home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
gnat-2.06-src.tgz
/
tar.out
/
fsf
/
gnat
/
ada
/
urealp.adb
< prev
next >
Wrap
Text File
|
1996-09-28
|
39KB
|
1,333 lines
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- U R E A L P --
-- --
-- B o d y --
-- --
-- $Revision: 1.30 $ --
-- --
-- Copyright (c) 1992,1993,1994,1995 NYU, All Rights Reserved --
-- --
-- The GNAT library is free software; you can redistribute it and/or modify --
-- it under terms of the GNU Library General Public License as published by --
-- the Free Software Foundation; either version 2, or (at your option) any --
-- later version. The GNAT library is distributed in the hope that it will --
-- be useful, but WITHOUT ANY WARRANTY; without even the implied warranty --
-- of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
-- Library General Public License for more details. You should have --
-- received a copy of the GNU Library General Public License along with --
-- the GNAT library; see the file COPYING.LIB. If not, write to the Free --
-- Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --
-- --
------------------------------------------------------------------------------
with Alloc; use Alloc;
with Output; use Output;
with Table;
with Tree_IO; use Tree_IO;
package body Urealp is
Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
-- First subscript allocated in Ureal table (note that we can't just
-- add 1 to No_Ureal, since "+" means something different for Ureals!
type Ureal_Entry is record
Num : Uint;
-- Numerator (always non-negative)
Den : Uint;
-- Denominator (always non-zero, always positive if base is zero)
Rbase : Nat;
-- Base value. If Rbase is zero, then the value is simply Num / Den.
-- If Rbase is non-zero, then the value is Num / (Rbase ** Den)
Negative : Boolean;
-- Flag set if value is negative
end record;
package Ureals is new Table (
Table_Component_Type => Ureal_Entry,
Table_Index_Type => Ureal,
Table_Low_Bound => Ureal_First_Entry,
Table_Initial => Alloc_Ureals_Initial,
Table_Increment => Alloc_Ureals_Increment,
Table_Name => "Ureals");
-- The following universal reals are the values returned by the constant
-- functions. They are initialized by the initialization procedure.
UR_0 : Ureal;
UR_Tenth : Ureal;
UR_Half : Ureal;
UR_1 : Ureal;
UR_2 : Ureal;
UR_10 : Ureal;
UR_Fine_Delta : Ureal;
Normalized_Real : Ureal := No_Ureal;
-- Used to memoize Norm_Num and Norm_Den, if either of these functions
-- is called, this value is set and Normalized_Entry contains the result
-- of the normalization. On subsequent calls, this is used to avoid the
-- call to Normalize if it has already been made.
Normalized_Entry : Ureal_Entry;
-- Entry built by most recent call to Normalize
-----------------------
-- Local Subprograms --
-----------------------
function Decimal_Exponent_Hi (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or high, but never low. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Decimal_Exponent_Lo (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or low, but never high. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
-- U is a Ureal entry for which the base value is non-zero, the value
-- returned is the equivalent decimal exponent value, i.e. the value of
-- Den, adjusted as though the base were base 10. The value is rounded
-- to the nearest integer, and so can be one off.
function Is_Integer (Num, Den : Uint) return boolean;
-- Return true if the real quotient of Num / Den is an integer value
function Normalize (Val : Ureal_Entry) return Ureal_Entry;
-- Normalizes the Ureal_Entry by reducing it to lowest terms (with a
-- base value of 0).
function Same (U1, U2 : Ureal) return Boolean;
pragma Inline (Same);
-- Determines if U1 and U2 are the same Ureal. Note that we cannot use
-- the equals operator for this test, it means something else!
function Store_Ureal (Val : Ureal_Entry) return Ureal;
-- This store a new entry in the universal reals table and return
-- its index in the table.
-------------------------
-- Decimal_Exponent_Hi --
-------------------------
function Decimal_Exponent_Hi (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- For numbers in rational form, get the maximum number of digits in the
-- numerator and the minimum number of digits in the denominator, and
-- subtract. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be high, but that is acceptable
if Val.Rbase = 0 then
return UI_Decimal_Digits_Hi (Val.Num) -
UI_Decimal_Digits_Lo (Val.Den);
-- For based numbers, just subtract the decimal exponent from the
-- high estimate of the number of digits in the numerator and add
-- one to accomodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Hi (Val.Num) -
Equivalent_Decimal_Exponent (Val) + 1;
end if;
end Decimal_Exponent_Hi;
-------------------------
-- Decimal_Exponent_Lo --
-------------------------
function Decimal_Exponent_Lo (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- For numbers in rational form, get min digits in numerator, max digits
-- in denominator, and subtract and subtract one more for possible loss
-- during the division. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be low, but that is acceptable
if Val.Rbase = 0 then
return UI_Decimal_Digits_Lo (Val.Num) -
UI_Decimal_Digits_Hi (Val.Den) - 1;
-- For based numbers, just subtract the decimal exponent from the
-- low estimate of the number of digits in the numerator and subtract
-- one to accomodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Lo (Val.Num) -
Equivalent_Decimal_Exponent (Val) - 1;
end if;
end Decimal_Exponent_Lo;
-----------------
-- Denominator --
-----------------
function Denominator (Real : Ureal) return Uint is
Val : Ureal_Entry := Ureals.Table (Real);
begin
return Val.Den;
end Denominator;
---------------------------------
-- Equivalent_Decimal_Exponent --
---------------------------------
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is
-- The following table is a table of logs to the base 10
Logs : array (Nat range 2 .. 16) of Long_Float := (
2 => 0.301029995663981,
3 => 0.477121254719662,
4 => 0.602059991327962,
5 => 0.698970004336019,
6 => 0.778151250383644,
7 => 0.845098040014257,
8 => 0.903089986991944,
9 => 0.954242509439325,
10 => 1.000000000000000,
11 => 1.041392685158230,
12 => 1.079181246047620,
13 => 1.113943352306840,
14 => 1.146128035678240,
15 => 1.176091259055680,
16 => 1.204119982655920);
begin
pragma Assert (U.Rbase /= 0);
return Int (Long_Float (UI_To_Int (U.Den)) * Logs (U.Rbase));
end Equivalent_Decimal_Exponent;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Ureals.Init;
UR_0 := UR_From_Components (Uint_0, Uint_1);
UR_Half := UR_From_Components (Uint_1, Uint_1, 2);
UR_Tenth := UR_From_Components (Uint_1, Uint_1, 10);
UR_1 := UR_From_Components (Uint_1, Uint_1);
UR_2 := UR_From_Components (Uint_1, Uint_Minus_1, 2);
UR_10 := UR_From_Components (Uint_1, Uint_Minus_1, 10);
UR_Fine_Delta := UR_From_Components (Uint_1, Uint_63, 2);
end Initialize;
----------------
-- Is_Integer --
----------------
function Is_Integer (Num, Den : Uint) return Boolean is
begin
return (Num / Den) * Den = Num;
end Is_Integer;
----------
-- Mark --
----------
function Mark return Save_Mark is
begin
return Save_Mark (Ureals.Last);
end Mark;
--------------
-- Norm_Den --
--------------
function Norm_Den (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Den;
end Norm_Den;
--------------
-- Norm_Num --
--------------
function Norm_Num (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Num;
end Norm_Num;
---------------
-- Normalize --
---------------
function Normalize (Val : Ureal_Entry) return Ureal_Entry is
J, K, Tmp : Uint;
Num, Den : Uint;
begin
-- Start by setting J to the greatest of the absolute values of the
-- numerator and the denominator (taking into account the base value),
-- and K to the lesser of the two absolute values. The gcd of Num and
-- Den is the gcd of J and K.
if Val.Rbase = 0 then
J := Val.Num;
K := Val.Den;
elsif Val.Den < 0 then
J := Val.Num * Val.Rbase ** (-Val.Den);
K := Uint_1;
else
J := Val.Num;
K := Val.Rbase ** Val.Den;
end if;
Num := J;
Den := K;
if K > J then
Tmp := J;
J := K;
K := Tmp;
end if;
-- Now apply Euclid's algorithm to find the gcd, which is left in J.
while K /= 0 loop
Tmp := J mod K;
J := K;
K := Tmp;
end loop;
-- Divide numerator and denominator by gcd and return result
return (Num => Num / J,
Den => Den / J,
Rbase => 0,
Negative => Val.Negative);
end Normalize;
---------------
-- Numerator --
---------------
function Numerator (Real : Ureal) return Uint is
Val : Ureal_Entry := Ureals.Table (Real);
begin
return Val.Num;
end Numerator;
-----------
-- Rbase --
-----------
function Rbase (Real : Ureal) return Nat is
Val : Ureal_Entry := Ureals.Table (Real);
begin
return Val.Rbase;
end Rbase;
-------------
-- Release --
-------------
procedure Release (M : Save_Mark) is
begin
Ureals.Set_Last (Ureal (M));
end Release;
----------
-- Same --
----------
function Same (U1, U2 : Ureal) return Boolean is
begin
return Int (U1) = Int (U2);
end Same;
-----------------
-- Store_Ureal --
-----------------
function Store_Ureal (Val : Ureal_Entry) return Ureal is
begin
Ureals.Increment_Last;
Ureals.Table (Ureals.Last) := Val;
-- Normalize representation of signed values
if Val.Num < 0 then
Ureals.Table (Ureals.Last).Negative := True;
Ureals.Table (Ureals.Last).Num := -Val.Num;
end if;
return Ureals.Last;
end Store_Ureal;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Ureals.Tree_Read;
Tree_Read_Int (Int (UR_0));
Tree_Read_Int (Int (UR_Tenth));
Tree_Read_Int (Int (UR_Half));
Tree_Read_Int (Int (UR_1));
Tree_Read_Int (Int (UR_2));
Tree_Read_Int (Int (UR_10));
Tree_Read_Int (Int (UR_Fine_Delta));
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Ureals.Tree_Write;
Tree_Write_Int (Int (UR_0));
Tree_Write_Int (Int (UR_Tenth));
Tree_Write_Int (Int (UR_Half));
Tree_Write_Int (Int (UR_1));
Tree_Write_Int (Int (UR_2));
Tree_Write_Int (Int (UR_10));
Tree_Write_Int (Int (UR_Fine_Delta));
end Tree_Write;
----------------
-- Ureal_Half --
----------------
function Ureal_Half return Ureal is
begin
return UR_Half;
end Ureal_Half;
-----------------
-- Ureal_Tenth --
-----------------
function Ureal_Tenth return Ureal is
begin
return UR_Tenth;
end Ureal_Tenth;
-------------
-- Ureal_0 --
-------------
function Ureal_0 return Ureal is
begin
return UR_0;
end Ureal_0;
-------------
-- Ureal_1 --
-------------
function Ureal_1 return Ureal is
begin
return UR_1;
end Ureal_1;
-------------
-- Ureal_2 --
-------------
function Ureal_2 return Ureal is
begin
return UR_2;
end Ureal_2;
--------------
-- Ureal_10 --
--------------
function Ureal_10 return Ureal is
begin
return UR_10;
end Ureal_10;
----------------------
-- Ureal_Fine_Delta --
----------------------
function Ureal_Fine_Delta return Ureal is
begin
return UR_Fine_Delta;
end Ureal_Fine_Delta;
------------
-- UR_Abs --
------------
function UR_Abs (Real : Ureal) return Ureal is
Val : constant Ureal_Entry := Ureals.Table (Real);
begin
return Store_Ureal (
(Num => Val.Num,
Den => Val.Den,
Rbase => Val.Rbase,
Negative => False));
end UR_Abs;
------------
-- UR_Add --
------------
function UR_Add (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + Right;
end UR_Add;
function UR_Add (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (Right);
end UR_Add;
function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
Lval : Ureal_Entry := Ureals.Table (Left);
Rval : Ureal_Entry := Ureals.Table (Right);
Num : Uint;
begin
-- Note, in the temporary Ureal_Entry values used in this procedure,
-- we store the sign as the sign of the numerator (i.e. xxx.Num may
-- be negative, even though in stored entries this can never be so)
if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
declare
Opd_Min, Opd_Max : Ureal_Entry;
Exp_Min, Exp_Max : Uint;
begin
if Lval.Negative then
Lval.Num := (-Lval.Num);
end if;
if Rval.Negative then
Rval.Num := (-Rval.Num);
end if;
if Lval.Den < Rval.Den then
Exp_Min := Lval.Den;
Exp_Max := Rval.Den;
Opd_Min := Lval;
Opd_Max := Rval;
else
Exp_Min := Rval.Den;
Exp_Max := Lval.Den;
Opd_Min := Rval;
Opd_Max := Lval;
end if;
Num :=
Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;
if Num = 0 then
return Store_Ureal (
(Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal (
(Num => abs Num,
Den => Exp_Max,
Rbase => Lval.Rbase,
Negative => (Num < 0)));
end if;
end;
else
declare
Ln : Ureal_Entry := Normalize (Lval);
Rn : Ureal_Entry := Normalize (Rval);
begin
if Ln.Negative then
Ln.Num := (-Ln.Num);
end if;
if Rn.Negative then
Rn.Num := (-Rn.Num);
end if;
Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);
if Num = 0 then
return Store_Ureal (
(Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal (
Normalize (
(Num => abs Num,
Den => Ln.Den * Rn.Den,
Rbase => 0,
Negative => (Num < 0))));
end if;
end;
end if;
end UR_Add;
------------
-- UR_Div --
------------
function UR_Div (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) / Right;
end UR_Div;
function UR_Div (Left : Ureal; Right : Uint) return Ureal is
begin
return Left / UR_From_Uint (Right);
end UR_Div;
function UR_Div (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Rneg : constant Boolean := Rval.Negative xor Lval.Negative;
begin
pragma Assert (Rval.Num /= Uint_0);
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal (
Normalize (
(Num => Lval.Num * Rval.Den,
Den => Lval.Den * Rval.Num,
Rbase => 0,
Negative => Rneg)));
elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
return Store_Ureal (
(Num => Lval.Num / (Rval.Num * Lval.Den),
Den => (-Rval.Den),
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Lval.Num,
Den => Rval.Rbase ** (-Rval.Den) *
Rval.Num *
Lval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Lval.Num * Rval.Rbase ** Rval.Den,
Den => Rval.Num * Lval.Den,
Rbase => 0,
Negative => Rneg)));
end if;
elsif Is_Integer (Lval.Num, Rval.Num) then
if Rval.Rbase = Lval.Rbase then
return Store_Ureal (
(Num => Lval.Num / Rval.Num,
Den => Lval.Den - Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
return Store_Ureal (
(Num => (Lval.Num / Rval.Num) * Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Rbase ** (-Rval.Den);
else
Num := Lval.Num / Rval.Num;
Den := (Lval.Rbase ** Lval.Den) *
(Rval.Rbase ** (-Rval.Den));
end if;
return Store_Ureal (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg));
end;
else
return Store_Ureal (
(Num => (Lval.Num / Rval.Num) *
(Rval.Rbase ** Rval.Den),
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
end if;
else
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Num;
else
Num := Lval.Num;
Den := Rval.Num * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Rbase /= 0 then
if Rval.Den < 0 then
Den := Den * (Rval.Rbase ** (-Rval.Den));
else
Num := Num * (Rval.Rbase ** Rval.Den);
end if;
else
Num := Num * Rval.Den;
end if;
return Store_Ureal (
Normalize (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg)));
end;
end if;
end UR_Div;
-----------
-- UR_Eq --
-----------
function UR_Eq (Left, Right : Ureal) return Boolean is
begin
return not UR_Ne (Left, Right);
end UR_Eq;
---------------------
-- UR_Exponentiate --
---------------------
function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
Val : Ureal_Entry := Ureals.Table (Real);
X : Uint := abs N;
begin
-- If the exponent is negative then we raise the numerator and the
-- denominator (after normalization) to the absolute value of the
-- exponent and we return the reciprocal. An assert error will happen
-- if the numerator is zero.
if N < 0 then
pragma Assert (Val.Num /= 0);
Val := Normalize (Val);
return Store_Ureal (
(Num => Val.Den ** X,
Den => Val.Num ** X,
Rbase => 0,
Negative => Val.Negative));
-- If positive, we distinguish the case when the base is not zero, in
-- which case the new denominator is just the product of the old one
-- with the exponent,
else
if Val.Rbase /= 0 then
return Store_Ureal (
(Num => Val.Num ** X,
Den => Val.Den * X,
Rbase => Val.Rbase,
Negative => Val.Negative));
-- And when the base is zero, in which case we exponentiate
-- the old denominator.
else
return Store_Ureal (
(Num => Val.Num ** X,
Den => Val.Den ** X,
Rbase => 0,
Negative => Val.Negative));
end if;
end if;
end UR_Exponentiate;
-------------------------
-- UR_From_Components --
-------------------------
function UR_From_Components
(Num : Uint;
Den : Uint;
Rbase : Nat := 0;
Negative : Boolean := False)
return Ureal
is
begin
return Store_Ureal (
(Num => Num,
Den => Den,
Rbase => Rbase,
Negative => Negative));
end UR_From_Components;
------------------
-- UR_From_Uint --
------------------
function UR_From_Uint (UI : Uint) return Ureal is
begin
return UR_From_Components
(abs UI, Uint_1, Negative => (UI < 0));
end UR_From_Uint;
-----------
-- UR_Ge --
-----------
function UR_Ge (Left, Right : Ureal) return Boolean is
begin
return not (Left < Right);
end UR_Ge;
-----------
-- UR_Gt --
-----------
function UR_Gt (Left, Right : Ureal) return Boolean is
begin
return (Right < Left);
end UR_Gt;
--------------------
-- UR_Is_Negative --
--------------------
function UR_Is_Negative (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Negative
and then Ureals.Table (Real).Num /= 0;
end UR_Is_Negative;
--------------------
-- UR_Is_Positive --
--------------------
function UR_Is_Positive (Real : Ureal) return Boolean is
begin
return not Ureals.Table (Real).Negative
and then Ureals.Table (Real).Num /= 0;
end UR_Is_Positive;
----------------
-- UR_Is_Zero --
----------------
function UR_Is_Zero (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Num = 0;
end UR_Is_Zero;
-----------
-- UR_Le --
-----------
function UR_Le (Left, Right : Ureal) return Boolean is
begin
return not (Right < Left);
end UR_Le;
-----------
-- UR_Lt --
-----------
function UR_Lt (Left, Right : Ureal) return Boolean is
begin
-- An operand is not less than itself
if Same (Left, Right) then
return False;
-- Deal with zero cases
elsif UR_Is_Zero (Left) then
return UR_Is_Positive (Right);
elsif UR_Is_Zero (Right) then
return Ureals.Table (Left).Negative;
-- Different signs are decisive (note we dealt with zero cases)
elsif Ureals.Table (Left).Negative
and then not Ureals.Table (Right).Negative
then
return True;
elsif not Ureals.Table (Left).Negative
and then Ureals.Table (Right).Negative
then
return False;
-- Signs are same, do rapid check based on worst case estimates of
-- decimal exponent, which will often be decisive. Precise test
-- depends on whether operands are positive or negative.
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
return UR_Is_Positive (Left);
elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
return UR_Is_Negative (Left);
-- If we fall through, full gruesome test is required. This happens
-- if the numbers are close together, or in some wierd (/=10) base.
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : Ureal_Entry;
Rval : Ureal_Entry;
Result : Boolean;
begin
Lval := Ureals.Table (Left);
Rval := Ureals.Table (Right);
-- An optimization. If both numbers are based, then subtract
-- common value of base to avoid unnecessarily giant numbers
if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
if Lval.Den < Rval.Den then
Rval.Den := Rval.Den - Lval.Den;
Lval.Den := Uint_0;
else
Lval.Den := Lval.Den - Rval.Den;
Rval.Den := Uint_0;
end if;
end if;
Lval := Normalize (Lval);
Rval := Normalize (Rval);
if Lval.Negative then
Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
else
Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
end if;
Release (Imrk);
Release (Rmrk);
return Result;
end;
end if;
end UR_Lt;
------------
-- UR_Max --
------------
function UR_Max (Left, Right : Ureal) return Ureal is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end UR_Max;
------------
-- UR_Min --
------------
function UR_Min (Left, Right : Ureal) return Ureal is
begin
if Left <= Right then
return Left;
else
return Right;
end if;
end UR_Min;
------------
-- UR_Mul --
------------
function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) * Right;
end UR_Mul;
function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
begin
return Left * UR_From_Uint (Right);
end UR_Mul;
function UR_Mul (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Num : Uint := Lval.Num * Rval.Num;
Den : Uint;
Rneg : constant Boolean := Lval.Negative xor Rval.Negative;
begin
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal (
Normalize (
(Num => Num,
Den => Lval.Den * Rval.Den,
Rbase => 0,
Negative => Rneg)));
elsif Is_Integer (Num, Lval.Den) then
return Store_Ureal (
(Num => Num / Lval.Den,
Den => Rval.Den,
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Num * (Rval.Rbase ** (-Rval.Den)),
Den => Lval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Num,
Den => Lval.Den * (Rval.Rbase ** Rval.Den),
Rbase => 0,
Negative => Rneg)));
end if;
elsif Lval.Rbase = Rval.Rbase then
return Store_Ureal (
(Num => Num,
Den => Lval.Den + Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
if Is_Integer (Num, Rval.Den) then
return Store_Ureal (
(Num => Num / Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Lval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Num * (Lval.Rbase ** (-Lval.Den)),
Den => Rval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Num,
Den => Rval.Den * (Lval.Rbase ** Lval.Den),
Rbase => 0,
Negative => Rneg)));
end if;
else
Den := Uint_1;
if Lval.Den < 0 then
Num := Num * (Lval.Rbase ** (-Lval.Den));
else
Den := Den * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Den < 0 then
Num := Num * (Rval.Rbase ** (-Rval.Den));
else
Den := Den * (Rval.Rbase ** Rval.Den);
end if;
return Store_Ureal (
Normalize (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg)));
end if;
end UR_Mul;
-----------
-- UR_Ne --
-----------
function UR_Ne (Left, Right : Ureal) return Boolean is
begin
-- Quick processing for case of identical Ureal values (note that
-- this also deals with comparing two No_Ureal values).
if Same (Left, Right) then
return False;
-- Deal with case of one or other operand is No_Ureal, but not both
elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
return True;
-- Do quick check based on number of decimal digits
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
then
return True;
-- Otherwise full comparison is required
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : constant Ureal_Entry := Normalize (Ureals.Table (Left));
Rval : constant Ureal_Entry := Normalize (Ureals.Table (Right));
Result : Boolean;
begin
if UR_Is_Zero (Left) then
return not UR_Is_Zero (Right);
elsif UR_Is_Zero (Right) then
return not UR_Is_Zero (Left);
-- Both operands are non-zero
else
Result :=
Rval.Negative /= Lval.Negative
or else Rval.Num /= Lval.Num
or else Rval.Den /= Lval.Den;
Release (Imrk);
Release (Rmrk);
return Result;
end if;
end;
end if;
end UR_Ne;
---------------
-- UR_Negate --
---------------
function UR_Negate (Real : Ureal) return Ureal is
begin
return Store_Ureal (
(Num => Ureals.Table (Real).Num,
Den => Ureals.Table (Real).Den,
Rbase => Ureals.Table (Real).Rbase,
Negative => not Ureals.Table (Real).Negative));
end UR_Negate;
------------
-- UR_Sub --
------------
function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + UR_Negate (Right);
end UR_Sub;
function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (-Right);
end UR_Sub;
function UR_Sub (Left, Right : Ureal) return Ureal is
begin
return Left + UR_Negate (Right);
end UR_Sub;
----------------
-- UR_To_Uint --
----------------
function UR_To_Uint (Real : Ureal) return Uint is
Val : Ureal_Entry := Normalize (Ureals.Table (Real));
Res : Uint;
begin
Res := (Val.Num + (Val.Den / 2)) / Val.Den;
if Val.Negative then
return UI_Negate (Res);
else
return Res;
end if;
end UR_To_Uint;
--------------
-- UR_Trunc --
--------------
function UR_Trunc (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
begin
return Val.Num / Val.Den;
end UR_Trunc;
--------------
-- UR_Write --
--------------
procedure UR_Write (Real : Ureal) is
Val : constant Ureal_Entry := Ureals.Table (Real);
begin
-- If value is negative, we precede the constant by a minus sign
-- and add an extra layer of parentheses on the outside since the
-- minus sign is part of the value, not a negation operator.
if Val.Negative then
Write_Str ("(-");
end if;
-- Constants in base 10 can be written in normal Ada literal style
-- If the literal is negative enclose in parens to emphasize that
-- it is part of the constant, and not a separate negation operator
if Val.Rbase = 10 then
UI_Write (Val.Num / 10);
Write_Char ('.');
UI_Write (Val.Num mod 10);
if Val.Den /= 0 then
Write_Char ('E');
UI_Write (1 - Val.Den);
end if;
-- Constants in a base other than 10 can still be easily written
-- in normal Ada literal style if the numerator is one.
elsif Val.Rbase /= 0 and then Val.Num = 1 then
Write_Int (Val.Rbase);
Write_Str ("#1.0#E");
UI_Write (-Val.Den);
-- Other constants with a base other than 10 are written using one
-- of the following forms, depending on the sign of the number
-- and the sign of the exponent (= minus denominator value)
-- (numerator.0*base**exponent)
-- (numerator.0*base**(-exponent))
elsif Val.Rbase /= 0 then
Write_Char ('(');
UI_Write (Val.Num);
Write_Str (".0*");
Write_Int (Val.Rbase);
Write_Str ("**");
if Val.Den <= 0 then
UI_Write (-Val.Den);
else
Write_Str ("(-");
UI_Write (Val.Den);
Write_Char (')');
end if;
Write_Char (')');
-- Rational constants with a denominator of 1 can be written as
-- a real literal for the numerator integer.
elsif Val.Den = 1 then
UI_Write (Val.Num);
Write_Str (".0");
-- Non-based (rational) constants are written in (num/den) style
else
Write_Char ('(');
UI_Write (Val.Num);
Write_Str (".0/");
UI_Write (Val.Den);
Write_Str (".0)");
end if;
-- Add trailing paren for negative values
if Val.Negative then
Write_Char (')');
end if;
end UR_Write;
end Urealp;