home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
m4-1.4-src.tgz
/
tar.out
/
fsf
/
m4
/
src
/
stackovf.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
12KB
|
393 lines
/* Detect stack overflow (when getrlimit and sigaction or sigvec are available)
Copyright (C) 1993, 1994 Free Software Foundation, Inc.
Jim Avera <jima@netcom.com>, October 1993.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Compiled only when USE_STACKOVF is defined, which itself requires
getrlimit with the RLIMIT_STACK option, and support for alternate
signal stacks using either SVR4 or BSD interfaces.
This should compile on ANY system which supports either sigaltstack()
or sigstack(), with or without <siginfo.h> or another way to determine
the fault address.
There is no completely portable way to determine if a SIGSEGV signal
indicates a stack overflow. The fault address can be used to infer
this. However, the fault address is passed to the signal handler in
different ways on various systems. One of three methods are used to
determine the fault address:
1. The siginfo parameter (with siginfo.h, i.e., SVR4).
2. 4th "addr" parameter (assumed if struct sigcontext is defined,
i.e., SunOS 4.x/BSD).
3. None (if no method is available). This case just prints a
message before aborting with a core dump. That way the user at
least knows that it *might* be a recursion problem.
Jim Avera <jima@netcom.com> writes, on Tue, 5 Oct 93 19:27 PDT:
"I got interested finding out how a program could catch and
diagnose its own stack overflow, and ended up modifying m4 to do
this. Now it prints a nice error message and exits.
How it works: SIGSEGV is caught using a separate signal stack. The
signal handler declares a stack overflow if the fault address is
near the end of the stack region, or if the maximum VM address
space limit has been reached. Otherwise, it returns to re-execute
the instruction with SIG_DFL set, so that any real bugs cause a
core dump as usual."
Jim Avera <jima@netcom.com> writes, on Fri, 24 Jun 94 12:14 PDT:
"The stack-overflow detection code would still be needed to avoid a
SIGSEGV abort if swap space was exhausted at the moment the stack
tried to grow. This is probably unlikely to occur with the
explicit nesting limit option of GNU m4."
Jim Avera <jima@netcom.com> writes, on Wed, 6 Jul 1994 14:41 PDT:
"When a stack overflow occurs, a SIGSEGV signal is sent, which by
default aborts the process with a core dump.
The code in stackovf.c catches SIGSEGV using a separate signal
stack. The signal handler determines whether or not the SIGSEGV
arose from a stack overflow. If it is a stack overflow, an
external function is called (which, in m4, prints a message an
exits). Otherwise the SIGSEGV represents an m4 bug, and the signal
is re-raised with SIG_DFL set, which results in an abort and core
dump in the usual way. It seems important (to me) that internal m4
bugs not be reported as user recursion errors, or vice-versa." */
#define DEBUG_STACKOVF
#include "m4.h" /* stdlib.h, xmalloc() */
#include <assert.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <signal.h>
#if HAVE_SIGINFO_H
# include <siginfo.h>
#endif
#ifndef SIGSTKSZ
# define SIGSTKSZ 8192
#endif
/* If the trap address is within STACKOVF_DETECT bytes of the calculated
stack limit, we diagnose a stack overflow. This must be large enough
to cover errors in our estimatation of the limit address, and to
account for the maximum size of local variables (the amount the
trapping reference might exceed the stack limit). Also, some machines
may report an arbitrary address within the same page frame.
If the value is too large, we might call some other SIGSEGV a stack
overflow, masking a bug. */
#ifndef STACKOVF_DETECT
# define STACKOVF_DETECT 16384
#endif
/* Giving a hand to ansi2knr... */
typedef void (*handler_t) _((void));
static const char *stackbot;
static const char *stackend;
static const char *arg0;
static handler_t stackovf_handler;
/* The following OS-independent procedure is called from the SIGSEGV
signal handler. The signal handler obtains information about the trap
in an OS-dependent manner, and passes a parameter with the meanings as
explained below.
If the OS explicitly identifies a stack overflow trap, either pass
PARAM_STACKOVF if a stack overflow, or pass PARAM_NOSTACKOVF if not
(id est, it is a random bounds violation). Otherwise, if the fault
address is available, pass the fault address. Otherwise (if no
information is available), pass NULL.
Not given an explicit indication, we compare the fault address with
the estimated stack limit, and test to see if overall VM space is
exhausted.
If a stack overflow is identified, then the external *stackovf_handler
function is called, which should print an error message and exit. If
it is NOT a stack overflow, then we silently abort with a core dump by
returning to re-raise the SIGSEGV with SIG_DFL set. If indeterminate,
then we do not call *stackovf_handler, but instead print an ambiguous
message and abort with a core dump. This only occurs on systems which
provide no information, but is better than nothing. */
#define PARAM_STACKOVF ((const char *) 1)
#define PARAM_NOSTACKOVF ((const char *) 2)
static void
process_sigsegv (int signo, const char *p)
{
long diff;
diff = (p - stackend);
#ifdef DEBUG_STKOVF
{
char buf[140];
sprintf (buf, "process_sigsegv: p=%#lx stackend=%#lx diff=%ld bot=%#lx\n",
(long) p, (long) stackend, (long) diff, (long) stackbot);
write (2, buf, strlen (buf));
}
#endif
if (p != PARAM_NOSTACKOVF)
{
if ((long) sbrk (8192) == (long) -1)
{
/* sbrk failed. Assume the RLIMIT_VMEM prevents expansion even
if the stack limit has not been reached. */
write (2, "VMEM limit exceeded?\n", 21);
p = PARAM_STACKOVF;
}
if (diff >= -STACKOVF_DETECT && diff <= STACKOVF_DETECT)
{
/* The fault address is "sufficiently close" to the stack lim. */
p = PARAM_STACKOVF;
}
if (p == PARAM_STACKOVF)
{
/* We have determined that this is indeed a stack overflow. */
(*stackovf_handler) (); /* should call exit() */
}
}
if (p == NULL)
{
const char *cp;
cp = "\
Memory bounds violation detected (SIGSEGV). Either a stack overflow\n\
occurred, or there is a bug in ";
write (2, cp, strlen (cp));
write (2, arg0, strlen (arg0));
cp = ". Check for possible infinite recursion.\n";
write (2, cp, strlen (cp));
}
/* Return to re-execute the instruction which caused the trap with
SIGSEGV set to SIG_DFL. An abort with core dump should occur. */
signal (signo, SIG_DFL);
}
#if HAVE_SIGINFO_H
/* SVR4. */
static void
sigsegv_handler (int signo, siginfo_t * ip)
{
process_sigsegv
(signo, (ip != (siginfo_t *) 0
&& ip->si_signo == SIGSEGV ? (char *) ip->si_addr : NULL));
}
#else /* not HAVE_SIGINFO_H */
#if HAVE_SIGCONTEXT
/* SunOS 4.x (and BSD?). (not tested) */
static void
sigsegv_handler (int signo, int code, struct sigcontext *scp, char *addr)
{
process_sigsegv (signo, addr);
}
#else /* not HAVE_SIGCONTEXT */
/* OS provides no information. */
static void
sigsegv_handler (int signo)
{
process_sigsegv (signo, NULL);
}
#endif /* not HAVE_SIGCONTEXT */
#endif /* not HAVE_SIGINFO */
/* Arrange to trap a stack-overflow and call a specified handler. The
call is on a dedicated signal stack.
argv and envp are as passed to main().
If a stack overflow is not detected, then the SIGSEGV is re-raised
with action set to SIG_DFL, causing an abort and coredump in the usual
way.
Detection of a stack overflow depends on the trap address being near
the stack limit address. The stack limit can not be directly
determined in a portable way, but we make an estimate based on the
address of the argv and environment vectors, their contents, and the
maximum stack size obtained using getrlimit. */
void
setup_stackovf_trap (char *const *argv, char *const *envp, handler_t handler)
{
struct rlimit rl;
rlim_t stack_len;
int grows_upward;
register char *const *v;
register char *p;
#if HAVE_SIGACTION && defined(SA_ONSTACK)
struct sigaction act;
#else
struct sigvec vec;
#endif
grows_upward = ((char *) argv < (char *) &stack_len);
arg0 = argv[0];
stackovf_handler = handler;
/* Calculate the approximate expected addr for a stack-ovf trap. */
if (getrlimit (RLIMIT_STACK, &rl) < 0)
error (1, errno, "getrlimit");
stack_len = (rl.rlim_cur < rl.rlim_max ? rl.rlim_cur : rl.rlim_max);
stackbot = (char *) argv;
grows_upward = ((char *) &stack_len > stackbot);
if (grows_upward)
{
/* Grows toward increasing addresses. */
for (v = argv; (p = (char *) *v) != (char *) 0; v++)
{
if (p < stackbot)
stackbot = p;
}
if ((char *) envp < stackbot)
stackbot = (char *) envp;
for (v = envp; (p = (char *) *v) != (char *) 0; v++)
{
if (p < stackbot)
stackbot = p;
}
stackend = stackbot + stack_len;
}
else
{
/* The stack grows "downward" (toward decreasing addresses). */
for (v = argv; (p = (char *) *v) != (char *) 0; v++)
{
if (p > stackbot)
stackbot = p;
}
if ((char *) envp > stackbot)
stackbot = (char *) envp;
for (v = envp; (p = (char *) *v) != (char *) 0; v++)
{
if (p > stackbot)
stackbot = p;
}
stackend = stackbot - stack_len;
}
/* Allocate a separate signal-handler stack. */
#if HAVE_SIGALTSTACK && (defined(HAVE_SIGINFO_H) || !HAVE_SIGSTACK)
/* Use sigaltstack only if siginfo is available, unless there is no
choice. */
{
stack_t ss;
ss.ss_size = SIGSTKSZ;
ss.ss_sp = xmalloc ((unsigned) ss.ss_size);
ss.ss_flags = 0;
if (sigaltstack (&ss, (stack_t *) 0) < 0)
error (1, errno, "sigaltstack");
}
#else /* not HAVE_SIGALTSTACK || not HAVE_SIGINFO_H && HAVE_SIGSTACK */
#if HAVE_SIGSTACK
{
struct sigstack ss;
char *stackbuf = xmalloc (2 * SIGSTKSZ);
ss.ss_sp = stackbuf + SIGSTKSZ;
ss.ss_onstack = 0;
if (sigstack (&ss, NULL) < 0)
error (1, errno, "sigstack");
}
#else /* not HAVE_SIGSTACK */
Error - Do not know how to set up stack-ovf trap handler...
#endif /* not HAVE_SIGSTACK */
#endif /* not HAVE_SIGALTSTACK || not HAVE_SIGINFO_H && HAVE_SIGSTACK */
/* Arm the SIGSEGV signal handler. */
#if HAVE_SIGACTION && defined(SA_ONSTACK)
sigaction (SIGSEGV, NULL, &act);
act.sa_handler = (RETSIGTYPE (*) _((int))) sigsegv_handler;
sigemptyset (&act.sa_mask);
act.sa_flags = (SA_ONSTACK
#ifdef SA_RESETHAND
| SA_RESETHAND
#endif
#ifdef SA_SIGINFO
| SA_SIGINFO
#endif
);
if (sigaction (SIGSEGV, &act, NULL) < 0)
error (1, errno, "sigaction");
#else /* not HAVE_SIGACTION */
#if HAVE_SIGVEC && defined(SV_ONSTACK)
vec.sv_handler = (RETSIGTYPE (*)_ ((int))) sigsegv_handler;
vec.sv_mask = 0;
vec.sv_flags = (SV_ONSTACK
#ifdef SV_RESETHAND
| SV_RESETHAND
#endif
);
if (sigvec (SIGSEGV, &vec, NULL) < 0)
error (1, errno, "sigvec");
#else /* not HAVE_SIGVEC && defined(SV_ONSTACK) */
Error - Do not know how to catch signals on an alternate stack...
#endif /* HAVE_SIGVEC && defined(SV_ONSTACK) */
#endif /* HAVE_SIGALTSTACK && defined(SA_ONSTACK) */
}