home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
gnat-2.06-src.tgz
/
tar.out
/
fsf
/
gnat
/
ada
/
s-expmod.adb
< prev
next >
Wrap
Text File
|
1996-09-28
|
3KB
|
79 lines
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- S Y S T E M . E X P _ M O D --
-- --
-- B o d y --
-- --
-- $Revision: 1.5 $ --
-- --
-- Copyright (c) 1992,1993,1994 NYU, All Rights Reserved --
-- --
-- The GNAT library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU Library General Public License as published by --
-- the Free Software Foundation; either version 2, or (at your option) any --
-- later version. The GNAT library is distributed in the hope that it will --
-- be useful, but WITHOUT ANY WARRANTY; without even the implied warranty --
-- of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- Library General Public License for more details. You should have --
-- received a copy of the GNU Library General Public License along with --
-- the GNAT library; see the file COPYING.LIB. If not, write to the Free --
-- Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --
-- --
------------------------------------------------------------------------------
package body System.Exp_Mod is
-----------------
-- Exp_Modular --
-----------------
function Exp_Modular
(Left : Integer;
Modulus : Integer;
Right : Natural)
return Integer
is
Result : Integer := 1;
Factor : Integer := Left;
Exp : Natural := Right;
function Mult (X, Y : Integer) return Integer;
pragma Inline (Mult);
-- Modular multiplication. Note that we can't take advantage of the
-- compiler's circuit, because the modulus is not known statically.
function Mult (X, Y : Integer) return Integer is
begin
return Integer
(Long_Long_Integer (X) * Long_Long_Integer (Y)
mod Long_Long_Integer (Modulus));
end Mult;
-- Start of processing for Exp_Modular
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2.
-- Note: it is not worth special casing the cases of base values -1,0,+1
-- since the expander does this when the base is a literal, and other
-- cases will be extremely rare.
while Exp /= 0 loop
if Exp rem 2 /= 0 then
Result := Mult (Result, Factor);
end if;
Factor := Mult (Factor, Factor);
Exp := Exp / 2;
end loop;
return Result;
end Exp_Modular;
end System.Exp_Mod;