home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
ghostscript-2.6.2-src.tgz
/
tar.out
/
fsf
/
ghostscript
/
gdevpbm.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
13KB
|
417 lines
/* Copyright (C) 1992, 1993 Aladdin Enterprises. All rights reserved.
This file is part of Ghostscript.
Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility
to anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the Ghostscript General Public License for full details.
Everyone is granted permission to copy, modify and redistribute
Ghostscript, but only under the conditions described in the Ghostscript
General Public License. A copy of this license is supposed to have been
given to you along with Ghostscript so you can know your rights and
responsibilities. It should be in a file named COPYING. Among other
things, the copyright notice and this notice must be preserved on all
copies. */
/* gdevpbm.c */
/* Portable Bit/Gray/PixMap devices for Ghostscript. */
#include "gdevprn.h"
#include "gxlum.h"
/* Thanks are due to Jos Vos (jos@bull.nl) for an earlier P*M driver, */
/* on which this one is based. */
/*
* The PGM and PPM drivers have an "optimize" flag, which causes them to
* fall back to PBM or (for PPM) PGM if the page can be represented that way.
* This should be a device property, but for now, it's a compile-time option.
*/
#define OPTIMIZE 1
/*
* The code here is designed to work with variable depths for PGM and PPM.
* The restrictions on depth are as follows. Numbers in square brackets
* give the actual restrictions, but the Ghostscript kernel requires that
* depth be a power of 2 or be 24.
* pgm: 1, 2, 4, 8, 16. [1-16]
* pgmraw: 1, 2, 4, 8. [1-8]
* ppm: 4(3x1), 8(3x2), 16(3x5), 24(3x8), 32(3x10). [3-32]
* ppmraw: 4(3x1), 8(3x2), 16(3x5), 24(3x8). [3-24]
*/
/* Structure for P*M devices, which extend the generic printer device. */
#define MAX_COMMENT 70 /* max user-supplied comment */
struct gx_device_pbm_s {
gx_device_common;
gx_prn_device_common;
/* Additional state for P*M devices */
char magic; /* n for "Pn" */
char comment[MAX_COMMENT + 1]; /* comment for head of file */
byte is_raw; /* 1 if raw format, 0 if plain */
byte optimize; /* 1 if optimization OK, 0 if not */
byte uses_color; /* 0 if image is black and white, */
/* 1 if gray (PGM or PPM only), */
/* 2 or 3 if colored (PPM only) */
};
typedef struct gx_device_pbm_s gx_device_pbm;
#define bdev ((gx_device_pbm *)pdev)
/* ------ The device descriptors ------ */
/*
* Default X and Y resolution.
*/
#define X_DPI 72
#define Y_DPI 72
/* Macro for generating P*M device descriptors. */
#define pbm_prn_device(procs, dev_name, magic, is_raw, num_comp, depth, max_gray, max_rgb, print_page)\
{ prn_device_body(gx_device_pbm, procs, dev_name,\
DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, X_DPI, Y_DPI,\
0, 0, 0, 0,\
num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\
print_page),\
magic,\
{ 0 },\
is_raw,\
OPTIMIZE\
}
/* For PGM and PPM, we need our own color mapping procedures. */
private dev_proc_map_rgb_color(pgm_map_rgb_color);
private dev_proc_map_rgb_color(ppm_map_rgb_color);
private dev_proc_map_color_rgb(pgm_map_color_rgb);
private dev_proc_map_color_rgb(ppm_map_color_rgb);
/* We need to initialize uses_color when opening the device. */
private dev_proc_open_device(ppm_open);
/* And of course we need our own print-page routines. */
private dev_proc_print_page(pbm_print_page);
private dev_proc_print_page(pgm_print_page);
private dev_proc_print_page(ppm_print_page);
/* The device procedures */
private gx_device_procs pbm_procs =
prn_procs(gdev_prn_open, gdev_prn_output_page, gdev_prn_close);
private gx_device_procs pgm_procs =
prn_color_procs(gdev_prn_open, gdev_prn_output_page, gdev_prn_close,
pgm_map_rgb_color, pgm_map_color_rgb);
private gx_device_procs ppm_procs =
prn_color_procs(ppm_open, gdev_prn_output_page, gdev_prn_close,
ppm_map_rgb_color, ppm_map_color_rgb);
/* The device descriptors themselves */
gx_device_pbm far_data gs_pbm_device =
pbm_prn_device(pbm_procs, "pbm", '1', 0, 1, 1, 1, 0,
pbm_print_page);
gx_device_pbm far_data gs_pbmraw_device =
pbm_prn_device(pbm_procs, "pbmraw", '4', 1, 1, 1, 1, 1,
pbm_print_page);
gx_device_pbm far_data gs_pgm_device =
pbm_prn_device(pgm_procs, "pgm", '2', 0, 1, 8, 255, 0,
pgm_print_page);
gx_device_pbm far_data gs_pgmraw_device =
pbm_prn_device(pgm_procs, "pgmraw", '5', 1, 1, 8, 255, 0,
pgm_print_page);
gx_device_pbm far_data gs_ppm_device =
pbm_prn_device(ppm_procs, "ppm", '3', 0, 3, 24, 255, 255,
ppm_print_page);
gx_device_pbm far_data gs_ppmraw_device =
pbm_prn_device(ppm_procs, "ppmraw", '6', 1, 3, 24, 255, 255,
ppm_print_page);
/* ------ Initialization ------ */
private int
ppm_open(gx_device *pdev)
{ bdev->uses_color = 0;
return gdev_prn_open(pdev);
}
/* ------ Color mapping routines ------ */
/* Map an RGB color to a PGM gray value. */
/* Keep track of whether the image is black-and-white or gray. */
private gx_color_index
pgm_map_rgb_color(gx_device *pdev, ushort r, ushort g, ushort b)
{ /* We round the value rather than truncating it. */
gx_color_value gray =
((r * (ulong)lum_red_weight) +
(g * (ulong)lum_green_weight) +
(b * (ulong)lum_blue_weight) +
(lum_all_weights / 2)) / lum_all_weights
* pdev->color_info.max_gray / gx_max_color_value;
if ( !(gray == 0 || gray == pdev->color_info.max_gray) )
bdev->uses_color = 1;
return gray;
}
/* Map a PGM gray value back to an RGB color. */
private int
pgm_map_color_rgb(gx_device *dev, gx_color_index color, ushort prgb[3])
{ gx_color_value gray =
color * gx_max_color_value / dev->color_info.max_gray;
prgb[0] = gray;
prgb[1] = gray;
prgb[2] = gray;
return 0;
}
/* Map an RGB color to a PPM color tuple. */
/* Keep track of whether the image is black-and-white, gray, or colored. */
private gx_color_index
ppm_map_rgb_color(gx_device *pdev, ushort r, ushort g, ushort b)
{ ushort bitspercolor = pdev->color_info.depth / 3;
ulong max_value = (1 << bitspercolor) - 1;
gx_color_value rc = r * max_value / gx_max_color_value;
gx_color_value gc = g * max_value / gx_max_color_value;
gx_color_value bc = b * max_value / gx_max_color_value;
if ( rc == gc && gc == bc ) /* black-and-white or gray */
{ if ( !(rc == 0 || rc == max_value) )
bdev->uses_color |= 1; /* gray */
}
else /* color */
bdev->uses_color = 2;
return ((((ulong)rc << bitspercolor) + gc) << bitspercolor) + bc;
}
/* Map a PPM color tuple back to an RGB color. */
private int
ppm_map_color_rgb(gx_device *dev, gx_color_index color, ushort prgb[3])
{ ushort bitspercolor = dev->color_info.depth / 3;
ushort colormask = (1 << bitspercolor) - 1;
prgb[0] = ((color >> (bitspercolor * 2)) & colormask) *
(ulong)gx_max_color_value / colormask;
prgb[1] = ((color >> bitspercolor) & colormask) *
(ulong)gx_max_color_value / colormask;
prgb[2] = (color & colormask) *
(ulong)gx_max_color_value / colormask;
return 0;
}
/* ------ Internal routines ------ */
/* Print a page using a given row printing routine. */
private int
pbm_print_page_loop(gx_device_printer *pdev, char magic, FILE *pstream,
int (*row_proc)(P4(gx_device_printer *, byte *, int, FILE *)))
{ uint raster = gdev_prn_raster(pdev);
byte *data = (byte *)gs_malloc(raster, 1, "pbm_begin_page");
int lnum = 0;
int code = 0;
if ( data == 0 )
return_error(gs_error_VMerror);
fprintf(pstream, "P%c\n", magic);
if ( bdev->comment[0] )
fprintf(pstream, "# %s\n", bdev->comment);
else
fprintf(pstream, "# Image generated by Ghostscript (device=%s)\n",
pdev->dname);
fprintf(pstream, "%d %d\n", pdev->width, pdev->height);
switch ( magic )
{
case '1': /* pbm */
case '4': /* pbmraw */
break;
default:
fprintf(pstream, "%d\n", pdev->color_info.max_gray);
}
for ( ; lnum < pdev->height; lnum++ )
{ gdev_prn_copy_scan_lines(pdev, lnum, data, raster);
code = (*row_proc)(pdev, data, pdev->color_info.depth, pstream);
if ( code < 0 ) break;
}
gs_free((char *)data, raster, 1, "pbm_print_page_loop");
return (code < 0 ? code : 0);
}
/* ------ Individual page printing routines ------ */
/* Print a monobit page. */
private int
pbm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream)
{ if ( bdev->is_raw )
fwrite(data, 1, (pdev->width + 7) >> 3, pstream);
else
{ byte *bp;
uint x, mask;
for ( bp = data, x = 0, mask = 0x80;
x < pdev->width;
(mask >>= 1) != 0 || (bp++, mask = 0x80)
)
{ putc((*bp & mask ? '1' : '0'), pstream);
if ( ++x == pdev->width || !(x & 63) )
putc('\n', pstream);
}
}
return 0;
}
private int
pbm_print_page(gx_device_printer *pdev, FILE *pstream)
{ return pbm_print_page_loop(pdev, bdev->magic, pstream, pbm_print_row);
}
/* Print a gray-mapped page. */
private int
pgm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream)
{ /* Note that bpp <= 8 for raw format, bpp <= 16 for plain. */
uint mask = (1 << depth) - 1;
byte *bp;
uint x;
int shift;
for ( bp = data, x = 0, shift = 8 - depth;
x < pdev->width;
)
{ uint pixel;
if ( shift < 0 ) /* bpp = 16 */
{ pixel = ((uint)*bp << 8) + bp[1];
bp += 2;
}
else
{ pixel = (*bp >> shift) & mask;
if ( (shift -= depth) < 0 )
bp++, shift += 8;
}
++x;
if ( bdev->is_raw )
putc(pixel, pstream);
else
fprintf(pstream, "%d%c", pixel,
(x == pdev->width || !(x & 15) ?
'\n' : ' '));
}
return 0;
}
private int
pxm_pbm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream)
{ /* Compress a PGM or PPM row to a PBM row. */
/* This doesn't have to be very fast. */
/* Note that we have to invert the data as well. */
int delta = (depth + 7) >> 3;
byte *src = data + delta - 1; /* always big-endian */
byte *dest = data;
int x;
byte in_mask = (depth >= 8 ? 1 : 0x100 >> depth);
byte out_mask = 0x80;
byte out = 0;
for ( x = 0; x < pdev->width; x++ )
{ if ( !(*src & in_mask) )
out |= out_mask;
if ( depth >= 8 )
src += delta;
else
{ in_mask >>= depth;
if ( !in_mask )
in_mask = 0x100 >> depth,
src++;
}
out_mask >>= 1;
if ( !out_mask )
out_mask = 0x80,
*dest++ = out,
out = 0;
}
if ( out_mask != 0x80 )
*dest = out;
return pbm_print_row(pdev, data, 1, pstream);
}
private int
pgm_print_page(gx_device_printer *pdev, FILE *pstream)
{ return (bdev->uses_color == 0 && bdev->optimize ?
pbm_print_page_loop(pdev, bdev->magic - 1, pstream,
pxm_pbm_print_row) :
pbm_print_page_loop(pdev, bdev->magic, pstream,
pgm_print_row) );
}
/* Print a color-mapped page. */
private int
ppgm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream, int color)
{ /* If color=0, write only one value per pixel; */
/* if color=1, write 3 values per pixel. */
/* Note that depth <= 24 for raw format, depth <= 32 for plain. */
uint bpe = depth / 3; /* bits per r/g/b element */
uint mask = (1 << bpe) - 1;
byte *bp;
uint x;
uint eol_mask = (color ? 7 : 15);
int shift;
for ( bp = data, x = 0, shift = 8 - depth;
x < pdev->width;
)
{ ulong pixel = 0;
uint r, g, b;
switch ( depth >> 3 )
{
case 4:
pixel = (ulong)*bp << 24; bp++;
/* falls through */
case 3:
pixel += (ulong)*bp << 16; bp++;
/* falls through */
case 2:
pixel += (uint)*bp << 8; bp++;
/* falls through */
case 1:
pixel += *bp; bp++;
break;
case 0: /* bpp == 4, bpe == 1 */
pixel = *bp >> shift;
if ( (shift -= depth) < 0 )
bp++, shift += 8;
break;
}
++x;
b = pixel & mask; pixel >>= bpe;
g = pixel & mask; pixel >>= bpe;
r = pixel & mask;
if ( bdev->is_raw )
{ if ( color )
{ putc(r, pstream);
putc(g, pstream);
}
putc(b, pstream);
}
else
{ if ( color )
fprintf(pstream, "%d %d ", r, g);
fprintf(pstream, "%d%c", b,
(x == pdev->width || !(x & eol_mask) ?
'\n' : ' '));
}
}
return 0;
}
private int
ppm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream)
{ return ppgm_print_row(pdev, data, depth, pstream, 1);
}
private int
ppm_pgm_print_row(gx_device_printer *pdev, byte *data, int depth,
FILE *pstream)
{ return ppgm_print_row(pdev, data, depth, pstream, 0);
}
private int
ppm_print_page(gx_device_printer *pdev, FILE *pstream)
{ return (bdev->uses_color >= 2 || !bdev->optimize ?
pbm_print_page_loop(pdev, bdev->magic, pstream,
ppm_print_row) :
bdev->uses_color == 1 ?
pbm_print_page_loop(pdev, bdev->magic - 1, pstream,
ppm_pgm_print_row) :
pbm_print_page_loop(pdev, bdev->magic - 2, pstream,
pxm_pbm_print_row) );
}