home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
g77-0.5.15-src.tgz
/
tar.out
/
fsf
/
g77
/
config
/
tahoe
/
tahoe.h
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
30KB
|
1,018 lines
/* Definitions of target machine for GNU compiler. Tahoe version.
Copyright (C) 1989, 1993, 1994 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
* File: tahoe.h
*
* Original port made at the University of Buffalo by Devon Bowen,
* Dale Wiles and Kevin Zachmann.
*
* HCX/UX version by Piet van Oostrum (piet@cs.ruu.nl)
*
* Performance hacking by Michael Tiemann (tiemann@cygnus.com)
*/
/* define this for the HCX/UX version */
/* #define HCX_UX */
/*
* Run-time Target Specification
*/
#ifdef HCX_UX
/* no predefines, see Makefile and hcx-universe.c */
/* have cc1 print that this is the hcx version */
#define TARGET_VERSION printf (" (hcx)");
#else
/* we want "tahoe" and "unix" defined for all future compilations */
#define CPP_PREDEFINES "-Dtahoe -Dunix -Asystem(unix) -Acpu(tahoe) -Amachine(tahoe)"
/* have cc1 print that this is the tahoe version */
#define TARGET_VERSION printf (" (tahoe)");
#endif
/* this is required in all tm files to hold flags */
extern int target_flags;
/* Zero if it is safe to output .dfloat and .float pseudos. */
#define TARGET_HEX_FLOAT (target_flags & 1)
#define TARGET_DEFAULT 1
#define TARGET_SWITCHES \
{ {"hex-float", 1}, \
{"no-hex-float", -1}, \
{ "", TARGET_DEFAULT} }
/*
* Storage Layout
*/
/* This symbol was previously not mentioned, so apparently the tahoe
is little-endian for bits, or else doesn't care. */
#define BITS_BIG_ENDIAN 0
/* tahoe uses a big endian byte order */
#define BYTES_BIG_ENDIAN 1
/* tahoe uses a big endian word order */
#define WORDS_BIG_ENDIAN 1
/* standard byte size is usable on tahoe */
#define BITS_PER_UNIT 8
/* longs on the tahoe are 4 byte groups */
#define BITS_PER_WORD 32
/* from the last two params we get 4 bytes per word */
#define UNITS_PER_WORD 4
/* addresses are 32 bits (one word) */
#define POINTER_SIZE 32
/* all parameters line up on 32 boundaries */
#define PARM_BOUNDARY 32
/* stack should line up on 32 boundaries */
#define STACK_BOUNDARY 32
/* line functions up on 32 bits */
#define FUNCTION_BOUNDARY 32
/* the biggest alignment the tahoe needs in 32 bits */
#define BIGGEST_ALIGNMENT 32
/* we have to align after an 'int : 0' in a structure */
#define EMPTY_FIELD_BOUNDARY 32
#ifdef HCX_UX
/* structures must be made of full words */
#define STRUCTURE_SIZE_BOUNDARY 32
#else
/* structures must be made of full bytes */
#define STRUCTURE_SIZE_BOUNDARY 8
#endif
/* tahoe is picky about data alignment */
#define STRICT_ALIGNMENT 1
/* keep things standard with pcc */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* this section is borrowed from the vax version since the */
/* formats are the same in both of the architectures */
#define CHECK_FLOAT_VALUE(MODE, D, OVEFLOW) \
if (OVERFLOW) \
(D) = 1.7014117331926443e+38; \
else if ((MODE) == SFmode) \
{ \
if ((D) > 1.7014117331926443e+38) \
(OVERFLOW) = 1, (D) = 1.7014117331926443e+38; \
else if ((D) < -1.7014117331926443e+38) \
(OVERFLOW) = 1, (D) = -1.7014117331926443e+38; \
else if (((D) > 0) && ((D) < 2.9387358770557188e-39)) \
(OVERFLOW) = 1, (D) = 0.0; \
else if (((D) < 0) && ((D) > -2.9387358770557188e-39)) \
(OVERFLOW) = 1, (D) = 0.0; \
}
/*
* Register Usage
*/
/* define 15 general regs plus one for the floating point reg (FPP) */
#define FIRST_PSEUDO_REGISTER 17
/* let the compiler know what the fp, sp and pc are */
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}
/* lots of regs aren't guaranteed to return from a call. The FPP reg */
/* must be included in these since it can't be saved by the reg mask */
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
/* A single fp reg can handle any type of float.
CPU regs hold just 32 bits. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(REGNO != 16 ? ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) \
: GET_MODE_NUNITS ((MODE)))
/* any mode greater than 4 bytes (doubles) can only go in an even regs */
/* and the FPP can only hold SFmode and DFmode */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(REGNO != 16 \
? (GET_MODE_UNIT_SIZE (MODE) <= 4 ? 1 : (REGNO % 2 - 1)) \
: ((MODE) == SFmode || (MODE) == DFmode \
|| (MODE) == SCmode || (MODE) == DCmode))
/* if mode1 or mode2, but not both, are doubles then modes cannot be tied */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == DFmode || (MODE1) == DCmode) \
== ((MODE2) == DFmode || (MODE2) == DCmode))
/* return nonzero if register variable of mode MODE is not
a priori a bad idea. Used only if defined. */
#define MODE_OK_FOR_USERVAR(MODE) \
((MODE) == SImode)
/* the program counter is reg 15 */
#define PC_REGNUM 15
/* the stack pointer is reg 14 */
#define STACK_POINTER_REGNUM 14
/* the frame pointer is reg 13 */
#define FRAME_POINTER_REGNUM 13
/* tahoe does require an fp */
#define FRAME_POINTER_REQUIRED 1
/* since tahoe doesn't have a argument pointer, make it the fp */
#define ARG_POINTER_REGNUM 13
/* this isn't currently used since C doesn't support this feature */
#define STATIC_CHAIN_REGNUM 0
/* we'll use reg 1 for structure passing cause the destination */
/* of the eventual movblk requires it to be there anyway. */
#define STRUCT_VALUE_REGNUM 1
/*
* Register Classes
*/
/* tahoe has two types of regs. GENERAL_REGS are all the regs up */
/* to number 15. FPP_REG is the special floating point processor */
/* register class (only one reg). */
enum reg_class {NO_REGS,GENERAL_REGS,FPP_REG,ALL_REGS,LIM_REG_CLASSES};
/* defines the number of reg classes. */
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* this defines what the classes are officially named for debugging */
#define REG_CLASS_NAMES \
{"NO_REGS","GENERAL_REGS","FPP_REG","ALL_REGS"}
/* set general regs to be the first 16 regs and the fpp reg to be 17th */
#define REG_CLASS_CONTENTS {0,0xffff,0x10000,0x1ffff}
/* register class for the fpp reg is FPP_REG, all others are GENERAL_REGS */
#define REGNO_REG_CLASS(REGNO) (REGNO == 16 ? FPP_REG : GENERAL_REGS)
/* only general registers can be used as a base reg */
#define BASE_REG_CLASS GENERAL_REGS
/* only general registers can be used to index */
#define INDEX_REG_CLASS GENERAL_REGS
/* 'a' as a constraint in the md file means the FFP_REG class */
#define REG_CLASS_FROM_LETTER(C) (C == 'a' ? FPP_REG : NO_REGS)
/* any general reg but the fpp can be a base reg */
#define REGNO_OK_FOR_BASE_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER - 1 || reg_renumber[regno] >= 0)
/* any general reg except the pc and fpp can be an index reg */
#define REGNO_OK_FOR_INDEX_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER - 2 || reg_renumber[regno] >= 0)
/* if your loading a floating point constant, it can't be done */
/* through a register. Force it to be a memory constant. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((GET_CODE (X) == CONST_DOUBLE) ? NO_REGS : CLASS)
/* for the fpp reg, all modes fit; for any others, you need two for doubles */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(CLASS != FPP_REG ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
/* we don't define any special constant sizes so all should fail */
#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
/* we don't define any special double sizes so all should fail */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
/*
* Describing Stack Layout
*/
/* tahoe stack grows from high to low memory */
#define STACK_GROWS_DOWNWARD
/* Define this if longjmp restores from saved registers
rather than from what setjmp saved. */
#define LONGJMP_RESTORE_FROM_STACK
/* tahoe call frames grow from high to low memory on the stack */
#define FRAME_GROWS_DOWNWARD
/* the tahoe fp points to the *top* of the frame instead of the */
/* bottom, so we have to make this offset a constant large enough */
/* to jump over the biggest frame possible. */
#define STARTING_FRAME_OFFSET -52
/* tahoe always pushes 4 bytes unless it's a double in which case */
/* it pushes a full 8 bytes. */
#define PUSH_ROUNDING(BYTES) (BYTES <= 4 ? 4 : 8)
/* the first parameter in a function is at the fp + 4 */
#define FIRST_PARM_OFFSET(FNDECL) 4
/* the tahoe return function takes care of everything on the stack */
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE)
/* function values for all types are returned in register 0 */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
/* library routines also return things in reg 0 */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
/* Tahoe doesn't return structures in a reentrant way */
#define PCC_STATIC_STRUCT_RETURN
/* we only return values from a function in reg 0 */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
/* we never pass args through a register */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
/* int is fine to hold the argument summary in FUNCTION_ARG */
#define CUMULATIVE_ARGS int
/* we just set CUM to 0 before the FUNCTION_ARG call. No matter what */
/* we make it, FUNCTION_ARG will return 0 anyway */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
((CUM) = 0)
/* all modes push their size rounded to the nearest word boundary */
/* except block which is the size of the block rounded up */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3))
/* this is always false since we never pass params in regs */
#define FUNCTION_ARG_REGNO_P(N) 0
/* this code calculates the register entry mask and sets up */
/* the stack pointer for the function. The stack is set down */
/* far enough from the fp to jump over any push regs and local */
/* vars. This is a problem since the tahoe has the fp pointing */
/* to the top of the frame and the compiler must know the off- */
/* set off the fp to the local vars. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
{ register int regno; \
register int mask = 0; \
extern char call_used_regs[]; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER-1; regno++) \
if (regs_ever_live[regno] && !call_used_regs[regno]) \
mask |= 1 << regno; \
fprintf (FILE, "\t.word 0x%x\n", mask); \
if (SIZE != 0) fprintf (FILE, "\tsubl3 $%d,fp,sp\n", (SIZE) - STARTING_FRAME_OFFSET); }
/* Zero out global variable in case it was used in this function. */
#define FUNCTION_EPILOGUE(FILE, SIZE) \
{ extern rtx tahoe_reg_conversion_loc; \
tahoe_reg_conversion_loc = 0; \
}
#ifdef HCX_UX
/* to call the profiler, the address of the counter var is placed */
/* on the stack and then passed into mcount this way */
#define FUNCTION_PROFILER(FILE, LABELNO) \
fprintf (FILE, "\tpushal LP%d\n\tcallf $8,mcount\n", (LABELNO));
#else
/* to call the profiler, push the variable value onto the stack */
/* and call mcount like a regular function. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
fprintf (FILE, "\tpushl $LP%d\n\tcallf $8,mcount\n", (LABELNO));
#endif
/* all stack handling at the end of a function is handled by the */
/* return command. */
#define EXIT_IGNORE_STACK 1
/*
* Library Subroutine Names
*/
/* udiv is a valid C library routine in libc.a, so we call that */
#define UDIVSI3_LIBCALL "*udiv"
/* urem is a valid C library routine in libc.a, so we call that */
/* but not so on hcx/ux */
#ifdef HCX_UX
#undef UMODSI3_LIBCALL
#else
#define UMODSI3_LIBCALL "*urem"
#endif
/*
* Addressing Modes
*/
/* constant addresses can be treated exactly the same as normal constants */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH)
/* we can have as many as two regs in any given address */
#define MAX_REGS_PER_ADDRESS 2
/* The following is all the code for GO_IF_LEGITIMATE_ADDRESS */
/* most of this taken directly from the vax tm file since the */
/* tahoe and vax addressing modes are nearly identical. */
/* Is x an indirectable address? */
#define INDIRECTABLE_ADDRESS_P(X) \
(CONSTANT_ADDRESS_P (X) \
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_ADDRESS_P (XEXP (X, 1))))
/* If x is a non-indexed-address, go to ADDR. */
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
{ register rtx xfoob = (X); \
if (GET_CODE (xfoob) == REG) goto ADDR; \
if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
xfoob = XEXP (X, 0); \
if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
goto ADDR; \
if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
&& GET_CODE (xfoob) == REG && REGNO (xfoob) == 14) \
goto ADDR; }
/* Is PROD an index term in mode MODE. */
#define INDEX_TERM_P(PROD, MODE) \
(GET_MODE_SIZE (MODE) == 1 \
? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
: (GET_CODE (PROD) == MULT \
&& \
(xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
((GET_CODE (xfoo0) == CONST_INT \
&& INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
&& GET_CODE (xfoo1) == REG \
&& REG_OK_FOR_INDEX_P (xfoo1)) \
|| \
(GET_CODE (xfoo1) == CONST_INT \
&& INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
&& GET_CODE (xfoo0) == REG \
&& REG_OK_FOR_INDEX_P (xfoo0))))))
/* Is the addition to the index a reg? */
#define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
{ register rtx xfooa; \
if (GET_CODE (X) == PLUS) \
{ if (GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& (xfooa = XEXP (X, 1), \
INDEX_TERM_P (xfooa, MODE))) \
goto ADDR; \
if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1)) \
&& (xfooa = XEXP (X, 0), \
INDEX_TERM_P (xfooa, MODE))) \
goto ADDR; } }
/* Is the rtx X a valid memory address for operand of mode MODE? */
/* If it is, go to ADDR */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ register rtx xfoo, xfoo0, xfoo1; \
GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
if (GET_CODE (X) == PLUS) \
{ xfoo = XEXP (X, 0); \
if (INDEX_TERM_P (xfoo, MODE)) \
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
xfoo = XEXP (X, 1); \
if (INDEX_TERM_P (xfoo, MODE)) \
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
{ if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
goto ADDR; \
GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
{ if (GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
goto ADDR; \
GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
/* Register 16 can never be used for index or base */
#ifndef REG_OK_STRICT
#define REG_OK_FOR_INDEX_P(X) (REGNO(X) != 16)
#define REG_OK_FOR_BASE_P(X) (REGNO(X) != 16)
#else
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* Addressing is too simple to allow optimizing here */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Post_inc and pre_dec always adds 4 */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE(ADDR) == POST_INC || GET_CODE(ADDR) == PRE_DEC) \
goto LABEL; \
if (GET_CODE (ADDR) == PLUS) \
{ if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
&& GET_CODE (XEXP (ADDR, 1)) == REG); \
else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
&& GET_CODE (XEXP (ADDR, 0)) == REG); \
else goto LABEL; }}
/* Double's are not legitimate as immediate operands */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) != CONST_DOUBLE)
/*
* Miscellaneous Parameters
*/
/* the elements in the case jump table are all words */
#define CASE_VECTOR_MODE HImode
/* each of the table elements in a case are relative to the jump address */
#define CASE_VECTOR_PC_RELATIVE
/* tahoe case instructions just fall through to the next instruction */
/* if not satisfied. It doesn't support a default action */
#define CASE_DROPS_THROUGH
/* the standard answer is given here and work ok */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* in a general div case, it's easiest to use TRUNC_DIV_EXPR */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* the standard seems to be leaving char's as signed so we left it */
/* this way even though we think they should be unsigned! */
#define DEFAULT_SIGNED_CHAR 1
/* the most we can move without cutting down speed is 4 bytes */
#define MOVE_MAX 4
/* our int is 32 bits */
#define INT_TYPE_SIZE 32
/* byte access isn't really slower than anything else */
#define SLOW_BYTE_ACCESS 0
/* zero extension is more than one instruction so try to avoid it */
#define SLOW_ZERO_EXTEND
/* any bits higher than the low 4 are ignored in the shift count */
/* so don't bother zero extending or sign extending them */
#define SHIFT_COUNT_TRUNCATED 1
/* we don't need to officially convert from one fixed type to another */
/* in order to use it as that type. We can just assume it's the same */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* pass chars as ints */
#define PROMOTE_PROTOTYPES
/* pointers can be represented by an si mode expression */
#define Pmode SImode
/* function addresses are made by specifying a byte address */
#define FUNCTION_MODE QImode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
On the tahoe a call with a constant address is much faster than one with a
register. */
#define NO_FUNCTION_CSE
/* specify the costs of various sorts of constants,
and also indicate that multiplication is cheap on this machine. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
/* Constant zero is super cheap due to clr instruction. */ \
if (RTX == const0_rtx) return 0; \
if ((unsigned) INTVAL (RTX) < 077) return 1; \
if (INTVAL (RTX) <= 127 && INTVAL (RTX) >= -128) return 2; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 3; \
case CONST_DOUBLE: \
return 5; \
case MULT: \
total = 2;
/*
* Condition Code Information
*/
/* Nonzero if the results of the previous comparison are
in the floating point condition code register. */
#define CC_UNCHANGED 04000
#define NOTICE_UPDATE_CC(EXP, INSN) \
{ if (cc_status.flags & CC_UNCHANGED) \
/* Happens for cvtld and a few other insns. */ \
cc_status.flags &= ~CC_UNCHANGED; \
else if (GET_CODE (EXP) == SET) \
{ if (GET_CODE (SET_SRC (EXP)) == CALL) \
CC_STATUS_INIT; \
else if (GET_CODE (SET_DEST (EXP)) != PC) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (EXP); \
cc_status.value2 = SET_SRC (EXP); } } \
else if (GET_CODE (EXP) == PARALLEL \
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
&& GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
/* PARALLELs whose first element sets the PC are aob, sob insns. \
They do change the cc's. So drop through and forget the cc's. */ \
else CC_STATUS_INIT; \
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
&& cc_status.value2 \
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
cc_status.value2 = 0; \
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
&& cc_status.value2 \
&& GET_CODE (cc_status.value2) == MEM) \
cc_status.value2 = 0; }
/* Actual condition, one line up, should be that value2's address
depends on value1, but that is too much of a pain. */
/*
* Output of Assembler Code
*/
/* print which tahoe version compiled this code and print a directive */
/* to the gnu assembler to say that the following is normal assembly */
#ifdef HCX_UX
#define ASM_FILE_START(FILE) \
{ fprintf (FILE, "#gcc hcx 1.0\n\n"); \
output_file_directive ((FILE), main_input_filename);} while (0)
#else
#define ASM_FILE_START(FILE) fprintf (FILE, "#gcc tahoe 1.0\n#NO_APP\n");
#endif
/* the instruction that turns on the APP for the gnu assembler */
#define ASM_APP_ON "#APP\n"
/* the instruction that turns off the APP for the gnu assembler */
#define ASM_APP_OFF "#NO_APP\n"
/* what to output before read-only data. */
#define TEXT_SECTION_ASM_OP ".text"
/* what to output before writable data. */
#define DATA_SECTION_ASM_OP ".data"
/* this is what we call each of the regs. notice that the FPP reg is */
/* called "ac". This should never get used due to the way we've set */
/* up FPP instructions in the md file. But we call it "ac" here to */
/* fill the list. */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
"r9", "r10", "r11", "r12", "fp", "sp", "pc", "ac"}
#ifdef HCX_UX
/* allow generation of sdb info in the assembly */
#define SDB_DEBUGGING_INFO
#else
/* allow generation of dbx info in the assembly */
#define DBX_DEBUGGING_INFO
/* our dbx doesn't support this */
#define DBX_NO_XREFS
/* we don't want symbols broken up */
#define DBX_CONTIN_LENGTH 0
/* this'll really never be used, but we'll leave it at this */
#define DBX_CONTIN_CHAR '?'
#endif /* HCX_UX */
/* registers are called the same thing in dbx anything else */
/* This is necessary even if we generate SDB output */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* labels are the label followed by a colon and a newline */
/* must be a statement, so surround it in a null loop */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* use the .globl directive to make labels global for the linker */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* output a label by appending an underscore to it */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "_%s", NAME)
/* use the standard format for printing internal labels */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* a * is used for label indirection in unix assembly */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%d", PREFIX, NUM)
/* outputting a double is easy cause we only have one kind */
#ifdef HCX_UX
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
#else
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
{ \
union { int i[2]; double d;} temp; \
temp.d = (VALUE); \
if (TARGET_HEX_FLOAT) \
fprintf ((FILE), "\t.long 0x%x,0x%x # %.20e\n", \
temp.i[0], temp.i[1], temp.d); \
else \
fprintf (FILE, "\t.dfloat 0d%.20e\n", temp.d); \
}
#endif
/* This is how to output an assembler line defining a `float' constant. */
#ifdef HCX_UX
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
#else
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
{ \
union { int i; float f;} temp; \
temp.f = (float) (VALUE); \
if (TARGET_HEX_FLOAT) \
fprintf ((FILE), "\t.long 0x%x # %.20e\n", \
temp.i, temp.f); \
else \
fprintf (FILE, "\t.float 0f%.20e\n", temp.f); \
}
#endif
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#ifdef HCX_UX
/* This is how to output an assembler line for an ASCII string. */
#define ASM_OUTPUT_ASCII(FILE, p, size) \
do { register int i; \
fprintf ((FILE), "\t.ascii \""); \
for (i = 0; i < (size); i++) \
{ \
register int c = (p)[i]; \
if (c == '\'' || c == '\\') \
putc ('\\', (FILE)); \
if (c >= ' ' && c < 0177 && c != '\"') \
putc (c, (FILE)); \
else \
{ \
fprintf ((FILE), "\\%03o", c); \
} \
} \
fprintf ((FILE), "\"\n"); } while (0)
#endif
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* this is the insn to push a register onto the stack */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
/* this is the insn to pop a register from the stack */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
/* this is required even thought tahoe doesn't support it */
/* cause the C code expects it to be defined */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.long L%d\n", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#ifdef HCX_UX
#define CASE_ALIGNMENT 2
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG)!=0) fprintf ((FILE), "\t.align %d\n", 1<<(LOG))
#else
#define CASE_ALIGNMENT 1
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
LOG ? fprintf (FILE, "\t.align %d\n", (LOG)) : 0
#endif
/* This is how to skip over some space */
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %u\n", (SIZE))
/* This defines common variables across files */
#ifdef HCX_UX
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs (".comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (SIZE)))
#else
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs (".comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
#endif
/* This says how to output an assembler line
to define a local common symbol. */
#ifdef HCX_UX
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.bss ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u,4\n", (SIZE),(ROUNDED)))
#else
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs (".lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
#endif
/* code to generate a label */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Print an instruction operand X on file FILE.
CODE is the code from the %-spec that requested printing this operand;
if `%z3' was used to print operand 3, then CODE is 'z'.
On the Vax, the only code used is `#', indicating that either
`d' or `g' should be printed, depending on whether we're using dfloat
or gfloat. */
/* Print an operand. Some difference from the vax code,
since the tahoe can't support immediate floats and doubles.
%@ means print the proper alignment operand for aligning after a casesi.
This depends on the assembler syntax.
This is 1 for our assembler, since .align is logarithmic.
%s means the number given is supposed to be a shift value, but on
the tahoe it should be converted to a number that can be used as a
multiplicative constant (cause multiplication is a whole lot faster
than shifting). So make the number 2^n instead. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '@')
#define PRINT_OPERAND(FILE, X, CODE) \
{ if (CODE == '@') \
putc ('0' + CASE_ALIGNMENT, FILE); \
else if (CODE == 's') \
fprintf (FILE, "$%d", 1 << INTVAL(X)); \
else if (GET_CODE (X) == REG) \
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
else if (GET_CODE (X) == MEM) \
output_address (XEXP (X, 0)); \
else { putc ('$', FILE); output_addr_const (FILE, X); }}
/* When the operand is an address, call print_operand_address to */
/* do the work from output-tahoe.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
/* This is for G++ */
#define CRT0_DUMMIES
#define DOT_GLOBAL_START
#ifdef HCX_UX
#define NO_GNU_LD /* because of COFF format */
#define LINK_SPEC "-L/usr/staff/lib"
#endif