home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
g77-0.5.15-src.tgz
/
tar.out
/
fsf
/
g77
/
expr.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
319KB
|
10,348 lines
/* Convert tree expression to rtl instructions, for GNU compiler.
Copyright (C) 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "machmode.h"
#include "rtl.h"
#include "tree.h"
#include "obstack.h"
#include "flags.h"
#include "regs.h"
#include "function.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "expr.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "typeclass.h"
#include "bytecode.h"
#include "bc-opcode.h"
#include "bc-typecd.h"
#include "bc-optab.h"
#include "bc-emit.h"
#define CEIL(x,y) (((x) + (y) - 1) / (y))
/* Decide whether a function's arguments should be processed
from first to last or from last to first.
They should if the stack and args grow in opposite directions, but
only if we have push insns. */
#ifdef PUSH_ROUNDING
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED /* If it's last to first */
#endif
#endif
#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif
/* Like STACK_BOUNDARY but in units of bytes, not bits. */
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
/* If this is nonzero, we do not bother generating VOLATILE
around volatile memory references, and we are willing to
output indirect addresses. If cse is to follow, we reject
indirect addresses so a useful potential cse is generated;
if it is used only once, instruction combination will produce
the same indirect address eventually. */
int cse_not_expected;
/* Nonzero to generate code for all the subroutines within an
expression before generating the upper levels of the expression.
Nowadays this is never zero. */
int do_preexpand_calls = 1;
/* Number of units that we should eventually pop off the stack.
These are the arguments to function calls that have already returned. */
int pending_stack_adjust;
/* Nonzero means stack pops must not be deferred, and deferred stack
pops must not be output. It is nonzero inside a function call,
inside a conditional expression, inside a statement expression,
and in other cases as well. */
int inhibit_defer_pop;
/* A list of all cleanups which belong to the arguments of
function calls being expanded by expand_call. */
tree cleanups_this_call;
/* When temporaries are created by TARGET_EXPRs, they are created at
this level of temp_slot_level, so that they can remain allocated
until no longer needed. CLEANUP_POINT_EXPRs define the lifetime
of TARGET_EXPRs. */
int target_temp_slot_level;
/* Nonzero means __builtin_saveregs has already been done in this function.
The value is the pseudoreg containing the value __builtin_saveregs
returned. */
static rtx saveregs_value;
/* Similarly for __builtin_apply_args. */
static rtx apply_args_value;
/* This structure is used by move_by_pieces to describe the move to
be performed. */
struct move_by_pieces
{
rtx to;
rtx to_addr;
int autinc_to;
int explicit_inc_to;
rtx from;
rtx from_addr;
int autinc_from;
int explicit_inc_from;
int len;
int offset;
int reverse;
};
/* Used to generate bytecodes: keep track of size of local variables,
as well as depth of arithmetic stack. (Notice that variables are
stored on the machine's stack, not the arithmetic stack.) */
extern int local_vars_size;
extern int stack_depth;
extern int max_stack_depth;
extern struct obstack permanent_obstack;
static rtx enqueue_insn PROTO((rtx, rtx));
static int queued_subexp_p PROTO((rtx));
static void init_queue PROTO((void));
static void move_by_pieces PROTO((rtx, rtx, int, int));
static int move_by_pieces_ninsns PROTO((unsigned int, int));
static void move_by_pieces_1 PROTO((rtx (*) (), enum machine_mode,
struct move_by_pieces *));
static void store_constructor PROTO((tree, rtx));
static rtx store_field PROTO((rtx, int, int, enum machine_mode, tree,
enum machine_mode, int, int, int));
static int get_inner_unaligned_p PROTO((tree));
static tree save_noncopied_parts PROTO((tree, tree));
static tree init_noncopied_parts PROTO((tree, tree));
static int safe_from_p PROTO((rtx, tree));
static int fixed_type_p PROTO((tree));
static int get_pointer_alignment PROTO((tree, unsigned));
static tree string_constant PROTO((tree, tree *));
static tree c_strlen PROTO((tree));
static rtx expand_builtin PROTO((tree, rtx, rtx,
enum machine_mode, int));
static int apply_args_size PROTO((void));
static int apply_result_size PROTO((void));
static rtx result_vector PROTO((int, rtx));
static rtx expand_builtin_apply_args PROTO((void));
static rtx expand_builtin_apply PROTO((rtx, rtx, rtx));
static void expand_builtin_return PROTO((rtx));
static rtx expand_increment PROTO((tree, int));
rtx bc_expand_increment PROTO((struct increment_operator *, tree));
tree bc_runtime_type_code PROTO((tree));
rtx bc_allocate_local PROTO((int, int));
void bc_store_memory PROTO((tree, tree));
tree bc_expand_component_address PROTO((tree));
tree bc_expand_address PROTO((tree));
void bc_expand_constructor PROTO((tree));
void bc_adjust_stack PROTO((int));
tree bc_canonicalize_array_ref PROTO((tree));
void bc_load_memory PROTO((tree, tree));
void bc_load_externaddr PROTO((rtx));
void bc_load_externaddr_id PROTO((tree, int));
void bc_load_localaddr PROTO((rtx));
void bc_load_parmaddr PROTO((rtx));
static void preexpand_calls PROTO((tree));
static void do_jump_by_parts_greater PROTO((tree, int, rtx, rtx));
void do_jump_by_parts_greater_rtx PROTO((enum machine_mode, int, rtx, rtx, rtx, rtx));
static void do_jump_by_parts_equality PROTO((tree, rtx, rtx));
static void do_jump_by_parts_equality_rtx PROTO((rtx, rtx, rtx));
static void do_jump_for_compare PROTO((rtx, rtx, rtx));
static rtx compare PROTO((tree, enum rtx_code, enum rtx_code));
static rtx do_store_flag PROTO((tree, rtx, enum machine_mode, int));
static tree defer_cleanups_to PROTO((tree));
extern void (*interim_eh_hook) PROTO((tree));
/* Record for each mode whether we can move a register directly to or
from an object of that mode in memory. If we can't, we won't try
to use that mode directly when accessing a field of that mode. */
static char direct_load[NUM_MACHINE_MODES];
static char direct_store[NUM_MACHINE_MODES];
/* MOVE_RATIO is the number of move instructions that is better than
a block move. */
#ifndef MOVE_RATIO
#if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
#define MOVE_RATIO 2
#else
/* A value of around 6 would minimize code size; infinity would minimize
execution time. */
#define MOVE_RATIO 15
#endif
#endif
/* This array records the insn_code of insns to perform block moves. */
enum insn_code movstr_optab[NUM_MACHINE_MODES];
/* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS 0
#endif
/* Register mappings for target machines without register windows. */
#ifndef INCOMING_REGNO
#define INCOMING_REGNO(OUT) (OUT)
#endif
#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(IN) (IN)
#endif
/* Maps used to convert modes to const, load, and store bytecodes. */
enum bytecode_opcode mode_to_const_map[MAX_MACHINE_MODE];
enum bytecode_opcode mode_to_load_map[MAX_MACHINE_MODE];
enum bytecode_opcode mode_to_store_map[MAX_MACHINE_MODE];
/* Initialize maps used to convert modes to const, load, and store
bytecodes. */
void
bc_init_mode_to_opcode_maps ()
{
int mode;
for (mode = 0; mode < (int) MAX_MACHINE_MODE; mode++)
mode_to_const_map[mode] =
mode_to_load_map[mode] =
mode_to_store_map[mode] = neverneverland;
#define DEF_MODEMAP(SYM, CODE, UCODE, CONST, LOAD, STORE) \
mode_to_const_map[(int) SYM] = CONST; \
mode_to_load_map[(int) SYM] = LOAD; \
mode_to_store_map[(int) SYM] = STORE;
#include "modemap.def"
#undef DEF_MODEMAP
}
/* This is run once per compilation to set up which modes can be used
directly in memory and to initialize the block move optab. */
void
init_expr_once ()
{
rtx insn, pat;
enum machine_mode mode;
/* Try indexing by frame ptr and try by stack ptr.
It is known that on the Convex the stack ptr isn't a valid index.
With luck, one or the other is valid on any machine. */
rtx mem = gen_rtx (MEM, VOIDmode, stack_pointer_rtx);
rtx mem1 = gen_rtx (MEM, VOIDmode, frame_pointer_rtx);
start_sequence ();
insn = emit_insn (gen_rtx (SET, 0, 0));
pat = PATTERN (insn);
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
mode = (enum machine_mode) ((int) mode + 1))
{
int regno;
rtx reg;
int num_clobbers;
direct_load[(int) mode] = direct_store[(int) mode] = 0;
PUT_MODE (mem, mode);
PUT_MODE (mem1, mode);
/* See if there is some register that can be used in this mode and
directly loaded or stored from memory. */
if (mode != VOIDmode && mode != BLKmode)
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
regno++)
{
if (! HARD_REGNO_MODE_OK (regno, mode))
continue;
reg = gen_rtx (REG, mode, regno);
SET_SRC (pat) = mem;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = mem1;
SET_DEST (pat) = reg;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_load[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
SET_SRC (pat) = reg;
SET_DEST (pat) = mem1;
if (recog (pat, insn, &num_clobbers) >= 0)
direct_store[(int) mode] = 1;
}
}
end_sequence ();
}
/* This is run at the start of compiling a function. */
void
init_expr ()
{
init_queue ();
pending_stack_adjust = 0;
inhibit_defer_pop = 0;
cleanups_this_call = 0;
saveregs_value = 0;
apply_args_value = 0;
forced_labels = 0;
}
/* Save all variables describing the current status into the structure *P.
This is used before starting a nested function. */
void
save_expr_status (p)
struct function *p;
{
/* Instead of saving the postincrement queue, empty it. */
emit_queue ();
p->pending_stack_adjust = pending_stack_adjust;
p->inhibit_defer_pop = inhibit_defer_pop;
p->cleanups_this_call = cleanups_this_call;
p->saveregs_value = saveregs_value;
p->apply_args_value = apply_args_value;
p->forced_labels = forced_labels;
pending_stack_adjust = 0;
inhibit_defer_pop = 0;
cleanups_this_call = 0;
saveregs_value = 0;
apply_args_value = 0;
forced_labels = 0;
}
/* Restore all variables describing the current status from the structure *P.
This is used after a nested function. */
void
restore_expr_status (p)
struct function *p;
{
pending_stack_adjust = p->pending_stack_adjust;
inhibit_defer_pop = p->inhibit_defer_pop;
cleanups_this_call = p->cleanups_this_call;
saveregs_value = p->saveregs_value;
apply_args_value = p->apply_args_value;
forced_labels = p->forced_labels;
}
/* Manage the queue of increment instructions to be output
for POSTINCREMENT_EXPR expressions, etc. */
static rtx pending_chain;
/* Queue up to increment (or change) VAR later. BODY says how:
BODY should be the same thing you would pass to emit_insn
to increment right away. It will go to emit_insn later on.
The value is a QUEUED expression to be used in place of VAR
where you want to guarantee the pre-incrementation value of VAR. */
static rtx
enqueue_insn (var, body)
rtx var, body;
{
pending_chain = gen_rtx (QUEUED, GET_MODE (var),
var, NULL_RTX, NULL_RTX, body, pending_chain);
return pending_chain;
}
/* Use protect_from_queue to convert a QUEUED expression
into something that you can put immediately into an instruction.
If the queued incrementation has not happened yet,
protect_from_queue returns the variable itself.
If the incrementation has happened, protect_from_queue returns a temp
that contains a copy of the old value of the variable.
Any time an rtx which might possibly be a QUEUED is to be put
into an instruction, it must be passed through protect_from_queue first.
QUEUED expressions are not meaningful in instructions.
Do not pass a value through protect_from_queue and then hold
on to it for a while before putting it in an instruction!
If the queue is flushed in between, incorrect code will result. */
rtx
protect_from_queue (x, modify)
register rtx x;
int modify;
{
register RTX_CODE code = GET_CODE (x);
#if 0 /* A QUEUED can hang around after the queue is forced out. */
/* Shortcut for most common case. */
if (pending_chain == 0)
return x;
#endif
if (code != QUEUED)
{
/* A special hack for read access to (MEM (QUEUED ...)) to facilitate
use of autoincrement. Make a copy of the contents of the memory
location rather than a copy of the address, but not if the value is
of mode BLKmode. Don't modify X in place since it might be
shared. */
if (code == MEM && GET_MODE (x) != BLKmode
&& GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
{
register rtx y = XEXP (x, 0);
register rtx new = gen_rtx (MEM, GET_MODE (x), QUEUED_VAR (y));
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
if (QUEUED_INSN (y))
{
register rtx temp = gen_reg_rtx (GET_MODE (new));
emit_insn_before (gen_move_insn (temp, new),
QUEUED_INSN (y));
return temp;
}
return new;
}
/* Otherwise, recursively protect the subexpressions of all
the kinds of rtx's that can contain a QUEUED. */
if (code == MEM)
{
rtx tem = protect_from_queue (XEXP (x, 0), 0);
if (tem != XEXP (x, 0))
{
x = copy_rtx (x);
XEXP (x, 0) = tem;
}
}
else if (code == PLUS || code == MULT)
{
rtx new0 = protect_from_queue (XEXP (x, 0), 0);
rtx new1 = protect_from_queue (XEXP (x, 1), 0);
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
{
x = copy_rtx (x);
XEXP (x, 0) = new0;
XEXP (x, 1) = new1;
}
}
return x;
}
/* If the increment has not happened, use the variable itself. */
if (QUEUED_INSN (x) == 0)
return QUEUED_VAR (x);
/* If the increment has happened and a pre-increment copy exists,
use that copy. */
if (QUEUED_COPY (x) != 0)
return QUEUED_COPY (x);
/* The increment has happened but we haven't set up a pre-increment copy.
Set one up now, and use it. */
QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
QUEUED_INSN (x));
return QUEUED_COPY (x);
}
/* Return nonzero if X contains a QUEUED expression:
if it contains anything that will be altered by a queued increment.
We handle only combinations of MEM, PLUS, MINUS and MULT operators
since memory addresses generally contain only those. */
static int
queued_subexp_p (x)
rtx x;
{
register enum rtx_code code = GET_CODE (x);
switch (code)
{
case QUEUED:
return 1;
case MEM:
return queued_subexp_p (XEXP (x, 0));
case MULT:
case PLUS:
case MINUS:
return queued_subexp_p (XEXP (x, 0))
|| queued_subexp_p (XEXP (x, 1));
}
return 0;
}
/* Perform all the pending incrementations. */
void
emit_queue ()
{
register rtx p;
while (p = pending_chain)
{
QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
pending_chain = QUEUED_NEXT (p);
}
}
static void
init_queue ()
{
if (pending_chain)
abort ();
}
/* Copy data from FROM to TO, where the machine modes are not the same.
Both modes may be integer, or both may be floating.
UNSIGNEDP should be nonzero if FROM is an unsigned type.
This causes zero-extension instead of sign-extension. */
void
convert_move (to, from, unsignedp)
register rtx to, from;
int unsignedp;
{
enum machine_mode to_mode = GET_MODE (to);
enum machine_mode from_mode = GET_MODE (from);
int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
enum insn_code code;
rtx libcall;
/* rtx code for making an equivalent value. */
enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
to = protect_from_queue (to, 1);
from = protect_from_queue (from, 0);
if (to_real != from_real)
abort ();
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. We don't handle such SUBREGs as
TO here. */
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
>= GET_MODE_SIZE (to_mode))
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
from = gen_lowpart (to_mode, from), from_mode = to_mode;
if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
abort ();
if (to_mode == from_mode
|| (from_mode == VOIDmode && CONSTANT_P (from)))
{
emit_move_insn (to, from);
return;
}
if (to_real)
{
rtx value;
#ifdef HAVE_extendqfhf2
if (HAVE_extendqfsf2 && from_mode == QFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_extendqfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendqfsf2
if (HAVE_extendqfsf2 && from_mode == QFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_extendqfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendqfdf2
if (HAVE_extendqfdf2 && from_mode == QFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_extendqfdf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendqfxf2
if (HAVE_extendqfxf2 && from_mode == QFmode && to_mode == XFmode)
{
emit_unop_insn (CODE_FOR_extendqfxf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendqftf2
if (HAVE_extendqftf2 && from_mode == QFmode && to_mode == TFmode)
{
emit_unop_insn (CODE_FOR_extendqftf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendhftqf2
if (HAVE_extendhftqf2 && from_mode == HFmode && to_mode == TQFmode)
{
emit_unop_insn (CODE_FOR_extendhftqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendhfsf2
if (HAVE_extendhfsf2 && from_mode == HFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_extendhfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendhfdf2
if (HAVE_extendhfdf2 && from_mode == HFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_extendhfdf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendhfxf2
if (HAVE_extendhfxf2 && from_mode == HFmode && to_mode == XFmode)
{
emit_unop_insn (CODE_FOR_extendhfxf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendhftf2
if (HAVE_extendhftf2 && from_mode == HFmode && to_mode == TFmode)
{
emit_unop_insn (CODE_FOR_extendhftf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendsfdf2
if (HAVE_extendsfdf2 && from_mode == SFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_extendsfdf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendsfxf2
if (HAVE_extendsfxf2 && from_mode == SFmode && to_mode == XFmode)
{
emit_unop_insn (CODE_FOR_extendsfxf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extendsftf2
if (HAVE_extendsftf2 && from_mode == SFmode && to_mode == TFmode)
{
emit_unop_insn (CODE_FOR_extendsftf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extenddfxf2
if (HAVE_extenddfxf2 && from_mode == DFmode && to_mode == XFmode)
{
emit_unop_insn (CODE_FOR_extenddfxf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_extenddftf2
if (HAVE_extenddftf2 && from_mode == DFmode && to_mode == TFmode)
{
emit_unop_insn (CODE_FOR_extenddftf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunchfqf2
if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncsfqf2
if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfqf2
if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfqf2
if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfqf2
if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
{
emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctqfhf2
if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncsfhf2
if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfhf2
if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfhf2
if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfhf2
if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
{
emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncdfsf2
if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfsf2
if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfsf2
if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
{
emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_truncxfdf2
if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
return;
}
#endif
#ifdef HAVE_trunctfdf2
if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
{
emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
return;
}
#endif
libcall = (rtx) 0;
switch (from_mode)
{
case SFmode:
switch (to_mode)
{
case DFmode:
libcall = extendsfdf2_libfunc;
break;
case XFmode:
libcall = extendsfxf2_libfunc;
break;
case TFmode:
libcall = extendsftf2_libfunc;
break;
}
break;
case DFmode:
switch (to_mode)
{
case SFmode:
libcall = truncdfsf2_libfunc;
break;
case XFmode:
libcall = extenddfxf2_libfunc;
break;
case TFmode:
libcall = extenddftf2_libfunc;
break;
}
break;
case XFmode:
switch (to_mode)
{
case SFmode:
libcall = truncxfsf2_libfunc;
break;
case DFmode:
libcall = truncxfdf2_libfunc;
break;
}
break;
case TFmode:
switch (to_mode)
{
case SFmode:
libcall = trunctfsf2_libfunc;
break;
case DFmode:
libcall = trunctfdf2_libfunc;
break;
}
break;
}
if (libcall == (rtx) 0)
/* This conversion is not implemented yet. */
abort ();
value = emit_library_call_value (libcall, NULL_RTX, 1, to_mode,
1, from, from_mode);
emit_move_insn (to, value);
return;
}
/* Now both modes are integers. */
/* Handle expanding beyond a word. */
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
&& GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
{
rtx insns;
rtx lowpart;
rtx fill_value;
rtx lowfrom;
int i;
enum machine_mode lowpart_mode;
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
/* Try converting directly if the insn is supported. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
/* If FROM is a SUBREG, put it into a register. Do this
so that we always generate the same set of insns for
better cse'ing; if an intermediate assignment occurred,
we won't be doing the operation directly on the SUBREG. */
if (optimize > 0 && GET_CODE (from) == SUBREG)
from = force_reg (from_mode, from);
emit_unop_insn (code, to, from, equiv_code);
return;
}
/* Next, try converting via full word. */
else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
!= CODE_FOR_nothing))
{
if (GET_CODE (to) == REG)
emit_insn (gen_rtx (CLOBBER, VOIDmode, to));
convert_move (gen_lowpart (word_mode, to), from, unsignedp);
emit_unop_insn (code, to,
gen_lowpart (word_mode, to), equiv_code);
return;
}
/* No special multiword conversion insn; do it by hand. */
start_sequence ();
/* Since we will turn this into a no conflict block, we must ensure
that the source does not overlap the target. */
if (reg_overlap_mentioned_p (to, from))
from = force_reg (from_mode, from);
/* Get a copy of FROM widened to a word, if necessary. */
if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
lowpart_mode = word_mode;
else
lowpart_mode = from_mode;
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
lowpart = gen_lowpart (lowpart_mode, to);
emit_move_insn (lowpart, lowfrom);
/* Compute the value to put in each remaining word. */
if (unsignedp)
fill_value = const0_rtx;
else
{
#ifdef HAVE_slt
if (HAVE_slt
&& insn_operand_mode[(int) CODE_FOR_slt][0] == word_mode
&& STORE_FLAG_VALUE == -1)
{
emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
lowpart_mode, 0, 0);
fill_value = gen_reg_rtx (word_mode);
emit_insn (gen_slt (fill_value));
}
else
#endif
{
fill_value
= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
NULL_RTX, 0);
fill_value = convert_to_mode (word_mode, fill_value, 1);
}
}
/* Fill the remaining words. */
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
{
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
rtx subword = operand_subword (to, index, 1, to_mode);
if (subword == 0)
abort ();
if (fill_value != subword)
emit_move_insn (subword, fill_value);
}
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, to, from, NULL_RTX,
gen_rtx (equiv_code, to_mode, copy_rtx (from)));
return;
}
/* Truncating multi-word to a word or less. */
if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
&& GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
{
if (!((GET_CODE (from) == MEM
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| GET_CODE (from) == REG
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
convert_move (to, gen_lowpart (word_mode, from), 0);
return;
}
/* Handle pointer conversion */ /* SPEE 900220 */
if (to_mode == PSImode)
{
if (from_mode != SImode)
from = convert_to_mode (SImode, from, unsignedp);
#ifdef HAVE_truncsipsi2
if (HAVE_truncsipsi2)
{
emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_truncsipsi2 */
abort ();
}
if (from_mode == PSImode)
{
if (to_mode != SImode)
{
from = convert_to_mode (SImode, from, unsignedp);
from_mode = SImode;
}
else
{
#ifdef HAVE_extendpsisi2
if (HAVE_extendpsisi2)
{
emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_extendpsisi2 */
abort ();
}
}
if (to_mode == PDImode)
{
if (from_mode != DImode)
from = convert_to_mode (DImode, from, unsignedp);
#ifdef HAVE_truncdipdi2
if (HAVE_truncdipdi2)
{
emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_truncdipdi2 */
abort ();
}
if (from_mode == PDImode)
{
if (to_mode != DImode)
{
from = convert_to_mode (DImode, from, unsignedp);
from_mode = DImode;
}
else
{
#ifdef HAVE_extendpdidi2
if (HAVE_extendpdidi2)
{
emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
return;
}
#endif /* HAVE_extendpdidi2 */
abort ();
}
}
/* Now follow all the conversions between integers
no more than a word long. */
/* For truncation, usually we can just refer to FROM in a narrower mode. */
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
GET_MODE_BITSIZE (from_mode)))
{
if (!((GET_CODE (from) == MEM
&& ! MEM_VOLATILE_P (from)
&& direct_load[(int) to_mode]
&& ! mode_dependent_address_p (XEXP (from, 0)))
|| GET_CODE (from) == REG
|| GET_CODE (from) == SUBREG))
from = force_reg (from_mode, from);
emit_move_insn (to, gen_lowpart (to_mode, from));
return;
}
/* Handle extension. */
if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
{
/* Convert directly if that works. */
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
!= CODE_FOR_nothing)
{
/* If FROM is a SUBREG, put it into a register. Do this
so that we always generate the same set of insns for
better cse'ing; if an intermediate assignment occurred,
we won't be doing the operation directly on the SUBREG. */
if (optimize > 0 && GET_CODE (from) == SUBREG)
from = force_reg (from_mode, from);
emit_unop_insn (code, to, from, equiv_code);
return;
}
else
{
enum machine_mode intermediate;
/* Search for a mode to convert via. */
for (intermediate = from_mode; intermediate != VOIDmode;
intermediate = GET_MODE_WIDER_MODE (intermediate))
if (((can_extend_p (to_mode, intermediate, unsignedp)
!= CODE_FOR_nothing)
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
&& TRULY_NOOP_TRUNCATION (to_mode, intermediate)))
&& (can_extend_p (intermediate, from_mode, unsignedp)
!= CODE_FOR_nothing))
{
convert_move (to, convert_to_mode (intermediate, from,
unsignedp), unsignedp);
return;
}
/* No suitable intermediate mode. */
abort ();
}
}
/* Support special truncate insns for certain modes. */
if (from_mode == DImode && to_mode == SImode)
{
#ifdef HAVE_truncdisi2
if (HAVE_truncdisi2)
{
emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == DImode && to_mode == HImode)
{
#ifdef HAVE_truncdihi2
if (HAVE_truncdihi2)
{
emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == DImode && to_mode == QImode)
{
#ifdef HAVE_truncdiqi2
if (HAVE_truncdiqi2)
{
emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == SImode && to_mode == HImode)
{
#ifdef HAVE_truncsihi2
if (HAVE_truncsihi2)
{
emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == SImode && to_mode == QImode)
{
#ifdef HAVE_truncsiqi2
if (HAVE_truncsiqi2)
{
emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == HImode && to_mode == QImode)
{
#ifdef HAVE_trunchiqi2
if (HAVE_trunchiqi2)
{
emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == DImode)
{
#ifdef HAVE_trunctidi2
if (HAVE_trunctidi2)
{
emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == SImode)
{
#ifdef HAVE_trunctisi2
if (HAVE_trunctisi2)
{
emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == HImode)
{
#ifdef HAVE_trunctihi2
if (HAVE_trunctihi2)
{
emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
if (from_mode == TImode && to_mode == QImode)
{
#ifdef HAVE_trunctiqi2
if (HAVE_trunctiqi2)
{
emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
return;
}
#endif
convert_move (to, force_reg (from_mode, from), unsignedp);
return;
}
/* Handle truncation of volatile memrefs, and so on;
the things that couldn't be truncated directly,
and for which there was no special instruction. */
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
{
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
emit_move_insn (to, temp);
return;
}
/* Mode combination is not recognized. */
abort ();
}
/* Return an rtx for a value that would result
from converting X to mode MODE.
Both X and MODE may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion.
This function *must not* call protect_from_queue
except when putting X into an insn (in which case convert_move does it). */
rtx
convert_to_mode (mode, x, unsignedp)
enum machine_mode mode;
rtx x;
int unsignedp;
{
return convert_modes (mode, VOIDmode, x, unsignedp);
}
/* Return an rtx for a value that would result
from converting X from mode OLDMODE to mode MODE.
Both modes may be floating, or both integer.
UNSIGNEDP is nonzero if X is an unsigned value.
This can be done by referring to a part of X in place
or by copying to a new temporary with conversion.
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
This function *must not* call protect_from_queue
except when putting X into an insn (in which case convert_move does it). */
rtx
convert_modes (mode, oldmode, x, unsignedp)
enum machine_mode mode, oldmode;
rtx x;
int unsignedp;
{
register rtx temp;
/* If FROM is a SUBREG that indicates that we have already done at least
the required extension, strip it. */
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
x = gen_lowpart (mode, x);
if (GET_MODE (x) != VOIDmode)
oldmode = GET_MODE (x);
if (mode == oldmode)
return x;
/* There is one case that we must handle specially: If we are converting
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
we are to interpret the constant as unsigned, gen_lowpart will do
the wrong if the constant appears negative. What we want to do is
make the high-order word of the constant zero, not all ones. */
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
&& GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
return immed_double_const (INTVAL (x), (HOST_WIDE_INT) 0, mode);
/* We can do this with a gen_lowpart if both desired and current modes
are integer, and this is either a constant integer, a register, or a
non-volatile MEM. Except for the constant case where MODE is no
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
if ((GET_CODE (x) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|| (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_CLASS (oldmode) == MODE_INT
&& (GET_CODE (x) == CONST_DOUBLE
|| (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
&& ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
&& direct_load[(int) mode])
|| (GET_CODE (x) == REG
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (x)))))))))
{
/* ?? If we don't know OLDMODE, we have to assume here that
X does not need sign- or zero-extension. This may not be
the case, but it's the best we can do. */
if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
{
HOST_WIDE_INT val = INTVAL (x);
int width = GET_MODE_BITSIZE (oldmode);
/* We must sign or zero-extend in this case. Start by
zero-extending, then sign extend if we need to. */
val &= ((HOST_WIDE_INT) 1 << width) - 1;
if (! unsignedp
&& (val & ((HOST_WIDE_INT) 1 << (width - 1))))
val |= (HOST_WIDE_INT) (-1) << width;
return GEN_INT (val);
}
return gen_lowpart (mode, x);
}
temp = gen_reg_rtx (mode);
convert_move (temp, x, unsignedp);
return temp;
}
/* Generate several move instructions to copy LEN bytes
from block FROM to block TO. (These are MEM rtx's with BLKmode).
The caller must pass FROM and TO
through protect_from_queue before calling.
ALIGN (in bytes) is maximum alignment we can assume. */
static void
move_by_pieces (to, from, len, align)
rtx to, from;
int len, align;
{
struct move_by_pieces data;
rtx to_addr = XEXP (to, 0), from_addr = XEXP (from, 0);
int max_size = MOVE_MAX + 1;
data.offset = 0;
data.to_addr = to_addr;
data.from_addr = from_addr;
data.to = to;
data.from = from;
data.autinc_to
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
data.autinc_from
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|| GET_CODE (from_addr) == POST_INC
|| GET_CODE (from_addr) == POST_DEC);
data.explicit_inc_from = 0;
data.explicit_inc_to = 0;
data.reverse
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
if (data.reverse) data.offset = len;
data.len = len;
/* If copying requires more than two move insns,
copy addresses to registers (to make displacements shorter)
and use post-increment if available. */
if (!(data.autinc_from && data.autinc_to)
&& move_by_pieces_ninsns (len, align) > 2)
{
#ifdef HAVE_PRE_DECREMENT
if (data.reverse && ! data.autinc_from)
{
data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
data.autinc_from = 1;
data.explicit_inc_from = -1;
}
#endif
#ifdef HAVE_POST_INCREMENT
if (! data.autinc_from)
{
data.from_addr = copy_addr_to_reg (from_addr);
data.autinc_from = 1;
data.explicit_inc_from = 1;
}
#endif
if (!data.autinc_from && CONSTANT_P (from_addr))
data.from_addr = copy_addr_to_reg (from_addr);
#ifdef HAVE_PRE_DECREMENT
if (data.reverse && ! data.autinc_to)
{
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
data.autinc_to = 1;
data.explicit_inc_to = -1;
}
#endif
#ifdef HAVE_POST_INCREMENT
if (! data.reverse && ! data.autinc_to)
{
data.to_addr = copy_addr_to_reg (to_addr);
data.autinc_to = 1;
data.explicit_inc_to = 1;
}
#endif
if (!data.autinc_to && CONSTANT_P (to_addr))
data.to_addr = copy_addr_to_reg (to_addr);
}
if (! (STRICT_ALIGNMENT || SLOW_UNALIGNED_ACCESS)
|| align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
align = MOVE_MAX;
/* First move what we can in the largest integer mode, then go to
successively smaller modes. */
while (max_size > 1)
{
enum machine_mode mode = VOIDmode, tmode;
enum insn_code icode;
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing
&& align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
GET_MODE_SIZE (mode)))
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
max_size = GET_MODE_SIZE (mode);
}
/* The code above should have handled everything. */
if (data.len != 0)
abort ();
}
/* Return number of insns required to move L bytes by pieces.
ALIGN (in bytes) is maximum alignment we can assume. */
static int
move_by_pieces_ninsns (l, align)
unsigned int l;
int align;
{
register int n_insns = 0;
int max_size = MOVE_MAX + 1;
if (! (STRICT_ALIGNMENT || SLOW_UNALIGNED_ACCESS)
|| align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
align = MOVE_MAX;
while (max_size > 1)
{
enum machine_mode mode = VOIDmode, tmode;
enum insn_code icode;
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
if (GET_MODE_SIZE (tmode) < max_size)
mode = tmode;
if (mode == VOIDmode)
break;
icode = mov_optab->handlers[(int) mode].insn_code;
if (icode != CODE_FOR_nothing
&& align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
GET_MODE_SIZE (mode)))
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
max_size = GET_MODE_SIZE (mode);
}
return n_insns;
}
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
with move instructions for mode MODE. GENFUN is the gen_... function
to make a move insn for that mode. DATA has all the other info. */
static void
move_by_pieces_1 (genfun, mode, data)
rtx (*genfun) ();
enum machine_mode mode;
struct move_by_pieces *data;
{
register int size = GET_MODE_SIZE (mode);
register rtx to1, from1;
while (data->len >= size)
{
if (data->reverse) data->offset -= size;
to1 = (data->autinc_to
? gen_rtx (MEM, mode, data->to_addr)
: change_address (data->to, mode,
plus_constant (data->to_addr, data->offset)));
from1 =
(data->autinc_from
? gen_rtx (MEM, mode, data->from_addr)
: change_address (data->from, mode,
plus_constant (data->from_addr, data->offset)));
#ifdef HAVE_PRE_DECREMENT
if (data->explicit_inc_to < 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
if (data->explicit_inc_from < 0)
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-size)));
#endif
emit_insn ((*genfun) (to1, from1));
#ifdef HAVE_POST_INCREMENT
if (data->explicit_inc_to > 0)
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
if (data->explicit_inc_from > 0)
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
#endif
if (! data->reverse) data->offset += size;
data->len -= size;
}
}
/* Emit code to move a block Y to a block X.
This may be done with string-move instructions,
with multiple scalar move instructions, or with a library call.
Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
with mode BLKmode.
SIZE is an rtx that says how long they are.
ALIGN is the maximum alignment we can assume they have,
measured in bytes. */
void
emit_block_move (x, y, size, align)
rtx x, y;
rtx size;
int align;
{
if (GET_MODE (x) != BLKmode)
abort ();
if (GET_MODE (y) != BLKmode)
abort ();
x = protect_from_queue (x, 1);
y = protect_from_queue (y, 0);
size = protect_from_queue (size, 0);
if (GET_CODE (x) != MEM)
abort ();
if (GET_CODE (y) != MEM)
abort ();
if (size == 0)
abort ();
if (GET_CODE (size) == CONST_INT
&& (move_by_pieces_ninsns (INTVAL (size), align) < MOVE_RATIO))
move_by_pieces (x, y, INTVAL (size), align);
else
{
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
rtx opalign = GEN_INT (align);
enum machine_mode mode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
{
enum insn_code code = movstr_optab[(int) mode];
if (code != CODE_FOR_nothing
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
here because if SIZE is less than the mode mask, as it is
returned by the macro, it will definitely be less than the
actual mode mask. */
&& ((GET_CODE (size) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
<= GET_MODE_MASK (mode)))
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
&& (insn_operand_predicate[(int) code][0] == 0
|| (*insn_operand_predicate[(int) code][0]) (x, BLKmode))
&& (insn_operand_predicate[(int) code][1] == 0
|| (*insn_operand_predicate[(int) code][1]) (y, BLKmode))
&& (insn_operand_predicate[(int) code][3] == 0
|| (*insn_operand_predicate[(int) code][3]) (opalign,
VOIDmode)))
{
rtx op2;
rtx last = get_last_insn ();
rtx pat;
op2 = convert_to_mode (mode, size, 1);
if (insn_operand_predicate[(int) code][2] != 0
&& ! (*insn_operand_predicate[(int) code][2]) (op2, mode))
op2 = copy_to_mode_reg (mode, op2);
pat = GEN_FCN ((int) code) (x, y, op2, opalign);
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
}
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcpy_libfunc, 0,
VOIDmode, 3, XEXP (x, 0), Pmode,
XEXP (y, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype), size,
TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, 0,
VOIDmode, 3, XEXP (y, 0), Pmode,
XEXP (x, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype), size,
TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#endif
}
}
/* Copy all or part of a value X into registers starting at REGNO.
The number of registers to be filled is NREGS. */
void
move_block_to_reg (regno, x, nregs, mode)
int regno;
rtx x;
int nregs;
enum machine_mode mode;
{
int i;
rtx pat, last;
if (nregs == 0)
return;
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
x = validize_mem (force_const_mem (mode, x));
/* See if the machine can do this with a load multiple insn. */
#ifdef HAVE_load_multiple
if (HAVE_load_multiple)
{
last = get_last_insn ();
pat = gen_load_multiple (gen_rtx (REG, word_mode, regno), x,
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
emit_move_insn (gen_rtx (REG, word_mode, regno + i),
operand_subword_force (x, i, mode));
}
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
The number of registers to be filled is NREGS. SIZE indicates the number
of bytes in the object X. */
void
move_block_from_reg (regno, x, nregs, size)
int regno;
rtx x;
int nregs;
int size;
{
int i;
rtx pat, last;
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
to the left before storing to memory. */
if (size < UNITS_PER_WORD && BYTES_BIG_ENDIAN)
{
rtx tem = operand_subword (x, 0, 1, BLKmode);
rtx shift;
if (tem == 0)
abort ();
shift = expand_shift (LSHIFT_EXPR, word_mode,
gen_rtx (REG, word_mode, regno),
build_int_2 ((UNITS_PER_WORD - size)
* BITS_PER_UNIT, 0), NULL_RTX, 0);
emit_move_insn (tem, shift);
return;
}
/* See if the machine can do this with a store multiple insn. */
#ifdef HAVE_store_multiple
if (HAVE_store_multiple)
{
last = get_last_insn ();
pat = gen_store_multiple (x, gen_rtx (REG, word_mode, regno),
GEN_INT (nregs));
if (pat)
{
emit_insn (pat);
return;
}
else
delete_insns_since (last);
}
#endif
for (i = 0; i < nregs; i++)
{
rtx tem = operand_subword (x, i, 1, BLKmode);
if (tem == 0)
abort ();
emit_move_insn (tem, gen_rtx (REG, word_mode, regno + i));
}
}
/* Add a USE expression for REG to the (possibly empty) list pointed
to by CALL_FUSAGE. REG must denote a hard register. */
void
use_reg (call_fusage, reg)
rtx *call_fusage, reg;
{
if (GET_CODE (reg) != REG
|| REGNO (reg) >= FIRST_PSEUDO_REGISTER)
abort();
*call_fusage
= gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (USE, VOIDmode, reg), *call_fusage);
}
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
starting at REGNO. All of these registers must be hard registers. */
void
use_regs (call_fusage, regno, nregs)
rtx *call_fusage;
int regno;
int nregs;
{
int i;
if (regno + nregs > FIRST_PSEUDO_REGISTER)
abort ();
for (i = 0; i < nregs; i++)
use_reg (call_fusage, gen_rtx (REG, reg_raw_mode[regno + i], regno + i));
}
/* Write zeros through the storage of OBJECT.
If OBJECT has BLKmode, SIZE is its length in bytes. */
void
clear_storage (object, size)
rtx object;
int size;
{
if (GET_MODE (object) == BLKmode)
{
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memset_libfunc, 0,
VOIDmode, 3,
XEXP (object, 0), Pmode, const0_rtx, Pmode,
GEN_INT (size), Pmode);
#else
emit_library_call (bzero_libfunc, 0,
VOIDmode, 2,
XEXP (object, 0), Pmode,
GEN_INT (size), Pmode);
#endif
}
else
emit_move_insn (object, const0_rtx);
}
/* Generate code to copy Y into X.
Both Y and X must have the same mode, except that
Y can be a constant with VOIDmode.
This mode cannot be BLKmode; use emit_block_move for that.
Return the last instruction emitted. */
rtx
emit_move_insn (x, y)
rtx x, y;
{
enum machine_mode mode = GET_MODE (x);
x = protect_from_queue (x, 1);
y = protect_from_queue (y, 0);
if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
abort ();
if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
y = force_const_mem (mode, y);
/* If X or Y are memory references, verify that their addresses are valid
for the machine. */
if (GET_CODE (x) == MEM
&& ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
&& ! push_operand (x, GET_MODE (x)))
|| (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (x, 0)))))
x = change_address (x, VOIDmode, XEXP (x, 0));
if (GET_CODE (y) == MEM
&& (! memory_address_p (GET_MODE (y), XEXP (y, 0))
|| (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (y, 0)))))
y = change_address (y, VOIDmode, XEXP (y, 0));
if (mode == BLKmode)
abort ();
return emit_move_insn_1 (x, y);
}
/* Low level part of emit_move_insn.
Called just like emit_move_insn, but assumes X and Y
are basically valid. */
rtx
emit_move_insn_1 (x, y)
rtx x, y;
{
enum machine_mode mode = GET_MODE (x);
enum machine_mode submode;
enum mode_class class = GET_MODE_CLASS (mode);
int i;
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
return
emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
/* Expand complex moves by moving real part and imag part, if possible. */
else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
&& BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
* BITS_PER_UNIT),
(class == MODE_COMPLEX_INT
? MODE_INT : MODE_FLOAT),
0))
&& (mov_optab->handlers[(int) submode].insn_code
!= CODE_FOR_nothing))
{
/* Don't split destination if it is a stack push. */
int stack = push_operand (x, GET_MODE (x));
rtx insns;
/* If this is a stack, push the highpart first, so it
will be in the argument order.
In that case, change_address is used only to convert
the mode, not to change the address. */
if (stack)
{
/* Note that the real part always precedes the imag part in memory
regardless of machine's endianness. */
#ifdef STACK_GROWS_DOWNWARD
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx (MEM, submode, (XEXP (x, 0))),
gen_imagpart (submode, y)));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx (MEM, submode, (XEXP (x, 0))),
gen_realpart (submode, y)));
#else
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx (MEM, submode, (XEXP (x, 0))),
gen_realpart (submode, y)));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_rtx (MEM, submode, (XEXP (x, 0))),
gen_imagpart (submode, y)));
#endif
}
else
{
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_realpart (submode, x), gen_realpart (submode, y)));
emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
(gen_imagpart (submode, x), gen_imagpart (submode, y)));
}
return get_last_insn ();
}
/* This will handle any multi-word mode that lacks a move_insn pattern.
However, you will get better code if you define such patterns,
even if they must turn into multiple assembler instructions. */
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
{
rtx last_insn = 0;
rtx insns;
#ifdef PUSH_ROUNDING
/* If X is a push on the stack, do the push now and replace
X with a reference to the stack pointer. */
if (push_operand (x, GET_MODE (x)))
{
anti_adjust_stack (GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
x = change_address (x, VOIDmode, stack_pointer_rtx);
}
#endif
for (i = 0;
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
i++)
{
rtx xpart = operand_subword (x, i, 1, mode);
rtx ypart = operand_subword (y, i, 1, mode);
/* If we can't get a part of Y, put Y into memory if it is a
constant. Otherwise, force it into a register. If we still
can't get a part of Y, abort. */
if (ypart == 0 && CONSTANT_P (y))
{
y = force_const_mem (mode, y);
ypart = operand_subword (y, i, 1, mode);
}
else if (ypart == 0)
ypart = operand_subword_force (y, i, mode);
if (xpart == 0 || ypart == 0)
abort ();
last_insn = emit_move_insn (xpart, ypart);
}
return last_insn;
}
else
abort ();
}
/* Pushing data onto the stack. */
/* Push a block of length SIZE (perhaps variable)
and return an rtx to address the beginning of the block.
Note that it is not possible for the value returned to be a QUEUED.
The value may be virtual_outgoing_args_rtx.
EXTRA is the number of bytes of padding to push in addition to SIZE.
BELOW nonzero means this padding comes at low addresses;
otherwise, the padding comes at high addresses. */
rtx
push_block (size, extra, below)
rtx size;
int extra, below;
{
register rtx temp;
if (CONSTANT_P (size))
anti_adjust_stack (plus_constant (size, extra));
else if (GET_CODE (size) == REG && extra == 0)
anti_adjust_stack (size);
else
{
rtx temp = copy_to_mode_reg (Pmode, size);
if (extra != 0)
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
temp, 0, OPTAB_LIB_WIDEN);
anti_adjust_stack (temp);
}
#ifdef STACK_GROWS_DOWNWARD
temp = virtual_outgoing_args_rtx;
if (extra != 0 && below)
temp = plus_constant (temp, extra);
#else
if (GET_CODE (size) == CONST_INT)
temp = plus_constant (virtual_outgoing_args_rtx,
- INTVAL (size) - (below ? 0 : extra));
else if (extra != 0 && !below)
temp = gen_rtx (PLUS, Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, plus_constant (size, extra)));
else
temp = gen_rtx (PLUS, Pmode, virtual_outgoing_args_rtx,
negate_rtx (Pmode, size));
#endif
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}
rtx
gen_push_operand ()
{
return gen_rtx (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
}
/* Generate code to push X onto the stack, assuming it has mode MODE and
type TYPE.
MODE is redundant except when X is a CONST_INT (since they don't
carry mode info).
SIZE is an rtx for the size of data to be copied (in bytes),
needed only if X is BLKmode.
ALIGN (in bytes) is maximum alignment we can assume.
If PARTIAL and REG are both nonzero, then copy that many of the first
words of X into registers starting with REG, and push the rest of X.
The amount of space pushed is decreased by PARTIAL words,
rounded *down* to a multiple of PARM_BOUNDARY.
REG must be a hard register in this case.
If REG is zero but PARTIAL is not, take any all others actions for an
argument partially in registers, but do not actually load any
registers.
EXTRA is the amount in bytes of extra space to leave next to this arg.
This is ignored if an argument block has already been allocated.
On a machine that lacks real push insns, ARGS_ADDR is the address of
the bottom of the argument block for this call. We use indexing off there
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
argument block has not been preallocated.
ARGS_SO_FAR is the size of args previously pushed for this call. */
void
emit_push_insn (x, mode, type, size, align, partial, reg, extra,
args_addr, args_so_far)
register rtx x;
enum machine_mode mode;
tree type;
rtx size;
int align;
int partial;
rtx reg;
int extra;
rtx args_addr;
rtx args_so_far;
{
rtx xinner;
enum direction stack_direction
#ifdef STACK_GROWS_DOWNWARD
= downward;
#else
= upward;
#endif
/* Decide where to pad the argument: `downward' for below,
`upward' for above, or `none' for don't pad it.
Default is below for small data on big-endian machines; else above. */
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
/* Invert direction if stack is post-update. */
if (STACK_PUSH_CODE == POST_INC || STACK_PUSH_CODE == POST_DEC)
if (where_pad != none)
where_pad = (where_pad == downward ? upward : downward);
xinner = x = protect_from_queue (x, 0);
if (mode == BLKmode)
{
/* Copy a block into the stack, entirely or partially. */
register rtx temp;
int used = partial * UNITS_PER_WORD;
int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
int skip;
if (size == 0)
abort ();
used -= offset;
/* USED is now the # of bytes we need not copy to the stack
because registers will take care of them. */
if (partial != 0)
xinner = change_address (xinner, BLKmode,
plus_constant (XEXP (xinner, 0), used));
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
#ifndef REG_PARM_STACK_SPACE
skip = 0;
#else
skip = used;
#endif
#ifdef PUSH_ROUNDING
/* Do it with several push insns if that doesn't take lots of insns
and if there is no difficulty with push insns that skip bytes
on the stack for alignment purposes. */
if (args_addr == 0
&& GET_CODE (size) == CONST_INT
&& skip == 0
&& (move_by_pieces_ninsns ((unsigned) INTVAL (size) - used, align)
< MOVE_RATIO)
/* Here we avoid the case of a structure whose weak alignment
forces many pushes of a small amount of data,
and such small pushes do rounding that causes trouble. */
&& ((! STRICT_ALIGNMENT && ! SLOW_UNALIGNED_ACCESS)
|| align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT
|| PUSH_ROUNDING (align) == align)
&& PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
{
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
move_by_pieces (gen_rtx (MEM, BLKmode, gen_push_operand ()), xinner,
INTVAL (size) - used, align);
}
else
#endif /* PUSH_ROUNDING */
{
/* Otherwise make space on the stack and copy the data
to the address of that space. */
/* Deduct words put into registers from the size we must copy. */
if (partial != 0)
{
if (GET_CODE (size) == CONST_INT)
size = GEN_INT (INTVAL (size) - used);
else
size = expand_binop (GET_MODE (size), sub_optab, size,
GEN_INT (used), NULL_RTX, 0,
OPTAB_LIB_WIDEN);
}
/* Get the address of the stack space.
In this case, we do not deal with EXTRA separately.
A single stack adjust will do. */
if (! args_addr)
{
temp = push_block (size, extra, where_pad == downward);
extra = 0;
}
else if (GET_CODE (args_so_far) == CONST_INT)
temp = memory_address (BLKmode,
plus_constant (args_addr,
skip + INTVAL (args_so_far)));
else
temp = memory_address (BLKmode,
plus_constant (gen_rtx (PLUS, Pmode,
args_addr, args_so_far),
skip));
/* TEMP is the address of the block. Copy the data there. */
if (GET_CODE (size) == CONST_INT
&& (move_by_pieces_ninsns ((unsigned) INTVAL (size), align)
< MOVE_RATIO))
{
move_by_pieces (gen_rtx (MEM, BLKmode, temp), xinner,
INTVAL (size), align);
goto ret;
}
/* Try the most limited insn first, because there's no point
including more than one in the machine description unless
the more limited one has some advantage. */
#ifdef HAVE_movstrqi
if (HAVE_movstrqi
&& GET_CODE (size) == CONST_INT
&& ((unsigned) INTVAL (size)
< (1 << (GET_MODE_BITSIZE (QImode) - 1))))
{
rtx pat = gen_movstrqi (gen_rtx (MEM, BLKmode, temp),
xinner, size, GEN_INT (align));
if (pat != 0)
{
emit_insn (pat);
goto ret;
}
}
#endif
#ifdef HAVE_movstrhi
if (HAVE_movstrhi
&& GET_CODE (size) == CONST_INT
&& ((unsigned) INTVAL (size)
< (1 << (GET_MODE_BITSIZE (HImode) - 1))))
{
rtx pat = gen_movstrhi (gen_rtx (MEM, BLKmode, temp),
xinner, size, GEN_INT (align));
if (pat != 0)
{
emit_insn (pat);
goto ret;
}
}
#endif
#ifdef HAVE_movstrsi
if (HAVE_movstrsi)
{
rtx pat = gen_movstrsi (gen_rtx (MEM, BLKmode, temp),
xinner, size, GEN_INT (align));
if (pat != 0)
{
emit_insn (pat);
goto ret;
}
}
#endif
#ifdef HAVE_movstrdi
if (HAVE_movstrdi)
{
rtx pat = gen_movstrdi (gen_rtx (MEM, BLKmode, temp),
xinner, size, GEN_INT (align));
if (pat != 0)
{
emit_insn (pat);
goto ret;
}
}
#endif
#ifndef ACCUMULATE_OUTGOING_ARGS
/* If the source is referenced relative to the stack pointer,
copy it to another register to stabilize it. We do not need
to do this if we know that we won't be changing sp. */
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
temp = copy_to_reg (temp);
#endif
/* Make inhibit_defer_pop nonzero around the library call
to force it to pop the bcopy-arguments right away. */
NO_DEFER_POP;
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcpy_libfunc, 0,
VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, 0,
VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#endif
OK_DEFER_POP;
}
}
else if (partial > 0)
{
/* Scalar partly in registers. */
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
int i;
int not_stack;
/* # words of start of argument
that we must make space for but need not store. */
int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
int args_offset = INTVAL (args_so_far);
int skip;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
/* If we make space by pushing it, we might as well push
the real data. Otherwise, we can leave OFFSET nonzero
and leave the space uninitialized. */
if (args_addr == 0)
offset = 0;
/* Now NOT_STACK gets the number of words that we don't need to
allocate on the stack. */
not_stack = partial - offset;
/* If the partial register-part of the arg counts in its stack size,
skip the part of stack space corresponding to the registers.
Otherwise, start copying to the beginning of the stack space,
by setting SKIP to 0. */
#ifndef REG_PARM_STACK_SPACE
skip = 0;
#else
skip = not_stack;
#endif
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
x = validize_mem (force_const_mem (mode, x));
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
SUBREGs of such registers are not allowed. */
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
x = copy_to_reg (x);
/* Loop over all the words allocated on the stack for this arg. */
/* We can do it by words, because any scalar bigger than a word
has a size a multiple of a word. */
#ifndef PUSH_ARGS_REVERSED
for (i = not_stack; i < size; i++)
#else
for (i = size - 1; i >= not_stack; i--)
#endif
if (i >= not_stack + offset)
emit_push_insn (operand_subword_force (x, i, mode),
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
0, args_addr,
GEN_INT (args_offset + ((i - not_stack + skip)
* UNITS_PER_WORD)));
}
else
{
rtx addr;
/* Push padding now if padding above and stack grows down,
or if padding below and stack grows up.
But if space already allocated, this has already been done. */
if (extra && args_addr == 0
&& where_pad != none && where_pad != stack_direction)
anti_adjust_stack (GEN_INT (extra));
#ifdef PUSH_ROUNDING
if (args_addr == 0)
addr = gen_push_operand ();
else
#endif
if (GET_CODE (args_so_far) == CONST_INT)
addr
= memory_address (mode,
plus_constant (args_addr, INTVAL (args_so_far)));
else
addr = memory_address (mode, gen_rtx (PLUS, Pmode, args_addr,
args_so_far));
emit_move_insn (gen_rtx (MEM, mode, addr), x);
}
ret:
/* If part should go in registers, copy that part
into the appropriate registers. Do this now, at the end,
since mem-to-mem copies above may do function calls. */
if (partial > 0 && reg != 0)
move_block_to_reg (REGNO (reg), x, partial, mode);
if (extra && args_addr == 0 && where_pad == stack_direction)
anti_adjust_stack (GEN_INT (extra));
}
/* Expand an assignment that stores the value of FROM into TO.
If WANT_VALUE is nonzero, return an rtx for the value of TO.
(This may contain a QUEUED rtx;
if the value is constant, this rtx is a constant.)
Otherwise, the returned value is NULL_RTX.
SUGGEST_REG is no longer actually used.
It used to mean, copy the value through a register
and return that register, if that is possible.
We now use WANT_VALUE to decide whether to do this. */
rtx
expand_assignment (to, from, want_value, suggest_reg)
tree to, from;
int want_value;
int suggest_reg;
{
register rtx to_rtx = 0;
rtx result;
/* Don't crash if the lhs of the assignment was erroneous. */
if (TREE_CODE (to) == ERROR_MARK)
{
result = expand_expr (from, NULL_RTX, VOIDmode, 0);
return want_value ? result : NULL_RTX;
}
if (output_bytecode)
{
tree dest_innermost;
bc_expand_expr (from);
bc_emit_instruction (duplicate);
dest_innermost = bc_expand_address (to);
/* Can't deduce from TYPE that we're dealing with a bitfield, so
take care of it here. */
bc_store_memory (TREE_TYPE (to), dest_innermost);
return NULL;
}
/* Assignment of a structure component needs special treatment
if the structure component's rtx is not simply a MEM.
Assignment of an array element at a constant index, and assignment of
an array element in an unaligned packed structure field, has the same
problem. */
if (TREE_CODE (to) == COMPONENT_REF
|| TREE_CODE (to) == BIT_FIELD_REF
|| (TREE_CODE (to) == ARRAY_REF
&& ((TREE_CODE (TREE_OPERAND (to, 1)) == INTEGER_CST
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (to))) == INTEGER_CST)
|| (STRICT_ALIGNMENT && get_inner_unaligned_p (to)))))
{
enum machine_mode mode1;
int bitsize;
int bitpos;
tree offset;
int unsignedp;
int volatilep = 0;
tree tem;
int alignment;
push_temp_slots ();
tem = get_inner_reference (to, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep);
/* If we are going to use store_bit_field and extract_bit_field,
make sure to_rtx will be safe for multiple use. */
if (mode1 == VOIDmode && want_value)
tem = stabilize_reference (tem);
alignment = TYPE_ALIGN (TREE_TYPE (tem)) / BITS_PER_UNIT;
to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
if (offset != 0)
{
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
if (GET_CODE (to_rtx) != MEM)
abort ();
to_rtx = change_address (to_rtx, VOIDmode,
gen_rtx (PLUS, Pmode, XEXP (to_rtx, 0),
force_reg (Pmode, offset_rtx)));
/* If we have a variable offset, the known alignment
is only that of the innermost structure containing the field.
(Actually, we could sometimes do better by using the
align of an element of the innermost array, but no need.) */
if (TREE_CODE (to) == COMPONENT_REF
|| TREE_CODE (to) == BIT_FIELD_REF)
alignment
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (to, 0))) / BITS_PER_UNIT;
}
if (volatilep)
{
if (GET_CODE (to_rtx) == MEM)
MEM_VOLATILE_P (to_rtx) = 1;
#if 0 /* This was turned off because, when a field is volatile
in an object which is not volatile, the object may be in a register,
and then we would abort over here. */
else
abort ();
#endif
}
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
(want_value
/* Spurious cast makes HPUX compiler happy. */
? (enum machine_mode) TYPE_MODE (TREE_TYPE (to))
: VOIDmode),
unsignedp,
/* Required alignment of containing datum. */
alignment,
int_size_in_bytes (TREE_TYPE (tem)));
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
/* If the value is meaningful, convert RESULT to the proper mode.
Otherwise, return nothing. */
return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
TYPE_MODE (TREE_TYPE (from)),
result,
TREE_UNSIGNED (TREE_TYPE (to)))
: NULL_RTX);
}
/* If the rhs is a function call and its value is not an aggregate,
call the function before we start to compute the lhs.
This is needed for correct code for cases such as
val = setjmp (buf) on machines where reference to val
requires loading up part of an address in a separate insn.
Don't do this if TO is a VAR_DECL whose DECL_RTL is REG since it might be
a promoted variable where the zero- or sign- extension needs to be done.
Handling this in the normal way is safe because no computation is done
before the call. */
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
&& ! (TREE_CODE (to) == VAR_DECL && GET_CODE (DECL_RTL (to)) == REG))
{
rtx value;
push_temp_slots ();
value = expand_expr (from, NULL_RTX, VOIDmode, 0);
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, 0);
emit_move_insn (to_rtx, value);
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
if (to_rtx == 0)
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, 0);
/* Don't move directly into a return register. */
if (TREE_CODE (to) == RESULT_DECL && GET_CODE (to_rtx) == REG)
{
rtx temp;
push_temp_slots ();
temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
emit_move_insn (to_rtx, temp);
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* In case we are returning the contents of an object which overlaps
the place the value is being stored, use a safe function when copying
a value through a pointer into a structure value return block. */
if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
&& current_function_returns_struct
&& !current_function_returns_pcc_struct)
{
rtx from_rtx, size;
push_temp_slots ();
size = expr_size (from);
from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memcpy_libfunc, 0,
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
XEXP (from_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, 0,
VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
XEXP (to_rtx, 0), Pmode,
convert_to_mode (TYPE_MODE (sizetype),
size, TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#endif
preserve_temp_slots (to_rtx);
free_temp_slots ();
pop_temp_slots ();
return want_value ? to_rtx : NULL_RTX;
}
/* Compute FROM and store the value in the rtx we got. */
push_temp_slots ();
result = store_expr (from, to_rtx, want_value);
preserve_temp_slots (result);
free_temp_slots ();
pop_temp_slots ();
return want_value ? result : NULL_RTX;
}
/* Generate code for computing expression EXP,
and storing the value into TARGET.
TARGET may contain a QUEUED rtx.
If WANT_VALUE is nonzero, return a copy of the value
not in TARGET, so that we can be sure to use the proper
value in a containing expression even if TARGET has something
else stored in it. If possible, we copy the value through a pseudo
and return that pseudo. Or, if the value is constant, we try to
return the constant. In some cases, we return a pseudo
copied *from* TARGET.
If the mode is BLKmode then we may return TARGET itself.
It turns out that in BLKmode it doesn't cause a problem.
because C has no operators that could combine two different
assignments into the same BLKmode object with different values
with no sequence point. Will other languages need this to
be more thorough?
If WANT_VALUE is 0, we return NULL, to make sure
to catch quickly any cases where the caller uses the value
and fails to set WANT_VALUE. */
rtx
store_expr (exp, target, want_value)
register tree exp;
register rtx target;
int want_value;
{
register rtx temp;
int dont_return_target = 0;
if (TREE_CODE (exp) == COMPOUND_EXPR)
{
/* Perform first part of compound expression, then assign from second
part. */
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
emit_queue ();
return store_expr (TREE_OPERAND (exp, 1), target, want_value);
}
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
{
/* For conditional expression, get safe form of the target. Then
test the condition, doing the appropriate assignment on either
side. This avoids the creation of unnecessary temporaries.
For non-BLKmode, it is more efficient not to do this. */
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
emit_queue ();
target = protect_from_queue (target, 1);
NO_DEFER_POP;
jumpifnot (TREE_OPERAND (exp, 0), lab1);
store_expr (TREE_OPERAND (exp, 1), target, 0);
emit_queue ();
emit_jump_insn (gen_jump (lab2));
emit_barrier ();
emit_label (lab1);
store_expr (TREE_OPERAND (exp, 2), target, 0);
emit_queue ();
emit_label (lab2);
OK_DEFER_POP;
return want_value ? target : NULL_RTX;
}
else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
&& GET_MODE (target) != BLKmode)
/* If target is in memory and caller wants value in a register instead,
arrange that. Pass TARGET as target for expand_expr so that,
if EXP is another assignment, WANT_VALUE will be nonzero for it.
We know expand_expr will not use the target in that case.
Don't do this if TARGET is volatile because we are supposed
to write it and then read it. */
{
temp = expand_expr (exp, cse_not_expected ? NULL_RTX : target,
GET_MODE (target), 0);
if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
temp = copy_to_reg (temp);
dont_return_target = 1;
}
else if (queued_subexp_p (target))
/* If target contains a postincrement, let's not risk
using it as the place to generate the rhs. */
{
if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
{
/* Expand EXP into a new pseudo. */
temp = gen_reg_rtx (GET_MODE (target));
temp = expand_expr (exp, temp, GET_MODE (target), 0);
}
else
temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
/* If target is volatile, ANSI requires accessing the value
*from* the target, if it is accessed. So make that happen.
In no case return the target itself. */
if (! MEM_VOLATILE_P (target) && want_value)
dont_return_target = 1;
}
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
/* If this is an scalar in a register that is stored in a wider mode
than the declared mode, compute the result into its declared mode
and then convert to the wider mode. Our value is the computed
expression. */
{
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
/* If TEMP is a volatile MEM and we want a result value, make
the access now so it gets done only once. */
if (GET_CODE (temp) == MEM && MEM_VOLATILE_P (temp))
temp = copy_to_reg (temp);
/* If TEMP is a VOIDmode constant, use convert_modes to make
sure that we properly convert it. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
TYPE_MODE (TREE_TYPE (exp)), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
convert_move (SUBREG_REG (target), temp,
SUBREG_PROMOTED_UNSIGNED_P (target));
return want_value ? temp : NULL_RTX;
}
else
{
temp = expand_expr (exp, target, GET_MODE (target), 0);
/* Return TARGET if it's a specified hardware register.
If TARGET is a volatile mem ref, either return TARGET
or return a reg copied *from* TARGET; ANSI requires this.
Otherwise, if TEMP is not TARGET, return TEMP
if it is constant (for efficiency),
or if we really want the correct value. */
if (!(target && GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
&& !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
&& temp != target
&& (CONSTANT_P (temp) || want_value))
dont_return_target = 1;
}
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
the same as that of TARGET, adjust the constant. This is needed, for
example, in case it is a CONST_DOUBLE and we want only a word-sized
value. */
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
&& TREE_CODE (exp) != ERROR_MARK
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
temp, TREE_UNSIGNED (TREE_TYPE (exp)));
/* If value was not generated in the target, store it there.
Convert the value to TARGET's type first if nec. */
if (temp != target && TREE_CODE (exp) != ERROR_MARK)
{
target = protect_from_queue (target, 1);
if (GET_MODE (temp) != GET_MODE (target)
&& GET_MODE (temp) != VOIDmode)
{
int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
if (dont_return_target)
{
/* In this case, we will return TEMP,
so make sure it has the proper mode.
But don't forget to store the value into TARGET. */
temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
emit_move_insn (target, temp);
}
else
convert_move (target, temp, unsignedp);
}
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
{
/* Handle copying a string constant into an array.
The string constant may be shorter than the array.
So copy just the string's actual length, and clear the rest. */
rtx size;
rtx addr;
/* Get the size of the data type of the string,
which is actually the size of the target. */
size = expr_size (exp);
if (GET_CODE (size) == CONST_INT
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
emit_block_move (target, temp, size,
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
else
{
/* Compute the size of the data to copy from the string. */
tree copy_size
= size_binop (MIN_EXPR,
make_tree (sizetype, size),
convert (sizetype,
build_int_2 (TREE_STRING_LENGTH (exp), 0)));
rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
VOIDmode, 0);
rtx label = 0;
/* Copy that much. */
emit_block_move (target, temp, copy_size_rtx,
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
/* Figure out how much is left in TARGET
that we have to clear. */
if (GET_CODE (copy_size_rtx) == CONST_INT)
{
addr = plus_constant (XEXP (target, 0),
TREE_STRING_LENGTH (exp));
size = plus_constant (size, - TREE_STRING_LENGTH (exp));
}
else
{
enum machine_mode size_mode = Pmode;
addr = force_reg (Pmode, XEXP (target, 0));
addr = expand_binop (size_mode, add_optab, addr,
copy_size_rtx, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
size = expand_binop (size_mode, sub_optab, size,
copy_size_rtx, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
emit_cmp_insn (size, const0_rtx, LT, NULL_RTX,
GET_MODE (size), 0, 0);
label = gen_label_rtx ();
emit_jump_insn (gen_blt (label));
}
if (size != const0_rtx)
{
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (memset_libfunc, 0, VOIDmode, 3, addr,
Pmode, const0_rtx, Pmode, size, Pmode);
#else
emit_library_call (bzero_libfunc, 0, VOIDmode, 2,
addr, Pmode, size, Pmode);
#endif
}
if (label)
emit_label (label);
}
}
else if (GET_MODE (temp) == BLKmode)
emit_block_move (target, temp, expr_size (exp),
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
else
emit_move_insn (target, temp);
}
/* If we don't want a value, return NULL_RTX. */
if (! want_value)
return NULL_RTX;
/* If we are supposed to return TEMP, do so as long as it isn't a MEM.
??? The latter test doesn't seem to make sense. */
else if (dont_return_target && GET_CODE (temp) != MEM)
return temp;
/* Return TARGET itself if it is a hard register. */
else if (want_value && GET_MODE (target) != BLKmode
&& ! (GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
return copy_to_reg (target);
else
return target;
}
/* Store the value of constructor EXP into the rtx TARGET.
TARGET is either a REG or a MEM. */
static void
store_constructor (exp, target)
tree exp;
rtx target;
{
tree type = TREE_TYPE (exp);
/* We know our target cannot conflict, since safe_from_p has been called. */
#if 0
/* Don't try copying piece by piece into a hard register
since that is vulnerable to being clobbered by EXP.
Instead, construct in a pseudo register and then copy it all. */
if (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
{
rtx temp = gen_reg_rtx (GET_MODE (target));
store_constructor (exp, temp);
emit_move_insn (target, temp);
return;
}
#endif
if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
{
register tree elt;
/* Inform later passes that the whole union value is dead. */
if (TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
/* If we are building a static constructor into a register,
set the initial value as zero so we can fold the value into
a constant. */
else if (GET_CODE (target) == REG && TREE_STATIC (exp))
emit_move_insn (target, const0_rtx);
/* If the constructor has fewer fields than the structure,
clear the whole structure first. */
else if (list_length (CONSTRUCTOR_ELTS (exp))
!= list_length (TYPE_FIELDS (type)))
clear_storage (target, int_size_in_bytes (type));
else
/* Inform later passes that the old value is dead. */
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
/* Store each element of the constructor into
the corresponding field of TARGET. */
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
{
register tree field = TREE_PURPOSE (elt);
register enum machine_mode mode;
int bitsize;
int bitpos = 0;
int unsignedp;
tree pos, constant = 0, offset = 0;
rtx to_rtx = target;
/* Just ignore missing fields.
We cleared the whole structure, above,
if any fields are missing. */
if (field == 0)
continue;
bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
unsignedp = TREE_UNSIGNED (field);
mode = DECL_MODE (field);
if (DECL_BIT_FIELD (field))
mode = VOIDmode;
pos = DECL_FIELD_BITPOS (field);
if (TREE_CODE (pos) == INTEGER_CST)
constant = pos;
else if (TREE_CODE (pos) == PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
constant = TREE_OPERAND (pos, 1), offset = TREE_OPERAND (pos, 0);
else
offset = pos;
if (constant)
bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
if (offset)
{
rtx offset_rtx;
if (contains_placeholder_p (offset))
offset = build (WITH_RECORD_EXPR, sizetype,
offset, exp);
offset = size_binop (FLOOR_DIV_EXPR, offset,
size_int (BITS_PER_UNIT));
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
if (GET_CODE (to_rtx) != MEM)
abort ();
to_rtx
= change_address (to_rtx, VOIDmode,
gen_rtx (PLUS, Pmode, XEXP (to_rtx, 0),
force_reg (Pmode, offset_rtx)));
}
store_field (to_rtx, bitsize, bitpos, mode, TREE_VALUE (elt),
/* The alignment of TARGET is
at least what its type requires. */
VOIDmode, 0,
TYPE_ALIGN (type) / BITS_PER_UNIT,
int_size_in_bytes (type));
}
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
register tree elt;
register int i;
tree domain = TYPE_DOMAIN (type);
HOST_WIDE_INT minelt = TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain));
HOST_WIDE_INT maxelt = TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain));
tree elttype = TREE_TYPE (type);
/* If the constructor has fewer fields than the structure,
clear the whole structure first. Similarly if this this is
static constructor of a non-BLKmode object. */
if (list_length (CONSTRUCTOR_ELTS (exp)) < maxelt - minelt + 1
|| (GET_CODE (target) == REG && TREE_STATIC (exp)))
clear_storage (target, int_size_in_bytes (type));
else
/* Inform later passes that the old value is dead. */
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
/* Store each element of the constructor into
the corresponding element of TARGET, determined
by counting the elements. */
for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
elt;
elt = TREE_CHAIN (elt), i++)
{
register enum machine_mode mode;
int bitsize;
int bitpos;
int unsignedp;
tree index = TREE_PURPOSE (elt);
rtx xtarget = target;
mode = TYPE_MODE (elttype);
bitsize = GET_MODE_BITSIZE (mode);
unsignedp = TREE_UNSIGNED (elttype);
if (index != 0 && TREE_CODE (index) != INTEGER_CST)
{
/* We don't currently allow variable indices in a
C initializer, but let's try here to support them. */
rtx pos_rtx, addr, xtarget;
tree position;
position = size_binop (MULT_EXPR, index, TYPE_SIZE (elttype));
pos_rtx = expand_expr (position, 0, VOIDmode, 0);
addr = gen_rtx (PLUS, Pmode, XEXP (target, 0), pos_rtx);
xtarget = change_address (target, mode, addr);
store_expr (TREE_VALUE (elt), xtarget, 0);
}
else
{
if (index != 0)
bitpos = ((TREE_INT_CST_LOW (index) - minelt)
* TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
else
bitpos = (i * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
store_field (xtarget, bitsize, bitpos, mode, TREE_VALUE (elt),
/* The alignment of TARGET is
at least what its type requires. */
VOIDmode, 0,
TYPE_ALIGN (type) / BITS_PER_UNIT,
int_size_in_bytes (type));
}
}
}
else
abort ();
}
/* Store the value of EXP (an expression tree)
into a subfield of TARGET which has mode MODE and occupies
BITSIZE bits, starting BITPOS bits from the start of TARGET.
If MODE is VOIDmode, it means that we are storing into a bit-field.
If VALUE_MODE is VOIDmode, return nothing in particular.
UNSIGNEDP is not used in this case.
Otherwise, return an rtx for the value stored. This rtx
has mode VALUE_MODE if that is convenient to do.
In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
ALIGN is the alignment that TARGET is known to have, measured in bytes.
TOTAL_SIZE is the size in bytes of the structure, or -1 if varying. */
static rtx
store_field (target, bitsize, bitpos, mode, exp, value_mode,
unsignedp, align, total_size)
rtx target;
int bitsize, bitpos;
enum machine_mode mode;
tree exp;
enum machine_mode value_mode;
int unsignedp;
int align;
int total_size;
{
HOST_WIDE_INT width_mask = 0;
if (bitsize < HOST_BITS_PER_WIDE_INT)
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
/* If we are storing into an unaligned field of an aligned union that is
in a register, we may have the mode of TARGET being an integer mode but
MODE == BLKmode. In that case, get an aligned object whose size and
alignment are the same as TARGET and store TARGET into it (we can avoid
the store if the field being stored is the entire width of TARGET). Then
call ourselves recursively to store the field into a BLKmode version of
that object. Finally, load from the object into TARGET. This is not
very efficient in general, but should only be slightly more expensive
than the otherwise-required unaligned accesses. Perhaps this can be
cleaned up later. */
if (mode == BLKmode
&& (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
{
rtx object = assign_stack_temp (GET_MODE (target),
GET_MODE_SIZE (GET_MODE (target)), 0);
rtx blk_object = copy_rtx (object);
MEM_IN_STRUCT_P (object) = 1;
MEM_IN_STRUCT_P (blk_object) = 1;
PUT_MODE (blk_object, BLKmode);
if (bitsize != GET_MODE_BITSIZE (GET_MODE (target)))
emit_move_insn (object, target);
store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0,
align, total_size);
/* Even though we aren't returning target, we need to
give it the updated value. */
emit_move_insn (target, object);
return blk_object;
}
/* If the structure is in a register or if the component
is a bit field, we cannot use addressing to access it.
Use bit-field techniques or SUBREG to store in it. */
if (mode == VOIDmode
|| (mode != BLKmode && ! direct_store[(int) mode])
|| GET_CODE (target) == REG
|| GET_CODE (target) == SUBREG
/* If the field isn't aligned enough to store as an ordinary memref,
store it as a bit field. */
|| (STRICT_ALIGNMENT
&& align * BITS_PER_UNIT < GET_MODE_ALIGNMENT (mode))
|| (STRICT_ALIGNMENT && bitpos % GET_MODE_ALIGNMENT (mode) != 0))
{
rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
MODE. */
if (mode != VOIDmode && mode != BLKmode
&& mode != TYPE_MODE (TREE_TYPE (exp)))
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
/* Store the value in the bitfield. */
store_bit_field (target, bitsize, bitpos, mode, temp, align, total_size);
if (value_mode != VOIDmode)
{
/* The caller wants an rtx for the value. */
/* If possible, avoid refetching from the bitfield itself. */
if (width_mask != 0
&& ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
{
tree count;
enum machine_mode tmode;
if (unsignedp)
return expand_and (temp, GEN_INT (width_mask), NULL_RTX);
tmode = GET_MODE (temp);
if (tmode == VOIDmode)
tmode = value_mode;
count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
}
return extract_bit_field (target, bitsize, bitpos, unsignedp,
NULL_RTX, value_mode, 0, align,
total_size);
}
return const0_rtx;
}
else
{
rtx addr = XEXP (target, 0);
rtx to_rtx;
/* If a value is wanted, it must be the lhs;
so make the address stable for multiple use. */
if (value_mode != VOIDmode && GET_CODE (addr) != REG
&& ! CONSTANT_ADDRESS_P (addr)
/* A frame-pointer reference is already stable. */
&& ! (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& (XEXP (addr, 0) == virtual_incoming_args_rtx
|| XEXP (addr, 0) == virtual_stack_vars_rtx)))
addr = copy_to_reg (addr);
/* Now build a reference to just the desired component. */
to_rtx = change_address (target, mode,
plus_constant (addr, (bitpos / BITS_PER_UNIT)));
MEM_IN_STRUCT_P (to_rtx) = 1;
return store_expr (exp, to_rtx, value_mode != VOIDmode);
}
}
/* Return true if any object containing the innermost array is an unaligned
packed structure field. */
static int
get_inner_unaligned_p (exp)
tree exp;
{
int needed_alignment = TYPE_ALIGN (TREE_TYPE (exp));
while (1)
{
if (TREE_CODE (exp) == COMPONENT_REF || TREE_CODE (exp) == BIT_FIELD_REF)
{
if (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
< needed_alignment)
return 1;
}
else if (TREE_CODE (exp) != ARRAY_REF
&& TREE_CODE (exp) != NON_LVALUE_EXPR
&& ! ((TREE_CODE (exp) == NOP_EXPR
|| TREE_CODE (exp) == CONVERT_EXPR)
&& (TYPE_MODE (TREE_TYPE (exp))
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
break;
exp = TREE_OPERAND (exp, 0);
}
return 0;
}
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
or an ARRAY_REF, look for nested COMPONENT_REFs, BIT_FIELD_REFs, or
ARRAY_REFs and find the ultimate containing object, which we return.
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
bit position, and *PUNSIGNEDP to the signedness of the field.
If the position of the field is variable, we store a tree
giving the variable offset (in units) in *POFFSET.
This offset is in addition to the bit position.
If the position is not variable, we store 0 in *POFFSET.
If any of the extraction expressions is volatile,
we store 1 in *PVOLATILEP. Otherwise we don't change that.
If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
is a mode that can be used to access the field. In that case, *PBITSIZE
is redundant.
If the field describes a variable-sized object, *PMODE is set to
VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
this case, but the address of the object can be found. */
tree
get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
punsignedp, pvolatilep)
tree exp;
int *pbitsize;
int *pbitpos;
tree *poffset;
enum machine_mode *pmode;
int *punsignedp;
int *pvolatilep;
{
tree orig_exp = exp;
tree size_tree = 0;
enum machine_mode mode = VOIDmode;
tree offset = integer_zero_node;
if (TREE_CODE (exp) == COMPONENT_REF)
{
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
mode = DECL_MODE (TREE_OPERAND (exp, 1));
*punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
}
else if (TREE_CODE (exp) == BIT_FIELD_REF)
{
size_tree = TREE_OPERAND (exp, 1);
*punsignedp = TREE_UNSIGNED (exp);
}
else
{
mode = TYPE_MODE (TREE_TYPE (exp));
*pbitsize = GET_MODE_BITSIZE (mode);
*punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
}
if (size_tree)
{
if (TREE_CODE (size_tree) != INTEGER_CST)
mode = BLKmode, *pbitsize = -1;
else
*pbitsize = TREE_INT_CST_LOW (size_tree);
}
/* Compute cumulative bit-offset for nested component-refs and array-refs,
and find the ultimate containing object. */
*pbitpos = 0;
while (1)
{
if (TREE_CODE (exp) == COMPONENT_REF || TREE_CODE (exp) == BIT_FIELD_REF)
{
tree pos = (TREE_CODE (exp) == COMPONENT_REF
? DECL_FIELD_BITPOS (TREE_OPERAND (exp, 1))
: TREE_OPERAND (exp, 2));
/* If this field hasn't been filled in yet, don't go
past it. This should only happen when folding expressions
made during type construction. */
if (pos == 0)
break;
if (TREE_CODE (pos) == PLUS_EXPR)
{
tree constant, var;
if (TREE_CODE (TREE_OPERAND (pos, 0)) == INTEGER_CST)
{
constant = TREE_OPERAND (pos, 0);
var = TREE_OPERAND (pos, 1);
}
else if (TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
{
constant = TREE_OPERAND (pos, 1);
var = TREE_OPERAND (pos, 0);
}
else
abort ();
*pbitpos += TREE_INT_CST_LOW (constant);
offset = size_binop (PLUS_EXPR, offset,
size_binop (FLOOR_DIV_EXPR, var,
size_int (BITS_PER_UNIT)));
}
else if (TREE_CODE (pos) == INTEGER_CST)
*pbitpos += TREE_INT_CST_LOW (pos);
else
{
/* Assume here that the offset is a multiple of a unit.
If not, there should be an explicitly added constant. */
offset = size_binop (PLUS_EXPR, offset,
size_binop (FLOOR_DIV_EXPR, pos,
size_int (BITS_PER_UNIT)));
}
}
else if (TREE_CODE (exp) == ARRAY_REF)
{
/* This code is based on the code in case ARRAY_REF in expand_expr
below. We assume here that the size of an array element is
always an integral multiple of BITS_PER_UNIT. */
tree index = TREE_OPERAND (exp, 1);
tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
tree low_bound
= domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
tree index_type = TREE_TYPE (index);
if (! integer_zerop (low_bound))
index = fold (build (MINUS_EXPR, index_type, index, low_bound));
if (TYPE_PRECISION (index_type) != POINTER_SIZE)
{
index = convert (type_for_size (POINTER_SIZE, 0), index);
index_type = TREE_TYPE (index);
}
index = fold (build (MULT_EXPR, index_type, index,
TYPE_SIZE (TREE_TYPE (exp))));
if (TREE_CODE (index) == INTEGER_CST
&& TREE_INT_CST_HIGH (index) == 0)
*pbitpos += TREE_INT_CST_LOW (index);
else
offset = size_binop (PLUS_EXPR, offset,
size_binop (FLOOR_DIV_EXPR, index,
size_int (BITS_PER_UNIT)));
}
else if (TREE_CODE (exp) != NON_LVALUE_EXPR
&& ! ((TREE_CODE (exp) == NOP_EXPR
|| TREE_CODE (exp) == CONVERT_EXPR)
&& (TYPE_MODE (TREE_TYPE (exp))
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
break;
/* If any reference in the chain is volatile, the effect is volatile. */
if (TREE_THIS_VOLATILE (exp))
*pvolatilep = 1;
exp = TREE_OPERAND (exp, 0);
}
/* If this was a bit-field, see if there is a mode that allows direct
access in case EXP is in memory. */
if (mode == VOIDmode && *pbitsize != 0 && *pbitpos % *pbitsize == 0)
{
mode = mode_for_size (*pbitsize, MODE_INT, 0);
if (mode == BLKmode)
mode = VOIDmode;
}
if (integer_zerop (offset))
offset = 0;
if (offset != 0 && contains_placeholder_p (offset))
offset = build (WITH_RECORD_EXPR, sizetype, offset, orig_exp);
*pmode = mode;
*poffset = offset;
return exp;
}
/* Given an rtx VALUE that may contain additions and multiplications,
return an equivalent value that just refers to a register or memory.
This is done by generating instructions to perform the arithmetic
and returning a pseudo-register containing the value.
The returned value may be a REG, SUBREG, MEM or constant. */
rtx
force_operand (value, target)
rtx value, target;
{
register optab binoptab = 0;
/* Use a temporary to force order of execution of calls to
`force_operand'. */
rtx tmp;
register rtx op2;
/* Use subtarget as the target for operand 0 of a binary operation. */
register rtx subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
if (GET_CODE (value) == PLUS)
binoptab = add_optab;
else if (GET_CODE (value) == MINUS)
binoptab = sub_optab;
else if (GET_CODE (value) == MULT)
{
op2 = XEXP (value, 1);
if (!CONSTANT_P (op2)
&& !(GET_CODE (op2) == REG && op2 != subtarget))
subtarget = 0;
tmp = force_operand (XEXP (value, 0), subtarget);
return expand_mult (GET_MODE (value), tmp,
force_operand (op2, NULL_RTX),
target, 0);
}
if (binoptab)
{
op2 = XEXP (value, 1);
if (!CONSTANT_P (op2)
&& !(GET_CODE (op2) == REG && op2 != subtarget))
subtarget = 0;
if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
{
binoptab = add_optab;
op2 = negate_rtx (GET_MODE (value), op2);
}
/* Check for an addition with OP2 a constant integer and our first
operand a PLUS of a virtual register and something else. In that
case, we want to emit the sum of the virtual register and the
constant first and then add the other value. This allows virtual
register instantiation to simply modify the constant rather than
creating another one around this addition. */
if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
&& GET_CODE (XEXP (value, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
{
rtx temp = expand_binop (GET_MODE (value), binoptab,
XEXP (XEXP (value, 0), 0), op2,
subtarget, 0, OPTAB_LIB_WIDEN);
return expand_binop (GET_MODE (value), binoptab, temp,
force_operand (XEXP (XEXP (value, 0), 1), 0),
target, 0, OPTAB_LIB_WIDEN);
}
tmp = force_operand (XEXP (value, 0), subtarget);
return expand_binop (GET_MODE (value), binoptab, tmp,
force_operand (op2, NULL_RTX),
target, 0, OPTAB_LIB_WIDEN);
/* We give UNSIGNEDP = 0 to expand_binop
because the only operations we are expanding here are signed ones. */
}
return value;
}
/* Subroutine of expand_expr:
save the non-copied parts (LIST) of an expr (LHS), and return a list
which can restore these values to their previous values,
should something modify their storage. */
static tree
save_noncopied_parts (lhs, list)
tree lhs;
tree list;
{
tree tail;
tree parts = 0;
for (tail = list; tail; tail = TREE_CHAIN (tail))
if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
parts = chainon (parts, save_noncopied_parts (lhs, TREE_VALUE (tail)));
else
{
tree part = TREE_VALUE (tail);
tree part_type = TREE_TYPE (part);
tree to_be_saved = build (COMPONENT_REF, part_type, lhs, part);
rtx target = assign_stack_temp (TYPE_MODE (part_type),
int_size_in_bytes (part_type), 0);
if (! memory_address_p (TYPE_MODE (part_type), XEXP (target, 0)))
target = change_address (target, TYPE_MODE (part_type), NULL_RTX);
parts = tree_cons (to_be_saved,
build (RTL_EXPR, part_type, NULL_TREE,
(tree) target),
parts);
store_expr (TREE_PURPOSE (parts), RTL_EXPR_RTL (TREE_VALUE (parts)), 0);
}
return parts;
}
/* Subroutine of expand_expr:
record the non-copied parts (LIST) of an expr (LHS), and return a list
which specifies the initial values of these parts. */
static tree
init_noncopied_parts (lhs, list)
tree lhs;
tree list;
{
tree tail;
tree parts = 0;
for (tail = list; tail; tail = TREE_CHAIN (tail))
if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
parts = chainon (parts, init_noncopied_parts (lhs, TREE_VALUE (tail)));
else
{
tree part = TREE_VALUE (tail);
tree part_type = TREE_TYPE (part);
tree to_be_initialized = build (COMPONENT_REF, part_type, lhs, part);
parts = tree_cons (TREE_PURPOSE (tail), to_be_initialized, parts);
}
return parts;
}
/* Subroutine of expand_expr: return nonzero iff there is no way that
EXP can reference X, which is being modified. */
static int
safe_from_p (x, exp)
rtx x;
tree exp;
{
rtx exp_rtl = 0;
int i, nops;
if (x == 0
/* If EXP has varying size, we MUST use a target since we currently
have no way of allocating temporaries of variable size. So we
assume here that something at a higher level has prevented a
clash. This is somewhat bogus, but the best we can do. */
|| (TREE_TYPE (exp) != 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST))
return 1;
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
find the underlying pseudo. */
if (GET_CODE (x) == SUBREG)
{
x = SUBREG_REG (x);
if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* If X is a location in the outgoing argument area, it is always safe. */
if (GET_CODE (x) == MEM
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))
return 1;
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
{
case 'd':
exp_rtl = DECL_RTL (exp);
break;
case 'c':
return 1;
case 'x':
if (TREE_CODE (exp) == TREE_LIST)
return ((TREE_VALUE (exp) == 0
|| safe_from_p (x, TREE_VALUE (exp)))
&& (TREE_CHAIN (exp) == 0
|| safe_from_p (x, TREE_CHAIN (exp))));
else
return 0;
case '1':
return safe_from_p (x, TREE_OPERAND (exp, 0));
case '2':
case '<':
return (safe_from_p (x, TREE_OPERAND (exp, 0))
&& safe_from_p (x, TREE_OPERAND (exp, 1)));
case 'e':
case 'r':
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
the expression. If it is set, we conflict iff we are that rtx or
both are in memory. Otherwise, we check all operands of the
expression recursively. */
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
return (staticp (TREE_OPERAND (exp, 0))
|| safe_from_p (x, TREE_OPERAND (exp, 0)));
case INDIRECT_REF:
if (GET_CODE (x) == MEM)
return 0;
break;
case CALL_EXPR:
exp_rtl = CALL_EXPR_RTL (exp);
if (exp_rtl == 0)
{
/* Assume that the call will clobber all hard registers and
all of memory. */
if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|| GET_CODE (x) == MEM)
return 0;
}
break;
case RTL_EXPR:
exp_rtl = RTL_EXPR_RTL (exp);
if (exp_rtl == 0)
/* We don't know what this can modify. */
return 0;
break;
case WITH_CLEANUP_EXPR:
exp_rtl = RTL_EXPR_RTL (exp);
break;
case CLEANUP_POINT_EXPR:
return safe_from_p (x, TREE_OPERAND (exp, 0));
case SAVE_EXPR:
exp_rtl = SAVE_EXPR_RTL (exp);
break;
case BIND_EXPR:
/* The only operand we look at is operand 1. The rest aren't
part of the expression. */
return safe_from_p (x, TREE_OPERAND (exp, 1));
case METHOD_CALL_EXPR:
/* This takes a rtx argument, but shouldn't appear here. */
abort ();
}
/* If we have an rtx, we do not need to scan our operands. */
if (exp_rtl)
break;
nops = tree_code_length[(int) TREE_CODE (exp)];
for (i = 0; i < nops; i++)
if (TREE_OPERAND (exp, i) != 0
&& ! safe_from_p (x, TREE_OPERAND (exp, i)))
return 0;
}
/* If we have an rtl, find any enclosed object. Then see if we conflict
with it. */
if (exp_rtl)
{
if (GET_CODE (exp_rtl) == SUBREG)
{
exp_rtl = SUBREG_REG (exp_rtl);
if (GET_CODE (exp_rtl) == REG
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
return 0;
}
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
are memory and EXP is not readonly. */
return ! (rtx_equal_p (x, exp_rtl)
|| (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
&& ! TREE_READONLY (exp)));
}
/* If we reach here, it is safe. */
return 1;
}
/* Subroutine of expand_expr: return nonzero iff EXP is an
expression whose type is statically determinable. */
static int
fixed_type_p (exp)
tree exp;
{
if (TREE_CODE (exp) == PARM_DECL
|| TREE_CODE (exp) == VAR_DECL
|| TREE_CODE (exp) == CALL_EXPR || TREE_CODE (exp) == TARGET_EXPR
|| TREE_CODE (exp) == COMPONENT_REF
|| TREE_CODE (exp) == ARRAY_REF)
return 1;
return 0;
}
/* expand_expr: generate code for computing expression EXP.
An rtx for the computed value is returned. The value is never null.
In the case of a void EXP, const0_rtx is returned.
The value may be stored in TARGET if TARGET is nonzero.
TARGET is just a suggestion; callers must assume that
the rtx returned may not be the same as TARGET.
If TARGET is CONST0_RTX, it means that the value will be ignored.
If TMODE is not VOIDmode, it suggests generating the
result in mode TMODE. But this is done only when convenient.
Otherwise, TMODE is ignored and the value generated in its natural mode.
TMODE is just a suggestion; callers must assume that
the rtx returned may not have mode TMODE.
Note that TARGET may have neither TMODE nor MODE. In that case, it
probably will not be used.
If MODIFIER is EXPAND_SUM then when EXP is an addition
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
or a nest of (PLUS ...) and (MINUS ...) where the terms are
products as above, or REG or MEM, or constant.
Ordinarily in such cases we would output mul or add instructions
and then return a pseudo reg containing the sum.
EXPAND_INITIALIZER is much like EXPAND_SUM except that
it also marks a label as absolutely required (it can't be dead).
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
This is used for outputting expressions used in initializers.
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
with a constant address even if that address is not normally legitimate.
EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
rtx
expand_expr (exp, target, tmode, modifier)
register tree exp;
rtx target;
enum machine_mode tmode;
enum expand_modifier modifier;
{
/* Chain of pending expressions for PLACEHOLDER_EXPR to replace.
This is static so it will be accessible to our recursive callees. */
static tree placeholder_list = 0;
register rtx op0, op1, temp;
tree type = TREE_TYPE (exp);
int unsignedp = TREE_UNSIGNED (type);
register enum machine_mode mode = TYPE_MODE (type);
register enum tree_code code = TREE_CODE (exp);
optab this_optab;
/* Use subtarget as the target for operand 0 of a binary operation. */
rtx subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
rtx original_target = target;
/* Maybe defer this until sure not doing bytecode? */
int ignore = (target == const0_rtx
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|| code == CONVERT_EXPR || code == REFERENCE_EXPR
|| code == COND_EXPR)
&& TREE_CODE (type) == VOID_TYPE));
tree context;
if (output_bytecode && modifier != EXPAND_INITIALIZER)
{
bc_expand_expr (exp);
return NULL;
}
/* Don't use hard regs as subtargets, because the combiner
can only handle pseudo regs. */
if (subtarget && REGNO (subtarget) < FIRST_PSEUDO_REGISTER)
subtarget = 0;
/* Avoid subtargets inside loops,
since they hide some invariant expressions. */
if (preserve_subexpressions_p ())
subtarget = 0;
/* If we are going to ignore this result, we need only do something
if there is a side-effect somewhere in the expression. If there
is, short-circuit the most common cases here. Note that we must
not call expand_expr with anything but const0_rtx in case this
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
if (ignore)
{
if (! TREE_SIDE_EFFECTS (exp))
return const0_rtx;
/* Ensure we reference a volatile object even if value is ignored. */
if (TREE_THIS_VOLATILE (exp)
&& TREE_CODE (exp) != FUNCTION_DECL
&& mode != VOIDmode && mode != BLKmode)
{
temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
if (GET_CODE (temp) == MEM)
temp = copy_to_reg (temp);
return const0_rtx;
}
if (TREE_CODE_CLASS (code) == '1')
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
VOIDmode, modifier);
else if (TREE_CODE_CLASS (code) == '2'
|| TREE_CODE_CLASS (code) == '<')
{
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
return const0_rtx;
}
else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
/* If the second operand has no side effects, just evaluate
the first. */
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
VOIDmode, modifier);
target = 0;
}
/* If will do cse, generate all results into pseudo registers
since 1) that allows cse to find more things
and 2) otherwise cse could produce an insn the machine
cannot support. */
if (! cse_not_expected && mode != BLKmode && target
&& (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER))
target = subtarget;
switch (code)
{
case LABEL_DECL:
{
tree function = decl_function_context (exp);
/* Handle using a label in a containing function. */
if (function != current_function_decl && function != 0)
{
struct function *p = find_function_data (function);
/* Allocate in the memory associated with the function
that the label is in. */
push_obstacks (p->function_obstack,
p->function_maybepermanent_obstack);
p->forced_labels = gen_rtx (EXPR_LIST, VOIDmode,
label_rtx (exp), p->forced_labels);
pop_obstacks ();
}
else if (modifier == EXPAND_INITIALIZER)
forced_labels = gen_rtx (EXPR_LIST, VOIDmode,
label_rtx (exp), forced_labels);
temp = gen_rtx (MEM, FUNCTION_MODE,
gen_rtx (LABEL_REF, Pmode, label_rtx (exp)));
if (function != current_function_decl && function != 0)
LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
return temp;
}
case PARM_DECL:
if (DECL_RTL (exp) == 0)
{
error_with_decl (exp, "prior parameter's size depends on `%s'");
return CONST0_RTX (mode);
}
/* ... fall through ... */
case VAR_DECL:
/* If a static var's type was incomplete when the decl was written,
but the type is complete now, lay out the decl now. */
if (DECL_SIZE (exp) == 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
{
push_obstacks_nochange ();
end_temporary_allocation ();
layout_decl (exp, 0);
PUT_MODE (DECL_RTL (exp), DECL_MODE (exp));
pop_obstacks ();
}
/* ... fall through ... */
case FUNCTION_DECL:
case RESULT_DECL:
if (DECL_RTL (exp) == 0)
abort ();
/* Ensure variable marked as used even if it doesn't go through
a parser. If it hasn't be used yet, write out an external
definition. */
if (! TREE_USED (exp))
{
assemble_external (exp);
TREE_USED (exp) = 1;
}
/* Handle variables inherited from containing functions. */
context = decl_function_context (exp);
/* We treat inline_function_decl as an alias for the current function
because that is the inline function whose vars, types, etc.
are being merged into the current function.
See expand_inline_function. */
if (context != 0 && context != current_function_decl
&& context != inline_function_decl
/* If var is static, we don't need a static chain to access it. */
&& ! (GET_CODE (DECL_RTL (exp)) == MEM
&& CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
{
rtx addr;
/* Mark as non-local and addressable. */
DECL_NONLOCAL (exp) = 1;
mark_addressable (exp);
if (GET_CODE (DECL_RTL (exp)) != MEM)
abort ();
addr = XEXP (DECL_RTL (exp), 0);
if (GET_CODE (addr) == MEM)
addr = gen_rtx (MEM, Pmode,
fix_lexical_addr (XEXP (addr, 0), exp));
else
addr = fix_lexical_addr (addr, exp);
return change_address (DECL_RTL (exp), mode, addr);
}
/* This is the case of an array whose size is to be determined
from its initializer, while the initializer is still being parsed.
See expand_decl. */
if (GET_CODE (DECL_RTL (exp)) == MEM
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
return change_address (DECL_RTL (exp), GET_MODE (DECL_RTL (exp)),
XEXP (DECL_RTL (exp), 0));
/* If DECL_RTL is memory, we are in the normal case and either
the address is not valid or it is not a register and -fforce-addr
is specified, get the address into a register. */
if (GET_CODE (DECL_RTL (exp)) == MEM
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_SUM
&& modifier != EXPAND_INITIALIZER
&& (! memory_address_p (DECL_MODE (exp), XEXP (DECL_RTL (exp), 0))
|| (flag_force_addr
&& GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
return change_address (DECL_RTL (exp), VOIDmode,
copy_rtx (XEXP (DECL_RTL (exp), 0)));
/* If the mode of DECL_RTL does not match that of the decl, it
must be a promoted value. We return a SUBREG of the wanted mode,
but mark it so that we know that it was already extended. */
if (GET_CODE (DECL_RTL (exp)) == REG
&& GET_MODE (DECL_RTL (exp)) != mode)
{
/* Get the signedness used for this variable. Ensure we get the
same mode we got when the variable was declared. */
if (GET_MODE (DECL_RTL (exp))
!= promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
abort ();
temp = gen_rtx (SUBREG, mode, DECL_RTL (exp), 0);
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
return temp;
}
return DECL_RTL (exp);
case INTEGER_CST:
return immed_double_const (TREE_INT_CST_LOW (exp),
TREE_INT_CST_HIGH (exp),
mode);
case CONST_DECL:
return expand_expr (DECL_INITIAL (exp), target, VOIDmode, 0);
case REAL_CST:
/* If optimized, generate immediate CONST_DOUBLE
which will be turned into memory by reload if necessary.
We used to force a register so that loop.c could see it. But
this does not allow gen_* patterns to perform optimizations with
the constants. It also produces two insns in cases like "x = 1.0;".
On most machines, floating-point constants are not permitted in
many insns, so we'd end up copying it to a register in any case.
Now, we do the copying in expand_binop, if appropriate. */
return immed_real_const (exp);
case COMPLEX_CST:
case STRING_CST:
if (! TREE_CST_RTL (exp))
output_constant_def (exp);
/* TREE_CST_RTL probably contains a constant address.
On RISC machines where a constant address isn't valid,
make some insns to get that address into a register. */
if (GET_CODE (TREE_CST_RTL (exp)) == MEM
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM
&& (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
|| (flag_force_addr
&& GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
return change_address (TREE_CST_RTL (exp), VOIDmode,
copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
return TREE_CST_RTL (exp);
case SAVE_EXPR:
context = decl_function_context (exp);
/* We treat inline_function_decl as an alias for the current function
because that is the inline function whose vars, types, etc.
are being merged into the current function.
See expand_inline_function. */
if (context == current_function_decl || context == inline_function_decl)
context = 0;
/* If this is non-local, handle it. */
if (context)
{
temp = SAVE_EXPR_RTL (exp);
if (temp && GET_CODE (temp) == REG)
{
put_var_into_stack (exp);
temp = SAVE_EXPR_RTL (exp);
}
if (temp == 0 || GET_CODE (temp) != MEM)
abort ();
return change_address (temp, mode,
fix_lexical_addr (XEXP (temp, 0), exp));
}
if (SAVE_EXPR_RTL (exp) == 0)
{
if (mode == BLKmode)
{
temp
= assign_stack_temp (mode, int_size_in_bytes (type), 0);
MEM_IN_STRUCT_P (temp) = AGGREGATE_TYPE_P (type);
}
else
temp = gen_reg_rtx (promote_mode (type, mode, &unsignedp, 0));
SAVE_EXPR_RTL (exp) = temp;
if (!optimize && GET_CODE (temp) == REG)
save_expr_regs = gen_rtx (EXPR_LIST, VOIDmode, temp,
save_expr_regs);
/* If the mode of TEMP does not match that of the expression, it
must be a promoted value. We pass store_expr a SUBREG of the
wanted mode but mark it so that we know that it was already
extended. Note that `unsignedp' was modified above in
this case. */
if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
{
temp = gen_rtx (SUBREG, mode, SAVE_EXPR_RTL (exp), 0);
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
}
store_expr (TREE_OPERAND (exp, 0), temp, 0);
}
/* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
must be a promoted value. We return a SUBREG of the wanted mode,
but mark it so that we know that it was already extended. */
if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
&& GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
{
/* Compute the signedness and make the proper SUBREG. */
promote_mode (type, mode, &unsignedp, 0);
temp = gen_rtx (SUBREG, mode, SAVE_EXPR_RTL (exp), 0);
SUBREG_PROMOTED_VAR_P (temp) = 1;
SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
return temp;
}
return SAVE_EXPR_RTL (exp);
case PLACEHOLDER_EXPR:
/* If there is an object on the head of the placeholder list,
see if some object in it's references is of type TYPE. For
further information, see tree.def. */
if (placeholder_list)
{
tree object;
tree old_list = placeholder_list;
for (object = TREE_PURPOSE (placeholder_list);
TREE_TYPE (object) != type
&& (TREE_CODE_CLASS (TREE_CODE (object)) == 'r'
|| TREE_CODE_CLASS (TREE_CODE (object)) == '1'
|| TREE_CODE_CLASS (TREE_CODE (object)) == '2'
|| TREE_CODE_CLASS (TREE_CODE (object)) == 'e');
object = TREE_OPERAND (object, 0))
;
if (object && TREE_TYPE (object) == type)
{
/* Expand this object skipping the list entries before
it was found in case it is also a PLACEHOLDER_EXPR.
In that case, we want to translate it using subsequent
entries. */
placeholder_list = TREE_CHAIN (placeholder_list);
temp = expand_expr (object, original_target, tmode, modifier);
placeholder_list = old_list;
return temp;
}
}
/* We can't find the object or there was a missing WITH_RECORD_EXPR. */
abort ();
case WITH_RECORD_EXPR:
/* Put the object on the placeholder list, expand our first operand,
and pop the list. */
placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
placeholder_list);
target = expand_expr (TREE_OPERAND (exp, 0), original_target,
tmode, modifier);
placeholder_list = TREE_CHAIN (placeholder_list);
return target;
case EXIT_EXPR:
expand_exit_loop_if_false (NULL_PTR,
invert_truthvalue (TREE_OPERAND (exp, 0)));
return const0_rtx;
case LOOP_EXPR:
push_temp_slots ();
expand_start_loop (1);
expand_expr_stmt (TREE_OPERAND (exp, 0));
expand_end_loop ();
pop_temp_slots ();
return const0_rtx;
case BIND_EXPR:
{
tree vars = TREE_OPERAND (exp, 0);
int vars_need_expansion = 0;
/* Need to open a binding contour here because
if there are any cleanups they most be contained here. */
expand_start_bindings (0);
/* Mark the corresponding BLOCK for output in its proper place. */
if (TREE_OPERAND (exp, 2) != 0
&& ! TREE_USED (TREE_OPERAND (exp, 2)))
insert_block (TREE_OPERAND (exp, 2));
/* If VARS have not yet been expanded, expand them now. */
while (vars)
{
if (DECL_RTL (vars) == 0)
{
vars_need_expansion = 1;
expand_decl (vars);
}
expand_decl_init (vars);
vars = TREE_CHAIN (vars);
}
temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, modifier);
expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
return temp;
}
case RTL_EXPR:
if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
abort ();
emit_insns (RTL_EXPR_SEQUENCE (exp));
RTL_EXPR_SEQUENCE (exp) = const0_rtx;
preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
free_temps_for_rtl_expr (exp);
return RTL_EXPR_RTL (exp);
case CONSTRUCTOR:
/* If we don't need the result, just ensure we evaluate any
subexpressions. */
if (ignore)
{
tree elt;
for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0);
return const0_rtx;
}
/* All elts simple constants => refer to a constant in memory. But
if this is a non-BLKmode mode, let it store a field at a time
since that should make a CONST_INT or CONST_DOUBLE when we
fold. Likewise, if we have a target we can use, it is best to
store directly into the target unless the type is large enough
that memcpy will be used. If we are making an initializer and
all operands are constant, put it in memory as well. */
else if ((TREE_STATIC (exp)
&& ((mode == BLKmode
&& ! (target != 0 && safe_from_p (target, exp)))
|| TREE_ADDRESSABLE (exp)
|| (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (move_by_pieces_ninsns
(TREE_INT_CST_LOW (TYPE_SIZE (type)),
TYPE_ALIGN (type))
> MOVE_RATIO))))
|| (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
{
rtx constructor = output_constant_def (exp);
if (modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_INITIALIZER
&& modifier != EXPAND_SUM
&& (! memory_address_p (GET_MODE (constructor),
XEXP (constructor, 0))
|| (flag_force_addr
&& GET_CODE (XEXP (constructor, 0)) != REG)))
constructor = change_address (constructor, VOIDmode,
XEXP (constructor, 0));
return constructor;
}
else
{
if (target == 0 || ! safe_from_p (target, exp))
{
if (mode != BLKmode && ! TREE_ADDRESSABLE (exp))
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
else
{
target
= assign_stack_temp (mode, int_size_in_bytes (type), 0);
if (AGGREGATE_TYPE_P (type))
MEM_IN_STRUCT_P (target) = 1;
}
}
store_constructor (exp, target);
return target;
}
case INDIRECT_REF:
{
tree exp1 = TREE_OPERAND (exp, 0);
tree exp2;
/* A SAVE_EXPR as the address in an INDIRECT_EXPR is generated
for *PTR += ANYTHING where PTR is put inside the SAVE_EXPR.
This code has the same general effect as simply doing
expand_expr on the save expr, except that the expression PTR
is computed for use as a memory address. This means different
code, suitable for indexing, may be generated. */
if (TREE_CODE (exp1) == SAVE_EXPR
&& SAVE_EXPR_RTL (exp1) == 0
&& TREE_CODE (exp2 = TREE_OPERAND (exp1, 0)) != ERROR_MARK
&& TYPE_MODE (TREE_TYPE (exp1)) == Pmode
&& TYPE_MODE (TREE_TYPE (exp2)) == Pmode)
{
temp = expand_expr (TREE_OPERAND (exp1, 0), NULL_RTX,
VOIDmode, EXPAND_SUM);
op0 = memory_address (mode, temp);
op0 = copy_all_regs (op0);
SAVE_EXPR_RTL (exp1) = op0;
}
else
{
op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
op0 = memory_address (mode, op0);
}
temp = gen_rtx (MEM, mode, op0);
/* If address was computed by addition,
mark this as an element of an aggregate. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
|| (TREE_CODE (TREE_OPERAND (exp, 0)) == SAVE_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == PLUS_EXPR)
|| AGGREGATE_TYPE_P (TREE_TYPE (exp))
|| (TREE_CODE (exp1) == ADDR_EXPR
&& (exp2 = TREE_OPERAND (exp1, 0))
&& AGGREGATE_TYPE_P (TREE_TYPE (exp2))))
MEM_IN_STRUCT_P (temp) = 1;
MEM_VOLATILE_P (temp) = TREE_THIS_VOLATILE (exp) | flag_volatile;
#if 0 /* It is incorrect to set RTX_UNCHANGING_P here, because the fact that
a location is accessed through a pointer to const does not mean
that the value there can never change. */
RTX_UNCHANGING_P (temp) = TREE_READONLY (exp);
#endif
return temp;
}
case ARRAY_REF:
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
abort ();
{
tree array = TREE_OPERAND (exp, 0);
tree domain = TYPE_DOMAIN (TREE_TYPE (array));
tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
tree index = TREE_OPERAND (exp, 1);
tree index_type = TREE_TYPE (index);
int i;
if (TREE_CODE (low_bound) != INTEGER_CST
&& contains_placeholder_p (low_bound))
low_bound = build (WITH_RECORD_EXPR, sizetype, low_bound, exp);
/* Optimize the special-case of a zero lower bound.
We convert the low_bound to sizetype to avoid some problems
with constant folding. (E.g. suppose the lower bound is 1,
and its mode is QI. Without the conversion, (ARRAY
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
+INDEX), which becomes (ARRAY+255+INDEX). Oops!)
But sizetype isn't quite right either (especially if
the lowbound is negative). FIXME */
if (! integer_zerop (low_bound))
index = fold (build (MINUS_EXPR, index_type, index,
convert (sizetype, low_bound)));
if ((TREE_CODE (index) != INTEGER_CST
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
&& (! STRICT_ALIGNMENT || ! get_inner_unaligned_p (exp)))
{
/* Nonconstant array index or nonconstant element size, and
not an array in an unaligned (packed) structure field.
Generate the tree for *(&array+index) and expand that,
except do it in a language-independent way
and don't complain about non-lvalue arrays.
`mark_addressable' should already have been called
for any array for which this case will be reached. */
/* Don't forget the const or volatile flag from the array
element. */
tree variant_type = build_type_variant (type,
TREE_READONLY (exp),
TREE_THIS_VOLATILE (exp));
tree array_adr = build1 (ADDR_EXPR,
build_pointer_type (variant_type), array);
tree elt;
tree size = size_in_bytes (type);
/* Convert the integer argument to a type the same size as a
pointer so the multiply won't overflow spuriously. */
if (TYPE_PRECISION (index_type) != POINTER_SIZE)
index = convert (type_for_size (POINTER_SIZE, 0), index);
if (TREE_CODE (size) != INTEGER_CST
&& contains_placeholder_p (size))
size = build (WITH_RECORD_EXPR, sizetype, size, exp);
/* Don't think the address has side effects
just because the array does.
(In some cases the address might have side effects,
and we fail to record that fact here. However, it should not
matter, since expand_expr should not care.) */
TREE_SIDE_EFFECTS (array_adr) = 0;
elt = build1 (INDIRECT_REF, type,
fold (build (PLUS_EXPR,
TYPE_POINTER_TO (variant_type),
array_adr,
fold (build (MULT_EXPR,
TYPE_POINTER_TO (variant_type),
index, size)))));
/* Volatility, etc., of new expression is same as old
expression. */
TREE_SIDE_EFFECTS (elt) = TREE_SIDE_EFFECTS (exp);
TREE_THIS_VOLATILE (elt) = TREE_THIS_VOLATILE (exp);
TREE_READONLY (elt) = TREE_READONLY (exp);
return expand_expr (elt, target, tmode, modifier);
}
/* Fold an expression like: "foo"[2].
This is not done in fold so it won't happen inside &.
Don't fold if this is for wide characters since it's too
difficult to do correctly and this is a very rare case. */
if (TREE_CODE (array) == STRING_CST
&& TREE_CODE (index) == INTEGER_CST
&& !TREE_INT_CST_HIGH (index)
&& (i = TREE_INT_CST_LOW (index)) < TREE_STRING_LENGTH (array)
&& GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) == 1)
return GEN_INT (TREE_STRING_POINTER (array)[i]);
/* If this is a constant index into a constant array,
just get the value from the array. Handle both the cases when
we have an explicit constructor and when our operand is a variable
that was declared const. */
if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array))
{
if (TREE_CODE (index) == INTEGER_CST
&& TREE_INT_CST_HIGH (index) == 0)
{
tree elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0));
i = TREE_INT_CST_LOW (index);
while (elem && i--)
elem = TREE_CHAIN (elem);
if (elem)
return expand_expr (fold (TREE_VALUE (elem)), target,
tmode, modifier);
}
}
else if (optimize >= 1
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
{
if (TREE_CODE (index) == INTEGER_CST
&& TREE_INT_CST_HIGH (index) == 0)
{
tree init = DECL_INITIAL (array);
i = TREE_INT_CST_LOW (index);
if (TREE_CODE (init) == CONSTRUCTOR)
{
tree elem = CONSTRUCTOR_ELTS (init);
while (elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem), index))
elem = TREE_CHAIN (elem);
if (elem)
return expand_expr (fold (TREE_VALUE (elem)), target,
tmode, modifier);
}
else if (TREE_CODE (init) == STRING_CST
&& i < TREE_STRING_LENGTH (init))
return GEN_INT (TREE_STRING_POINTER (init)[i]);
}
}
}
/* Treat array-ref with constant index as a component-ref. */
case COMPONENT_REF:
case BIT_FIELD_REF:
/* If the operand is a CONSTRUCTOR, we can just extract the
appropriate field if it is present. Don't do this if we have
already written the data since we want to refer to that copy
and varasm.c assumes that's what we'll do. */
if (code != ARRAY_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
&& TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
{
tree elt;
for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
elt = TREE_CHAIN (elt))
if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1))
return expand_expr (TREE_VALUE (elt), target, tmode, modifier);
}
{
enum machine_mode mode1;
int bitsize;
int bitpos;
tree offset;
int volatilep = 0;
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode1, &unsignedp, &volatilep);
int alignment;
/* If we got back the original object, something is wrong. Perhaps
we are evaluating an expression too early. In any event, don't
infinitely recurse. */
if (tem == exp)
abort ();
/* In some cases, we will be offsetting OP0's address by a constant.
So get it as a sum, if possible. If we will be using it
directly in an insn, we validate it. */
op0 = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_SUM);
/* If this is a constant, put it into a register if it is a
legitimate constant and memory if it isn't. */
if (CONSTANT_P (op0))
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0))
op0 = force_reg (mode, op0);
else
op0 = validize_mem (force_const_mem (mode, op0));
}
alignment = TYPE_ALIGN (TREE_TYPE (tem)) / BITS_PER_UNIT;
if (offset != 0)
{
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
if (GET_CODE (op0) != MEM)
abort ();
op0 = change_address (op0, VOIDmode,
gen_rtx (PLUS, Pmode, XEXP (op0, 0),
force_reg (Pmode, offset_rtx)));
/* If we have a variable offset, the known alignment
is only that of the innermost structure containing the field.
(Actually, we could sometimes do better by using the
size of an element of the innermost array, but no need.) */
if (TREE_CODE (exp) == COMPONENT_REF
|| TREE_CODE (exp) == BIT_FIELD_REF)
alignment = (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
/ BITS_PER_UNIT);
}
/* Don't forget about volatility even if this is a bitfield. */
if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
{
op0 = copy_rtx (op0);
MEM_VOLATILE_P (op0) = 1;
}
/* In cases where an aligned union has an unaligned object
as a field, we might be extracting a BLKmode value from
an integer-mode (e.g., SImode) object. Handle this case
by doing the extract into an object as wide as the field
(which we know to be the width of a basic mode), then
storing into memory, and changing the mode to BLKmode. */
if (mode1 == VOIDmode
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
&& modifier != EXPAND_CONST_ADDRESS
&& modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|| GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
/* If the field isn't aligned enough to fetch as a memref,
fetch it as a bit field. */
|| (STRICT_ALIGNMENT
&& TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode))
|| (STRICT_ALIGNMENT && bitpos % GET_MODE_ALIGNMENT (mode) != 0))
{
enum machine_mode ext_mode = mode;
if (ext_mode == BLKmode)
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
if (ext_mode == BLKmode)
abort ();
op0 = extract_bit_field (validize_mem (op0), bitsize, bitpos,
unsignedp, target, ext_mode, ext_mode,
alignment,
int_size_in_bytes (TREE_TYPE (tem)));
if (mode == BLKmode)
{
rtx new = assign_stack_temp (ext_mode,
bitsize / BITS_PER_UNIT, 0);
emit_move_insn (new, op0);
op0 = copy_rtx (new);
PUT_MODE (op0, BLKmode);
MEM_IN_STRUCT_P (op0) = 1;
}
return op0;
}
/* Get a reference to just this component. */
if (modifier == EXPAND_CONST_ADDRESS
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
op0 = gen_rtx (MEM, mode1, plus_constant (XEXP (op0, 0),
(bitpos / BITS_PER_UNIT)));
else
op0 = change_address (op0, mode1,
plus_constant (XEXP (op0, 0),
(bitpos / BITS_PER_UNIT)));
MEM_IN_STRUCT_P (op0) = 1;
MEM_VOLATILE_P (op0) |= volatilep;
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode)
return op0;
if (target == 0)
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
convert_move (target, op0, unsignedp);
return target;
}
case OFFSET_REF:
{
tree base = build1 (ADDR_EXPR, type, TREE_OPERAND (exp, 0));
tree addr = build (PLUS_EXPR, type, base, TREE_OPERAND (exp, 1));
op0 = expand_expr (addr, NULL_RTX, VOIDmode, EXPAND_SUM);
temp = gen_rtx (MEM, mode, memory_address (mode, op0));
MEM_IN_STRUCT_P (temp) = 1;
MEM_VOLATILE_P (temp) = TREE_THIS_VOLATILE (exp);
#if 0 /* It is incorrect to set RTX_UNCHANGING_P here, because the fact that
a location is accessed through a pointer to const does not mean
that the value there can never change. */
RTX_UNCHANGING_P (temp) = TREE_READONLY (exp);
#endif
return temp;
}
/* Intended for a reference to a buffer of a file-object in Pascal.
But it's not certain that a special tree code will really be
necessary for these. INDIRECT_REF might work for them. */
case BUFFER_REF:
abort ();
case IN_EXPR:
{
/* Pascal set IN expression.
Algorithm:
rlo = set_low - (set_low%bits_per_word);
the_word = set [ (index - rlo)/bits_per_word ];
bit_index = index % bits_per_word;
bitmask = 1 << bit_index;
return !!(the_word & bitmask); */
tree set = TREE_OPERAND (exp, 0);
tree index = TREE_OPERAND (exp, 1);
int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
tree set_type = TREE_TYPE (set);
tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
rtx index_val = expand_expr (index, 0, VOIDmode, 0);
rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
rtx setval = expand_expr (set, 0, VOIDmode, 0);
rtx setaddr = XEXP (setval, 0);
enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
rtx rlow;
rtx diff, quo, rem, addr, bit, result;
preexpand_calls (exp);
/* If domain is empty, answer is no. Likewise if index is constant
and out of bounds. */
if ((TREE_CODE (set_high_bound) == INTEGER_CST
&& TREE_CODE (set_low_bound) == INTEGER_CST
&& tree_int_cst_lt (set_high_bound, set_low_bound)
|| (TREE_CODE (index) == INTEGER_CST
&& TREE_CODE (set_low_bound) == INTEGER_CST
&& tree_int_cst_lt (index, set_low_bound))
|| (TREE_CODE (set_high_bound) == INTEGER_CST
&& TREE_CODE (index) == INTEGER_CST
&& tree_int_cst_lt (set_high_bound, index))))
return const0_rtx;
if (target == 0)
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
/* If we get here, we have to generate the code for both cases
(in range and out of range). */
op0 = gen_label_rtx ();
op1 = gen_label_rtx ();
if (! (GET_CODE (index_val) == CONST_INT
&& GET_CODE (lo_r) == CONST_INT))
{
emit_cmp_insn (index_val, lo_r, LT, NULL_RTX,
GET_MODE (index_val), iunsignedp, 0);
emit_jump_insn (gen_blt (op1));
}
if (! (GET_CODE (index_val) == CONST_INT
&& GET_CODE (hi_r) == CONST_INT))
{
emit_cmp_insn (index_val, hi_r, GT, NULL_RTX,
GET_MODE (index_val), iunsignedp, 0);
emit_jump_insn (gen_bgt (op1));
}
/* Calculate the element number of bit zero in the first word
of the set. */
if (GET_CODE (lo_r) == CONST_INT)
rlow = GEN_INT (INTVAL (lo_r)
& ~ ((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
else
rlow = expand_binop (index_mode, and_optab, lo_r,
GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
diff = expand_binop (index_mode, sub_optab, index_val, rlow,
NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
addr = memory_address (byte_mode,
expand_binop (index_mode, add_optab, diff,
setaddr, NULL_RTX, iunsignedp,
OPTAB_LIB_WIDEN));
/* Extract the bit we want to examine */
bit = expand_shift (RSHIFT_EXPR, byte_mode,
gen_rtx (MEM, byte_mode, addr),
make_tree (TREE_TYPE (index), rem),
NULL_RTX, 1);
result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
GET_MODE (target) == byte_mode ? target : 0,
1, OPTAB_LIB_WIDEN);
if (result != target)
convert_move (target, result, 1);
/* Output the code to handle the out-of-range case. */
emit_jump (op0);
emit_label (op1);
emit_move_insn (target, const0_rtx);
emit_label (op0);
return target;
}
case WITH_CLEANUP_EXPR:
if (RTL_EXPR_RTL (exp) == 0)
{
RTL_EXPR_RTL (exp)
= expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
cleanups_this_call
= tree_cons (NULL_TREE, TREE_OPERAND (exp, 2), cleanups_this_call);
/* That's it for this cleanup. */
TREE_OPERAND (exp, 2) = 0;
(*interim_eh_hook) (NULL_TREE);
}
return RTL_EXPR_RTL (exp);
case CLEANUP_POINT_EXPR:
{
extern int temp_slot_level;
tree old_cleanups = cleanups_this_call;
int old_temp_level = target_temp_slot_level;
push_temp_slots ();
target_temp_slot_level = temp_slot_level;
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, modifier);
expand_cleanups_to (old_cleanups);
preserve_temp_slots (op0);
free_temp_slots ();
pop_temp_slots ();
target_temp_slot_level = old_temp_level;
}
return op0;
case CALL_EXPR:
/* Check for a built-in function. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
== FUNCTION_DECL)
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
return expand_builtin (exp, target, subtarget, tmode, ignore);
/* If this call was expanded already by preexpand_calls,
just return the result we got. */
if (CALL_EXPR_RTL (exp) != 0)
return CALL_EXPR_RTL (exp);
return expand_call (exp, target, ignore);
case NON_LVALUE_EXPR:
case NOP_EXPR:
case CONVERT_EXPR:
case REFERENCE_EXPR:
if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
{
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
modifier);
/* If the signedness of the conversion differs and OP0 is
a promoted SUBREG, clear that indication since we now
have to do the proper extension. */
if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
&& GET_CODE (op0) == SUBREG)
SUBREG_PROMOTED_VAR_P (op0) = 0;
return op0;
}
if (TREE_CODE (type) == UNION_TYPE)
{
tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
if (target == 0)
{
if (mode == BLKmode)
{
if (TYPE_SIZE (type) == 0
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
abort ();
target = assign_stack_temp (BLKmode,
(TREE_INT_CST_LOW (TYPE_SIZE (type))
+ BITS_PER_UNIT - 1)
/ BITS_PER_UNIT, 0);
}
else
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
}
if (GET_CODE (target) == MEM)
/* Store data into beginning of memory target. */
store_expr (TREE_OPERAND (exp, 0),
change_address (target, TYPE_MODE (valtype), 0), 0);
else if (GET_CODE (target) == REG)
/* Store this field into a union of the proper type. */
store_field (target, GET_MODE_BITSIZE (TYPE_MODE (valtype)), 0,
TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
VOIDmode, 0, 1,
int_size_in_bytes (TREE_TYPE (TREE_OPERAND (exp, 0))));
else
abort ();
/* Return the entire union. */
return target;
}
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, 0);
if (GET_MODE (op0) == mode)
return op0;
/* If OP0 is a constant, just convert it into the proper mode. */
if (CONSTANT_P (op0))
return
convert_modes (mode, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
if (modifier == EXPAND_INITIALIZER)
return gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
if (flag_force_mem && GET_CODE (op0) == MEM)
op0 = copy_to_reg (op0);
if (target == 0)
return
convert_to_mode (mode, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
else
convert_move (target, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
return target;
case PLUS_EXPR:
/* We come here from MINUS_EXPR when the second operand is a constant. */
plus_expr:
this_optab = add_optab;
/* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
something else, make sure we add the register to the constant and
then to the other thing. This case can occur during strength
reduction and doing it this way will produce better code if the
frame pointer or argument pointer is eliminated.
fold-const.c will ensure that the constant is always in the inner
PLUS_EXPR, so the only case we need to do anything about is if
sp, ap, or fp is our second argument, in which case we must swap
the innermost first argument and our second argument. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
&& (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
|| RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
{
tree t = TREE_OPERAND (exp, 1);
TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
}
/* If the result is to be Pmode and we are adding an integer to
something, we might be forming a constant. So try to use
plus_constant. If it produces a sum and we can't accept it,
use force_operand. This allows P = &ARR[const] to generate
efficient code on machines where a SYMBOL_REF is not a valid
address.
If this is an EXPAND_SUM call, always return the sum. */
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|| mode == Pmode)
{
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& TREE_CONSTANT (TREE_OPERAND (exp, 1)))
{
op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
EXPAND_SUM);
op1 = plus_constant (op1, TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op1 = force_operand (op1, target);
return op1;
}
else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
&& TREE_CONSTANT (TREE_OPERAND (exp, 0)))
{
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
EXPAND_SUM);
if (! CONSTANT_P (op0))
{
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, modifier);
/* Don't go to both_summands if modifier
says it's not right to return a PLUS. */
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
goto binop2;
goto both_summands;
}
op0 = plus_constant (op0, TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)));
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
op0 = force_operand (op0, target);
return op0;
}
}
/* No sense saving up arithmetic to be done
if it's all in the wrong mode to form part of an address.
And force_operand won't know whether to sign-extend or
zero-extend. */
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|| mode != Pmode)
goto binop;
preexpand_calls (exp);
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, modifier);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, modifier);
both_summands:
/* Make sure any term that's a sum with a constant comes last. */
if (GET_CODE (op0) == PLUS
&& CONSTANT_P (XEXP (op0, 1)))
{
temp = op0;
op0 = op1;
op1 = temp;
}
/* If adding to a sum including a constant,
associate it to put the constant outside. */
if (GET_CODE (op1) == PLUS
&& CONSTANT_P (XEXP (op1, 1)))
{
rtx constant_term = const0_rtx;
temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
if (temp != 0)
op0 = temp;
/* Ensure that MULT comes first if there is one. */
else if (GET_CODE (op0) == MULT)
op0 = gen_rtx (PLUS, mode, op0, XEXP (op1, 0));
else
op0 = gen_rtx (PLUS, mode, XEXP (op1, 0), op0);
/* Let's also eliminate constants from op0 if possible. */
op0 = eliminate_constant_term (op0, &constant_term);
/* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
their sum should be a constant. Form it into OP1, since the
result we want will then be OP0 + OP1. */
temp = simplify_binary_operation (PLUS, mode, constant_term,
XEXP (op1, 1));
if (temp != 0)
op1 = temp;
else
op1 = gen_rtx (PLUS, mode, constant_term, XEXP (op1, 1));
}
/* Put a constant term last and put a multiplication first. */
if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
temp = op1, op1 = op0, op0 = temp;
temp = simplify_binary_operation (PLUS, mode, op0, op1);
return temp ? temp : gen_rtx (PLUS, mode, op0, op1);
case MINUS_EXPR:
/* For initializers, we are allowed to return a MINUS of two
symbolic constants. Here we handle all cases when both operands
are constant. */
/* Handle difference of two symbolic constants,
for the sake of an initializer. */
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
&& really_constant_p (TREE_OPERAND (exp, 0))
&& really_constant_p (TREE_OPERAND (exp, 1)))
{
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX,
VOIDmode, modifier);
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, modifier);
/* If one operand is a CONST_INT, put it last. */
if (GET_CODE (op0) == CONST_INT)
temp = op0, op0 = op1, op1 = temp;
/* If the last operand is a CONST_INT, use plus_constant of
the negated constant. Else make the MINUS. */
if (GET_CODE (op1) == CONST_INT)
return plus_constant (op0, - INTVAL (op1));
else
return gen_rtx (MINUS, mode, op0, op1);
}
/* Convert A - const to A + (-const). */
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
{
exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0),
fold (build1 (NEGATE_EXPR, type,
TREE_OPERAND (exp, 1))));
goto plus_expr;
}
this_optab = sub_optab;
goto binop;
case MULT_EXPR:
preexpand_calls (exp);
/* If first operand is constant, swap them.
Thus the following special case checks need only
check the second operand. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
{
register tree t1 = TREE_OPERAND (exp, 0);
TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
TREE_OPERAND (exp, 1) = t1;
}
/* Attempt to return something suitable for generating an
indexed address, for machines that support that. */
if (modifier == EXPAND_SUM && mode == Pmode
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, EXPAND_SUM);
/* Apply distributive law if OP0 is x+c. */
if (GET_CODE (op0) == PLUS
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
return gen_rtx (PLUS, mode,
gen_rtx (MULT, mode, XEXP (op0, 0),
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))),
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))
* INTVAL (XEXP (op0, 1))));
if (GET_CODE (op0) != REG)
op0 = force_operand (op0, NULL_RTX);
if (GET_CODE (op0) != REG)
op0 = copy_to_mode_reg (mode, op0);
return gen_rtx (MULT, mode, op0,
GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))));
}
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
/* Check for multiplying things that have been extended
from a narrower type. If this machine supports multiplying
in that narrower type with a result in the desired type,
do it that way, and avoid the explicit type-conversion. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
&& TREE_CODE (type) == INTEGER_TYPE
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
&& ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& int_fits_type_p (TREE_OPERAND (exp, 1),
TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
/* Don't use a widening multiply if a shift will do. */
&& ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
> HOST_BITS_PER_WIDE_INT)
|| exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
||
(TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
==
TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
/* If both operands are extended, they must either both
be zero-extended or both be sign-extended. */
&& (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
==
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
{
enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
? umul_widen_optab : smul_widen_optab);
if (mode == GET_MODE_WIDER_MODE (innermode)
&& this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
{
op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
NULL_RTX, VOIDmode, 0);
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
VOIDmode, 0);
else
op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
NULL_RTX, VOIDmode, 0);
goto binop2;
}
}
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_mult (mode, op0, op1, target, unsignedp);
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
preexpand_calls (exp);
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
/* Possible optimization: compute the dividend with EXPAND_SUM
then if the divisor is constant can optimize the case
where some terms of the dividend have coeffs divisible by it. */
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
case RDIV_EXPR:
this_optab = flodiv_optab;
goto binop;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case CEIL_MOD_EXPR:
case ROUND_MOD_EXPR:
preexpand_calls (exp);
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
case FIX_ROUND_EXPR:
case FIX_FLOOR_EXPR:
case FIX_CEIL_EXPR:
abort (); /* Not used for C. */
case FIX_TRUNC_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
expand_fix (target, op0, unsignedp);
return target;
case FLOAT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
/* expand_float can't figure out what to do if FROM has VOIDmode.
So give it the correct mode. With -O, cse will optimize this. */
if (GET_MODE (op0) == VOIDmode)
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0);
expand_float (target, op0,
TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
return target;
case NEGATE_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode, neg_optab, op0, target, 0);
if (temp == 0)
abort ();
return temp;
case ABS_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
/* Handle complex values specially. */
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
return expand_complex_abs (mode, op0, target, unsignedp);
/* Unsigned abs is simply the operand. Testing here means we don't
risk generating incorrect code below. */
if (TREE_UNSIGNED (type))
return op0;
return expand_abs (mode, op0, target, unsignedp,
safe_from_p (target, TREE_OPERAND (exp, 0)));
case MAX_EXPR:
case MIN_EXPR:
target = original_target;
if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1))
|| (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
|| GET_MODE (target) != mode
|| (GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
target = gen_reg_rtx (mode);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
/* First try to do it with a special MIN or MAX instruction.
If that does not win, use a conditional jump to select the proper
value. */
this_optab = (TREE_UNSIGNED (type)
? (code == MIN_EXPR ? umin_optab : umax_optab)
: (code == MIN_EXPR ? smin_optab : smax_optab));
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
OPTAB_WIDEN);
if (temp != 0)
return temp;
if (target != op0)
emit_move_insn (target, op0);
op0 = gen_label_rtx ();
/* If this mode is an integer too wide to compare properly,
compare word by word. Rely on cse to optimize constant cases. */
if (GET_MODE_CLASS (mode) == MODE_INT && !can_compare_p (mode))
{
if (code == MAX_EXPR)
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
target, op1, NULL_RTX, op0);
else
do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
op1, target, NULL_RTX, op0);
emit_move_insn (target, op1);
}
else
{
if (code == MAX_EXPR)
temp = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)))
? compare_from_rtx (target, op1, GEU, 1, mode, NULL_RTX, 0)
: compare_from_rtx (target, op1, GE, 0, mode, NULL_RTX, 0));
else
temp = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)))
? compare_from_rtx (target, op1, LEU, 1, mode, NULL_RTX, 0)
: compare_from_rtx (target, op1, LE, 0, mode, NULL_RTX, 0));
if (temp == const0_rtx)
emit_move_insn (target, op1);
else if (temp != const_true_rtx)
{
if (bcc_gen_fctn[(int) GET_CODE (temp)] != 0)
emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (temp)]) (op0));
else
abort ();
emit_move_insn (target, op1);
}
}
emit_label (op0);
return target;
case BIT_NOT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
if (temp == 0)
abort ();
return temp;
case FFS_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
temp = expand_unop (mode, ffs_optab, op0, target, 1);
if (temp == 0)
abort ();
return temp;
/* ??? Can optimize bitwise operations with one arg constant.
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
and (a bitwise1 b) bitwise2 b (etc)
but that is probably not worth while. */
/* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
boolean values when we want in all cases to compute both of them. In
general it is fastest to do TRUTH_AND_EXPR by computing both operands
as actual zero-or-1 values and then bitwise anding. In cases where
there cannot be any side effects, better code would be made by
treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
how to recognize those cases. */
case TRUTH_AND_EXPR:
case BIT_AND_EXPR:
this_optab = and_optab;
goto binop;
case TRUTH_OR_EXPR:
case BIT_IOR_EXPR:
this_optab = ior_optab;
goto binop;
case TRUTH_XOR_EXPR:
case BIT_XOR_EXPR:
this_optab = xor_optab;
goto binop;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
preexpand_calls (exp);
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
unsignedp);
/* Could determine the answer when only additive constants differ. Also,
the addition of one can be handled by changing the condition. */
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
preexpand_calls (exp);
temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
if (temp != 0)
return temp;
/* For foo != 0, load foo, and if it is nonzero load 1 instead. */
if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
&& original_target
&& GET_CODE (original_target) == REG
&& (GET_MODE (original_target)
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
{
temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
VOIDmode, 0);
if (temp != original_target)
temp = copy_to_reg (temp);
op1 = gen_label_rtx ();
emit_cmp_insn (temp, const0_rtx, EQ, NULL_RTX,
GET_MODE (temp), unsignedp, 0);
emit_jump_insn (gen_beq (op1));
emit_move_insn (temp, const1_rtx);
emit_label (op1);
return temp;
}
/* If no set-flag instruction, must generate a conditional
store into a temporary variable. Drop through
and handle this like && and ||. */
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
if (! ignore
&& (target == 0 || ! safe_from_p (target, exp)
/* Make sure we don't have a hard reg (such as function's return
value) live across basic blocks, if not optimizing. */
|| (!optimize && GET_CODE (target) == REG
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
if (target)
emit_clr_insn (target);
op1 = gen_label_rtx ();
jumpifnot (exp, op1);
if (target)
emit_0_to_1_insn (target);
emit_label (op1);
return ignore ? const0_rtx : target;
case TRUTH_NOT_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
/* The parser is careful to generate TRUTH_NOT_EXPR
only with operands that are always zero or one. */
temp = expand_binop (mode, xor_optab, op0, const1_rtx,
target, 1, OPTAB_LIB_WIDEN);
if (temp == 0)
abort ();
return temp;
case COMPOUND_EXPR:
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
emit_queue ();
return expand_expr (TREE_OPERAND (exp, 1),
(ignore ? const0_rtx : target),
VOIDmode, 0);
case COND_EXPR:
{
rtx flag = NULL_RTX;
tree left_cleanups = NULL_TREE;
tree right_cleanups = NULL_TREE;
/* Used to save a pointer to the place to put the setting of
the flag that indicates if this side of the conditional was
taken. We backpatch the code, if we find out later that we
have any conditional cleanups that need to be performed. */
rtx dest_right_flag = NULL_RTX;
rtx dest_left_flag = NULL_RTX;
/* Note that COND_EXPRs whose type is a structure or union
are required to be constructed to contain assignments of
a temporary variable, so that we can evaluate them here
for side effect only. If type is void, we must do likewise. */
/* If an arm of the branch requires a cleanup,
only that cleanup is performed. */
tree singleton = 0;
tree binary_op = 0, unary_op = 0;
tree old_cleanups = cleanups_this_call;
/* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
convert it to our mode, if necessary. */
if (integer_onep (TREE_OPERAND (exp, 1))
&& integer_zerop (TREE_OPERAND (exp, 2))
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
{
if (ignore)
{
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
modifier);
return const0_rtx;
}
op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, modifier);
if (GET_MODE (op0) == mode)
return op0;
if (target == 0)
target = gen_reg_rtx (mode);
convert_move (target, op0, unsignedp);
return target;
}
/* If we are not to produce a result, we have no target. Otherwise,
if a target was specified use it; it will not be used as an
intermediate target unless it is safe. If no target, use a
temporary. */
if (ignore)
temp = 0;
else if (original_target
&& safe_from_p (original_target, TREE_OPERAND (exp, 0))
&& GET_MODE (original_target) == mode
&& ! (GET_CODE (original_target) == MEM
&& MEM_VOLATILE_P (original_target)))
temp = original_target;
else if (mode == BLKmode)
{
if (TYPE_SIZE (type) == 0
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
abort ();
temp = assign_stack_temp (BLKmode,
(TREE_INT_CST_LOW (TYPE_SIZE (type))
+ BITS_PER_UNIT - 1)
/ BITS_PER_UNIT, 0);
MEM_IN_STRUCT_P (temp) = AGGREGATE_TYPE_P (type);
}
else
temp = gen_reg_rtx (mode);
/* Check for X ? A + B : A. If we have this, we can copy
A to the output and conditionally add B. Similarly for unary
operations. Don't do this if X has side-effects because
those side effects might affect A or B and the "?" operation is
a sequence point in ANSI. (We test for side effects later.) */
if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
&& operand_equal_p (TREE_OPERAND (exp, 2),
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
&& operand_equal_p (TREE_OPERAND (exp, 1),
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
&& operand_equal_p (TREE_OPERAND (exp, 2),
TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
&& operand_equal_p (TREE_OPERAND (exp, 1),
TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
/* If we had X ? A + 1 : A and we can do the test of X as a store-flag
operation, do this as A + (X != 0). Similarly for other simple
binary operators. */
if (temp && singleton && binary_op
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
&& (TREE_CODE (binary_op) == PLUS_EXPR
|| TREE_CODE (binary_op) == MINUS_EXPR
|| TREE_CODE (binary_op) == BIT_IOR_EXPR
|| TREE_CODE (binary_op) == BIT_XOR_EXPR)
&& integer_onep (TREE_OPERAND (binary_op, 1))
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
{
rtx result;
optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR ? add_optab
: TREE_CODE (binary_op) == MINUS_EXPR ? sub_optab
: TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
: xor_optab);
/* If we had X ? A : A + 1, do this as A + (X == 0).
We have to invert the truth value here and then put it
back later if do_store_flag fails. We cannot simply copy
TREE_OPERAND (exp, 0) to another variable and modify that
because invert_truthvalue can modify the tree pointed to
by its argument. */
if (singleton == TREE_OPERAND (exp, 1))
TREE_OPERAND (exp, 0)
= invert_truthvalue (TREE_OPERAND (exp, 0));
result = do_store_flag (TREE_OPERAND (exp, 0),
(safe_from_p (temp, singleton)
? temp : NULL_RTX),
mode, BRANCH_COST <= 1);
if (result)
{
op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
return expand_binop (mode, boptab, op1, result, temp,
unsignedp, OPTAB_LIB_WIDEN);
}
else if (singleton == TREE_OPERAND (exp, 1))
TREE_OPERAND (exp, 0)
= invert_truthvalue (TREE_OPERAND (exp, 0));
}
NO_DEFER_POP;
op0 = gen_label_rtx ();
flag = gen_reg_rtx (word_mode);
if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
{
if (temp != 0)
{
/* If the target conflicts with the other operand of the
binary op, we can't use it. Also, we can't use the target
if it is a hard register, because evaluating the condition
might clobber it. */
if ((binary_op
&& ! safe_from_p (temp, TREE_OPERAND (binary_op, 1)))
|| (GET_CODE (temp) == REG
&& REGNO (temp) < FIRST_PSEUDO_REGISTER))
temp = gen_reg_rtx (mode);
store_expr (singleton, temp, 0);
}
else
expand_expr (singleton,
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
dest_left_flag = get_last_insn ();
if (singleton == TREE_OPERAND (exp, 1))
jumpif (TREE_OPERAND (exp, 0), op0);
else
jumpifnot (TREE_OPERAND (exp, 0), op0);
/* Allows cleanups up to here. */
old_cleanups = cleanups_this_call;
if (binary_op && temp == 0)
/* Just touch the other operand. */
expand_expr (TREE_OPERAND (binary_op, 1),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
else if (binary_op)
store_expr (build (TREE_CODE (binary_op), type,
make_tree (type, temp),
TREE_OPERAND (binary_op, 1)),
temp, 0);
else
store_expr (build1 (TREE_CODE (unary_op), type,
make_tree (type, temp)),
temp, 0);
op1 = op0;
dest_right_flag = get_last_insn ();
}
#if 0
/* This is now done in jump.c and is better done there because it
produces shorter register lifetimes. */
/* Check for both possibilities either constants or variables
in registers (but not the same as the target!). If so, can
save branches by assigning one, branching, and assigning the
other. */
else if (temp && GET_MODE (temp) != BLKmode
&& (TREE_CONSTANT (TREE_OPERAND (exp, 1))
|| ((TREE_CODE (TREE_OPERAND (exp, 1)) == PARM_DECL
|| TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL)
&& DECL_RTL (TREE_OPERAND (exp, 1))
&& GET_CODE (DECL_RTL (TREE_OPERAND (exp, 1))) == REG
&& DECL_RTL (TREE_OPERAND (exp, 1)) != temp))
&& (TREE_CONSTANT (TREE_OPERAND (exp, 2))
|| ((TREE_CODE (TREE_OPERAND (exp, 2)) == PARM_DECL
|| TREE_CODE (TREE_OPERAND (exp, 2)) == VAR_DECL)
&& DECL_RTL (TREE_OPERAND (exp, 2))
&& GET_CODE (DECL_RTL (TREE_OPERAND (exp, 2))) == REG
&& DECL_RTL (TREE_OPERAND (exp, 2)) != temp)))
{
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
temp = gen_reg_rtx (mode);
store_expr (TREE_OPERAND (exp, 2), temp, 0);
dest_left_flag = get_last_insn ();
jumpifnot (TREE_OPERAND (exp, 0), op0);
/* Allows cleanups up to here. */
old_cleanups = cleanups_this_call;
store_expr (TREE_OPERAND (exp, 1), temp, 0);
op1 = op0;
dest_right_flag = get_last_insn ();
}
#endif
/* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
comparison operator. If we have one of these cases, set the
output to A, branch on A (cse will merge these two references),
then set the output to FOO. */
else if (temp
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 1), 0)
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
&& safe_from_p (temp, TREE_OPERAND (exp, 2)))
{
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
temp = gen_reg_rtx (mode);
store_expr (TREE_OPERAND (exp, 1), temp, 0);
dest_left_flag = get_last_insn ();
jumpif (TREE_OPERAND (exp, 0), op0);
/* Allows cleanups up to here. */
old_cleanups = cleanups_this_call;
store_expr (TREE_OPERAND (exp, 2), temp, 0);
op1 = op0;
dest_right_flag = get_last_insn ();
}
else if (temp
&& TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 2), 0)
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
&& safe_from_p (temp, TREE_OPERAND (exp, 1)))
{
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
temp = gen_reg_rtx (mode);
store_expr (TREE_OPERAND (exp, 2), temp, 0);
dest_left_flag = get_last_insn ();
jumpifnot (TREE_OPERAND (exp, 0), op0);
/* Allows cleanups up to here. */
old_cleanups = cleanups_this_call;
store_expr (TREE_OPERAND (exp, 1), temp, 0);
op1 = op0;
dest_right_flag = get_last_insn ();
}
else
{
op1 = gen_label_rtx ();
jumpifnot (TREE_OPERAND (exp, 0), op0);
/* Allows cleanups up to here. */
old_cleanups = cleanups_this_call;
if (temp != 0)
store_expr (TREE_OPERAND (exp, 1), temp, 0);
else
expand_expr (TREE_OPERAND (exp, 1),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
dest_left_flag = get_last_insn ();
/* Handle conditional cleanups, if any. */
left_cleanups = defer_cleanups_to (old_cleanups);
emit_queue ();
emit_jump_insn (gen_jump (op1));
emit_barrier ();
emit_label (op0);
if (temp != 0)
store_expr (TREE_OPERAND (exp, 2), temp, 0);
else
expand_expr (TREE_OPERAND (exp, 2),
ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
dest_right_flag = get_last_insn ();
}
/* Handle conditional cleanups, if any. */
right_cleanups = defer_cleanups_to (old_cleanups);
emit_queue ();
emit_label (op1);
OK_DEFER_POP;
/* Add back in, any conditional cleanups. */
if (left_cleanups || right_cleanups)
{
tree new_cleanups;
tree cond;
rtx last;
/* Now that we know that a flag is needed, go back and add in the
setting of the flag. */
/* Do the left side flag. */
last = get_last_insn ();
/* Flag left cleanups as needed. */
emit_move_insn (flag, const1_rtx);
/* ??? deprecated, use sequences instead. */
reorder_insns (NEXT_INSN (last), get_last_insn (), dest_left_flag);
/* Do the right side flag. */
last = get_last_insn ();
/* Flag left cleanups as needed. */
emit_move_insn (flag, const0_rtx);
/* ??? deprecated, use sequences instead. */
reorder_insns (NEXT_INSN (last), get_last_insn (), dest_right_flag);
/* convert flag, which is an rtx, into a tree. */
cond = make_node (RTL_EXPR);
TREE_TYPE (cond) = integer_type_node;
RTL_EXPR_RTL (cond) = flag;
RTL_EXPR_SEQUENCE (cond) = NULL_RTX;
if (! left_cleanups)
left_cleanups = integer_zero_node;
if (! right_cleanups)
right_cleanups = integer_zero_node;
new_cleanups = build (COND_EXPR, void_type_node,
truthvalue_conversion (cond),
left_cleanups, right_cleanups);
new_cleanups = fold (new_cleanups);
/* Now add in the conditionalized cleanups. */
cleanups_this_call
= tree_cons (NULL_TREE, new_cleanups, cleanups_this_call);
(*interim_eh_hook) (NULL_TREE);
}
return temp;
}
case TARGET_EXPR:
{
int need_exception_region = 0;
/* Something needs to be initialized, but we didn't know
where that thing was when building the tree. For example,
it could be the return value of a function, or a parameter
to a function which lays down in the stack, or a temporary
variable which must be passed by reference.
We guarantee that the expression will either be constructed
or copied into our original target. */
tree slot = TREE_OPERAND (exp, 0);
tree exp1;
rtx temp;
if (TREE_CODE (slot) != VAR_DECL)
abort ();
if (target == 0)
{
if (DECL_RTL (slot) != 0)
{
target = DECL_RTL (slot);
/* If we have already expanded the slot, so don't do
it again. (mrs) */
if (TREE_OPERAND (exp, 1) == NULL_TREE)
return target;
}
else
{
target = assign_stack_temp (mode, int_size_in_bytes (type), 2);
/* All temp slots at this level must not conflict. */
preserve_temp_slots (target);
DECL_RTL (slot) = target;
/* Since SLOT is not known to the called function
to belong to its stack frame, we must build an explicit
cleanup. This case occurs when we must build up a reference
to pass the reference as an argument. In this case,
it is very likely that such a reference need not be
built here. */
if (TREE_OPERAND (exp, 2) == 0)
TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
if (TREE_OPERAND (exp, 2))
{
cleanups_this_call = tree_cons (NULL_TREE,
TREE_OPERAND (exp, 2),
cleanups_this_call);
need_exception_region = 1;
}
}
}
else
{
/* This case does occur, when expanding a parameter which
needs to be constructed on the stack. The target
is the actual stack address that we want to initialize.
The function we call will perform the cleanup in this case. */
/* If we have already assigned it space, use that space,
not target that we were passed in, as our target
parameter is only a hint. */
if (DECL_RTL (slot) != 0)
{
target = DECL_RTL (slot);
/* If we have already expanded the slot, so don't do
it again. (mrs) */
if (TREE_OPERAND (exp, 1) == NULL_TREE)
return target;
}
DECL_RTL (slot) = target;
}
exp1 = TREE_OPERAND (exp, 1);
/* Mark it as expanded. */
TREE_OPERAND (exp, 1) = NULL_TREE;
temp = expand_expr (exp1, target, tmode, modifier);
if (need_exception_region)
(*interim_eh_hook) (NULL_TREE);
return temp;
}
case INIT_EXPR:
{
tree lhs = TREE_OPERAND (exp, 0);
tree rhs = TREE_OPERAND (exp, 1);
tree noncopied_parts = 0;
tree lhs_type = TREE_TYPE (lhs);
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
if (TYPE_NONCOPIED_PARTS (lhs_type) != 0 && !fixed_type_p (rhs))
noncopied_parts = init_noncopied_parts (stabilize_reference (lhs),
TYPE_NONCOPIED_PARTS (lhs_type));
while (noncopied_parts != 0)
{
expand_assignment (TREE_VALUE (noncopied_parts),
TREE_PURPOSE (noncopied_parts), 0, 0);
noncopied_parts = TREE_CHAIN (noncopied_parts);
}
return temp;
}
case MODIFY_EXPR:
{
/* If lhs is complex, expand calls in rhs before computing it.
That's so we don't compute a pointer and save it over a call.
If lhs is simple, compute it first so we can give it as a
target if the rhs is just a call. This avoids an extra temp and copy
and that prevents a partial-subsumption which makes bad code.
Actually we could treat component_ref's of vars like vars. */
tree lhs = TREE_OPERAND (exp, 0);
tree rhs = TREE_OPERAND (exp, 1);
tree noncopied_parts = 0;
tree lhs_type = TREE_TYPE (lhs);
temp = 0;
if (TREE_CODE (lhs) != VAR_DECL
&& TREE_CODE (lhs) != RESULT_DECL
&& TREE_CODE (lhs) != PARM_DECL)
preexpand_calls (exp);
/* Check for |= or &= of a bitfield of size one into another bitfield
of size 1. In this case, (unless we need the result of the
assignment) we can do this more efficiently with a
test followed by an assignment, if necessary.
??? At this point, we can't get a BIT_FIELD_REF here. But if
things change so we do, this code should be enhanced to
support it. */
if (ignore
&& TREE_CODE (lhs) == COMPONENT_REF
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|| TREE_CODE (rhs) == BIT_AND_EXPR)
&& TREE_OPERAND (rhs, 0) == lhs
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
&& TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (lhs, 1))) == 1
&& TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))) == 1)
{
rtx label = gen_label_rtx ();
do_jump (TREE_OPERAND (rhs, 1),
TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
expand_assignment (lhs, convert (TREE_TYPE (rhs),
(TREE_CODE (rhs) == BIT_IOR_EXPR
? integer_one_node
: integer_zero_node)),
0, 0);
do_pending_stack_adjust ();
emit_label (label);
return const0_rtx;
}
if (TYPE_NONCOPIED_PARTS (lhs_type) != 0
&& ! (fixed_type_p (lhs) && fixed_type_p (rhs)))
noncopied_parts = save_noncopied_parts (stabilize_reference (lhs),
TYPE_NONCOPIED_PARTS (lhs_type));
temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
while (noncopied_parts != 0)
{
expand_assignment (TREE_PURPOSE (noncopied_parts),
TREE_VALUE (noncopied_parts), 0, 0);
noncopied_parts = TREE_CHAIN (noncopied_parts);
}
return temp;
}
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
return expand_increment (exp, 0);
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
/* Faster to treat as pre-increment if result is not used. */
return expand_increment (exp, ! ignore);
case ADDR_EXPR:
/* If nonzero, TEMP will be set to the address of something that might
be a MEM corresponding to a stack slot. */
temp = 0;
/* Are we taking the address of a nested function? */
if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
&& decl_function_context (TREE_OPERAND (exp, 0)) != 0)
{
op0 = trampoline_address (TREE_OPERAND (exp, 0));
op0 = force_operand (op0, target);
}
/* If we are taking the address of something erroneous, just
return a zero. */
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
return const0_rtx;
else
{
/* We make sure to pass const0_rtx down if we came in with
ignore set, to avoid doing the cleanups twice for something. */
op0 = expand_expr (TREE_OPERAND (exp, 0),
ignore ? const0_rtx : NULL_RTX, VOIDmode,
(modifier == EXPAND_INITIALIZER
? modifier : EXPAND_CONST_ADDRESS));
/* If we are going to ignore the result, OP0 will have been set
to const0_rtx, so just return it. Don't get confused and
think we are taking the address of the constant. */
if (ignore)
return op0;
/* We would like the object in memory. If it is a constant,
we can have it be statically allocated into memory. For
a non-constant (REG, SUBREG or CONCAT), we need to allocate some
memory and store the value into it. */
if (CONSTANT_P (op0))
op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
op0);
else if (GET_CODE (op0) == MEM)
{
mark_temp_addr_taken (op0);
temp = XEXP (op0, 0);
}
else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
|| GET_CODE (op0) == CONCAT)
{
/* If this object is in a register, it must be not
be BLKmode. */
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
enum machine_mode inner_mode = TYPE_MODE (inner_type);
rtx memloc
= assign_stack_temp (inner_mode,
int_size_in_bytes (inner_type), 1);
mark_temp_addr_taken (memloc);
emit_move_insn (memloc, op0);
op0 = memloc;
}
if (GET_CODE (op0) != MEM)
abort ();
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
return XEXP (op0, 0);
op0 = force_operand (XEXP (op0, 0), target);
}
if (flag_force_addr && GET_CODE (op0) != REG)
op0 = force_reg (Pmode, op0);
if (GET_CODE (op0) == REG)
mark_reg_pointer (op0);
/* If we might have had a temp slot, add an equivalent address
for it. */
if (temp != 0)
update_temp_slot_address (temp, op0);
return op0;
case ENTRY_VALUE_EXPR:
abort ();
/* COMPLEX type for Extended Pascal & Fortran */
case COMPLEX_EXPR:
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
rtx insns;
/* Get the rtx code of the operands. */
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
if (! target)
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
start_sequence ();
/* Move the real (op0) and imaginary (op1) parts to their location. */
emit_move_insn (gen_realpart (mode, target), op0);
emit_move_insn (gen_imagpart (mode, target), op1);
insns = get_insns ();
end_sequence ();
/* Complex construction should appear as a single unit. */
/* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
each with a separate pseudo as destination.
It's not correct for flow to treat them as a unit. */
if (GET_CODE (target) != CONCAT)
emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
else
emit_insns (insns);
return target;
}
case REALPART_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
return gen_realpart (mode, op0);
case IMAGPART_EXPR:
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
return gen_imagpart (mode, op0);
case CONJ_EXPR:
{
enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
rtx imag_t;
rtx insns;
op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
if (! target)
target = gen_reg_rtx (mode);
start_sequence ();
/* Store the realpart and the negated imagpart to target. */
emit_move_insn (gen_realpart (partmode, target),
gen_realpart (partmode, op0));
imag_t = gen_imagpart (partmode, target);
temp = expand_unop (partmode, neg_optab,
gen_imagpart (partmode, op0), imag_t, 0);
if (temp != imag_t)
emit_move_insn (imag_t, temp);
insns = get_insns ();
end_sequence ();
/* Conjugate should appear as a single unit
If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
each with a separate pseudo as destination.
It's not correct for flow to treat them as a unit. */
if (GET_CODE (target) != CONCAT)
emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
else
emit_insns (insns);
return target;
}
case ERROR_MARK:
op0 = CONST0_RTX (tmode);
if (op0 != 0)
return op0;
return const0_rtx;
default:
return (*lang_expand_expr) (exp, original_target, tmode, modifier);
}
/* Here to do an ordinary binary operator, generating an instruction
from the optab already placed in `this_optab'. */
binop:
preexpand_calls (exp);
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1)))
subtarget = 0;
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
binop2:
temp = expand_binop (mode, this_optab, op0, op1, target,
unsignedp, OPTAB_LIB_WIDEN);
if (temp == 0)
abort ();
return temp;
}
/* Emit bytecode to evaluate the given expression EXP to the stack. */
void
bc_expand_expr (exp)
tree exp;
{
enum tree_code code;
tree type, arg0;
rtx r;
struct binary_operator *binoptab;
struct unary_operator *unoptab;
struct increment_operator *incroptab;
struct bc_label *lab, *lab1;
enum bytecode_opcode opcode;
code = TREE_CODE (exp);
switch (code)
{
case PARM_DECL:
if (DECL_RTL (exp) == 0)
{
error_with_decl (exp, "prior parameter's size depends on `%s'");
return;
}
bc_load_parmaddr (DECL_RTL (exp));
bc_load_memory (TREE_TYPE (exp), exp);
return;
case VAR_DECL:
if (DECL_RTL (exp) == 0)
abort ();
#if 0
if (BYTECODE_LABEL (DECL_RTL (exp)))
bc_load_externaddr (DECL_RTL (exp));
else
bc_load_localaddr (DECL_RTL (exp));
#endif
if (TREE_PUBLIC (exp))
bc_load_externaddr_id (DECL_ASSEMBLER_NAME (exp),
BYTECODE_BC_LABEL (DECL_RTL (exp))->offset);
else
bc_load_localaddr (DECL_RTL (exp));
bc_load_memory (TREE_TYPE (exp), exp);
return;
case INTEGER_CST:
#ifdef DEBUG_PRINT_CODE
fprintf (stderr, " [%x]\n", TREE_INT_CST_LOW (exp));
#endif
bc_emit_instruction (mode_to_const_map[(int) (DECL_BIT_FIELD (exp)
? SImode
: TYPE_MODE (TREE_TYPE (exp)))],
(HOST_WIDE_INT) TREE_INT_CST_LOW (exp));
return;
case REAL_CST:
#if 0
#ifdef DEBUG_PRINT_CODE
fprintf (stderr, " [%g]\n", (double) TREE_INT_CST_LOW (exp));
#endif
/* FIX THIS: find a better way to pass real_cst's. -bson */
bc_emit_instruction (mode_to_const_map[TYPE_MODE (TREE_TYPE (exp))],
(double) TREE_REAL_CST (exp));
#else
abort ();
#endif
return;
case CALL_EXPR:
/* We build a call description vector describing the type of
the return value and of the arguments; this call vector,
together with a pointer to a location for the return value
and the base of the argument list, is passed to the low
level machine dependent call subroutine, which is responsible
for putting the arguments wherever real functions expect
them, as well as getting the return value back. */
{
tree calldesc = 0, arg;
int nargs = 0, i;
rtx retval;
/* Push the evaluated args on the evaluation stack in reverse
order. Also make an entry for each arg in the calldesc
vector while we're at it. */
TREE_OPERAND (exp, 1) = nreverse (TREE_OPERAND (exp, 1));
for (arg = TREE_OPERAND (exp, 1); arg; arg = TREE_CHAIN (arg))
{
++nargs;
bc_expand_expr (TREE_VALUE (arg));
calldesc = tree_cons ((tree) 0,
size_in_bytes (TREE_TYPE (TREE_VALUE (arg))),
calldesc);
calldesc = tree_cons ((tree) 0,
bc_runtime_type_code (TREE_TYPE (TREE_VALUE (arg))),
calldesc);
}
TREE_OPERAND (exp, 1) = nreverse (TREE_OPERAND (exp, 1));
/* Allocate a location for the return value and push its
address on the evaluation stack. Also make an entry
at the front of the calldesc for the return value type. */
type = TREE_TYPE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
retval = bc_allocate_local (int_size_in_bytes (type), TYPE_ALIGN (type));
bc_load_localaddr (retval);
calldesc = tree_cons ((tree) 0, size_in_bytes (type), calldesc);
calldesc = tree_cons ((tree) 0, bc_runtime_type_code (type), calldesc);
/* Prepend the argument count. */
calldesc = tree_cons ((tree) 0,
build_int_2 (nargs, 0),
calldesc);
/* Push the address of the call description vector on the stack. */
calldesc = build_nt (CONSTRUCTOR, (tree) 0, calldesc);
TREE_TYPE (calldesc) = build_array_type (integer_type_node,
build_index_type (build_int_2 (nargs * 2, 0)));
r = output_constant_def (calldesc);
bc_load_externaddr (r);
/* Push the address of the function to be called. */
bc_expand_expr (TREE_OPERAND (exp, 0));
/* Call the function, popping its address and the calldesc vector
address off the evaluation stack in the process. */
bc_emit_instruction (call);
/* Pop the arguments off the stack. */
bc_adjust_stack (nargs);
/* Load the return value onto the stack. */
bc_load_localaddr (retval);
bc_load_memory (type, TREE_OPERAND (exp, 0));
}
return;
case SAVE_EXPR:
if (!SAVE_EXPR_RTL (exp))
{
/* First time around: copy to local variable */
SAVE_EXPR_RTL (exp) = bc_allocate_local (int_size_in_bytes (TREE_TYPE (exp)),
TYPE_ALIGN (TREE_TYPE(exp)));
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_emit_instruction (duplicate);
bc_load_localaddr (SAVE_EXPR_RTL (exp));
bc_store_memory (TREE_TYPE (exp), TREE_OPERAND (exp, 0));
}
else
{
/* Consecutive reference: use saved copy */
bc_load_localaddr (SAVE_EXPR_RTL (exp));
bc_load_memory (TREE_TYPE (exp), TREE_OPERAND (exp, 0));
}
return;
#if 0
/* FIXME: the XXXX_STMT codes have been removed in GCC2, but
how are they handled instead? */
case LET_STMT:
TREE_USED (exp) = 1;
bc_expand_expr (STMT_BODY (exp));
return;
#endif
case NOP_EXPR:
case CONVERT_EXPR:
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_expand_conversion (TREE_TYPE (TREE_OPERAND (exp, 0)), TREE_TYPE (exp));
return;
case MODIFY_EXPR:
expand_assignment (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), 0, 0);
return;
case ADDR_EXPR:
bc_expand_address (TREE_OPERAND (exp, 0));
return;
case INDIRECT_REF:
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_load_memory (TREE_TYPE (exp), TREE_OPERAND (exp, 0));
return;
case ARRAY_REF:
bc_expand_expr (bc_canonicalize_array_ref (exp));
return;
case COMPONENT_REF:
bc_expand_component_address (exp);
/* If we have a bitfield, generate a proper load */
bc_load_memory (TREE_TYPE (TREE_OPERAND (exp, 1)), TREE_OPERAND (exp, 1));
return;
case COMPOUND_EXPR:
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_emit_instruction (drop);
bc_expand_expr (TREE_OPERAND (exp, 1));
return;
case COND_EXPR:
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_expand_truth_conversion (TREE_TYPE (TREE_OPERAND (exp, 0)));
lab = bc_get_bytecode_label ();
bc_emit_bytecode (xjumpifnot);
bc_emit_bytecode_labelref (lab);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
bc_expand_expr (TREE_OPERAND (exp, 1));
lab1 = bc_get_bytecode_label ();
bc_emit_bytecode (jump);
bc_emit_bytecode_labelref (lab1);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
bc_emit_bytecode_labeldef (lab);
bc_expand_expr (TREE_OPERAND (exp, 2));
bc_emit_bytecode_labeldef (lab1);
return;
case TRUTH_ANDIF_EXPR:
opcode = xjumpifnot;
goto andorif;
case TRUTH_ORIF_EXPR:
opcode = xjumpif;
goto andorif;
case PLUS_EXPR:
binoptab = optab_plus_expr;
goto binop;
case MINUS_EXPR:
binoptab = optab_minus_expr;
goto binop;
case MULT_EXPR:
binoptab = optab_mult_expr;
goto binop;
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
binoptab = optab_trunc_div_expr;
goto binop;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case CEIL_MOD_EXPR:
case ROUND_MOD_EXPR:
binoptab = optab_trunc_mod_expr;
goto binop;
case FIX_ROUND_EXPR:
case FIX_FLOOR_EXPR:
case FIX_CEIL_EXPR:
abort (); /* Not used for C. */
case FIX_TRUNC_EXPR:
case FLOAT_EXPR:
case MAX_EXPR:
case MIN_EXPR:
case FFS_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
abort (); /* FIXME */
case RDIV_EXPR:
binoptab = optab_rdiv_expr;
goto binop;
case BIT_AND_EXPR:
binoptab = optab_bit_and_expr;
goto binop;
case BIT_IOR_EXPR:
binoptab = optab_bit_ior_expr;
goto binop;
case BIT_XOR_EXPR:
binoptab = optab_bit_xor_expr;
goto binop;
case LSHIFT_EXPR:
binoptab = optab_lshift_expr;
goto binop;
case RSHIFT_EXPR:
binoptab = optab_rshift_expr;
goto binop;
case TRUTH_AND_EXPR:
binoptab = optab_truth_and_expr;
goto binop;
case TRUTH_OR_EXPR:
binoptab = optab_truth_or_expr;
goto binop;
case LT_EXPR:
binoptab = optab_lt_expr;
goto binop;
case LE_EXPR:
binoptab = optab_le_expr;
goto binop;
case GE_EXPR:
binoptab = optab_ge_expr;
goto binop;
case GT_EXPR:
binoptab = optab_gt_expr;
goto binop;
case EQ_EXPR:
binoptab = optab_eq_expr;
goto binop;
case NE_EXPR:
binoptab = optab_ne_expr;
goto binop;
case NEGATE_EXPR:
unoptab = optab_negate_expr;
goto unop;
case BIT_NOT_EXPR:
unoptab = optab_bit_not_expr;
goto unop;
case TRUTH_NOT_EXPR:
unoptab = optab_truth_not_expr;
goto unop;
case PREDECREMENT_EXPR:
incroptab = optab_predecrement_expr;
goto increment;
case PREINCREMENT_EXPR:
incroptab = optab_preincrement_expr;
goto increment;
case POSTDECREMENT_EXPR:
incroptab = optab_postdecrement_expr;
goto increment;
case POSTINCREMENT_EXPR:
incroptab = optab_postincrement_expr;
goto increment;
case CONSTRUCTOR:
bc_expand_constructor (exp);
return;
case ERROR_MARK:
case RTL_EXPR:
return;
case BIND_EXPR:
{
tree vars = TREE_OPERAND (exp, 0);
int vars_need_expansion = 0;
/* Need to open a binding contour here because
if there are any cleanups they most be contained here. */
expand_start_bindings (0);
/* Mark the corresponding BLOCK for output. */
if (TREE_OPERAND (exp, 2) != 0)
TREE_USED (TREE_OPERAND (exp, 2)) = 1;
/* If VARS have not yet been expanded, expand them now. */
while (vars)
{
if (DECL_RTL (vars) == 0)
{
vars_need_expansion = 1;
expand_decl (vars);
}
expand_decl_init (vars);
vars = TREE_CHAIN (vars);
}
bc_expand_expr (TREE_OPERAND (exp, 1));
expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
return;
}
}
abort ();
binop:
bc_expand_binary_operation (binoptab, TREE_TYPE (exp),
TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1));
return;
unop:
bc_expand_unary_operation (unoptab, TREE_TYPE (exp), TREE_OPERAND (exp, 0));
return;
andorif:
bc_expand_expr (TREE_OPERAND (exp, 0));
bc_expand_truth_conversion (TREE_TYPE (TREE_OPERAND (exp, 0)));
lab = bc_get_bytecode_label ();
bc_emit_instruction (duplicate);
bc_emit_bytecode (opcode);
bc_emit_bytecode_labelref (lab);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
bc_emit_instruction (drop);
bc_expand_expr (TREE_OPERAND (exp, 1));
bc_expand_truth_conversion (TREE_TYPE (TREE_OPERAND (exp, 1)));
bc_emit_bytecode_labeldef (lab);
return;
increment:
type = TREE_TYPE (TREE_OPERAND (exp, 0));
/* Push the quantum. */
bc_expand_expr (TREE_OPERAND (exp, 1));
/* Convert it to the lvalue's type. */
bc_expand_conversion (TREE_TYPE (TREE_OPERAND (exp, 1)), type);
/* Push the address of the lvalue */
bc_expand_expr (build1 (ADDR_EXPR, TYPE_POINTER_TO (type), TREE_OPERAND (exp, 0)));
/* Perform actual increment */
bc_expand_increment (incroptab, type);
return;
}
/* Return the alignment in bits of EXP, a pointer valued expression.
But don't return more than MAX_ALIGN no matter what.
The alignment returned is, by default, the alignment of the thing that
EXP points to (if it is not a POINTER_TYPE, 0 is returned).
Otherwise, look at the expression to see if we can do better, i.e., if the
expression is actually pointing at an object whose alignment is tighter. */
static int
get_pointer_alignment (exp, max_align)
tree exp;
unsigned max_align;
{
unsigned align, inner;
if (TREE_CODE (TREE_TYPE (exp)) != POINTER_TYPE)
return 0;
align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
align = MIN (align, max_align);
while (1)
{
switch (TREE_CODE (exp))
{
case NOP_EXPR:
case CONVERT_EXPR:
case NON_LVALUE_EXPR:
exp = TREE_OPERAND (exp, 0);
if (TREE_CODE (TREE_TYPE (exp)) != POINTER_TYPE)
return align;
inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
align = MIN (inner, max_align);
break;
case PLUS_EXPR:
/* If sum of pointer + int, restrict our maximum alignment to that
imposed by the integer. If not, we can't do any better than
ALIGN. */
if (TREE_CODE (TREE_OPERAND (exp, 1)) != INTEGER_CST)
return align;
while (((TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)) * BITS_PER_UNIT)
& (max_align - 1))
!= 0)
max_align >>= 1;
exp = TREE_OPERAND (exp, 0);
break;
case ADDR_EXPR:
/* See what we are pointing at and look at its alignment. */
exp = TREE_OPERAND (exp, 0);
if (TREE_CODE (exp) == FUNCTION_DECL)
align = FUNCTION_BOUNDARY;
else if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
align = DECL_ALIGN (exp);
#ifdef CONSTANT_ALIGNMENT
else if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c')
align = CONSTANT_ALIGNMENT (exp, align);
#endif
return MIN (align, max_align);
default:
return align;
}
}
}
/* Return the tree node and offset if a given argument corresponds to
a string constant. */
static tree
string_constant (arg, ptr_offset)
tree arg;
tree *ptr_offset;
{
STRIP_NOPS (arg);
if (TREE_CODE (arg) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
{
*ptr_offset = integer_zero_node;
return TREE_OPERAND (arg, 0);
}
else if (TREE_CODE (arg) == PLUS_EXPR)
{
tree arg0 = TREE_OPERAND (arg, 0);
tree arg1 = TREE_OPERAND (arg, 1);
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (TREE_CODE (arg0) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
{
*ptr_offset = arg1;
return TREE_OPERAND (arg0, 0);
}
else if (TREE_CODE (arg1) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
{
*ptr_offset = arg0;
return TREE_OPERAND (arg1, 0);
}
}
return 0;
}
/* Compute the length of a C string. TREE_STRING_LENGTH is not the right
way, because it could contain a zero byte in the middle.
TREE_STRING_LENGTH is the size of the character array, not the string.
Unfortunately, string_constant can't access the values of const char
arrays with initializers, so neither can we do so here. */
static tree
c_strlen (src)
tree src;
{
tree offset_node;
int offset, max;
char *ptr;
src = string_constant (src, &offset_node);
if (src == 0)
return 0;
max = TREE_STRING_LENGTH (src);
ptr = TREE_STRING_POINTER (src);
if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
{
/* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
compute the offset to the following null if we don't know where to
start searching for it. */
int i;
for (i = 0; i < max; i++)
if (ptr[i] == 0)
return 0;
/* We don't know the starting offset, but we do know that the string
has no internal zero bytes. We can assume that the offset falls
within the bounds of the string; otherwise, the programmer deserves
what he gets. Subtract the offset from the length of the string,
and return that. */
/* This would perhaps not be valid if we were dealing with named
arrays in addition to literal string constants. */
return size_binop (MINUS_EXPR, size_int (max), offset_node);
}
/* We have a known offset into the string. Start searching there for
a null character. */
if (offset_node == 0)
offset = 0;
else
{
/* Did we get a long long offset? If so, punt. */
if (TREE_INT_CST_HIGH (offset_node) != 0)
return 0;
offset = TREE_INT_CST_LOW (offset_node);
}
/* If the offset is known to be out of bounds, warn, and call strlen at
runtime. */
if (offset < 0 || offset > max)
{
warning ("offset outside bounds of constant string");
return 0;
}
/* Use strlen to search for the first zero byte. Since any strings
constructed with build_string will have nulls appended, we win even
if we get handed something like (char[4])"abcd".
Since OFFSET is our starting index into the string, no further
calculation is needed. */
return size_int (strlen (ptr + offset));
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
#define CALLED_AS_BUILT_IN(NODE) \
(!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10))
static rtx
expand_builtin (exp, target, subtarget, mode, ignore)
tree exp;
rtx target;
rtx subtarget;
enum machine_mode mode;
int ignore;
{
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
tree arglist = TREE_OPERAND (exp, 1);
rtx op0;
rtx lab1, insns;
enum machine_mode value_mode = TYPE_MODE (TREE_TYPE (exp));
optab builtin_optab;
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_ABS:
case BUILT_IN_LABS:
case BUILT_IN_FABS:
/* build_function_call changes these into ABS_EXPR. */
abort ();
case BUILT_IN_SIN:
case BUILT_IN_COS:
/* Treat these like sqrt, but only if the user asks for them. */
if (! flag_fast_math)
break;
case BUILT_IN_FSQRT:
/* If not optimizing, call the library function. */
if (! optimize)
break;
if (arglist == 0
/* Arg could be wrong type if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != REAL_TYPE)
break;
/* Stabilize and compute the argument. */
if (TREE_CODE (TREE_VALUE (arglist)) != VAR_DECL
&& TREE_CODE (TREE_VALUE (arglist)) != PARM_DECL)
{
exp = copy_node (exp);
arglist = copy_node (arglist);
TREE_OPERAND (exp, 1) = arglist;
TREE_VALUE (arglist) = save_expr (TREE_VALUE (arglist));
}
op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0);
/* Make a suitable register to place result in. */
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
emit_queue ();
start_sequence ();
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_SIN:
builtin_optab = sin_optab; break;
case BUILT_IN_COS:
builtin_optab = cos_optab; break;
case BUILT_IN_FSQRT:
builtin_optab = sqrt_optab; break;
default:
abort ();
}
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))),
builtin_optab, op0, target, 0);
/* If we were unable to expand via the builtin, stop the
sequence (without outputting the insns) and break, causing
a call the the library function. */
if (target == 0)
{
end_sequence ();
break;
}
/* Check the results by default. But if flag_fast_math is turned on,
then assume sqrt will always be called with valid arguments. */
if (! flag_fast_math)
{
/* Don't define the builtin FP instructions
if your machine is not IEEE. */
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
abort ();
lab1 = gen_label_rtx ();
/* Test the result; if it is NaN, set errno=EDOM because
the argument was not in the domain. */
emit_cmp_insn (target, target, EQ, 0, GET_MODE (target), 0, 0);
emit_jump_insn (gen_beq (lab1));
#ifdef TARGET_EDOM
{
#ifdef GEN_ERRNO_RTX
rtx errno_rtx = GEN_ERRNO_RTX;
#else
rtx errno_rtx
= gen_rtx (MEM, word_mode, gen_rtx (SYMBOL_REF, Pmode, "errno"));
#endif
emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
}
#else
/* We can't set errno=EDOM directly; let the library call do it.
Pop the arguments right away in case the call gets deleted. */
NO_DEFER_POP;
expand_call (exp, target, 0);
OK_DEFER_POP;
#endif
emit_label (lab1);
}
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insns (insns);
return target;
/* __builtin_apply_args returns block of memory allocated on
the stack into which is stored the arg pointer, structure
value address, static chain, and all the registers that might
possibly be used in performing a function call. The code is
moved to the start of the function so the incoming values are
saved. */
case BUILT_IN_APPLY_ARGS:
/* Don't do __builtin_apply_args more than once in a function.
Save the result of the first call and reuse it. */
if (apply_args_value != 0)
return apply_args_value;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx temp;
rtx seq;
start_sequence ();
temp = expand_builtin_apply_args ();
seq = get_insns ();
end_sequence ();
apply_args_value = temp;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence ();
emit_insns_before (seq, NEXT_INSN (get_insns ()));
pop_topmost_sequence ();
return temp;
}
/* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
FUNCTION with a copy of the parameters described by
ARGUMENTS, and ARGSIZE. It returns a block of memory
allocated on the stack into which is stored all the registers
that might possibly be used for returning the result of a
function. ARGUMENTS is the value returned by
__builtin_apply_args. ARGSIZE is the number of bytes of
arguments that must be copied. ??? How should this value be
computed? We'll also need a safe worst case value for varargs
functions. */
case BUILT_IN_APPLY:
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE
|| TREE_CHAIN (TREE_CHAIN (arglist)) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))))) != INTEGER_TYPE)
return const0_rtx;
else
{
int i;
tree t;
rtx ops[3];
for (t = arglist, i = 0; t; t = TREE_CHAIN (t), i++)
ops[i] = expand_expr (TREE_VALUE (t), NULL_RTX, VOIDmode, 0);
return expand_builtin_apply (ops[0], ops[1], ops[2]);
}
/* __builtin_return (RESULT) causes the function to return the
value described by RESULT. RESULT is address of the block of
memory returned by __builtin_apply. */
case BUILT_IN_RETURN:
if (arglist
/* Arg could be non-pointer if user redeclared this fcn wrong. */
&& TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE)
expand_builtin_return (expand_expr (TREE_VALUE (arglist),
NULL_RTX, VOIDmode, 0));
return const0_rtx;
case BUILT_IN_SAVEREGS:
/* Don't do __builtin_saveregs more than once in a function.
Save the result of the first call and reuse it. */
if (saveregs_value != 0)
return saveregs_value;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx temp;
rtx seq;
/* Now really call the function. `expand_call' does not call
expand_builtin, so there is no danger of infinite recursion here. */
start_sequence ();
#ifdef EXPAND_BUILTIN_SAVEREGS
/* Do whatever the machine needs done in this case. */
temp = EXPAND_BUILTIN_SAVEREGS (arglist);
#else
/* The register where the function returns its value
is likely to have something else in it, such as an argument.
So preserve that register around the call. */
if (value_mode != VOIDmode)
{
rtx valreg = hard_libcall_value (value_mode);
rtx saved_valreg = gen_reg_rtx (value_mode);
emit_move_insn (saved_valreg, valreg);
temp = expand_call (exp, target, ignore);
emit_move_insn (valreg, saved_valreg);
}
else
/* Generate the call, putting the value in a pseudo. */
temp = expand_call (exp, target, ignore);
#endif
seq = get_insns ();
end_sequence ();
saveregs_value = temp;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence ();
emit_insns_before (seq, NEXT_INSN (get_insns ()));
pop_topmost_sequence ();
return temp;
}
/* __builtin_args_info (N) returns word N of the arg space info
for the current function. The number and meanings of words
is controlled by the definition of CUMULATIVE_ARGS. */
case BUILT_IN_ARGS_INFO:
{
int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int);
int i;
int *word_ptr = (int *) ¤t_function_args_info;
tree type, elts, result;
if (sizeof (CUMULATIVE_ARGS) % sizeof (int) != 0)
fatal ("CUMULATIVE_ARGS type defined badly; see %s, line %d",
__FILE__, __LINE__);
if (arglist != 0)
{
tree arg = TREE_VALUE (arglist);
if (TREE_CODE (arg) != INTEGER_CST)
error ("argument of `__builtin_args_info' must be constant");
else
{
int wordnum = TREE_INT_CST_LOW (arg);
if (wordnum < 0 || wordnum >= nwords || TREE_INT_CST_HIGH (arg))
error ("argument of `__builtin_args_info' out of range");
else
return GEN_INT (word_ptr[wordnum]);
}
}
else
error ("missing argument in `__builtin_args_info'");
return const0_rtx;
#if 0
for (i = 0; i < nwords; i++)
elts = tree_cons (NULL_TREE, build_int_2 (word_ptr[i], 0));
type = build_array_type (integer_type_node,
build_index_type (build_int_2 (nwords, 0)));
result = build (CONSTRUCTOR, type, NULL_TREE, nreverse (elts));
TREE_CONSTANT (result) = 1;
TREE_STATIC (result) = 1;
result = build (INDIRECT_REF, build_pointer_type (type), result);
TREE_CONSTANT (result) = 1;
return expand_expr (result, NULL_RTX, VOIDmode, 0);
#endif
}
/* Return the address of the first anonymous stack arg. */
case BUILT_IN_NEXT_ARG:
{
tree fntype = TREE_TYPE (current_function_decl);
if ((TYPE_ARG_TYPES (fntype) == 0
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
== void_type_node))
&& ! current_function_varargs)
{
error ("`va_start' used in function with fixed args");
return const0_rtx;
}
if (arglist)
{
tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
tree arg = TREE_VALUE (arglist);
/* Strip off all nops for the sake of the comparison. This
is not quite the same as STRIP_NOPS. It does more. */
while (TREE_CODE (arg) == NOP_EXPR
|| TREE_CODE (arg) == CONVERT_EXPR
|| TREE_CODE (arg) == NON_LVALUE_EXPR)
arg = TREE_OPERAND (arg, 0);
if (arg != last_parm)
warning ("second parameter of `va_start' not last named argument");
}
else
/* Evidently an out of date version of <stdarg.h>; can't validate
va_start's second argument, but can still work as intended. */
warning ("`__builtin_next_arg' called without an argument");
}
return expand_binop (Pmode, add_optab,
current_function_internal_arg_pointer,
current_function_arg_offset_rtx,
NULL_RTX, 0, OPTAB_LIB_WIDEN);
case BUILT_IN_CLASSIFY_TYPE:
if (arglist != 0)
{
tree type = TREE_TYPE (TREE_VALUE (arglist));
enum tree_code code = TREE_CODE (type);
if (code == VOID_TYPE)
return GEN_INT (void_type_class);
if (code == INTEGER_TYPE)
return GEN_INT (integer_type_class);
if (code == CHAR_TYPE)
return GEN_INT (char_type_class);
if (code == ENUMERAL_TYPE)
return GEN_INT (enumeral_type_class);
if (code == BOOLEAN_TYPE)
return GEN_INT (boolean_type_class);
if (code == POINTER_TYPE)
return GEN_INT (pointer_type_class);
if (code == REFERENCE_TYPE)
return GEN_INT (reference_type_class);
if (code == OFFSET_TYPE)
return GEN_INT (offset_type_class);
if (code == REAL_TYPE)
return GEN_INT (real_type_class);
if (code == COMPLEX_TYPE)
return GEN_INT (complex_type_class);
if (code == FUNCTION_TYPE)
return GEN_INT (function_type_class);
if (code == METHOD_TYPE)
return GEN_INT (method_type_class);
if (code == RECORD_TYPE)
return GEN_INT (record_type_class);
if (code == UNION_TYPE || code == QUAL_UNION_TYPE)
return GEN_INT (union_type_class);
if (code == ARRAY_TYPE)
{
if (TYPE_STRING_FLAG (type))
return GEN_INT (string_type_class);
else
return GEN_INT (array_type_class);
}
if (code == SET_TYPE)
return GEN_INT (set_type_class);
if (code == FILE_TYPE)
return GEN_INT (file_type_class);
if (code == LANG_TYPE)
return GEN_INT (lang_type_class);
}
return GEN_INT (no_type_class);
case BUILT_IN_CONSTANT_P:
if (arglist == 0)
return const0_rtx;
else
return (TREE_CODE_CLASS (TREE_CODE (TREE_VALUE (arglist))) == 'c'
? const1_rtx : const0_rtx);
case BUILT_IN_FRAME_ADDRESS:
/* The argument must be a nonnegative integer constant.
It counts the number of frames to scan up the stack.
The value is the address of that frame. */
case BUILT_IN_RETURN_ADDRESS:
/* The argument must be a nonnegative integer constant.
It counts the number of frames to scan up the stack.
The value is the return address saved in that frame. */
if (arglist == 0)
/* Warning about missing arg was already issued. */
return const0_rtx;
else if (TREE_CODE (TREE_VALUE (arglist)) != INTEGER_CST)
{
error ("invalid arg to `__builtin_return_address'");
return const0_rtx;
}
else if (tree_int_cst_sgn (TREE_VALUE (arglist)) < 0)
{
error ("invalid arg to `__builtin_return_address'");
return const0_rtx;
}
else
{
int count = TREE_INT_CST_LOW (TREE_VALUE (arglist));
rtx tem = frame_pointer_rtx;
int i;
/* Some machines need special handling before we can access arbitrary
frames. For example, on the sparc, we must first flush all
register windows to the stack. */
#ifdef SETUP_FRAME_ADDRESSES
SETUP_FRAME_ADDRESSES ();
#endif
/* On the sparc, the return address is not in the frame, it is
in a register. There is no way to access it off of the current
frame pointer, but it can be accessed off the previous frame
pointer by reading the value from the register window save
area. */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_RETURN_ADDRESS)
count--;
#endif
/* Scan back COUNT frames to the specified frame. */
for (i = 0; i < count; i++)
{
/* Assume the dynamic chain pointer is in the word that
the frame address points to, unless otherwise specified. */
#ifdef DYNAMIC_CHAIN_ADDRESS
tem = DYNAMIC_CHAIN_ADDRESS (tem);
#endif
tem = memory_address (Pmode, tem);
tem = copy_to_reg (gen_rtx (MEM, Pmode, tem));
}
/* For __builtin_frame_address, return what we've got. */
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
return tem;
/* For __builtin_return_address,
Get the return address from that frame. */
#ifdef RETURN_ADDR_RTX
return RETURN_ADDR_RTX (count, tem);
#else
tem = memory_address (Pmode,
plus_constant (tem, GET_MODE_SIZE (Pmode)));
return copy_to_reg (gen_rtx (MEM, Pmode, tem));
#endif
}
case BUILT_IN_ALLOCA:
if (arglist == 0
/* Arg could be non-integer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE)
break;
/* Compute the argument. */
op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0);
/* Allocate the desired space. */
return allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT);
case BUILT_IN_FFS:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-integer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE)
break;
/* Compute the argument. */
op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0);
/* Compute ffs, into TARGET if possible.
Set TARGET to wherever the result comes back. */
target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))),
ffs_optab, op0, target, 1);
if (target == 0)
abort ();
return target;
case BUILT_IN_STRLEN:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE)
break;
else
{
tree src = TREE_VALUE (arglist);
tree len = c_strlen (src);
int align
= get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
rtx result, src_rtx, char_rtx;
enum machine_mode insn_mode = value_mode, char_mode;
enum insn_code icode;
/* If the length is known, just return it. */
if (len != 0)
return expand_expr (len, target, mode, 0);
/* If SRC is not a pointer type, don't do this operation inline. */
if (align == 0)
break;
/* Call a function if we can't compute strlen in the right mode. */
while (insn_mode != VOIDmode)
{
icode = strlen_optab->handlers[(int) insn_mode].insn_code;
if (icode != CODE_FOR_nothing)
break;
insn_mode = GET_MODE_WIDER_MODE (insn_mode);
}
if (insn_mode == VOIDmode)
break;
/* Make a place to write the result of the instruction. */
result = target;
if (! (result != 0
&& GET_CODE (result) == REG
&& GET_MODE (result) == insn_mode
&& REGNO (result) >= FIRST_PSEUDO_REGISTER))
result = gen_reg_rtx (insn_mode);
/* Make sure the operands are acceptable to the predicates. */
if (! (*insn_operand_predicate[(int)icode][0]) (result, insn_mode))
result = gen_reg_rtx (insn_mode);
src_rtx = memory_address (BLKmode,
expand_expr (src, NULL_RTX, Pmode,
EXPAND_NORMAL));
if (! (*insn_operand_predicate[(int)icode][1]) (src_rtx, Pmode))
src_rtx = copy_to_mode_reg (Pmode, src_rtx);
char_rtx = const0_rtx;
char_mode = insn_operand_mode[(int)icode][2];
if (! (*insn_operand_predicate[(int)icode][2]) (char_rtx, char_mode))
char_rtx = copy_to_mode_reg (char_mode, char_rtx);
emit_insn (GEN_FCN (icode) (result,
gen_rtx (MEM, BLKmode, src_rtx),
char_rtx, GEN_INT (align)));
/* Return the value in the proper mode for this function. */
if (GET_MODE (result) == value_mode)
return result;
else if (target != 0)
{
convert_move (target, result, 0);
return target;
}
else
return convert_to_mode (value_mode, result, 0);
}
case BUILT_IN_STRCPY:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE)
break;
else
{
tree len = c_strlen (TREE_VALUE (TREE_CHAIN (arglist)));
if (len == 0)
break;
len = size_binop (PLUS_EXPR, len, integer_one_node);
chainon (arglist, build_tree_list (NULL_TREE, len));
}
/* Drops in. */
case BUILT_IN_MEMCPY:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE
|| TREE_CHAIN (TREE_CHAIN (arglist)) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))))) != INTEGER_TYPE)
break;
else
{
tree dest = TREE_VALUE (arglist);
tree src = TREE_VALUE (TREE_CHAIN (arglist));
tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
int src_align
= get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
int dest_align
= get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
rtx dest_rtx, dest_mem, src_mem;
/* If either SRC or DEST is not a pointer type, don't do
this operation in-line. */
if (src_align == 0 || dest_align == 0)
{
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRCPY)
TREE_CHAIN (TREE_CHAIN (arglist)) = 0;
break;
}
dest_rtx = expand_expr (dest, NULL_RTX, Pmode, EXPAND_NORMAL);
dest_mem = gen_rtx (MEM, BLKmode,
memory_address (BLKmode, dest_rtx));
src_mem = gen_rtx (MEM, BLKmode,
memory_address (BLKmode,
expand_expr (src, NULL_RTX,
Pmode,
EXPAND_NORMAL)));
/* Copy word part most expediently. */
emit_block_move (dest_mem, src_mem,
expand_expr (len, NULL_RTX, VOIDmode, 0),
MIN (src_align, dest_align));
return dest_rtx;
}
/* These comparison functions need an instruction that returns an actual
index. An ordinary compare that just sets the condition codes
is not enough. */
#ifdef HAVE_cmpstrsi
case BUILT_IN_STRCMP:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE)
break;
else if (!HAVE_cmpstrsi)
break;
{
tree arg1 = TREE_VALUE (arglist);
tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
tree offset;
tree len, len2;
len = c_strlen (arg1);
if (len)
len = size_binop (PLUS_EXPR, integer_one_node, len);
len2 = c_strlen (arg2);
if (len2)
len2 = size_binop (PLUS_EXPR, integer_one_node, len2);
/* If we don't have a constant length for the first, use the length
of the second, if we know it. We don't require a constant for
this case; some cost analysis could be done if both are available
but neither is constant. For now, assume they're equally cheap.
If both strings have constant lengths, use the smaller. This
could arise if optimization results in strcpy being called with
two fixed strings, or if the code was machine-generated. We should
add some code to the `memcmp' handler below to deal with such
situations, someday. */
if (!len || TREE_CODE (len) != INTEGER_CST)
{
if (len2)
len = len2;
else if (len == 0)
break;
}
else if (len2 && TREE_CODE (len2) == INTEGER_CST)
{
if (tree_int_cst_lt (len2, len))
len = len2;
}
chainon (arglist, build_tree_list (NULL_TREE, len));
}
/* Drops in. */
case BUILT_IN_MEMCMP:
/* If not optimizing, call the library function. */
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE
|| TREE_CHAIN (TREE_CHAIN (arglist)) == 0
|| TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))))) != INTEGER_TYPE)
break;
else if (!HAVE_cmpstrsi)
break;
{
tree arg1 = TREE_VALUE (arglist);
tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
rtx result;
int arg1_align
= get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
int arg2_align
= get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
enum machine_mode insn_mode
= insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
/* If we don't have POINTER_TYPE, call the function. */
if (arg1_align == 0 || arg2_align == 0)
{
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRCMP)
TREE_CHAIN (TREE_CHAIN (arglist)) = 0;
break;
}
/* Make a place to write the result of the instruction. */
result = target;
if (! (result != 0
&& GET_CODE (result) == REG && GET_MODE (result) == insn_mode
&& REGNO (result) >= FIRST_PSEUDO_REGISTER))
result = gen_reg_rtx (insn_mode);
emit_insn (gen_cmpstrsi (result,
gen_rtx (MEM, BLKmode,
expand_expr (arg1, NULL_RTX, Pmode,
EXPAND_NORMAL)),
gen_rtx (MEM, BLKmode,
expand_expr (arg2, NULL_RTX, Pmode,
EXPAND_NORMAL)),
expand_expr (len, NULL_RTX, VOIDmode, 0),
GEN_INT (MIN (arg1_align, arg2_align))));
/* Return the value in the proper mode for this function. */
mode = TYPE_MODE (TREE_TYPE (exp));
if (GET_MODE (result) == mode)
return result;
else if (target != 0)
{
convert_move (target, result, 0);
return target;
}
else
return convert_to_mode (mode, result, 0);
}
#else
case BUILT_IN_STRCMP:
case BUILT_IN_MEMCMP:
break;
#endif
default: /* just do library call, if unknown builtin */
error ("built-in function `%s' not currently supported",
IDENTIFIER_POINTER (DECL_NAME (fndecl)));
}
/* The switch statement above can drop through to cause the function
to be called normally. */
return expand_call (exp, target, ignore);
}
/* Built-in functions to perform an untyped call and return. */
/* For each register that may be used for calling a function, this
gives a mode used to copy the register's value. VOIDmode indicates
the register is not used for calling a function. If the machine
has register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
/* For each register that may be used for returning values, this gives
a mode used to copy the register's value. VOIDmode indicates the
register is not used for returning values. If the machine has
register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
/* For each register that may be used for calling a function, this
gives the offset of that register into the block returned by
__bultin_apply_args. 0 indicates that the register is not
used for calling a function. */
static int apply_args_reg_offset[FIRST_PSEUDO_REGISTER];
/* Return the offset of register REGNO into the block returned by
__builtin_apply_args. This is not declared static, since it is
needed in objc-act.c. */
int
apply_args_register_offset (regno)
int regno;
{
apply_args_size ();
/* Arguments are always put in outgoing registers (in the argument
block) if such make sense. */
#ifdef OUTGOING_REGNO
regno = OUTGOING_REGNO(regno);
#endif
return apply_args_reg_offset[regno];
}
/* Return the size required for the block returned by __builtin_apply_args,
and initialize apply_args_mode. */
static int
apply_args_size ()
{
static int size = -1;
int align, regno;
enum machine_mode mode;
/* The values computed by this function never change. */
if (size < 0)
{
/* The first value is the incoming arg-pointer. */
size = GET_MODE_SIZE (Pmode);
/* The second value is the structure value address unless this is
passed as an "invisible" first argument. */
if (struct_value_rtx)
size += GET_MODE_SIZE (Pmode);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (FUNCTION_ARG_REGNO_P (regno))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum machine_mode best_mode = VOIDmode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
if (HARD_REGNO_MODE_OK (regno, mode)
&& HARD_REGNO_NREGS (regno, mode) == 1)
best_mode = mode;
if (best_mode == VOIDmode)
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
if (HARD_REGNO_MODE_OK (regno, mode)
&& (mov_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing))
best_mode = mode;
mode = best_mode;
if (mode == VOIDmode)
abort ();
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
apply_args_reg_offset[regno] = size;
size += GET_MODE_SIZE (mode);
apply_args_mode[regno] = mode;
}
else
{
apply_args_mode[regno] = VOIDmode;
apply_args_reg_offset[regno] = 0;
}
}
return size;
}
/* Return the size required for the block returned by __builtin_apply,
and initialize apply_result_mode. */
static int
apply_result_size ()
{
static int size = -1;
int align, regno;
enum machine_mode mode;
/* The values computed by this function never change. */
if (size < 0)
{
size = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (FUNCTION_VALUE_REGNO_P (regno))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum machine_mode best_mode = VOIDmode;
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
mode != TImode;
mode = GET_MODE_WIDER_MODE (mode))
if (HARD_REGNO_MODE_OK (regno, mode))
best_mode = mode;
if (best_mode == VOIDmode)
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
if (HARD_REGNO_MODE_OK (regno, mode)
&& (mov_optab->handlers[(int) mode].insn_code
!= CODE_FOR_nothing))
best_mode = mode;
mode = best_mode;
if (mode == VOIDmode)
abort ();
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
size += GET_MODE_SIZE (mode);
apply_result_mode[regno] = mode;
}
else
apply_result_mode[regno] = VOIDmode;
/* Allow targets that use untyped_call and untyped_return to override
the size so that machine-specific information can be stored here. */
#ifdef APPLY_RESULT_SIZE
size = APPLY_RESULT_SIZE;
#endif
}
return size;
}
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT. If SAVEP is true,
the result block is used to save the values; otherwise it is used to
restore the values. */
static rtx
result_vector (savep, result)
int savep;
rtx result;
{
int regno, size, align, nelts;
enum machine_mode mode;
rtx reg, mem;
rtx *savevec = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
size = nelts = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx (REG, mode, savep ? regno : INCOMING_REGNO (regno));
mem = change_address (result, mode,
plus_constant (XEXP (result, 0), size));
savevec[nelts++] = (savep
? gen_rtx (SET, VOIDmode, mem, reg)
: gen_rtx (SET, VOIDmode, reg, mem));
size += GET_MODE_SIZE (mode);
}
return gen_rtx (PARALLEL, VOIDmode, gen_rtvec_v (nelts, savevec));
}
#endif /* HAVE_untyped_call or HAVE_untyped_return */
/* Save the state required to perform an untyped call with the same
arguments as were passed to the current function. */
static rtx
expand_builtin_apply_args ()
{
rtx registers;
int size, align, regno;
enum machine_mode mode;
/* Create a block where the arg-pointer, structure value address,
and argument registers can be saved. */
registers = assign_stack_local (BLKmode, apply_args_size (), -1);
/* Walk past the arg-pointer and structure value address. */
size = GET_MODE_SIZE (Pmode);
if (struct_value_rtx)
size += GET_MODE_SIZE (Pmode);
/* Save each register used in calling a function to the block. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_args_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
emit_move_insn (change_address (registers, mode,
plus_constant (XEXP (registers, 0),
size)),
gen_rtx (REG, mode, INCOMING_REGNO (regno)));
size += GET_MODE_SIZE (mode);
}
/* Save the arg pointer to the block. */
emit_move_insn (change_address (registers, Pmode, XEXP (registers, 0)),
copy_to_reg (virtual_incoming_args_rtx));
size = GET_MODE_SIZE (Pmode);
/* Save the structure value address unless this is passed as an
"invisible" first argument. */
if (struct_value_incoming_rtx)
{
emit_move_insn (change_address (registers, Pmode,
plus_constant (XEXP (registers, 0),
size)),
copy_to_reg (struct_value_incoming_rtx));
size += GET_MODE_SIZE (Pmode);
}
/* Return the address of the block. */
return copy_addr_to_reg (XEXP (registers, 0));
}
/* Perform an untyped call and save the state required to perform an
untyped return of whatever value was returned by the given function. */
static rtx
expand_builtin_apply (function, arguments, argsize)
rtx function, arguments, argsize;
{
int size, align, regno;
enum machine_mode mode;
rtx incoming_args, result, reg, dest, call_insn;
rtx old_stack_level = 0;
rtx call_fusage = 0;
/* Create a block where the return registers can be saved. */
result = assign_stack_local (BLKmode, apply_result_size (), -1);
/* ??? The argsize value should be adjusted here. */
/* Fetch the arg pointer from the ARGUMENTS block. */
incoming_args = gen_reg_rtx (Pmode);
emit_move_insn (incoming_args,
gen_rtx (MEM, Pmode, arguments));
#ifndef STACK_GROWS_DOWNWARD
incoming_args = expand_binop (Pmode, sub_optab, incoming_args, argsize,
incoming_args, 0, OPTAB_LIB_WIDEN);
#endif
/* Perform postincrements before actually calling the function. */
emit_queue ();
/* Push a new argument block and copy the arguments. */
do_pending_stack_adjust ();
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
/* Push a block of memory onto the stack to store the memory arguments.
Save the address in a register, and copy the memory arguments. ??? I
haven't figured out how the calling convention macros effect this,
but it's likely that the source and/or destination addresses in
the block copy will need updating in machine specific ways. */
dest = copy_addr_to_reg (push_block (argsize, 0, 0));
emit_block_move (gen_rtx (MEM, BLKmode, dest),
gen_rtx (MEM, BLKmode, incoming_args),
argsize,
PARM_BOUNDARY / BITS_PER_UNIT);
/* Refer to the argument block. */
apply_args_size ();
arguments = gen_rtx (MEM, BLKmode, arguments);
/* Walk past the arg-pointer and structure value address. */
size = GET_MODE_SIZE (Pmode);
if (struct_value_rtx)
size += GET_MODE_SIZE (Pmode);
/* Restore each of the registers previously saved. Make USE insns
for each of these registers for use in making the call. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_args_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx (REG, mode, regno);
emit_move_insn (reg,
change_address (arguments, mode,
plus_constant (XEXP (arguments, 0),
size)));
use_reg (&call_fusage, reg);
size += GET_MODE_SIZE (mode);
}
/* Restore the structure value address unless this is passed as an
"invisible" first argument. */
size = GET_MODE_SIZE (Pmode);
if (struct_value_rtx)
{
rtx value = gen_reg_rtx (Pmode);
emit_move_insn (value,
change_address (arguments, Pmode,
plus_constant (XEXP (arguments, 0),
size)));
emit_move_insn (struct_value_rtx, value);
if (GET_CODE (struct_value_rtx) == REG)
use_reg (&call_fusage, struct_value_rtx);
size += GET_MODE_SIZE (Pmode);
}
/* All arguments and registers used for the call are set up by now! */
function = prepare_call_address (function, NULL_TREE, &call_fusage, 0);
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
and we don't want to load it into a register as an optimization,
because prepare_call_address already did it if it should be done. */
if (GET_CODE (function) != SYMBOL_REF)
function = memory_address (FUNCTION_MODE, function);
/* Generate the actual call instruction and save the return value. */
#ifdef HAVE_untyped_call
if (HAVE_untyped_call)
emit_call_insn (gen_untyped_call (gen_rtx (MEM, FUNCTION_MODE, function),
result, result_vector (1, result)));
else
#endif
#ifdef HAVE_call_value
if (HAVE_call_value)
{
rtx valreg = 0;
/* Locate the unique return register. It is not possible to
express a call that sets more than one return register using
call_value; use untyped_call for that. In fact, untyped_call
only needs to save the return registers in the given block. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
if (valreg)
abort (); /* HAVE_untyped_call required. */
valreg = gen_rtx (REG, mode, regno);
}
emit_call_insn (gen_call_value (valreg,
gen_rtx (MEM, FUNCTION_MODE, function),
const0_rtx, NULL_RTX, const0_rtx));
emit_move_insn (change_address (result, GET_MODE (valreg),
XEXP (result, 0)),
valreg);
}
else
#endif
abort ();
/* Find the CALL insn we just emitted. */
for (call_insn = get_last_insn ();
call_insn && GET_CODE (call_insn) != CALL_INSN;
call_insn = PREV_INSN (call_insn))
;
if (! call_insn)
abort ();
/* Put the register usage information on the CALL. If there is already
some usage information, put ours at the end. */
if (CALL_INSN_FUNCTION_USAGE (call_insn))
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
link = XEXP (link, 1))
;
XEXP (link, 1) = call_fusage;
}
else
CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
/* Restore the stack. */
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
/* Return the address of the result block. */
return copy_addr_to_reg (XEXP (result, 0));
}
/* Perform an untyped return. */
static void
expand_builtin_return (result)
rtx result;
{
int size, align, regno;
enum machine_mode mode;
rtx reg;
rtx call_fusage = 0;
apply_result_size ();
result = gen_rtx (MEM, BLKmode, result);
#ifdef HAVE_untyped_return
if (HAVE_untyped_return)
{
emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
emit_barrier ();
return;
}
#endif
/* Restore the return value and note that each value is used. */
size = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx (REG, mode, INCOMING_REGNO (regno));
emit_move_insn (reg,
change_address (result, mode,
plus_constant (XEXP (result, 0),
size)));
push_to_sequence (call_fusage);
emit_insn (gen_rtx (USE, VOIDmode, reg));
call_fusage = get_insns ();
end_sequence ();
size += GET_MODE_SIZE (mode);
}
/* Put the USE insns before the return. */
emit_insns (call_fusage);
/* Return whatever values was restored by jumping directly to the end
of the function. */
expand_null_return ();
}
/* Expand code for a post- or pre- increment or decrement
and return the RTX for the result.
POST is 1 for postinc/decrements and 0 for preinc/decrements. */
static rtx
expand_increment (exp, post)
register tree exp;
int post;
{
register rtx op0, op1;
register rtx temp, value;
register tree incremented = TREE_OPERAND (exp, 0);
optab this_optab = add_optab;
int icode;
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
int op0_is_copy = 0;
int single_insn = 0;
/* 1 means we can't store into OP0 directly,
because it is a subreg narrower than a word,
and we don't dare clobber the rest of the word. */
int bad_subreg = 0;
if (output_bytecode)
{
bc_expand_expr (exp);
return NULL_RTX;
}
/* Stabilize any component ref that might need to be
evaluated more than once below. */
if (!post
|| TREE_CODE (incremented) == BIT_FIELD_REF
|| (TREE_CODE (incremented) == COMPONENT_REF
&& (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
|| DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
incremented = stabilize_reference (incremented);
/* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
ones into save exprs so that they don't accidentally get evaluated
more than once by the code below. */
if (TREE_CODE (incremented) == PREINCREMENT_EXPR
|| TREE_CODE (incremented) == PREDECREMENT_EXPR)
incremented = save_expr (incremented);
/* Compute the operands as RTX.
Note whether OP0 is the actual lvalue or a copy of it:
I believe it is a copy iff it is a register or subreg
and insns were generated in computing it. */
temp = get_last_insn ();
op0 = expand_expr (incremented, NULL_RTX, VOIDmode, 0);
/* If OP0 is a SUBREG made for a promoted variable, we cannot increment
in place but intead must do sign- or zero-extension during assignment,
so we copy it into a new register and let the code below use it as
a copy.
Note that we can safely modify this SUBREG since it is know not to be
shared (it was made by the expand_expr call above). */
if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
{
if (post)
SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
else
bad_subreg = 1;
}
else if (GET_CODE (op0) == SUBREG
&& GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
{
/* We cannot increment this SUBREG in place. If we are
post-incrementing, get a copy of the old value. Otherwise,
just mark that we cannot increment in place. */
if (post)
op0 = copy_to_reg (op0);
else
bad_subreg = 1;
}
op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
&& temp != get_last_insn ());
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
/* Decide whether incrementing or decrementing. */
if (TREE_CODE (exp) == POSTDECREMENT_EXPR
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
this_optab = sub_optab;
/* Convert decrement by a constant into a negative increment. */
if (this_optab == sub_optab
&& GET_CODE (op1) == CONST_INT)
{
op1 = GEN_INT (- INTVAL (op1));
this_optab = add_optab;
}
/* For a preincrement, see if we can do this with a single instruction. */
if (!post)
{
icode = (int) this_optab->handlers[(int) mode].insn_code;
if (icode != (int) CODE_FOR_nothing
/* Make sure that OP0 is valid for operands 0 and 1
of the insn we want to queue. */
&& (*insn_operand_predicate[icode][0]) (op0, mode)
&& (*insn_operand_predicate[icode][1]) (op0, mode)
&& (*insn_operand_predicate[icode][2]) (op1, mode))
single_insn = 1;
}
/* If OP0 is not the actual lvalue, but rather a copy in a register,
then we cannot just increment OP0. We must therefore contrive to
increment the original value. Then, for postincrement, we can return
OP0 since it is a copy of the old value. For preincrement, expand here
unless we can do it with a single insn.
Likewise if storing directly into OP0 would clobber high bits
we need to preserve (bad_subreg). */
if (op0_is_copy || (!post && !single_insn) || bad_subreg)
{
/* This is the easiest way to increment the value wherever it is.
Problems with multiple evaluation of INCREMENTED are prevented
because either (1) it is a component_ref or preincrement,
in which case it was stabilized above, or (2) it is an array_ref
with constant index in an array in a register, which is
safe to reevaluate. */
tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
|| TREE_CODE (exp) == PREDECREMENT_EXPR)
? MINUS_EXPR : PLUS_EXPR),
TREE_TYPE (exp),
incremented,
TREE_OPERAND (exp, 1));
temp = expand_assignment (incremented, newexp, ! post, 0);
return post ? op0 : temp;
}
if (post)
{
/* We have a true reference to the value in OP0.
If there is an insn to add or subtract in this mode, queue it.
Queueing the increment insn avoids the register shuffling
that often results if we must increment now and first save
the old value for subsequent use. */
#if 0 /* Turned off to avoid making extra insn for indexed memref. */
op0 = stabilize (op0);
#endif
icode = (int) this_optab->handlers[(int) mode].insn_code;
if (icode != (int) CODE_FOR_nothing
/* Make sure that OP0 is valid for operands 0 and 1
of the insn we want to queue. */
&& (*insn_operand_predicate[icode][0]) (op0, mode)
&& (*insn_operand_predicate[icode][1]) (op0, mode))
{
if (! (*insn_operand_predicate[icode][2]) (op1, mode))
op1 = force_reg (mode, op1);
return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
}
}
/* Preincrement, or we can't increment with one simple insn. */
if (post)
/* Save a copy of the value before inc or dec, to return it later. */
temp = value = copy_to_reg (op0);
else
/* Arrange to return the incremented value. */
/* Copy the rtx because expand_binop will protect from the queue,
and the results of that would be invalid for us to return
if our caller does emit_queue before using our result. */
temp = copy_rtx (value = op0);
/* Increment however we can. */
op1 = expand_binop (mode, this_optab, value, op1, op0,
TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
/* Make sure the value is stored into OP0. */
if (op1 != op0)
emit_move_insn (op0, op1);
return temp;
}
/* Expand all function calls contained within EXP, innermost ones first.
But don't look within expressions that have sequence points.
For each CALL_EXPR, record the rtx for its value
in the CALL_EXPR_RTL field. */
static void
preexpand_calls (exp)
tree exp;
{
register int nops, i;
int type = TREE_CODE_CLASS (TREE_CODE (exp));
if (! do_preexpand_calls)
return;
/* Only expressions and references can contain calls. */
if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r')
return;
switch (TREE_CODE (exp))
{
case CALL_EXPR:
/* Do nothing if already expanded. */
if (CALL_EXPR_RTL (exp) != 0)
return;
/* Do nothing to built-in functions. */
if (TREE_CODE (TREE_OPERAND (exp, 0)) != ADDR_EXPR
|| TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != FUNCTION_DECL
|| ! DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
/* Do nothing if the call returns a variable-sized object. */
|| TREE_CODE (TYPE_SIZE (TREE_TYPE(exp))) != INTEGER_CST)
CALL_EXPR_RTL (exp) = expand_call (exp, NULL_RTX, 0);
return;
case COMPOUND_EXPR:
case COND_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
/* If we find one of these, then we can be sure
the adjust will be done for it (since it makes jumps).
Do it now, so that if this is inside an argument
of a function, we don't get the stack adjustment
after some other args have already been pushed. */
do_pending_stack_adjust ();
return;
case BLOCK:
case RTL_EXPR:
case WITH_CLEANUP_EXPR:
return;
case SAVE_EXPR:
if (SAVE_EXPR_RTL (exp) != 0)
return;
}
nops = tree_code_length[(int) TREE_CODE (exp)];
for (i = 0; i < nops; i++)
if (TREE_OPERAND (exp, i) != 0)
{
type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
if (type == 'e' || type == '<' || type == '1' || type == '2'
|| type == 'r')
preexpand_calls (TREE_OPERAND (exp, i));
}
}
/* At the start of a function, record that we have no previously-pushed
arguments waiting to be popped. */
void
init_pending_stack_adjust ()
{
pending_stack_adjust = 0;
}
/* When exiting from function, if safe, clear out any pending stack adjust
so the adjustment won't get done. */
void
clear_pending_stack_adjust ()
{
#ifdef EXIT_IGNORE_STACK
if (! flag_omit_frame_pointer && EXIT_IGNORE_STACK
&& ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
&& ! flag_inline_functions)
pending_stack_adjust = 0;
#endif
}
/* Pop any previously-pushed arguments that have not been popped yet. */
void
do_pending_stack_adjust ()
{
if (inhibit_defer_pop == 0)
{
if (pending_stack_adjust != 0)
adjust_stack (GEN_INT (pending_stack_adjust));
pending_stack_adjust = 0;
}
}
/* Defer the expansion all cleanups up to OLD_CLEANUPS.
Returns the cleanups to be performed. */
static tree
defer_cleanups_to (old_cleanups)
tree old_cleanups;
{
tree new_cleanups = NULL_TREE;
tree cleanups = cleanups_this_call;
tree last = NULL_TREE;
while (cleanups_this_call != old_cleanups)
{
(*interim_eh_hook) (TREE_VALUE (cleanups_this_call));
last = cleanups_this_call;
cleanups_this_call = TREE_CHAIN (cleanups_this_call);
}
if (last)
{
/* Remove the list from the chain of cleanups. */
TREE_CHAIN (last) = NULL_TREE;
/* reverse them so that we can build them in the right order. */
cleanups = nreverse (cleanups);
while (cleanups)
{
if (new_cleanups)
new_cleanups = build (COMPOUND_EXPR, TREE_TYPE (new_cleanups),
TREE_VALUE (cleanups), new_cleanups);
else
new_cleanups = TREE_VALUE (cleanups);
cleanups = TREE_CHAIN (cleanups);
}
}
return new_cleanups;
}
/* Expand all cleanups up to OLD_CLEANUPS.
Needed here, and also for language-dependent calls. */
void
expand_cleanups_to (old_cleanups)
tree old_cleanups;
{
while (cleanups_this_call != old_cleanups)
{
(*interim_eh_hook) (TREE_VALUE (cleanups_this_call));
expand_expr (TREE_VALUE (cleanups_this_call), const0_rtx, VOIDmode, 0);
cleanups_this_call = TREE_CHAIN (cleanups_this_call);
}
}
/* Expand conditional expressions. */
/* Generate code to evaluate EXP and jump to LABEL if the value is zero.
LABEL is an rtx of code CODE_LABEL, in this function and all the
functions here. */
void
jumpifnot (exp, label)
tree exp;
rtx label;
{
do_jump (exp, label, NULL_RTX);
}
/* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
void
jumpif (exp, label)
tree exp;
rtx label;
{
do_jump (exp, NULL_RTX, label);
}
/* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
the result is zero, or IF_TRUE_LABEL if the result is one.
Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
meaning fall through in that case.
do_jump always does any pending stack adjust except when it does not
actually perform a jump. An example where there is no jump
is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
This function is responsible for optimizing cases such as
&&, || and comparison operators in EXP. */
void
do_jump (exp, if_false_label, if_true_label)
tree exp;
rtx if_false_label, if_true_label;
{
register enum tree_code code = TREE_CODE (exp);
/* Some cases need to create a label to jump to
in order to properly fall through.
These cases set DROP_THROUGH_LABEL nonzero. */
rtx drop_through_label = 0;
rtx temp;
rtx comparison = 0;
int i;
tree type;
enum machine_mode mode;
emit_queue ();
switch (code)
{
case ERROR_MARK:
break;
case INTEGER_CST:
temp = integer_zerop (exp) ? if_false_label : if_true_label;
if (temp)
emit_jump (temp);
break;
#if 0
/* This is not true with #pragma weak */
case ADDR_EXPR:
/* The address of something can never be zero. */
if (if_true_label)
emit_jump (if_true_label);
break;
#endif
case NOP_EXPR:
if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
|| TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF)
goto normal;
case CONVERT_EXPR:
/* If we are narrowing the operand, we have to do the compare in the
narrower mode. */
if ((TYPE_PRECISION (TREE_TYPE (exp))
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
goto normal;
case NON_LVALUE_EXPR:
case REFERENCE_EXPR:
case ABS_EXPR:
case NEGATE_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
/* These cannot change zero->non-zero or vice versa. */
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
break;
#if 0
/* This is never less insns than evaluating the PLUS_EXPR followed by
a test and can be longer if the test is eliminated. */
case PLUS_EXPR:
/* Reduce to minus. */
exp = build (MINUS_EXPR, TREE_TYPE (exp),
TREE_OPERAND (exp, 0),
fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
TREE_OPERAND (exp, 1))));
/* Process as MINUS. */
#endif
case MINUS_EXPR:
/* Non-zero iff operands of minus differ. */
comparison = compare (build (NE_EXPR, TREE_TYPE (exp),
TREE_OPERAND (exp, 0),
TREE_OPERAND (exp, 1)),
NE, NE);
break;
case BIT_AND_EXPR:
/* If we are AND'ing with a small constant, do this comparison in the
smallest type that fits. If the machine doesn't have comparisons
that small, it will be converted back to the wider comparison.
This helps if we are testing the sign bit of a narrower object.
combine can't do this for us because it can't know whether a
ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
if (! SLOW_BYTE_ACCESS
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
&& TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
&& (i = floor_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))) >= 0
&& (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
&& (type = type_for_mode (mode, 1)) != 0
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
!= CODE_FOR_nothing))
{
do_jump (convert (type, exp), if_false_label, if_true_label);
break;
}
goto normal;
case TRUTH_NOT_EXPR:
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
break;
case TRUTH_ANDIF_EXPR:
{
rtx seq1, seq2;
tree cleanups, old_cleanups;
if (if_false_label == 0)
if_false_label = drop_through_label = gen_label_rtx ();
start_sequence ();
do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
seq1 = get_insns ();
end_sequence ();
old_cleanups = cleanups_this_call;
start_sequence ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
seq2 = get_insns ();
end_sequence ();
cleanups = defer_cleanups_to (old_cleanups);
if (cleanups)
{
rtx flag = gen_reg_rtx (word_mode);
tree new_cleanups;
tree cond;
/* Flag cleanups as not needed. */
emit_move_insn (flag, const0_rtx);
emit_insns (seq1);
/* Flag cleanups as needed. */
emit_move_insn (flag, const1_rtx);
emit_insns (seq2);
/* convert flag, which is an rtx, into a tree. */
cond = make_node (RTL_EXPR);
TREE_TYPE (cond) = integer_type_node;
RTL_EXPR_RTL (cond) = flag;
RTL_EXPR_SEQUENCE (cond) = NULL_RTX;
new_cleanups = build (COND_EXPR, void_type_node,
truthvalue_conversion (cond),
cleanups, integer_zero_node);
new_cleanups = fold (new_cleanups);
/* Now add in the conditionalized cleanups. */
cleanups_this_call
= tree_cons (NULL_TREE, new_cleanups, cleanups_this_call);
(*interim_eh_hook) (NULL_TREE);
}
else
{
emit_insns (seq1);
emit_insns (seq2);
}
}
break;
case TRUTH_ORIF_EXPR:
{
rtx seq1, seq2;
tree cleanups, old_cleanups;
if (if_true_label == 0)
if_true_label = drop_through_label = gen_label_rtx ();
start_sequence ();
do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
seq1 = get_insns ();
end_sequence ();
old_cleanups = cleanups_this_call;
start_sequence ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
seq2 = get_insns ();
end_sequence ();
cleanups = defer_cleanups_to (old_cleanups);
if (cleanups)
{
rtx flag = gen_reg_rtx (word_mode);
tree new_cleanups;
tree cond;
/* Flag cleanups as not needed. */
emit_move_insn (flag, const0_rtx);
emit_insns (seq1);
/* Flag cleanups as needed. */
emit_move_insn (flag, const1_rtx);
emit_insns (seq2);
/* convert flag, which is an rtx, into a tree. */
cond = make_node (RTL_EXPR);
TREE_TYPE (cond) = integer_type_node;
RTL_EXPR_RTL (cond) = flag;
RTL_EXPR_SEQUENCE (cond) = NULL_RTX;
new_cleanups = build (COND_EXPR, void_type_node,
truthvalue_conversion (cond),
cleanups, integer_zero_node);
new_cleanups = fold (new_cleanups);
/* Now add in the conditionalized cleanups. */
cleanups_this_call
= tree_cons (NULL_TREE, new_cleanups, cleanups_this_call);
(*interim_eh_hook) (NULL_TREE);
}
else
{
emit_insns (seq1);
emit_insns (seq2);
}
}
break;
case COMPOUND_EXPR:
push_temp_slots ();
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
free_temp_slots ();
pop_temp_slots ();
emit_queue ();
do_pending_stack_adjust ();
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
break;
case COMPONENT_REF:
case BIT_FIELD_REF:
case ARRAY_REF:
{
int bitsize, bitpos, unsignedp;
enum machine_mode mode;
tree type;
tree offset;
int volatilep = 0;
/* Get description of this reference. We don't actually care
about the underlying object here. */
get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode, &unsignedp, &volatilep);
type = type_for_size (bitsize, unsignedp);
if (! SLOW_BYTE_ACCESS
&& type != 0 && bitsize >= 0
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
&& (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
!= CODE_FOR_nothing))
{
do_jump (convert (type, exp), if_false_label, if_true_label);
break;
}
goto normal;
}
case COND_EXPR:
/* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
if (integer_onep (TREE_OPERAND (exp, 1))
&& integer_zerop (TREE_OPERAND (exp, 2)))
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
else if (integer_zerop (TREE_OPERAND (exp, 1))
&& integer_onep (TREE_OPERAND (exp, 2)))
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
else
{
register rtx label1 = gen_label_rtx ();
drop_through_label = gen_label_rtx ();
do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
/* Now the THEN-expression. */
do_jump (TREE_OPERAND (exp, 1),
if_false_label ? if_false_label : drop_through_label,
if_true_label ? if_true_label : drop_through_label);
/* In case the do_jump just above never jumps. */
do_pending_stack_adjust ();
emit_label (label1);
/* Now the ELSE-expression. */
do_jump (TREE_OPERAND (exp, 2),
if_false_label ? if_false_label : drop_through_label,
if_true_label ? if_true_label : drop_through_label);
}
break;
case EQ_EXPR:
if (integer_zerop (TREE_OPERAND (exp, 1)))
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
else if (((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&&
!can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|| GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))) == MODE_COMPLEX_FLOAT
|| GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))) == MODE_COMPLEX_INT)
do_jump_by_parts_equality (exp, if_false_label, if_true_label);
else
comparison = compare (exp, EQ, EQ);
break;
case NE_EXPR:
if (integer_zerop (TREE_OPERAND (exp, 1)))
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
else if (((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&&
!can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|| GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))) == MODE_COMPLEX_FLOAT
|| GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))) == MODE_COMPLEX_INT)
do_jump_by_parts_equality (exp, if_true_label, if_false_label);
else
comparison = compare (exp, NE, NE);
break;
case LT_EXPR:
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
else
comparison = compare (exp, LT, LTU);
break;
case LE_EXPR:
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
else
comparison = compare (exp, LE, LEU);
break;
case GT_EXPR:
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
else
comparison = compare (exp, GT, GTU);
break;
case GE_EXPR:
if ((GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
== MODE_INT)
&& !can_compare_p (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
else
comparison = compare (exp, GE, GEU);
break;
default:
normal:
temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
#if 0
/* This is not needed any more and causes poor code since it causes
comparisons and tests from non-SI objects to have different code
sequences. */
/* Copy to register to avoid generating bad insns by cse
from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
if (!cse_not_expected && GET_CODE (temp) == MEM)
temp = copy_to_reg (temp);
#endif
do_pending_stack_adjust ();
if (GET_CODE (temp) == CONST_INT)
comparison = (temp == const0_rtx ? const0_rtx : const_true_rtx);
else if (GET_CODE (temp) == LABEL_REF)
comparison = const_true_rtx;
else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
&& !can_compare_p (GET_MODE (temp)))
/* Note swapping the labels gives us not-equal. */
do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
else if (GET_MODE (temp) != VOIDmode)
comparison = compare_from_rtx (temp, CONST0_RTX (GET_MODE (temp)),
NE, TREE_UNSIGNED (TREE_TYPE (exp)),
GET_MODE (temp), NULL_RTX, 0);
else
abort ();
}
/* Do any postincrements in the expression that was tested. */
emit_queue ();
/* If COMPARISON is nonzero here, it is an rtx that can be substituted
straight into a conditional jump instruction as the jump condition.
Otherwise, all the work has been done already. */
if (comparison == const_true_rtx)
{
if (if_true_label)
emit_jump (if_true_label);
}
else if (comparison == const0_rtx)
{
if (if_false_label)
emit_jump (if_false_label);
}
else if (comparison)
do_jump_for_compare (comparison, if_false_label, if_true_label);
if (drop_through_label)
{
/* If do_jump produces code that might be jumped around,
do any stack adjusts from that code, before the place
where control merges in. */
do_pending_stack_adjust ();
emit_label (drop_through_label);
}
}
/* Given a comparison expression EXP for values too wide to be compared
with one insn, test the comparison and jump to the appropriate label.
The code of EXP is ignored; we always test GT if SWAP is 0,
and LT if SWAP is 1. */
static void
do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
tree exp;
int swap;
rtx if_false_label, if_true_label;
{
rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
rtx drop_through_label = 0;
int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
int i;
if (! if_true_label || ! if_false_label)
drop_through_label = gen_label_rtx ();
if (! if_true_label)
if_true_label = drop_through_label;
if (! if_false_label)
if_false_label = drop_through_label;
/* Compare a word at a time, high order first. */
for (i = 0; i < nwords; i++)
{
rtx comp;
rtx op0_word, op1_word;
if (WORDS_BIG_ENDIAN)
{
op0_word = operand_subword_force (op0, i, mode);
op1_word = operand_subword_force (op1, i, mode);
}
else
{
op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
}
/* All but high-order word must be compared as unsigned. */
comp = compare_from_rtx (op0_word, op1_word,
(unsignedp || i > 0) ? GTU : GT,
unsignedp, word_mode, NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_true_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, NULL_RTX, if_true_label);
/* Consider lower words only if these are equal. */
comp = compare_from_rtx (op0_word, op1_word, NE, unsignedp, word_mode,
NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_false_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, NULL_RTX, if_false_label);
}
if (if_false_label)
emit_jump (if_false_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Compare OP0 with OP1, word at a time, in mode MODE.
UNSIGNEDP says to do unsigned comparison.
Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
void
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
enum machine_mode mode;
int unsignedp;
rtx op0, op1;
rtx if_false_label, if_true_label;
{
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
rtx drop_through_label = 0;
int i;
if (! if_true_label || ! if_false_label)
drop_through_label = gen_label_rtx ();
if (! if_true_label)
if_true_label = drop_through_label;
if (! if_false_label)
if_false_label = drop_through_label;
/* Compare a word at a time, high order first. */
for (i = 0; i < nwords; i++)
{
rtx comp;
rtx op0_word, op1_word;
if (WORDS_BIG_ENDIAN)
{
op0_word = operand_subword_force (op0, i, mode);
op1_word = operand_subword_force (op1, i, mode);
}
else
{
op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
}
/* All but high-order word must be compared as unsigned. */
comp = compare_from_rtx (op0_word, op1_word,
(unsignedp || i > 0) ? GTU : GT,
unsignedp, word_mode, NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_true_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, NULL_RTX, if_true_label);
/* Consider lower words only if these are equal. */
comp = compare_from_rtx (op0_word, op1_word, NE, unsignedp, word_mode,
NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_false_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, NULL_RTX, if_false_label);
}
if (if_false_label)
emit_jump (if_false_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Given an EQ_EXPR expression EXP for values too wide to be compared
with one insn, test the comparison and jump to the appropriate label. */
static void
do_jump_by_parts_equality (exp, if_false_label, if_true_label)
tree exp;
rtx if_false_label, if_true_label;
{
rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
int i;
rtx drop_through_label = 0;
if (! if_false_label)
drop_through_label = if_false_label = gen_label_rtx ();
for (i = 0; i < nwords; i++)
{
rtx comp = compare_from_rtx (operand_subword_force (op0, i, mode),
operand_subword_force (op1, i, mode),
EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
word_mode, NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_false_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, if_false_label, NULL_RTX);
}
if (if_true_label)
emit_jump (if_true_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Jump according to whether OP0 is 0.
We assume that OP0 has an integer mode that is too wide
for the available compare insns. */
static void
do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
rtx op0;
rtx if_false_label, if_true_label;
{
int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
int i;
rtx drop_through_label = 0;
if (! if_false_label)
drop_through_label = if_false_label = gen_label_rtx ();
for (i = 0; i < nwords; i++)
{
rtx comp = compare_from_rtx (operand_subword_force (op0, i,
GET_MODE (op0)),
const0_rtx, EQ, 1, word_mode, NULL_RTX, 0);
if (comp == const_true_rtx)
emit_jump (if_false_label);
else if (comp != const0_rtx)
do_jump_for_compare (comp, if_false_label, NULL_RTX);
}
if (if_true_label)
emit_jump (if_true_label);
if (drop_through_label)
emit_label (drop_through_label);
}
/* Given a comparison expression in rtl form, output conditional branches to
IF_TRUE_LABEL, IF_FALSE_LABEL, or both. */
static void
do_jump_for_compare (comparison, if_false_label, if_true_label)
rtx comparison, if_false_label, if_true_label;
{
if (if_true_label)
{
if (bcc_gen_fctn[(int) GET_CODE (comparison)] != 0)
emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (comparison)]) (if_true_label));
else
abort ();
if (if_false_label)
emit_jump (if_false_label);
}
else if (if_false_label)
{
rtx insn;
rtx prev = get_last_insn ();
rtx branch = 0;
/* Output the branch with the opposite condition. Then try to invert
what is generated. If more than one insn is a branch, or if the
branch is not the last insn written, abort. If we can't invert
the branch, emit make a true label, redirect this jump to that,
emit a jump to the false label and define the true label. */
if (bcc_gen_fctn[(int) GET_CODE (comparison)] != 0)
emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (comparison)])(if_false_label));
else
abort ();
/* Here we get the first insn that was just emitted. It used to be the
case that, on some machines, emitting the branch would discard
the previous compare insn and emit a replacement. This isn't
done anymore, but abort if we see that PREV is deleted. */
if (prev == 0)
insn = get_insns ();
else if (INSN_DELETED_P (prev))
abort ();
else
insn = NEXT_INSN (prev);
for (; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == JUMP_INSN)
{
if (branch)
abort ();
branch = insn;
}
if (branch != get_last_insn ())
abort ();
JUMP_LABEL (branch) = if_false_label;
if (! invert_jump (branch, if_false_label))
{
if_true_label = gen_label_rtx ();
redirect_jump (branch, if_true_label);
emit_jump (if_false_label);
emit_label (if_true_label);
}
}
}
/* Generate code for a comparison expression EXP
(including code to compute the values to be compared)
and set (CC0) according to the result.
SIGNED_CODE should be the rtx operation for this comparison for
signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
We force a stack adjustment unless there are currently
things pushed on the stack that aren't yet used. */
static rtx
compare (exp, signed_code, unsigned_code)
register tree exp;
enum rtx_code signed_code, unsigned_code;
{
register rtx op0
= expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
register rtx op1
= expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
register tree type = TREE_TYPE (TREE_OPERAND (exp, 0));
register enum machine_mode mode = TYPE_MODE (type);
int unsignedp = TREE_UNSIGNED (type);
enum rtx_code code = unsignedp ? unsigned_code : signed_code;
return compare_from_rtx (op0, op1, code, unsignedp, mode,
((mode == BLKmode)
? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
}
/* Like compare but expects the values to compare as two rtx's.
The decision as to signed or unsigned comparison must be made by the caller.
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
compared.
If ALIGN is non-zero, it is the alignment of this type; if zero, the
size of MODE should be used. */
rtx
compare_from_rtx (op0, op1, code, unsignedp, mode, size, align)
register rtx op0, op1;
enum rtx_code code;
int unsignedp;
enum machine_mode mode;
rtx size;
int align;
{
rtx tem;
/* If one operand is constant, make it the second one. Only do this
if the other operand is not constant as well. */
if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
|| (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
{
tem = op0;
op0 = op1;
op1 = tem;
code = swap_condition (code);
}
if (flag_force_mem)
{
op0 = force_not_mem (op0);
op1 = force_not_mem (op1);
}
do_pending_stack_adjust ();
if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
&& (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
return tem;
#if 0
/* There's no need to do this now that combine.c can eliminate lots of
sign extensions. This can be less efficient in certain cases on other
machines. */
/* If this is a signed equality comparison, we can do it as an
unsigned comparison since zero-extension is cheaper than sign
extension and comparisons with zero are done as unsigned. This is
the case even on machines that can do fast sign extension, since
zero-extension is easier to combine with other operations than
sign-extension is. If we are comparing against a constant, we must
convert it to what it would look like unsigned. */
if ((code == EQ || code == NE) && ! unsignedp
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
{
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
unsignedp = 1;
}
#endif
emit_cmp_insn (op0, op1, code, size, mode, unsignedp, align);
return gen_rtx (code, VOIDmode, cc0_rtx, const0_rtx);
}
/* Generate code to calculate EXP using a store-flag instruction
and return an rtx for the result. EXP is either a comparison
or a TRUTH_NOT_EXPR whose operand is a comparison.
If TARGET is nonzero, store the result there if convenient.
If ONLY_CHEAP is non-zero, only do this if it is likely to be very
cheap.
Return zero if there is no suitable set-flag instruction
available on this machine.
Once expand_expr has been called on the arguments of the comparison,
we are committed to doing the store flag, since it is not safe to
re-evaluate the expression. We emit the store-flag insn by calling
emit_store_flag, but only expand the arguments if we have a reason
to believe that emit_store_flag will be successful. If we think that
it will, but it isn't, we have to simulate the store-flag with a
set/jump/set sequence. */
static rtx
do_store_flag (exp, target, mode, only_cheap)
tree exp;
rtx target;
enum machine_mode mode;
int only_cheap;
{
enum rtx_code code;
tree arg0, arg1, type;
tree tem;
enum machine_mode operand_mode;
int invert = 0;
int unsignedp;
rtx op0, op1;
enum insn_code icode;
rtx subtarget = target;
rtx result, label, pattern, jump_pat;
/* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
result at the end. We can't simply invert the test since it would
have already been inverted if it were valid. This case occurs for
some floating-point comparisons. */
if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
invert = 1, exp = TREE_OPERAND (exp, 0);
arg0 = TREE_OPERAND (exp, 0);
arg1 = TREE_OPERAND (exp, 1);
type = TREE_TYPE (arg0);
operand_mode = TYPE_MODE (type);
unsignedp = TREE_UNSIGNED (type);
/* We won't bother with BLKmode store-flag operations because it would mean
passing a lot of information to emit_store_flag. */
if (operand_mode == BLKmode)
return 0;
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
/* Get the rtx comparison code to use. We know that EXP is a comparison
operation of some type. Some comparisons against 1 and -1 can be
converted to comparisons with zero. Do so here so that the tests
below will be aware that we have a comparison with zero. These
tests will not catch constants in the first operand, but constants
are rarely passed as the first operand. */
switch (TREE_CODE (exp))
{
case EQ_EXPR:
code = EQ;
break;
case NE_EXPR:
code = NE;
break;
case LT_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
else
code = unsignedp ? LTU : LT;
break;
case LE_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = LT;
else
code = unsignedp ? LEU : LE;
break;
case GT_EXPR:
if (! unsignedp && integer_all_onesp (arg1))
arg1 = integer_zero_node, code = GE;
else
code = unsignedp ? GTU : GT;
break;
case GE_EXPR:
if (integer_onep (arg1))
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
else
code = unsignedp ? GEU : GE;
break;
default:
abort ();
}
/* Put a constant second. */
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
{
tem = arg0; arg0 = arg1; arg1 = tem;
code = swap_condition (code);
}
/* If this is an equality or inequality test of a single bit, we can
do this by shifting the bit being tested to the low-order bit and
masking the result with the constant 1. If the condition was EQ,
we xor it with 1. This does not require an scc insn and is faster
than an scc insn even if we have it. */
if ((code == NE || code == EQ)
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
&& integer_pow2p (TREE_OPERAND (arg0, 1))
&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
{
tree inner = TREE_OPERAND (arg0, 0);
int bitnum = exact_log2 (INTVAL (expand_expr (TREE_OPERAND (arg0, 1),
NULL_RTX, VOIDmode, 0)));
int ops_unsignedp;
/* If INNER is a right shift of a constant and it plus BITNUM does
not overflow, adjust BITNUM and INNER. */
if (TREE_CODE (inner) == RSHIFT_EXPR
&& TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
&& TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
&& (bitnum + TREE_INT_CST_LOW (TREE_OPERAND (inner, 1))
< TYPE_PRECISION (type)))
{
bitnum +=TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
inner = TREE_OPERAND (inner, 0);
}
/* If we are going to be able to omit the AND below, we must do our
operations as unsigned. If we must use the AND, we have a choice.
Normally unsigned is faster, but for some machines signed is. */
ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
#ifdef LOAD_EXTEND_OP
: (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
#else
: 1
#endif
);
if (subtarget == 0 || GET_CODE (subtarget) != REG
|| GET_MODE (subtarget) != operand_mode
|| ! safe_from_p (subtarget, inner))
subtarget = 0;
op0 = expand_expr (inner, subtarget, VOIDmode, 0);
if (bitnum != 0)
op0 = expand_shift (RSHIFT_EXPR, GET_MODE (op0), op0,
size_int (bitnum), subtarget, ops_unsignedp);
if (GET_MODE (op0) != mode)
op0 = convert_to_mode (mode, op0, ops_unsignedp);
if ((code == EQ && ! invert) || (code == NE && invert))
op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
ops_unsignedp, OPTAB_LIB_WIDEN);
/* Put the AND last so it can combine with more things. */
if (bitnum != TYPE_PRECISION (type) - 1)
op0 = expand_and (op0, const1_rtx, subtarget);
return op0;
}
/* Now see if we are likely to be able to do this. Return if not. */
if (! can_compare_p (operand_mode))
return 0;
icode = setcc_gen_code[(int) code];
if (icode == CODE_FOR_nothing
|| (only_cheap && insn_operand_mode[(int) icode][0] != mode))
{
/* We can only do this if it is one of the special cases that
can be handled without an scc insn. */
if ((code == LT && integer_zerop (arg1))
|| (! only_cheap && code == GE && integer_zerop (arg1)))
;
else if (BRANCH_COST >= 0
&& ! only_cheap && (code == NE || code == EQ)
&& TREE_CODE (type) != REAL_TYPE
&& ((abs_optab->handlers[(int) operand_mode].insn_code
!= CODE_FOR_nothing)
|| (ffs_optab->handlers[(int) operand_mode].insn_code
!= CODE_FOR_nothing)))
;
else
return 0;
}
preexpand_calls (exp);
if (subtarget == 0 || GET_CODE (subtarget) != REG
|| GET_MODE (subtarget) != operand_mode
|| ! safe_from_p (subtarget, arg1))
subtarget = 0;
op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
if (target == 0)
target = gen_reg_rtx (mode);
/* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
because, if the emit_store_flag does anything it will succeed and
OP0 and OP1 will not be used subsequently. */
result = emit_store_flag (target, code,
queued_subexp_p (op0) ? copy_rtx (op0) : op0,
queued_subexp_p (op1) ? copy_rtx (op1) : op1,
operand_mode, unsignedp, 1);
if (result)
{
if (invert)
result = expand_binop (mode, xor_optab, result, const1_rtx,
result, 0, OPTAB_LIB_WIDEN);
return result;
}
/* If this failed, we have to do this with set/compare/jump/set code. */
if (target == 0 || GET_CODE (target) != REG
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
target = gen_reg_rtx (GET_MODE (target));
emit_move_insn (target, invert ? const0_rtx : const1_rtx);
result = compare_from_rtx (op0, op1, code, unsignedp,
operand_mode, NULL_RTX, 0);
if (GET_CODE (result) == CONST_INT)
return (((result == const0_rtx && ! invert)
|| (result != const0_rtx && invert))
? const0_rtx : const1_rtx);
label = gen_label_rtx ();
if (bcc_gen_fctn[(int) code] == 0)
abort ();
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
emit_move_insn (target, invert ? const1_rtx : const0_rtx);
emit_label (label);
return target;
}
/* Generate a tablejump instruction (used for switch statements). */
#ifdef HAVE_tablejump
/* INDEX is the value being switched on, with the lowest value
in the table already subtracted.
MODE is its expected mode (needed if INDEX is constant).
RANGE is the length of the jump table.
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
index value is out of range. */
void
do_tablejump (index, mode, range, table_label, default_label)
rtx index, range, table_label, default_label;
enum machine_mode mode;
{
register rtx temp, vector;
/* Do an unsigned comparison (in the proper mode) between the index
expression and the value which represents the length of the range.
Since we just finished subtracting the lower bound of the range
from the index expression, this comparison allows us to simultaneously
check that the original index expression value is both greater than
or equal to the minimum value of the range and less than or equal to
the maximum value of the range. */
emit_cmp_insn (index, range, GTU, NULL_RTX, mode, 1, 0);
emit_jump_insn (gen_bgtu (default_label));
/* If index is in range, it must fit in Pmode.
Convert to Pmode so we can index with it. */
if (mode != Pmode)
index = convert_to_mode (Pmode, index, 1);
/* Don't let a MEM slip thru, because then INDEX that comes
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
and break_out_memory_refs will go to work on it and mess it up. */
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic && GET_CODE (index) != REG)
index = copy_to_mode_reg (Pmode, index);
#endif
/* If flag_force_addr were to affect this address
it could interfere with the tricky assumptions made
about addresses that contain label-refs,
which may be valid only very near the tablejump itself. */
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
GET_MODE_SIZE, because this indicates how large insns are. The other
uses should all be Pmode, because they are addresses. This code
could fail if addresses and insns are not the same size. */
index = gen_rtx (PLUS, Pmode,
gen_rtx (MULT, Pmode, index,
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
gen_rtx (LABEL_REF, Pmode, table_label));
#ifdef PIC_CASE_VECTOR_ADDRESS
if (flag_pic)
index = PIC_CASE_VECTOR_ADDRESS (index);
else
#endif
index = memory_address_noforce (CASE_VECTOR_MODE, index);
temp = gen_reg_rtx (CASE_VECTOR_MODE);
vector = gen_rtx (MEM, CASE_VECTOR_MODE, index);
RTX_UNCHANGING_P (vector) = 1;
convert_move (temp, vector, 0);
emit_jump_insn (gen_tablejump (temp, table_label));
#ifndef CASE_VECTOR_PC_RELATIVE
/* If we are generating PIC code or if the table is PC-relative, the
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
if (! flag_pic)
emit_barrier ();
#endif
}
#endif /* HAVE_tablejump */
/* Emit a suitable bytecode to load a value from memory, assuming a pointer
to that value is on the top of the stack. The resulting type is TYPE, and
the source declaration is DECL. */
void
bc_load_memory (type, decl)
tree type, decl;
{
enum bytecode_opcode opcode;
/* Bit fields are special. We only know about signed and
unsigned ints, and enums. The latter are treated as
signed integers. */
if (DECL_BIT_FIELD (decl))
if (TREE_CODE (type) == ENUMERAL_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
opcode = TREE_UNSIGNED (type) ? zxloadBI : sxloadBI;
else
abort ();
else
/* See corresponding comment in bc_store_memory(). */
if (TYPE_MODE (type) == BLKmode
|| TYPE_MODE (type) == VOIDmode)
return;
else
opcode = mode_to_load_map [(int) TYPE_MODE (type)];
if (opcode == neverneverland)
abort ();
bc_emit_bytecode (opcode);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
}
/* Store the contents of the second stack slot to the address in the
top stack slot. DECL is the declaration of the destination and is used
to determine whether we're dealing with a bitfield. */
void
bc_store_memory (type, decl)
tree type, decl;
{
enum bytecode_opcode opcode;
if (DECL_BIT_FIELD (decl))
{
if (TREE_CODE (type) == ENUMERAL_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
opcode = sstoreBI;
else
abort ();
}
else
if (TYPE_MODE (type) == BLKmode)
{
/* Copy structure. This expands to a block copy instruction, storeBLK.
In addition to the arguments expected by the other store instructions,
it also expects a type size (SImode) on top of the stack, which is the
structure size in size units (usually bytes). The two first arguments
are already on the stack; so we just put the size on level 1. For some
other languages, the size may be variable, this is why we don't encode
it as a storeBLK literal, but rather treat it as a full-fledged expression. */
bc_expand_expr (TYPE_SIZE (type));
opcode = storeBLK;
}
else
opcode = mode_to_store_map [(int) TYPE_MODE (type)];
if (opcode == neverneverland)
abort ();
bc_emit_bytecode (opcode);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
}
/* Allocate local stack space sufficient to hold a value of the given
SIZE at alignment boundary ALIGNMENT bits. ALIGNMENT must be an
integral power of 2. A special case is locals of type VOID, which
have size 0 and alignment 1 - any "voidish" SIZE or ALIGNMENT is
remapped into the corresponding attribute of SI. */
rtx
bc_allocate_local (size, alignment)
int size, alignment;
{
rtx retval;
int byte_alignment;
if (size < 0)
abort ();
/* Normalize size and alignment */
if (!size)
size = UNITS_PER_WORD;
if (alignment < BITS_PER_UNIT)
byte_alignment = 1 << (INT_ALIGN - 1);
else
/* Align */
byte_alignment = alignment / BITS_PER_UNIT;
if (local_vars_size & (byte_alignment - 1))
local_vars_size += byte_alignment - (local_vars_size & (byte_alignment - 1));
retval = bc_gen_rtx ((char *) 0, local_vars_size, (struct bc_label *) 0);
local_vars_size += size;
return retval;
}
/* Allocate variable-sized local array. Variable-sized arrays are
actually pointers to the address in memory where they are stored. */
rtx
bc_allocate_variable_array (size)
tree size;
{
rtx retval;
const int ptralign = (1 << (PTR_ALIGN - 1));
/* Align pointer */
if (local_vars_size & ptralign)
local_vars_size += ptralign - (local_vars_size & ptralign);
/* Note down local space needed: pointer to block; also return
dummy rtx */
retval = bc_gen_rtx ((char *) 0, local_vars_size, (struct bc_label *) 0);
local_vars_size += POINTER_SIZE / BITS_PER_UNIT;
return retval;
}
/* Push the machine address for the given external variable offset. */
void
bc_load_externaddr (externaddr)
rtx externaddr;
{
bc_emit_bytecode (constP);
bc_emit_code_labelref (BYTECODE_LABEL (externaddr),
BYTECODE_BC_LABEL (externaddr)->offset);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
}
static char *
bc_strdup (s)
char *s;
{
char *new = (char *) xmalloc ((strlen (s) + 1) * sizeof *s);
strcpy (new, s);
return new;
}
/* Like above, but expects an IDENTIFIER. */
void
bc_load_externaddr_id (id, offset)
tree id;
int offset;
{
if (!IDENTIFIER_POINTER (id))
abort ();
bc_emit_bytecode (constP);
bc_emit_code_labelref (bc_xstrdup (IDENTIFIER_POINTER (id)), offset);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
}
/* Push the machine address for the given local variable offset. */
void
bc_load_localaddr (localaddr)
rtx localaddr;
{
bc_emit_instruction (localP, (HOST_WIDE_INT) BYTECODE_BC_LABEL (localaddr)->offset);
}
/* Push the machine address for the given parameter offset.
NOTE: offset is in bits. */
void
bc_load_parmaddr (parmaddr)
rtx parmaddr;
{
bc_emit_instruction (argP, ((HOST_WIDE_INT) BYTECODE_BC_LABEL (parmaddr)->offset
/ BITS_PER_UNIT));
}
/* Convert a[i] into *(a + i). */
tree
bc_canonicalize_array_ref (exp)
tree exp;
{
tree type = TREE_TYPE (exp);
tree array_adr = build1 (ADDR_EXPR, TYPE_POINTER_TO (type),
TREE_OPERAND (exp, 0));
tree index = TREE_OPERAND (exp, 1);
/* Convert the integer argument to a type the same size as a pointer
so the multiply won't overflow spuriously. */
if (TYPE_PRECISION (TREE_TYPE (index)) != POINTER_SIZE)
index = convert (type_for_size (POINTER_SIZE, 0), index);
/* The array address isn't volatile even if the array is.
(Of course this isn't terribly relevant since the bytecode
translator treats nearly everything as volatile anyway.) */
TREE_THIS_VOLATILE (array_adr) = 0;
return build1 (INDIRECT_REF, type,
fold (build (PLUS_EXPR,
TYPE_POINTER_TO (type),
array_adr,
fold (build (MULT_EXPR,
TYPE_POINTER_TO (type),
index,
size_in_bytes (type))))));
}
/* Load the address of the component referenced by the given
COMPONENT_REF expression.
Returns innermost lvalue. */
tree
bc_expand_component_address (exp)
tree exp;
{
tree tem, chain;
enum machine_mode mode;
int bitpos = 0;
HOST_WIDE_INT SIval;
tem = TREE_OPERAND (exp, 1);
mode = DECL_MODE (tem);
/* Compute cumulative bit offset for nested component refs
and array refs, and find the ultimate containing object. */
for (tem = exp;; tem = TREE_OPERAND (tem, 0))
{
if (TREE_CODE (tem) == COMPONENT_REF)
bitpos += TREE_INT_CST_LOW (DECL_FIELD_BITPOS (TREE_OPERAND (tem, 1)));
else
if (TREE_CODE (tem) == ARRAY_REF
&& TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) == INTEGER_CST)
bitpos += (TREE_INT_CST_LOW (TREE_OPERAND (tem, 1))
* TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (tem)))
/* * TYPE_SIZE_UNIT (TREE_TYPE (tem)) */);
else
break;
}
bc_expand_expr (tem);
/* For bitfields also push their offset and size */
if (DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
bc_push_offset_and_size (bitpos, /* DECL_SIZE_UNIT */ (TREE_OPERAND (exp, 1)));
else
if (SIval = bitpos / BITS_PER_UNIT)
bc_emit_instruction (addconstPSI, SIval);
return (TREE_OPERAND (exp, 1));
}
/* Emit code to push two SI constants */
void
bc_push_offset_and_size (offset, size)
HOST_WIDE_INT offset, size;
{
bc_emit_instruction (constSI, offset);
bc_emit_instruction (constSI, size);
}
/* Emit byte code to push the address of the given lvalue expression to
the stack. If it's a bit field, we also push offset and size info.
Returns innermost component, which allows us to determine not only
its type, but also whether it's a bitfield. */
tree
bc_expand_address (exp)
tree exp;
{
/* Safeguard */
if (!exp || TREE_CODE (exp) == ERROR_MARK)
return (exp);
switch (TREE_CODE (exp))
{
case ARRAY_REF:
return (bc_expand_address (bc_canonicalize_array_ref (exp)));
case COMPONENT_REF:
return (bc_expand_component_address (exp));
case INDIRECT_REF:
bc_expand_expr (TREE_OPERAND (exp, 0));
/* For variable-sized types: retrieve pointer. Sometimes the
TYPE_SIZE tree is NULL. Is this a bug or a feature? Let's
also make sure we have an operand, just in case... */
if (TREE_OPERAND (exp, 0)
&& TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)))) != INTEGER_CST)
bc_emit_instruction (loadP);
/* If packed, also return offset and size */
if (DECL_BIT_FIELD (TREE_OPERAND (exp, 0)))
bc_push_offset_and_size (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (TREE_OPERAND (exp, 0))),
TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (exp, 0))));
return (TREE_OPERAND (exp, 0));
case FUNCTION_DECL:
bc_load_externaddr_id (DECL_ASSEMBLER_NAME (exp),
BYTECODE_BC_LABEL (DECL_RTL (exp))->offset);
break;
case PARM_DECL:
bc_load_parmaddr (DECL_RTL (exp));
/* For variable-sized types: retrieve pointer */
if (TYPE_SIZE (TREE_TYPE (exp))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST)
bc_emit_instruction (loadP);
/* If packed, also return offset and size */
if (DECL_BIT_FIELD (exp))
bc_push_offset_and_size (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (exp)),
TREE_INT_CST_LOW (DECL_SIZE (exp)));
break;
case RESULT_DECL:
bc_emit_instruction (returnP);
break;
case VAR_DECL:
#if 0
if (BYTECODE_LABEL (DECL_RTL (exp)))
bc_load_externaddr (DECL_RTL (exp));
#endif
if (DECL_EXTERNAL (exp))
bc_load_externaddr_id (DECL_ASSEMBLER_NAME (exp),
(BYTECODE_BC_LABEL (DECL_RTL (exp)))->offset);
else
bc_load_localaddr (DECL_RTL (exp));
/* For variable-sized types: retrieve pointer */
if (TYPE_SIZE (TREE_TYPE (exp))
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST)
bc_emit_instruction (loadP);
/* If packed, also return offset and size */
if (DECL_BIT_FIELD (exp))
bc_push_offset_and_size (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (exp)),
TREE_INT_CST_LOW (DECL_SIZE (exp)));
break;
case STRING_CST:
{
rtx r;
bc_emit_bytecode (constP);
r = output_constant_def (exp);
bc_emit_code_labelref (BYTECODE_LABEL (r), BYTECODE_BC_LABEL (r)->offset);
#ifdef DEBUG_PRINT_CODE
fputc ('\n', stderr);
#endif
}
break;
default:
abort();
break;
}
/* Most lvalues don't have components. */
return (exp);
}
/* Emit a type code to be used by the runtime support in handling
parameter passing. The type code consists of the machine mode
plus the minimal alignment shifted left 8 bits. */
tree
bc_runtime_type_code (type)
tree type;
{
int val;
switch (TREE_CODE (type))
{
case VOID_TYPE:
case INTEGER_TYPE:
case REAL_TYPE:
case COMPLEX_TYPE:
case ENUMERAL_TYPE:
case POINTER_TYPE:
case RECORD_TYPE:
val = (int) TYPE_MODE (type) | TYPE_ALIGN (type) << 8;
break;
case ERROR_MARK:
val = 0;
break;
default:
abort ();
}
return build_int_2 (val, 0);
}
/* Generate constructor label */
char *
bc_gen_constr_label ()
{
static int label_counter;
static char label[20];
sprintf (label, "*LR%d", label_counter++);
return (obstack_copy0 (&permanent_obstack, label, strlen (label)));
}
/* Evaluate constructor CONSTR and return pointer to it on level one. We
expand the constructor data as static data, and push a pointer to it.
The pointer is put in the pointer table and is retrieved by a constP
bytecode instruction. We then loop and store each constructor member in
the corresponding component. Finally, we return the original pointer on
the stack. */
void
bc_expand_constructor (constr)
tree constr;
{
char *l;
HOST_WIDE_INT ptroffs;
rtx constr_rtx;
/* Literal constructors are handled as constants, whereas
non-literals are evaluated and stored element by element
into the data segment. */
/* Allocate space in proper segment and push pointer to space on stack.
*/
l = bc_gen_constr_label ();
if (TREE_CONSTANT (constr))
{
text_section ();
bc_emit_const_labeldef (l);
bc_output_constructor (constr, int_size_in_bytes (TREE_TYPE (constr)));
}
else
{
data_section ();
bc_emit_data_labeldef (l);
bc_output_data_constructor (constr);
}
/* Add reference to pointer table and recall pointer to stack;
this code is common for both types of constructors: literals
and non-literals. */
ptroffs = bc_define_pointer (l);
bc_emit_instruction (constP, ptroffs);
/* This is all that has to be done if it's a literal. */
if (TREE_CONSTANT (constr))
return;
/* At this point, we have the pointer to the structure on top of the stack.
Generate sequences of store_memory calls for the constructor. */
/* constructor type is structure */
if (TREE_CODE (TREE_TYPE (constr)) == RECORD_TYPE)
{
register tree elt;
/* If the constructor has fewer fields than the structure,
clear the whole structure first. */
if (list_length (CONSTRUCTOR_ELTS (constr))
!= list_length (TYPE_FIELDS (TREE_TYPE (constr))))
{
bc_emit_instruction (duplicate);
bc_emit_instruction (constSI, (HOST_WIDE_INT) int_size_in_bytes (TREE_TYPE (constr)));
bc_emit_instruction (clearBLK);
}
/* Store each element of the constructor into the corresponding
field of TARGET. */
for (elt = CONSTRUCTOR_ELTS (constr); elt; elt = TREE_CHAIN (elt))
{
register tree field = TREE_PURPOSE (elt);
register enum machine_mode mode;
int bitsize;
int bitpos;
int unsignedp;
bitsize = TREE_INT_CST_LOW (DECL_SIZE (field)) /* * DECL_SIZE_UNIT (field) */;
mode = DECL_MODE (field);
unsignedp = TREE_UNSIGNED (field);
bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
bc_store_field (elt, bitsize, bitpos, mode, TREE_VALUE (elt), TREE_TYPE (TREE_VALUE (elt)),
/* The alignment of TARGET is
at least what its type requires. */
VOIDmode, 0,
TYPE_ALIGN (TREE_TYPE (constr)) / BITS_PER_UNIT,
int_size_in_bytes (TREE_TYPE (constr)));
}
}
else
/* Constructor type is array */
if (TREE_CODE (TREE_TYPE (constr)) == ARRAY_TYPE)
{
register tree elt;
register int i;
tree domain = TYPE_DOMAIN (TREE_TYPE (constr));
int minelt = TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain));
int maxelt = TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain));
tree elttype = TREE_TYPE (TREE_TYPE (constr));
/* If the constructor has fewer fields than the structure,
clear the whole structure first. */
if (list_length (CONSTRUCTOR_ELTS (constr)) < maxelt - minelt + 1)
{
bc_emit_instruction (duplicate);
bc_emit_instruction (constSI, (HOST_WIDE_INT) int_size_in_bytes (TREE_TYPE (constr)));
bc_emit_instruction (clearBLK);
}
/* Store each element of the constructor into the corresponding
element of TARGET, determined by counting the elements. */
for (elt = CONSTRUCTOR_ELTS (constr), i = 0;
elt;
elt = TREE_CHAIN (elt), i++)
{
register enum machine_mode mode;
int bitsize;
int bitpos;
int unsignedp;
mode = TYPE_MODE (elttype);
bitsize = GET_MODE_BITSIZE (mode);
unsignedp = TREE_UNSIGNED (elttype);
bitpos = (i * TREE_INT_CST_LOW (TYPE_SIZE (elttype))
/* * TYPE_SIZE_UNIT (elttype) */ );
bc_store_field (elt, bitsize, bitpos, mode,
TREE_VALUE (elt), TREE_TYPE (TREE_VALUE (elt)),
/* The alignment of TARGET is
at least what its type requires. */
VOIDmode, 0,
TYPE_ALIGN (TREE_TYPE (constr)) / BITS_PER_UNIT,
int_size_in_bytes (TREE_TYPE (constr)));
}
}
}
/* Store the value of EXP (an expression tree) into member FIELD of
structure at address on stack, which has type TYPE, mode MODE and
occupies BITSIZE bits, starting BITPOS bits from the beginning of the
structure.
ALIGN is the alignment that TARGET is known to have, measured in bytes.
TOTAL_SIZE is its size in bytes, or -1 if variable. */
void
bc_store_field (field, bitsize, bitpos, mode, exp, type,
value_mode, unsignedp, align, total_size)
int bitsize, bitpos;
enum machine_mode mode;
tree field, exp, type;
enum machine_mode value_mode;
int unsignedp;
int align;
int total_size;
{
/* Expand expression and copy pointer */
bc_expand_expr (exp);
bc_emit_instruction (over);
/* If the component is a bit field, we cannot use addressing to access
it. Use bit-field techniques to store in it. */
if (DECL_BIT_FIELD (field))
{
bc_store_bit_field (bitpos, bitsize, unsignedp);
return;
}
else
/* Not bit field */
{
HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
/* Advance pointer to the desired member */
if (offset)
bc_emit_instruction (addconstPSI, offset);
/* Store */
bc_store_memory (type, field);
}
}
/* Store SI/SU in bitfield */
void
bc_store_bit_field (offset, size, unsignedp)
int offset, size, unsignedp;
{
/* Push bitfield offset and size */
bc_push_offset_and_size (offset, size);
/* Store */
bc_emit_instruction (sstoreBI);
}
/* Load SI/SU from bitfield */
void
bc_load_bit_field (offset, size, unsignedp)
int offset, size, unsignedp;
{
/* Push bitfield offset and size */
bc_push_offset_and_size (offset, size);
/* Load: sign-extend if signed, else zero-extend */
bc_emit_instruction (unsignedp ? zxloadBI : sxloadBI);
}
/* Adjust interpreter stack by NLEVELS. Positive means drop NLEVELS
(adjust stack pointer upwards), negative means add that number of
levels (adjust the stack pointer downwards). Only positive values
normally make sense. */
void
bc_adjust_stack (nlevels)
int nlevels;
{
switch (nlevels)
{
case 0:
break;
case 2:
bc_emit_instruction (drop);
case 1:
bc_emit_instruction (drop);
break;
default:
bc_emit_instruction (adjstackSI, (HOST_WIDE_INT) nlevels);
stack_depth -= nlevels;
}
#if defined (VALIDATE_STACK_FOR_BC)
VALIDATE_STACK_FOR_BC ();
#endif
}