home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
gnat-2.06-src.tgz
/
tar.out
/
fsf
/
gnat
/
ada
/
s-expgen.adb
< prev
next >
Wrap
Text File
|
1996-09-28
|
5KB
|
135 lines
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- S Y S T E M . E X P _ G E N --
-- --
-- B o d y --
-- --
-- $Revision: 1.7 $ --
-- --
-- Copyright (c) 1992,1993,1994 NYU, All Rights Reserved --
-- --
-- The GNAT library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU Library General Public License as published by --
-- the Free Software Foundation; either version 2, or (at your option) any --
-- later version. The GNAT library is distributed in the hope that it will --
-- be useful, but WITHOUT ANY WARRANTY; without even the implied warranty --
-- of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- Library General Public License for more details. You should have --
-- received a copy of the GNU Library General Public License along with --
-- the GNAT library; see the file COPYING.LIB. If not, write to the Free --
-- Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --
-- --
------------------------------------------------------------------------------
package body System.Exp_Gen is
--------------------
-- Exp_Float_Type --
--------------------
function Exp_Float_Type
(Left : Type_Of_Base; Right : Integer) return Type_Of_Base
is
pragma Unsuppress (Overflow_Check);
pragma Unsuppress (Division_Check);
pragma Unsuppress (Range_Check);
Result : Type_Of_Base := 1.0;
Factor : Type_Of_Base := Left;
Exp : Natural := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2. For positive exponents we
-- multiply the result by this factor, for negative exponents, we
-- divide by this factor.
if Exp >= 0 then
-- For a positive exponent, if we get a constraint error during
-- this loop, it is an overflow, and the constraint error will
-- simply be passed on to the caller.
while Exp /= 0 loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Factor := Factor * Factor;
Exp := Exp / 2;
end loop;
return Result;
else -- Exp < 0 then
-- For the negative exponent case, a constraint error during this
-- calculation happens if Factor gets too large, and the proper
-- response is to return 0.0, since what we essenmtially have is
-- 1.0 / infinity, and the closest model number will be zero.
begin
while Exp /= 0 loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Factor := Factor * Factor;
Exp := Exp / 2;
end loop;
return 1.0 / Result;
exception
when Constraint_Error =>
return 0.0;
end;
end if;
end Exp_Float_Type;
----------------------
-- Exp_Integer_Type --
----------------------
-- Note that negative exponents get a constraint error because the
-- subtype of the Right argument (the exponent) is Natural.
function Exp_Integer_Type
(Left : Type_Of_Base; Right : Natural) return Type_Of_Base
is
pragma Unsuppress (Overflow_Check);
pragma Unsuppress (Division_Check);
pragma Unsuppress (Range_Check);
Result : Type_Of_Base := 1;
Factor : Type_Of_Base := Left;
Exp : Natural := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2.
-- Note: it is not worth special casing the cases of base values -1,0,+1
-- since the expander does this when the base is a literal, and other
-- cases will be extremely rare.
while Exp /= 0 loop
if Exp rem 2 /= 0 then
Result := Result * Factor;
end if;
Factor := Factor * Factor;
Exp := Exp / 2;
end loop;
return Result;
end Exp_Integer_Type;
end System.Exp_Gen;