the function prologue. */
void
output_function_prologue (file, size, leaf_function)
FILE *file;
int size;
int leaf_function;
{
/* Need to use actual_fsize, since we are also allocating
space for our callee (and our own register save area). */
actual_fsize = compute_frame_size (size, leaf_function);
if (leaf_function)
{
frame_base_name = "%sp";
frame_base_offset = actual_fsize + SPARC_STACK_BIAS;
}
else
{
frame_base_name = "%fp";
frame_base_offset = SPARC_STACK_BIAS;
}
/* This is only for the human reader. */
fprintf (file, "\t!#PROLOGUE# 0\n");
if (actual_fsize == 0)
/* do nothing. */ ;
else if (actual_fsize <= 4096)
{
if (! leaf_function)
fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
else
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
}
else if (actual_fsize <= 8192)
{
/* For frames in the range 4097..8192, we can use just two insns. */
if (! leaf_function)
{
fprintf (file, "\tsave %%sp,-4096,%%sp\n");
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
}
else
{
fprintf (file, "\tadd %%sp,-4096,%%sp\n");
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
}
}
else
{
build_big_number (file, -actual_fsize, "%g1");
if (! leaf_function)
fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
else
fprintf (file, "\tadd %%sp,%%g1,%%sp\n");
}
/* If doing anything with PIC, do it now. */
if (! flag_pic)
fprintf (file, "\t!#PROLOGUE# 1\n");
/* Call saved registers are saved just above the outgoing argument area. */
if (num_gfregs)
{
int offset, n_regs;
char *base;
offset = -apparent_fsize + frame_base_offset;
if (offset < -4096 || offset + num_gfregs * 4 > 4096)
{
/* ??? This might be optimized a little as %g1 might already have a
value close enough that a single add insn will do. */
/* ??? Although, all of this is probably only a temporary fix
because if %g1 can hold a function result, then
output_function_epilogue will lose (the result will get
clobbered). */
build_big_number (file, offset, "%g1");
fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
base = "%g1";
offset = 0;
}
else
{
base = frame_base_name;
}
if (TARGET_EPILOGUE && ! leaf_function)
/* ??? Originally saved regs 0-15 here. */
n_regs = save_regs (file, 0, 8, base, offset, 0);
else if (leaf_function)
/* ??? Originally saved regs 0-31 here. */
n_regs = save_regs (file, 0, 8, base, offset, 0);
if (TARGET_EPILOGUE)
save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
}
leaf_label = 0;
if (leaf_function && actual_fsize != 0)
{
/* warning ("leaf procedure with frame size %d", actual_fsize); */
if (! TARGET_EPILOGUE)
leaf_label = gen_label_rtx ();
}
}
/* Output code for the function epilogue. */
void
output_function_epilogue (file, size, leaf_function)
FILE *file;
int size;
int leaf_function;
{
char *ret;
if (leaf_label)
{
emit_label_after (leaf_label, get_last_insn ());
final_scan_insn (get_last_insn (), file, 0, 0, 1);
}
/* Restore any call saved registers. */
if (num_gfregs)
{
int offset, n_regs;
char *base;
offset = -apparent_fsize + frame_base_offset;
if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/)
{
build_big_number (file, offset, "%g1");
fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
base = "%g1";
offset = 0;
}
else
{
base = frame_base_name;
}
if (TARGET_EPILOGUE && ! leaf_function)
/* ??? Originally saved regs 0-15 here. */
n_regs = restore_regs (file, 0, 8, base, offset, 0);
else if (leaf_function)
/* ??? Originally saved regs 0-31 here. */
n_regs = restore_regs (file, 0, 8, base, offset, 0);
if (TARGET_EPILOGUE)
restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
}
/* Work out how to skip the caller's unimp instruction if required. */
if (leaf_function)
ret = (SKIP_CALLERS_UNIMP_P ? "jmp %o7+12" : "retl");
else
ret = (SKIP_CALLERS_UNIMP_P ? "jmp %i7+12" : "ret");
if (TARGET_EPILOGUE || leaf_label)
{
int old_target_epilogue = TARGET_EPILOGUE;
target_flags &= ~old_target_epilogue;
if (! leaf_function)
{
/* If we wound up with things in our delay slot, flush them here. */
if (current_function_epilogue_delay_list)
{
rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
get_last_insn ());
PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
PATTERN (insn)));
final_scan_insn (insn, file, 1, 0, 1);
}
else
fprintf (file, "\t%s\n\trestore\n", ret);
}
/* All of the following cases are for leaf functions. */
else if (current_function_epilogue_delay_list)
{
/* eligible_for_epilogue_delay_slot ensures that if this is a
leaf function, then we will only have insn in the delay slot
if the frame size is zero, thus no adjust for the stack is
needed here. */
if (actual_fsize != 0)
abort ();
fprintf (file, "\t%s\n", ret);
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, 1, 0, 1);
}
/* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
avoid generating confusing assembly language output. */
else if (actual_fsize == 0)
fprintf (file, "\t%s\n\tnop\n", ret);
else if (actual_fsize <= 4096)
fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize);
else if (actual_fsize <= 8192)
fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n",
ret, actual_fsize - 4096);
else if ((actual_fsize & 0x3ff) == 0)
fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
actual_fsize, ret);
else
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
actual_fsize, actual_fsize, ret);
target_flags |= old_target_epilogue;
}
}
/* Do what is necessary for `va_start'. The argument is ignored.
!v9: We look at the current function to determine if stdarg or varargs
is used and return the address of the first unnamed parameter.
v9: We save the argument integer and floating point regs in a buffer, and
return the address of this buffer. The rest is handled in va-sparc.h. */
/* ??? This is currently conditioned on #ifdef SPARCV9 because
current_function_args_info is different in each compiler. */
#ifdef SPARCV9
rtx
sparc_builtin_saveregs (arglist)
tree arglist;
{
tree fntype = TREE_TYPE (current_function_decl);
/* First unnamed integer register. */
int first_intreg = current_function_args_info.arg_count[(int) SPARC_ARG_INT];
/* Number of integer registers we need to save. */
int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg);
/* First unnamed SFmode float reg (no, you can't pass SFmode floats as
unnamed arguments, we just number them that way). We must round up to
the next double word float reg - that is the first one to save. */
int first_floatreg = current_function_args_info.arg_count[(int) SPARC_ARG_FLOAT] + 1 & ~1;
/* Number of SFmode float regs to save. */
int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg);
int ptrsize = GET_MODE_SIZE (Pmode);
rtx valist, regbuf, fpregs;
int bufsize, adjust, regno;
/* Allocate block of memory for the regs.
We only allocate as much as we need, but we must ensure quadword float
regs are stored with the appropriate alignment. */
/* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte?
Or can assign_stack_local accept a 0 SIZE argument? */
bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * (UNITS_PER_WORD / 2));
/* Add space in front of the int regs to ensure proper alignment of quadword
fp regs. We must add the space in front because va_start assumes this. */
if (n_floatregs >= 4)
adjust = ((n_intregs + first_floatreg / 2) % 2) * UNITS_PER_WORD;
else
adjust = 0;
regbuf = assign_stack_local (BLKmode, bufsize + adjust,
GET_MODE_BITSIZE (TFmode));
regbuf = gen_rtx (MEM, BLKmode, plus_constant (XEXP (regbuf, 0), adjust));
MEM_IN_STRUCT_P (regbuf) = 1;
/* Save int args.
This is optimized to only save the regs that are necessary. Explicitly
named args need not be saved. */
if (n_intregs > 0)
move_block_from_reg (BASE_INCOMING_ARG_REG (SImode) + first_intreg,
regbuf, n_intregs, n_intregs * UNITS_PER_WORD);
/* Save float args.
This is optimized to only save the regs that are necessary. Explicitly
named args need not be saved.
We explicitly build a pointer to the buffer because it halves the insn
count when not optimizing (otherwise the pointer is built for each reg
saved). */
fpregs = gen_reg_rtx (Pmode);
emit_move_insn (fpregs, plus_constant (XEXP (regbuf, 0),
n_intregs * UNITS_PER_WORD));
for (regno = first_floatreg; regno < NPARM_REGS (SFmode); regno += 2)
emit_move_insn (gen_rtx (MEM, DFmode,
plus_constant (fpregs,
GET_MODE_SIZE (SFmode)
* (regno - first_floatreg))),
gen_rtx (REG, DFmode,
BASE_INCOMING_ARG_REG (DFmode) + regno));
/* Return the address of the regbuf. */
return XEXP (regbuf, 0);
}
#else /* ! SPARCV9 */
rtx
sparc_builtin_saveregs (arglist)
tree arglist;
{
tree fntype = TREE_TYPE (current_function_decl);
int stdarg = (TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node));
int first_reg = current_function_args_info;
rtx address;
int regno;
#if 0 /* This code seemed to have no effect except to make
varargs not work right when va_list wasn't the first arg. */
if (! stdarg)
first_reg = 0;
#endif
for (regno = first_reg; regno < NPARM_REGS (SImode); regno++)
emit_move_insn (gen_rtx (MEM, word_mode,
gen_rtx (PLUS, Pmode,
frame_pointer_rtx,
GEN_INT (STACK_POINTER_OFFSET
+ UNITS_PER_WORD * regno))),
gen_rtx (REG, word_mode, BASE_INCOMING_ARG_REG (word_mode)
+ regno));
address = gen_rtx (PLUS, Pmode,
frame_pointer_rtx,
GEN_INT (STACK_POINTER_OFFSET
+ UNITS_PER_WORD * first_reg));
return address;
}
#endif /* ! SPARCV9 */
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label. OP is the conditional expression. The
mode of register 0 says what kind of comparison we made.
FP_COND_REG indicates which fp condition code register to use if this is
a floating point branch.
REVERSED is non-zero if we should reverse the sense of the comparison.
ANNUL is non-zero if we should generate an annulling branch.
NOOP is non-zero if we have to follow this branch by a noop. */
char *
output_cbranch (op, fp_cond_reg, label, reversed, annul, noop)
rtx op, fp_cond_reg;
int label;
int reversed, annul, noop;
{
static char string[20];
enum rtx_code code = GET_CODE (op);
enum machine_mode mode = GET_MODE (XEXP (op, 0));
static char v8_labelno[] = " %lX";
static char v9_icc_labelno[] = " %%icc,%lX";
static char v9_xcc_labelno[] = " %%xcc,%lX";
static char v9_fcc_labelno[] = " %%fccX,%lY";
char *labelno;
int labeloff;
/* ??? !v9: FP branches cannot be preceded by another floating point insn.
Because there is currently no concept of pre-delay slots, we can fix
this only by always emitting a nop before a floating point branch. */
if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9)
strcpy (string, "nop\n\t");
else
string[0] = '\0';
/* If not floating-point or if EQ or NE, we can just reverse the code. */
if (reversed
&& ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
code = reverse_condition (code), reversed = 0;
/* Start by writing the branch condition. */
switch (code)
{
case NE:
if (mode == CCFPmode || mode == CCFPEmode)
strcat (string, "fbne");
else
strcpy (string, "bne");
break;
case EQ:
if (mode == CCFPmode || mode == CCFPEmode)
strcat (string, "fbe");
else
strcpy (string, "be");
break;
case GE:
if (mode == CCFPmode || mode == CCFPEmode)
{
if (reversed)
strcat (string, "fbul");
else
strcat (string, "fbge");
}
else if (mode == CC_NOOVmode)
strcpy (string, "bpos");
else
strcpy (string, "bge");
break;
case GT:
if (mode == CCFPmode || mode == CCFPEmode)
{
if (reversed)
strcat (string, "fbule");
else
strcat (string, "fbg");
}
else
strcpy (string, "bg");
break;
case LE:
if (mode == CCFPmode || mode == CCFPEmode)
{
if (reversed)
strcat (string, "fbug");
else
strcat (string, "fble");
}
else
strcpy (string, "ble");
break;
case LT:
if (mode == CCFPmode || mode == CCFPEmode)
{
if (reversed)
strcat (string, "fbuge");
else
strcat (string, "fbl");
}
else if (mode == CC_NOOVmode)
strcpy (string, "bneg");
else
strcpy (string, "bl");
break;
case GEU:
strcpy (string, "bgeu");
break;
case GTU:
strcpy (string, "bgu");
break;
case LEU:
strcpy (string, "bleu");
break;
case LTU:
strcpy (string, "blu");
break;
}
/* Now add the annulling, the label, and a possible noop. */
if (annul)
strcat (string, ",a");
/* ??? If v9, optional prediction bit ",pt" or ",pf" goes here. */
if (! TARGET_V9)
{
labeloff = 3;
labelno = v8_labelno;
}
else
{
labeloff = 9;
if (mode == CCFPmode || mode == CCFPEmode)
{
labeloff = 10;
labelno = v9_fcc_labelno;
/* Set the char indicating the number of the fcc reg to use. */
labelno[6] = REGNO (fp_cond_reg) - 96 + '0';
}
else if (mode == CCXmode || mode == CCX_NOOVmode)
labelno = v9_xcc_labelno;
else
labelno = v9_icc_labelno;
}
/* Set the char indicating the number of the operand containing the
label_ref. */
labelno[labeloff] = label + '0';
strcat (string, labelno);
if (noop)
strcat (string, "\n\tnop");
return string;
}
/* Return the string to output a conditional branch to LABEL, testing
register REG. LABEL is the operand number of the label; REG is the
operand number of the reg. OP is the conditional expression. The mode
of REG says what kind of comparison we made.
REVERSED is non-zero if we should reverse the sense of the comparison.
ANNUL is non-zero if we should generate an annulling branch.
NOOP is non-zero if we have to follow this branch by a noop. */
char *
output_v9branch (op, reg, label, reversed, annul, noop)
rtx op;
int reg, label;
int reversed, annul, noop;
{
static char string[20];
enum rtx_code code = GET_CODE (op);
enum machine_mode mode = GET_MODE (XEXP (op, 0));
static char labelno[] = " %X,%lX";
/* If not floating-point or if EQ or NE, we can just reverse the code. */
if (reversed)
code = reverse_condition (code), reversed = 0;
/* Only 64 bit versions of these instructions exist. */
if (mode != DImode)
abort ();
/* Start by writing the branch condition. */
switch (code)
{
case NE:
strcpy (string, "brnz");
break;
case EQ:
strcpy (string, "brz");
break;
case GE:
strcpy (string, "brgez");
break;
case LT:
strcpy (string, "brlz");
break;
case LE:
strcpy (string, "brlez");
break;
case GT:
strcpy (string, "brgz");
break;
default:
abort ();
}
/* Now add the annulling, reg, label, and nop. */
if (annul)
strcat (string, ",a");
/* ??? Optional prediction bit ",pt" or ",pf" goes here. */
labelno[2] = reg + '0';
labelno[6] = label + '0';
strcat (string, labelno);
if (noop)
strcat (string, "\n\tnop");
return string;
}
/* Output assembler code to return from a function. */
/* ??? v9: Update to use the new `return' instruction. Also, add patterns to
md file for the `return' instruction. */
char *
output_return (operands)
rtx *operands;
{
if (leaf_label)
{
operands[0] = leaf_label;
return "b,a %l0";
}
else if (leaf_function)
{
/* If we didn't allocate a frame pointer for the current function,
the stack pointer might have been adjusted. Output code to
restore it now. */
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize);
/* Use sub of negated value in first two cases instead of add to
allow actual_fsize == 4096. */
if (actual_fsize <= 4096)
{
if (SKIP_CALLERS_UNIMP_P)
return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp";
else
return "retl\n\tsub %%sp,-%0,%%sp";
}
else if (actual_fsize <= 8192)
{
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize - 4096);
if (SKIP_CALLERS_UNIMP_P)
return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp";
else
return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp";
}
else if (SKIP_CALLERS_UNIMP_P)
{
if ((actual_fsize & 0x3ff) != 0)
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
else
return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
}
else
{
if ((actual_fsize & 0x3ff) != 0)
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
else
return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
}
}
else
{
if (SKIP_CALLERS_UNIMP_P)
return "jmp %%i7+12\n\trestore";
else
return "ret\n\trestore";
}
}
/* Leaf functions and non-leaf functions have different needs. */
static int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
static int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
static int *reg_alloc_orders[] = {
reg_leaf_alloc_order,
reg_nonleaf_alloc_order};
void
order_regs_for_local_alloc ()
{
static int last_order_nonleaf = 1;
if (regs_ever_live[15] != last_order_nonleaf)
{
last_order_nonleaf = !last_order_nonleaf;
bcopy (reg_alloc_orders[last_order_nonleaf], reg_alloc_order,
FIRST_PSEUDO_REGISTER * sizeof (int));
}
}
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
This makes them candidates for using ldd and std insns.
Note reg1 and reg2 *must* be hard registers. To be sure we will
abort if we are passed pseudo registers. */
int
registers_ok_for_ldd_peep (reg1, reg2)
rtx reg1, reg2;
{
/* We might have been passed a SUBREG. */
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
return 0;
if (REGNO (reg1) % 2 != 0)
return 0;
return (REGNO (reg1) == REGNO (reg2) - 1);
}
/* Return 1 if addr1 and addr2 are suitable for use in an ldd or
std insn.
This can only happen when addr1 and addr2 are consecutive memory
locations (addr1 + 4 == addr2). addr1 must also be aligned on a
64 bit boundary (addr1 % 8 == 0).
We know %sp and %fp are kept aligned on a 64 bit boundary. Other
registers are assumed to *never* be properly aligned and are
rejected.
Knowing %sp and %fp are kept aligned on a 64 bit boundary, we
need only check that the offset for addr1 % 8 == 0. */
int
addrs_ok_for_ldd_peep (addr1, addr2)
rtx addr1, addr2;
{
int reg1, offset1;
/* Extract a register number and offset (if used) from the first addr. */
if (GET_CODE (addr1) == PLUS)
{
/* If not a REG, return zero. */
if (GET_CODE (XEXP (addr1, 0)) != REG)
return 0;
else
{
reg1 = REGNO (XEXP (addr1, 0));
/* The offset must be constant! */
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
return 0;
offset1 = INTVAL (XEXP (addr1, 1));
}
}
else if (GET_CODE (addr1) != REG)
return 0;
else
{
reg1 = REGNO (addr1);
/* This was a simple (mem (reg)) expression. Offset is 0. */
offset1 = 0;
}
/* Make sure the second address is a (mem (plus (reg) (const_int). */
if (GET_CODE (addr2) != PLUS)
return 0;
if (GET_CODE (XEXP (addr2, 0)) != REG
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
return 0;
/* Only %fp and %sp are allowed. Additionally both addresses must
use the same register. */
if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
return 0;
if (reg1 != REGNO (XEXP (addr2, 0)))
return 0;
/* The first offset must be evenly divisible by 8 to ensure the
address is 64 bit aligned. */
if (offset1 % 8 != 0)
return 0;
/* The offset for the second addr must be 4 more than the first addr. */
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
return 0;
/* All the tests passed. addr1 and addr2 are valid for ldd and std
instructions. */
return 1;
}
/* Return 1 if reg is a pseudo, or is the first register in
a hard register pair. This makes it a candidate for use in
ldd and std insns. */
int
register_ok_for_ldd (reg)
rtx reg;
{
/* We might have been passed a SUBREG. */
if (GET_CODE (reg) != REG)
return 0;
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
return (REGNO (reg) % 2 == 0);
else
return 1;
}
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
switch (code)
{
case '#':
/* Output a 'nop' if there's nothing for the delay slot. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
case '*':
/* Output an annul flag if there's nothing for the delay slot and we
are optimizing. This is always used with '(' below. */
/* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
this is a dbx bug. So, we only do this when optimizing. */
if (dbr_sequence_length () == 0 && optimize)
fputs (",a", file);
return;
case '(':
/* Output a 'nop' if there's nothing for the delay slot and we are
not optimizing. This is always used with '*' above. */
if (dbr_sequence_length () == 0 && ! optimize)
fputs ("\n\tnop", file);
return;
case '_':
/* Output the Medium/Anywhere code model base register. */
fputs (MEDANY_BASE_REG, file);
return;
case '@':
/* Print out what we are using as the frame pointer. This might
be %fp, or might be %sp+offset. */
/* ??? What if offset is too big? Perhaps the caller knows it isn't? */
fprintf (file, "%s+%d", frame_base_name, frame_base_offset);
return;
case 'Y':
/* Adjust the operand to take into account a RESTORE operation. */
if (GET_CODE (x) != REG)
output_operand_lossage ("Invalid %%Y operand");
else if (REGNO (x) < 8)
fputs (reg_names[REGNO (x)], file);
else if (REGNO (x) >= 24 && REGNO (x) < 32)
fputs (reg_names[REGNO (x)-16], file);
else
output_operand_lossage ("Invalid %%Y operand");
return;
case 'R':
/* Print out the second register name of a register pair or quad.
I.e., R (%o0) => %o1. */
fputs (reg_names[REGNO (x)+1], file);
return;
case 'S':
/* Print out the third register name of a register quad.
I.e., S (%o0) => %o2. */
fputs (reg_names[REGNO (x)+2], file);
return;
case 'T':
/* Print out the fourth register name of a register quad.
I.e., T (%o0) => %o3. */
fputs (reg_names[REGNO (x)+3], file);
return;
case 'm':
/* Print the operand's address only. */
output_address (XEXP (x, 0));
return;
case 'r':
/* In this case we need a register. Use %g0 if the
operand is const0_rtx. */
if (x == const0_rtx
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
{
fputs ("%g0", file);
return;
}
else
break;
case 'A':
switch (GET_CODE (x))
{
case IOR: fputs ("or", file); break;
case AND: fputs ("and", file); break;
case XOR: fputs ("xor", file); break;
default: output_operand_lossage ("Invalid %%A operand");
}
return;
case 'B':
switch (GET_CODE (x))
{
case IOR: fputs ("orn", file); break;
case AND: fputs ("andn", file); break;
case XOR: fputs ("xnor", file); break;
default: output_operand_lossage ("Invalid %%B operand");
}
return;
/* This is used by the conditional move instructions. */
case 'C':
switch (GET_CODE (x))
{
case NE: fputs ("ne", file); break;
case EQ: fputs ("e", file); break;
case GE: fputs ("ge", file); break;
case GT: fputs ("g", file); break;
case LE: fputs ("le", file); break;
case LT: fputs ("l", file); break;
case GEU: fputs ("geu", file); break;
case GTU: fputs ("gu", file); break;
case LEU: fputs ("leu", file); break;
case LTU: fputs ("lu", file); break;
default: output_operand_lossage ("Invalid %%C operand");
}
return;
/* This is used by the movr instruction pattern. */
case 'D':
switch (GET_CODE (x))
{
case NE: fputs ("ne", file); break;
case EQ: fputs ("e", file); break;
case GE: fputs ("gez", file); break;
case LT: fputs ("lz", file); break;
case LE: fputs ("lez", file); break;
case GT: fputs ("gz", file); break;
default: output_operand_lossage ("Invalid %%D operand");
}
return;
case 'b':
{
/* Print a sign-extended character. */
int i = INTVAL (x) & 0xff;
if (i & 0x80)
i |= 0xffffff00;
fprintf (file, "%d", i);
return;
}
case 0:
/* Do nothing special. */
break;
default:
/* Undocumented flag. */
output_operand_lossage ("invalid operand output code");
}
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
if (CONSTANT_P (XEXP (x, 0)))
/* Poor Sun assembler doesn't understand absolute addressing. */
fputs ("%g0+", file);
output_address (XEXP (x, 0));
fputc (']', file);
}
else if (GET_CODE (x) == HIGH)
{
fputs ("%hi(", file);
output_addr_const (file, XEXP (x, 0));
fputc (')', file);
}
else if (GET_CODE (x) == LO_SUM)
{
print_operand (file, XEXP (x, 0), 0);
fputs ("+%lo(", file);
output_addr_const (file, XEXP (x, 1));
fputc (')', file);
}
else if (GET_CODE (x) == CONST_DOUBLE
&& (GET_MODE (x) == VOIDmode
|| GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
{
if (CONST_DOUBLE_HIGH (x) == 0)
fprintf (file, "%u", CONST_DOUBLE_LOW (x));
else if (CONST_DOUBLE_HIGH (x) == -1
&& CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
else
output_operand_lossage ("long long constant not a valid immediate operand");
}
else if (GET_CODE (x) == CONST_DOUBLE)
output_operand_lossage ("floating point constant not a valid immediate operand");
else { output_addr_const (file, x); }
}
/* This function outputs assembler code for VALUE to FILE, where VALUE is
a 64 bit (DImode) value. */
/* ??? If there is a 64 bit counterpart to .word that the assembler
understands, then using that would simply this code greatly. */
/* ??? We only output .xword's for symbols and only then in environments
where the assembler can handle them. */
void
output_double_int (file, value)
FILE *file;
rtx value;
{
if (GET_CODE (value) == CONST_INT)
{
if (INTVAL (value) < 0)
ASM_OUTPUT_INT (file, constm1_rtx);
else
ASM_OUTPUT_INT (file, const0_rtx);
ASM_OUTPUT_INT (file, value);
}
else if (GET_CODE (value) == CONST_DOUBLE)
{
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (value)));
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (value)));
}
else if (GET_CODE (value) == SYMBOL_REF
|| GET_CODE (value) == CONST
|| GET_CODE (value) == PLUS
|| (TARGET_V9 &&
(GET_CODE (value) == LABEL_REF
|| GET_CODE (value) == MINUS)))
{
if (!TARGET_V9 || TARGET_ENV32)
{
ASM_OUTPUT_INT (file, const0_rtx);
ASM_OUTPUT_INT (file, value);
}
else
{
fprintf (file, "\t%s\t", ASM_LONGLONG);
output_addr_const (file, value);
fprintf (file, "\n");
}
}
else
abort ();
}
/* Return the value of a code used in the .proc pseudo-op that says
what kind of result this function returns. For non-C types, we pick
the closest C type. */
#ifndef CHAR_TYPE_SIZE
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#endif
#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif
#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
unsigned long
sparc_type_code (type)
register tree type;
{
register unsigned long qualifiers = 0;
register unsigned shift = 6;
/* Only the first 30 bits of the qualifer are valid. We must refrain from
setting more, since some assemblers will give an error for this. Also,
we must be careful to avoid shifts of 32 bits or more to avoid getting
unpredictable results. */
for (;;)
{
switch (TREE_CODE (type))
{
case ERROR_MARK:
return qualifiers;
case ARRAY_TYPE:
if (shift < 30)
qualifiers |= (3 << shift);
shift += 2;
type = TREE_TYPE (type);
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
if (shift < 30)
qualifiers |= (2 << shift);
shift += 2;
type = TREE_TYPE (type);
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
case OFFSET_TYPE:
if (shift < 30)
qualifiers |= (1 << shift);
shift += 2;
type = TREE_TYPE (type);
break;
case RECORD_TYPE:
return (qualifiers | 8);
case UNION_TYPE:
case QUAL_UNION_TYPE:
return (qualifiers | 9);
case ENUMERAL_TYPE:
return (qualifiers | 10);
case VOID_TYPE:
return (qualifiers | 16);
case INTEGER_TYPE:
/* If this is a range type, consider it to be the underlying
type. */
if (TREE_TYPE (type) != 0)
{
type = TREE_TYPE (type);
break;
}
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. We do this by
testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to
look at both the names and the above fields, but that's redundant.
Any type whose size is between two C types will be considered
to be the wider of the two types. Also, we do not have a
special code to use for "long long", so anything wider than
long is treated the same. Note that we can't distinguish
between "int" and "long" in this code if they are the same
size, but that's fine, since neither can the assembler. */
if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
else
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
case REAL_TYPE:
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. */
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
return (qualifiers | 6);
else
return (qualifiers | 7);
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
/* ??? We need to distinguish between double and float complex types,
but I don't know how yet because I can't reach this code from
existing front-ends. */
return (qualifiers | 7); /* Who knows? */
case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */
case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */
case FILE_TYPE: /* GNU Pascal FILE type. */
case SET_TYPE: /* GNU Pascal SET type. */
case LANG_TYPE: /* ? */
return qualifiers;
default:
abort (); /* Not a type! */
}
}
}
/* Nested function support. */
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function.
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
(to store insns). This is a bit excessive. Perhaps a different
mechanism would be better here.
Emit 3 FLUSH instructions (UNSPEC_VOLATILE 3) to synchonize the data
and instruction caches.
??? v9: We assume the top 32 bits of function addresses are 0. */
void
sparc_initialize_trampoline (tramp, fnaddr, cxt)
rtx tramp, fnaddr, cxt;
{
rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, cxt,
size_int (10), 0, 1);
rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, fnaddr,
size_int (10), 0, 1);
rtx low_cxt = expand_and (cxt, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
rtx low_fn = expand_and (fnaddr, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
rtx g1_sethi = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x03000000));
rtx g2_sethi = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x05000000));
rtx g1_ori = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x82106000));
rtx g2_ori = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x8410A000));
rtx tem = gen_reg_rtx (SImode);
emit_move_insn (tem, g1_sethi);
emit_insn (gen_iorsi3 (high_fn, high_fn, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 0)), high_fn);
emit_move_insn (tem, g1_ori);
emit_insn (gen_iorsi3 (low_fn, low_fn, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 4)), low_fn);
emit_move_insn (tem, g2_sethi);
emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 8)), high_cxt);
emit_move_insn (tem, g2_ori);
emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 16)), low_cxt);
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 0)),
3));
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 8)),
3));
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 16)),
3));
}
void
sparc64_initialize_trampoline (tramp, fnaddr, cxt)
rtx tramp, fnaddr, cxt;
{
rtx fnaddrdi = gen_reg_rtx (Pmode);
rtx fnaddrsi = (emit_move_insn (fnaddrdi, fnaddr),
gen_rtx (SUBREG, SImode, fnaddrdi, 0));
rtx cxtdi = gen_reg_rtx (Pmode);
rtx cxtsi = (emit_move_insn (cxtdi, cxt),
gen_rtx (SUBREG, SImode, cxtdi, 0));
rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, cxtsi,
size_int (10), 0, 1);
rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, fnaddrsi,
size_int (10), 0, 1);
rtx low_cxt = expand_and (cxtsi, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
rtx low_fn = expand_and (fnaddrsi, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
rtx g1_sethi = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x03000000));
rtx g2_sethi = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x05000000));
rtx g1_ori = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x82106000));
rtx g2_ori = gen_rtx (HIGH, SImode,
gen_rtx (CONST_INT, VOIDmode, 0x8410A000));
rtx tem = gen_reg_rtx (SImode);
emit_move_insn (tem, g2_sethi);
emit_insn (gen_iorsi3 (high_fn, high_fn, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 0)), high_fn);
emit_move_insn (tem, g2_ori);
emit_insn (gen_iorsi3 (low_fn, low_fn, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 4)), low_fn);
emit_move_insn (tem, g1_sethi);
emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 8)), high_cxt);
emit_move_insn (tem, g1_ori);
emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem));
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 16)), low_cxt);
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 0)),
3));
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 8)),
3));
emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode,
gen_rtvec (1, plus_constant (tramp, 16)),
3));
}
/* Subroutines to support a flat (single) register window calling
convention. */
/* Single-register window sparc stack frames look like:
Before call After call
+-----------------------+ +-----------------------+
high | | | |
mem | caller's temps. | | caller's temps. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack. | | arguments on stack. |
| | | |
+-----------------------+FP+92->+-----------------------+
| 6 words to save | | 6 words to save |
| arguments passed | | arguments passed |
| in registers, even | | in registers, even |
| if not passed. | | if not passed. |
SP+68->+-----------------------+FP+68->+-----------------------+
| 1 word struct addr | | 1 word struct addr |
+-----------------------+FP+64->+-----------------------+
| | | |
| 16 word reg save area | | 16 word reg save area |
| | | |
SP->+-----------------------+ FP->+-----------------------+
| 4 word area for |
| fp/alu reg moves |
FP-16->+-----------------------+
| |
| local variables |
| |
+-----------------------+
| |
| fp register save |
| |
+-----------------------+
| |
| gp register save |
| |
+-----------------------+
| |
| alloca allocations |
| |
+-----------------------+
| |
| arguments on stack |
| |
SP+92->+-----------------------+
| 6 words to save |
| arguments passed |
| in registers, even |
low | if not passed. |
memory SP+68->+-----------------------+
| 1 word struct addr |
SP+64->+-----------------------+
| |
I 16 word reg save area |
| |
SP->+-----------------------+ */
/* Structure to be filled in by sparc_flat_compute_frame_size with register
save masks, and offsets for the current function. */
struct sparc_frame_info
{
unsigned long total_size; /* # bytes that the entire frame takes up. */
unsigned long var_size; /* # bytes that variables take up. */
unsigned long args_size; /* # bytes that outgoing arguments take up. */
unsigned long extra_size; /* # bytes of extra gunk. */
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
unsigned long gmask; /* Mask of saved gp registers. */
unsigned long fmask; /* Mask of saved fp registers. */
unsigned long reg_offset; /* Offset from new sp to store regs. */
int initialized; /* Nonzero if frame size already calculated. */
};
/* Current frame information calculated by sparc_flat_compute_frame_size. */
struct sparc_frame_info current_frame_info;
/* Zero structure to initialize current_frame_info. */
struct sparc_frame_info zero_frame_info;
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
#define RETURN_ADDR_REGNUM 15
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
#define MUST_SAVE_REGISTER(regno) \
((regs_ever_live[regno] && !call_used_regs[regno]) \
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|| (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM]))
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. */
unsigned long
sparc_flat_compute_frame_size (size)
int size; /* # of var. bytes allocated. */
{
int regno;
unsigned long total_size; /* # bytes that the entire frame takes up. */
unsigned long var_size; /* # bytes that variables take up. */
unsigned long args_size; /* # bytes that outgoing arguments take up. */
unsigned long extra_size; /* # extra bytes. */
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
unsigned long gmask; /* Mask of saved gp registers. */
unsigned long fmask; /* Mask of saved fp registers. */
unsigned long reg_offset; /* Offset to register save area. */
int need_aligned_p; /* 1 if need the save area 8 byte aligned. */
/* This is the size of the 16 word reg save area, 1 word struct addr
area, and 4 word fp/alu register copy area. */
extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
var_size = size;
/* Also include the size needed for the 6 parameter registers. */
args_size = current_function_outgoing_args_size + 24;
total_size = var_size + args_size + extra_size;
gp_reg_size = 0;
fp_reg_size = 0;
gmask = 0;
fmask = 0;
reg_offset = 0;
need_aligned_p = 0;
/* Calculate space needed for gp registers. */
for (regno = 1; regno <= 31; regno++)
{
if (MUST_SAVE_REGISTER (regno))
{
/* If we need to save two regs in a row, ensure there's room to bump
up the address to align it to a doubleword boundary. */
if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
{
if (gp_reg_size % 8 != 0)
gp_reg_size += 4;
gp_reg_size += 2 * UNITS_PER_WORD;
gmask |= 3 << regno;
regno++;
need_aligned_p = 1;
}
else
{
gp_reg_size += UNITS_PER_WORD;
gmask |= 1 << regno;
}
}
}
/* Calculate space needed for fp registers. */
for (regno = 32; regno <= 63; regno++)
{
if (regs_ever_live[regno] && !call_used_regs[regno])
{
fp_reg_size += UNITS_PER_WORD;
fmask |= 1 << (regno - 32);
}
}
if (gmask || fmask)
{
int n;
reg_offset = FIRST_PARM_OFFSET(0) + args_size;
/* Ensure save area is 8 byte aligned if we need it. */
n = reg_offset % 8;
if (need_aligned_p && n != 0)
{
total_size += 8 - n;
reg_offset += 8 - n;
}
total_size += gp_reg_size + fp_reg_size;
}
/* ??? This looks a little suspicious. Clarify. */
if (total_size == extra_size)
total_size = extra_size = 0;
total_size = SPARC_STACK_ALIGN (total_size);
/* Save other computed information. */
current_frame_info.total_size = total_size;
current_frame_info.var_size = var_size;
current_frame_info.args_size = args_size;
current_frame_info.extra_size = extra_size;
current_frame_info.gp_reg_size = gp_reg_size;
current_frame_info.fp_reg_size = fp_reg_size;
current_frame_info.gmask = gmask;
current_frame_info.fmask = fmask;
current_frame_info.reg_offset = reg_offset;
current_frame_info.initialized = reload_completed;
/* Ok, we're done. */
return total_size;
}
/* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset
OFFSET.
BASE_REG must be 8 byte aligned. This allows us to test OFFSET for
appropriate alignment and use DOUBLEWORD_OP when we can. We assume
[BASE_REG+OFFSET] will always be a valid address.
WORD_OP is either "st" for save, "ld" for restore.
DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */
void
sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op, doubleword_op)
FILE *file;
char *base_reg;
unsigned int offset;
unsigned long gmask;
unsigned long fmask;
char *word_op;
char *doubleword_op;
{
int regno;
if (gmask == 0 && fmask == 0)
return;
/* Save registers starting from high to low. We've already saved the
previous frame pointer and previous return address for the debugger's
sake. The debugger allows us to not need a nop in the epilog if at least
one register is reloaded in addition to return address. */
if (gmask)
{
for (regno = 1; regno <= 31; regno++)
{
if ((gmask & (1L << regno)) != 0)
{
if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0))
{
/* We can save two registers in a row. If we're not at a
double word boundary, move to one.
sparc_flat_compute_frame_size ensures there's room to do
this. */
if (offset % 8 != 0)
offset += UNITS_PER_WORD;
if (word_op[0] == 's')
fprintf (file, "\t%s %s,[%s+%d]\n",
doubleword_op, reg_names[regno],
base_reg, offset);
else
fprintf (file, "\t%s [%s+%d],%s\n",
doubleword_op, base_reg, offset,
reg_names[regno]);
offset += 2 * UNITS_PER_WORD;
regno++;
}
else
{
if (word_op[0] == 's')
fprintf (file, "\t%s %s,[%s+%d]\n",
word_op, reg_names[regno],
base_reg, offset);
else
fprintf (file, "\t%s [%s+%d],%s\n",
word_op, base_reg, offset, reg_names[regno]);
offset += UNITS_PER_WORD;
}
}
}
}
if (fmask)
{
for (regno = 32; regno <= 63; regno++)
{
if ((fmask & (1L << (regno - 32))) != 0)
{
if (word_op[0] == 's')
fprintf (file, "\t%s %s,[%s+%d]\n",
word_op, reg_names[regno],
base_reg, offset);
else
fprintf (file, "\t%s [%s+%d],%s\n",
word_op, base_reg, offset, reg_names[regno]);
offset += UNITS_PER_WORD;
}
}
}
}
/* Set up the stack and frame (if desired) for the function. */
void
sparc_flat_output_function_prologue (file, size)
FILE *file;
int size;
{
char *sp_str = reg_names[STACK_POINTER_REGNUM];
unsigned long gmask = current_frame_info.gmask;
/* This is only for the human reader. */
fprintf (file, "\t!#PROLOGUE# 0\n");
fprintf (file, "\t!# vars= %d, regs= %d/%d, args= %d, extra= %d\n",
current_frame_info.var_size,
current_frame_info.gp_reg_size / 4,
current_frame_info.fp_reg_size / 4,
current_function_outgoing_args_size,
current_frame_info.extra_size);
size = SPARC_STACK_ALIGN (size);
size = (! current_frame_info.initialized
? sparc_flat_compute_frame_size (size)
: current_frame_info.total_size);
/* These cases shouldn't happen. Catch them now. */
if (size == 0 && (gmask || current_frame_info.fmask))
abort ();
/* Allocate our stack frame by decrementing %sp.
At present, the only algorithm gdb can use to determine if this is a
flat frame is if we always set %i7 if we set %sp. This can be optimized
in the future by putting in some sort of debugging information that says
this is a `flat' function. However, there is still the case of debugging
code without such debugging information (including cases where most fns
have such info, but there is one that doesn't). So, always do this now
so we don't get a lot of code out there that gdb can't handle.
If the frame pointer isn't needn't then that's ok - gdb won't be able to
distinguish us from a non-flat function but there won't (and shouldn't)
be any differences anyway. The return pc is saved (if necessary) right
after %i7 so gdb won't have to look too far to find it. */
if (size > 0)
{
unsigned int reg_offset = current_frame_info.reg_offset;
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
char *t1_str = "%g1";
/* Things get a little tricky if local variables take up more than ~4096
bytes and outgoing arguments take up more than ~4096 bytes. When that
happens, the register save area can't be accessed from either end of
the frame. Handle this by decrementing %sp to the start of the gp
register save area, save the regs, update %i7, and then set %sp to its
final value. Given that we only have one scratch register to play
with it is the cheapest solution, and it helps gdb out as it won't
slow down recognition of flat functions.
Don't change the order of insns emitted here without checking with
the gdb folk first. */
/* Is the entire register save area offsetable from %sp? */
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
{
if (size <= 4096)
{
fprintf (file, "\tadd %s,%d,%s\n",
sp_str, -size, sp_str);
if (gmask & FRAME_POINTER_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n",
fp_str, sp_str, reg_offset);
fprintf (file, "\tsub %s,%d,%s\t!# set up frame pointer\n",
sp_str, -size, fp_str);
reg_offset += 4;
}
}
else
{
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
size, t1_str, sp_str, t1_str, sp_str);
if (gmask & FRAME_POINTER_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n",
fp_str, sp_str, reg_offset);
fprintf (file, "\tadd %s,%s,%s\t!# set up frame pointer\n",
sp_str, t1_str, fp_str);
reg_offset += 4;
}
}
if (gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset);
reg_offset += 4;
}
sparc_flat_save_restore (file, sp_str, reg_offset,
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"st", "std");
}
else
{
/* Subtract %sp in two steps, but make sure there is always a
64 byte register save area, and %sp is properly aligned. */
/* Amount to decrement %sp by, the first time. */
unsigned int size1 = ((size - reg_offset + 64) + 15) & -16;
/* Offset to register save area from %sp. */
unsigned int offset = size1 - (size - reg_offset);
if (size1 <= 4096)
{
fprintf (file, "\tadd %s,%d,%s\n",
sp_str, -size1, sp_str);
if (gmask & FRAME_POINTER_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n\tsub %s,%d,%s\t!# set up frame pointer\n",
fp_str, sp_str, offset, sp_str, -size1, fp_str);
offset += 4;
}
}
else
{
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
size1, t1_str, sp_str, t1_str, sp_str);
if (gmask & FRAME_POINTER_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n\tadd %s,%s,%s\t!# set up frame pointer\n",
fp_str, sp_str, offset, sp_str, t1_str, fp_str);
offset += 4;
}
}
if (gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[RETURN_ADDR_REGNUM], sp_str, offset);
offset += 4;
}
sparc_flat_save_restore (file, sp_str, offset,
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"st", "std");
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
size - size1, t1_str, sp_str, t1_str, sp_str);
}
}
fprintf (file, "\t!#PROLOGUE# 1\n");
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
void
sparc_flat_output_function_epilogue (file, size)
FILE *file;
int size;
{
rtx epilogue_delay = current_function_epilogue_delay_list;
int noepilogue = FALSE;
/* This is only for the human reader. */
fprintf (file, "\t!#EPILOGUE#\n");
/* The epilogue does not depend on any registers, but the stack
registers, so we assume that if we have 1 pending nop, it can be
ignored, and 2 it must be filled (2 nops occur for integer
multiply and divide). */
size = SPARC_STACK_ALIGN (size);
size = (!current_frame_info.initialized
? sparc_flat_compute_frame_size (size)
: current_frame_info.total_size);
if (size == 0 && epilogue_delay == 0)
{
rtx insn = get_last_insn ();
/* If the last insn was a BARRIER, we don't have to write any code
because a jump (aka return) was put there. */
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
noepilogue = TRUE;
}
if (!noepilogue)
{
unsigned int reg_offset = current_frame_info.reg_offset;
unsigned int size1;
char *sp_str = reg_names[STACK_POINTER_REGNUM];
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
char *t1_str = "%g1";
/* In the reload sequence, we don't need to fill the load delay
slots for most of the loads, also see if we can fill the final
delay slot if not otherwise filled by the reload sequence. */
if (size > 4095)
fprintf (file, "\tset %d,%s\n", size, t1_str);
if (frame_pointer_needed)
{
if (size > 4095)
fprintf (file,"\tsub %s,%s,%s\t\t!# sp not trusted here\n",
fp_str, t1_str, sp_str);
else
fprintf (file,"\tsub %s,%d,%s\t\t!# sp not trusted here\n",
fp_str, size, sp_str);
}
/* Is the entire register save area offsetable from %sp? */
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
{
size1 = 0;
}
else
{
/* Restore %sp in two steps, but make sure there is always a
64 byte register save area, and %sp is properly aligned. */
/* Amount to increment %sp by, the first time. */
size1 = ((reg_offset - 64 - 16) + 15) & -16;
/* Offset to register save area from %sp. */
reg_offset = size1 - reg_offset;
fprintf (file, "\tset %d,%s\n\tadd %s,%s,%s\n",
size1, t1_str, sp_str, t1_str, sp_str);
}
/* We must restore the frame pointer and return address reg first
because they are treated specially by the prologue output code. */
if (current_frame_info.gmask & FRAME_POINTER_MASK)
{
fprintf (file, "\tld [%s+%d],%s\n",
sp_str, reg_offset, fp_str);
reg_offset += 4;
}
if (current_frame_info.gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tld [%s+%d],%s\n",
sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]);
reg_offset += 4;
}
/* Restore any remaining saved registers. */
sparc_flat_save_restore (file, sp_str, reg_offset,
current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"ld", "ldd");
/* If we had to increment %sp in two steps, record it so the second
restoration in the epilogue finishes up. */
if (size1 > 0)
{
size -= size1;
if (size > 4095)
fprintf (file, "\tset %d,%s\n",
size, t1_str);
}
if (current_function_returns_struct)
fprintf (file, "\tjmp %%o7+12\n");
else
fprintf (file, "\tretl\n");
/* If the only register saved is the return address, we need a
nop, unless we have an instruction to put into it. Otherwise
we don't since reloading multiple registers doesn't reference
the register being loaded. */
if (epilogue_delay)
{
if (size)
abort ();
final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
}
else if (size > 4095)
fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str);
else if (size > 0)
fprintf (file, "\tadd %s,%d,%s\n", sp_str, size, sp_str);
else
fprintf (file, "\tnop\n");
}
/* Reset state info for each function. */
current_frame_info = zero_frame_info;
}
/* Define the number of delay slots needed for the function epilogue.
On the sparc, we need a slot if either no stack has been allocated,
or the only register saved is the return register. */
int
sparc_flat_epilogue_delay_slots ()
{
if (!current_frame_info.initialized)
(void) sparc_flat_compute_frame_size (get_frame_size ());
if (current_frame_info.total_size == 0)
return 1;
return 0;
}
/* Return true is TRIAL is a valid insn for the epilogue delay slot.
Any single length instruction which doesn't reference the stack or frame
pointer is OK. */
int
sparc_flat_eligible_for_epilogue_delay (trial, slot)
rtx trial;
int slot;
{
if (get_attr_length (trial) == 1
&& ! reg_mentioned_p (stack_pointer_rtx, PATTERN (trial))
&& ! reg_mentioned_p (frame_pointer_rtx, PATTERN (trial)))
return 1;
return 0;
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
int
supersparc_adjust_cost (insn, link, dep_insn, cost)
rtx insn;
rtx link;
rtx dep_insn;
int cost;
{
enum attr_type insn_type;
if (! recog_memoized (insn))
return 0;
insn_type = get_attr_type (insn);
if (REG_NOTE_KIND (link) == 0)
{
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
/* if a load, then the dependence must be on the memory address;
add an extra 'cycle'. Note that the cost could be two cycles
if the reg was written late in an instruction group; we can't tell
here. */
if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
return cost + 3;
/* Get the delay only if the address of the store is the dependence. */
if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
{
rtx pat = PATTERN(insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
return cost; /* This shouldn't happen! */
/* The dependency between the two instructions was on the data that
is being stored. Assume that this implies that the address of the
store is not dependent. */
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
return cost;
return cost + 3; /* An approximation. */
}
/* A shift instruction cannot receive its data from an instruction
in the same cycle; add a one cycle penalty. */
if (insn_type == TYPE_SHIFT)
return cost + 3; /* Split before cascade into shift. */
}
else
{
/* Anti- or output- dependency; DEP_INSN reads/writes a register that
INSN writes some cycles later. */
/* These are only significant for the fpu unit; writing a fp reg before
the fpu has finished with it stalls the processor. */
/* Reusing an integer register causes no problems. */
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
return 0;
}
return cost;
}