home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
gnat-2.06-src.tgz
/
tar.out
/
fsf
/
gnat
/
ada
/
s-fatgen.adb
< prev
next >
Wrap
Text File
|
1996-09-28
|
17KB
|
659 lines
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . F A T _ G E N --
-- --
-- B o d y --
-- --
-- $Revision: 1.5 $ --
-- --
-- The GNAT library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU Library General Public License as published by --
-- the Free Software Foundation; either version 2, or (at your option) any --
-- later version. The GNAT library is distributed in the hope that it will --
-- be useful, but WITHOUT ANY WARRANTY; without even the implied warranty --
-- of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- Library General Public License for more details. You should have --
-- received a copy of the GNU Library General Public License along with --
-- the GNAT library; see the file COPYING.LIB. If not, write to the Free --
-- Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --
-- --
------------------------------------------------------------------------------
-- The implementation here is portable to any IEEE implementation. It does
-- not handle non-binary radix, and also assumes that model numbers and
-- machine numbers are basically identical, which is not true of all possible
-- floating-point implementations. On a non-IEEE machine, this body must be
-- specialized appropriately, or better still, its generic instantiations
-- should be replaced by efficient machine-specific code.
package body System.Fat_Gen is
Float_Radix : constant T := T (T'Machine_Radix);
Float_Radix_Inv : constant T := 1.0 / Float_Radix;
Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
pragma Assert (T'Machine_Radix = 2);
-- This version does not handle radix 16
-- Constants for Decompose and Scaling
Rad : constant T := T (T'Machine_Radix);
Invrad : constant T := 1.0 / Rad;
subtype Expbits is Integer range 0 .. 6;
-- 2 ** (2 ** 7) might overflow. how big can radix-16 exponents get?
Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
R_Power : constant array (Expbits) of T :=
(Rad ** 1,
Rad ** 2,
Rad ** 4,
Rad ** 8,
Rad ** 16,
Rad ** 32,
Rad ** 64);
R_Neg_Power : constant array (Expbits) of T :=
(Invrad ** 1,
Invrad ** 2,
Invrad ** 4,
Invrad ** 8,
Invrad ** 16,
Invrad ** 32,
Invrad ** 64);
-----------------------
-- Local Subprograms --
-----------------------
procedure Decompose (XX : T; Frac : out T; Expo : out UI);
-- Decomposes a floating-point number into fraction and exponent parts
--------------
-- Adjacent --
--------------
-- Adjacent( X, 0.0) will be incorrect for abs(X) any power of two
-- because of a bug in Succ and Pred. An extra test must be made
-- for this case ???.
function Adjacent (X, Towards : T) return T is
begin
if Towards = X then
return X;
elsif Towards > X then
return Succ (X);
else
return Pred (X);
end if;
end Adjacent;
-------------
-- Ceiling --
-------------
function Ceiling (X : T) return T is
XT : constant T := Truncation (X);
begin
if X <= 0.0 then
return XT;
elsif X = XT then
return X;
else
return XT + 1.0;
end if;
end Ceiling;
-------------
-- Compose --
-------------
function Compose (Fraction : T; Exponent : UI) return T is
Arg_Frac : T;
Arg_Exp : UI;
begin
Decompose (Fraction, Arg_Frac, Arg_Exp);
return Scaling (Arg_Frac, Exponent);
end Compose;
---------------
-- Copy_Sign --
---------------
-- Configuration requirement: If this unit is used to implement the
-- floating-point attributes, then if Signed_Zeros is true, we must
-- have Machine_Overflows False, and we must generate infinities for
-- overflow (otherwise we can't implement signed zeroes properly).
function Copy_Sign (Value, Sign : T) return T is
Result : T;
begin
Result := abs Value;
-- If we have signed zeroes true, then we know that machine overflows
-- is false, and that infinities are generated for overflow, so we can
-- test for minus zero by looking at the sign of the corresponding
-- infinity value (neat trick eh?)
if Sign = 0.0 and then T'Signed_Zeros then
if 1.0 / Sign > 0.0 then
return Result;
else
return -Result;
end if;
end if;
-- Handle non-zero cases, and also the zero case if signed zeroes
-- is false. In the latter case we always treat zero as positive.
if Sign >= 0.0 then
return Result;
else
return -Result;
end if;
end Copy_Sign;
---------------
-- Decompose --
---------------
procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
X : T := T'Machine (XX);
begin
if X = 0.0 then
Frac := X;
Expo := 0;
-- More useful would be defining Expo to be T'Machine_Emin - 1 or
-- T'Machine_Emin - T'Machine_Mantissa, which would preserve
-- monotonicity of the exponent fuction..
-- Check for infinities, transfinites, whatnot.
elsif X > T'Safe_Last then
Frac := Invrad;
Expo := T'Machine_Emax + 1;
elsif X < T'Safe_First then
Frac := -Invrad;
Expo := T'Machine_Emax + 2; -- how many extra negative values?
else
-- Case of nonzero finite x. Essentially, we just multiply
-- by Rad ** (+-2**N) to reduce the range.
declare
Ax : T := abs X;
Ex : UI := 0;
-- Ax * Rad ** Ex is invariant.
begin
if Ax >= 1.0 then
while Ax >= R_Power (Expbits'Last) loop
Ax := Ax * R_Neg_Power (Expbits'Last);
Ex := Ex + Log_Power (Expbits'Last);
end loop;
-- Ax < Rad ** 64
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ax >= R_Power (N) then
Ax := Ax * R_Neg_Power (N);
Ex := Ex + Log_Power (N);
end if;
-- Ax < R_Power (N)
end loop;
-- 1 <= Ax < Rad
Ax := Ax * Invrad;
Ex := Ex + 1;
else
-- 0 < ax < 1
while Ax < R_Neg_Power (Expbits'Last) loop
Ax := Ax * R_Power (Expbits'Last);
Ex := Ex - Log_Power (Expbits'Last);
end loop;
-- Rad ** -64 <= Ax < 1
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ax < R_Neg_Power (N) then
Ax := Ax * R_Power (N);
Ex := Ex - Log_Power (N);
end if;
-- R_Neg_Power (N) <= Ax < 1
end loop;
end if;
if X > 0.0 then
Frac := Ax;
else
Frac := -Ax;
end if;
Expo := Ex;
end;
end if;
end Decompose;
--------------
-- Exponent --
--------------
function Exponent (X : T) return UI is
X_Frac : T;
X_Exp : UI;
begin
Decompose (X, X_Frac, X_Exp);
return X_Exp;
end Exponent;
-----------
-- Floor --
-----------
function Floor (X : T) return T is
XT : constant T := Truncation (X);
begin
if X >= 0.0 then
return XT;
elsif XT = X then
return X;
else
return XT - 1.0;
end if;
end Floor;
--------------
-- Fraction --
--------------
function Fraction (X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (X, X_Frac, X_Exp);
return X_Frac;
end Fraction;
------------------
-- Leading_Part --
------------------
function Leading_Part (X : T; Radix_Digits : UI) return T is
L : UI;
Y, Z : T;
begin
if Radix_Digits >= T'Machine_Mantissa then
return X;
else
L := Exponent (X) - Radix_Digits;
Y := Truncation (Scaling (X, -L));
Z := Scaling (Y, L);
return Z;
end if;
end Leading_Part;
-------------
-- Machine --
-------------
-- The trick with Machine is to force the compiler to store the result
-- in memory so that we do not have extra precision used. The compiler
-- is clever, so we have to outwit its possible optimizations!
-- This is achieved by using the following array. In fact only the first
-- element is used, and Machine_Index is always 1, but we make sure the
-- compiler can't figure this out.
Machine_Array : array (1 .. 2) of T;
Machine_Index : Integer;
function Machine (X : T) return T is
begin
Machine_Array (1) := X;
return Machine_Array (Machine_Index);
end Machine;
-----------
-- Model --
-----------
-- We treat Model as identical to Machine. This is true of IEEE and other
-- nice floating-point systems, but not necessarily true of all systems.
function Model (X : T) return T is
begin
return Machine (X);
end Model;
----------
-- Pred --
----------
-- Subtract from the given number a number equivalent to the value of its
-- least significant bit. Given that the most significant bit represents a
-- value of 1.0 * radix ** (exp - 1), the value we want is obtained by
-- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
-- exponent by that amount.
function Pred (X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (X, X_Frac, X_Exp);
return X - Scaling (1.0, X_Exp - T'Machine_Mantissa);
end Pred;
---------------
-- Remainder --
---------------
function Remainder (X, Y : T) return T is
A : T;
B : T;
Arg : T;
P : T;
Arg_Frac : T;
P_Frac : T;
Sign_X : T;
IEEE_Rem : T;
Arg_Exp : UI;
P_Exp : UI;
K : UI;
P_Even : Boolean;
begin
if X > 0.0 then
Sign_X := 1.0;
else
Sign_X := -1.0;
end if;
Arg := abs X;
P := abs Y;
if Arg < P then
P_Even := True;
IEEE_Rem := Arg;
P_Exp := Exponent (P);
else
Decompose (Arg, Arg_Frac, Arg_Exp);
Decompose (P, P_Frac, P_Exp);
P := Compose (P_Frac, Arg_Exp);
K := UI (Arg_Exp) - UI (P_Exp);
P_Even := True;
IEEE_Rem := Arg;
for Cnt in reverse 0 .. K loop
if IEEE_Rem >= P then
P_Even := False;
IEEE_Rem := IEEE_Rem - P;
else
P_Even := True;
end if;
P := P * 0.5;
end loop;
end if;
-- That completes the calculation of modulus remainder. The final
-- step is get the IEEE remainder. Here we need to compare Rem with
-- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
-- caused by subnormal numbers
if P_Exp >= 0 then
A := IEEE_Rem;
B := abs Y * 0.5;
else
A := IEEE_Rem * 2.0;
B := abs Y;
end if;
if A > B or else (A = B and then not P_Even) then
IEEE_Rem := IEEE_Rem - abs Y;
end if;
return Sign_X * IEEE_Rem;
end Remainder;
--------------
-- Rounding --
--------------
function Rounding (X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (abs X);
Tail := abs X - Result;
if Tail >= 0.5 then
Result := Result + 1.0;
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Rounding;
-------------
-- Scaling --
-------------
-- Return x * rad ** adjustment quickly,
-- or quietly underflow to zero, or overflow naturally.
function Scaling (X : T; Adjustment : UI) return T is
begin
if X = 0.0 or else Adjustment = 0 then
return X;
end if;
-- Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n).
declare
Y : T := X;
Ex : UI := Adjustment;
-- Y * Rad ** Ex is invariant
begin
if Ex < 0 then
while Ex <= -Log_Power (Expbits'Last) loop
Y := Y * R_Neg_Power (Expbits'Last);
Ex := Ex + Log_Power (Expbits'Last);
end loop;
-- -64 < Ex <= 0
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ex <= -Log_Power (N) then
Y := Y * R_Neg_Power (N);
Ex := Ex + Log_Power (N);
end if;
-- -Log_Power (N) < Ex <= 0
end loop;
-- Ex = 0
else
-- Ex >= 0
while Ex >= Log_Power (Expbits'Last) loop
Y := Y * R_Power (Expbits'Last);
Ex := Ex - Log_Power (Expbits'Last);
end loop;
-- 0 <= Ex < 64
for N in reverse Expbits'First .. Expbits'Last - 1 loop
if Ex >= Log_Power (N) then
Y := Y * R_Power (N);
Ex := Ex - Log_Power (N);
end if;
-- 0 <= Ex < Log_Power (N)
end loop;
-- Ex = 0
end if;
return Y;
end;
end Scaling;
----------
-- Succ --
----------
-- Similar computation to that of Pred: find value of least significant
-- bit of given number, and add.
function Succ (X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (X, X_Frac, X_Exp);
return X + Scaling (1.0, X_Exp - T'Machine_Mantissa);
end Succ;
----------------
-- Truncation --
----------------
-- The basic approach is to compute
-- T'Machine (RM1 + N) - RM1.
-- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
-- This works provided that the intermediate result (RM1 + N) does not
-- have extra precision (which is why we call Machine). When we compute
-- RM1 + N, the epxonent of N will be normalized and the mantissa shifted
-- shifted appropriately so the lower order bits, which cannot contribute
-- to the integer part of N, fall off on the right. When we subtract RM1
-- again, the significant bits of N are shifted to the left, and what we
-- have is an integer, because only the first e bits are different from
-- zero (assuming binary radix here).
function Truncation (X : T) return T is
Result : T;
begin
Result := abs X;
if Result >= Radix_To_M_Minus_1 then
return Machine (X);
else
Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
if Result > abs X then
Result := Result - 1.0;
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end if;
end Truncation;
-----------------------
-- Unbiased_Rounding --
-----------------------
function Unbiased_Rounding (X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (abs X);
Tail := abs X - Result;
if Tail > 0.5 then
Result := Result + 1.0;
elsif Tail = 0.5 then
Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
end if;
if X > 0.0 then
return Result;
elsif X < 0.0 then
return -Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Unbiased_Rounding;
----------------------------
-- Package Initialization --
----------------------------
begin
-- Set Machine_Index to 1, but not in an obvious manner (see function
-- Machine to understand why we are behaving in this secretive manner)
Machine_Index := 2 ** 3;
for J in 1 .. 3 loop
Machine_Index := Machine_Index / 2;
end loop;
end System.Fat_Gen;