home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-bin.lha
/
include
/
octave
/
Array.cc
next >
Wrap
C/C++ Source or Header
|
1996-10-12
|
16KB
|
1,007 lines
// Template array classes -*- C++ -*-
/*
Copyright (C) 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include "Array.h"
/*
* The real representation of all arrays.
*/
template <class T>
ArrayRep<T>::ArrayRep (T *d, int l)
{
data = d;
len = l;
}
template <class T>
ArrayRep<T>::ArrayRep (void)
{
len = 0;
data = (T *) 0;
}
template <class T>
ArrayRep<T>::ArrayRep (int n)
{
len = n;
data = new T [len];
}
template <class T>
ArrayRep<T>::ArrayRep (const ArrayRep<T>& a)
{
len = a.len;
count = a.count;
data = new T [len];
for (int i = 0; i < len; i++)
data[i] = a.data[i];
}
template <class T>
ArrayRep<T>::~ArrayRep (void)
{
delete [] data;
data = (T *) 0;
}
template <class T>
int
ArrayRep<T>::length (void) const
{
return len;
}
template <class T>
T&
ArrayRep<T>::elem (int n)
{
return data[n];
}
template <class T>
T
ArrayRep<T>::elem (int n) const
{
return data[n];
}
/*
* One dimensional array class. Handles the reference counting for
* all the derived classes.
*/
template <class T>
Array<T>::Array (T *d, int l)
{
rep = new ArrayRep<T> (d, l);
rep->count = 1;
}
template <class T>
Array<T>::Array (void)
{
rep = new ArrayRep<T>;
rep->count = 1;
}
template <class T>
Array<T>::Array (int n)
{
rep = new ArrayRep<T> (n);
rep->count = 1;
}
template <class T>
Array<T>::Array (int n, const T& val)
{
rep = new ArrayRep<T> (n);
rep->count = 1;
for (int i = 0; i < n; i++)
rep->data[i] = val;
}
template <class T>
Array<T>::Array (const Array<T>& a)
{
rep = a.rep;
rep->count++;
}
template <class T>
Array<T>::~Array (void)
{
if (--rep->count <= 0)
delete rep;
}
template <class T>
Array<T>&
Array<T>::operator = (const Array<T>& a)
{
if (this != &a)
{
if (--rep->count <= 0)
delete rep;
rep = a.rep;
rep->count++;
}
return *this;
}
template <class T>
int
Array<T>::capacity (void) const
{
return rep->length ();
}
template <class T>
int
Array<T>::length (void) const
{
return rep->length ();
}
template <class T>
T&
Array<T>::elem (int n)
{
if (rep->count > 1)
{
--rep->count;
rep = new ArrayRep<T> (*rep);
rep->count = 1;
}
return rep->elem (n);
}
template <class T>
T&
Array<T>::checkelem (int n)
{
if (n < 0 || n >= rep->length ())
{
(*current_liboctave_error_handler) ("range error");
static T foo;
return foo;
}
return elem (n);
}
template <class T>
T&
Array<T>::operator () (int n)
{
return checkelem (n);
}
template <class T>
T&
Array<T>::xelem (int n)
{
return rep->elem (n);
}
template <class T>
T
Array<T>::elem (int n) const
{
return rep->elem (n);
}
template <class T>
T
Array<T>::checkelem (int n) const
{
if (n < 0 || n >= rep->length ())
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return elem (n);
}
template <class T>
T
Array<T>::operator () (int n) const
{
return checkelem (n);
}
template <class T>
void
Array<T>::resize (int n)
{
if (n < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimension");
return;
}
if (n == length ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_len = length ();
rep = new ArrayRep<T> (n);
rep->count = 1;
if (old_data && old_len > 0)
{
int min_len = old_len < n ? old_len : n;
for (int i = 0; i < min_len; i++)
xelem (i) = old_data[i];
}
if (--old_rep->count <= 0)
delete old_rep;
}
template <class T>
void
Array<T>::resize (int n, const T& val)
{
if (n < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimension");
return;
}
if (n == length ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_len = length ();
rep = new ArrayRep<T> (n);
rep->count = 1;
int min_len = old_len < n ? old_len : n;
if (old_data && old_len > 0)
{
for (int i = 0; i < min_len; i++)
xelem (i) = old_data[i];
}
for (int i = old_len; i < n; i++)
xelem (i) = val;
if (--old_rep->count <= 0)
delete old_rep;
}
template <class T>
const T *
Array<T>::data (void) const
{
return rep->data;
}
template <class T>
T *
Array<T>::fortran_vec (void)
{
if (rep->count > 1)
{
--rep->count;
rep = new ArrayRep<T> (*rep);
rep->count = 1;
}
return rep->data;
}
/*
* Two dimensional array class.
*/
template <class T>
Array2<T>::Array2 (T *d, int n, int m) : Array<T> (d, n*m)
{
d1 = n;
d2 = m;
}
template <class T>
Array2<T>::Array2 (void) : Array<T> ()
{
d1 = 0;
d2 = 0;
}
template <class T>
Array2<T>::Array2 (int n, int m) : Array<T> (n*m)
{
d1 = n;
d2 = m;
}
template <class T>
Array2<T>::Array2 (int n, int m, const T& val) : Array<T> (n*m, val)
{
d1 = n;
d2 = m;
}
template <class T>
Array2<T>::Array2 (const Array2<T>& a) : Array<T> (a)
{
d1 = a.d1;
d2 = a.d2;
}
template <class T>
Array2<T>::Array2 (const DiagArray<T>& a)
: Array<T> (a.rows () * a.cols (), T (0))
{
for (int i = 0; i < a.length (); i++)
elem (i, i) = a.elem (i, i);
}
template <class T>
Array2<T>&
Array2<T>::operator = (const Array2<T>& a)
{
if (this != &a)
{
Array<T>::operator = (a);
d1 = a.d1;
d2 = a.d2;
}
return *this;
}
template <class T>
int
Array2<T>::dim1 (void) const
{
return d1;
}
template <class T>
int
Array2<T>::dim2 (void) const
{
return d2;
}
template <class T>
int
Array2<T>::rows (void) const
{
return d1;
}
template <class T>
int
Array2<T>::cols (void) const
{
return d2;
}
template <class T>
int
Array2<T>::columns (void) const
{
return d2;
}
template <class T>
T&
Array2<T>::elem (int i, int j)
{
return Array<T>::elem (d1*j+i);
}
template <class T>
T&
Array2<T>::checkelem (int i, int j)
{
if (i < 0 || j < 0 || i >= d1 || j >= d2)
{
(*current_liboctave_error_handler) ("range error");
static T foo;
return foo;
}
return Array<T>::elem (d1*j+i);
}
template <class T>
T&
Array2<T>::operator () (int i, int j)
{
if (i < 0 || j < 0 || i >= d1 || j >= d2)
{
(*current_liboctave_error_handler) ("range error");
static T foo;
return foo;
}
return Array<T>::elem (d1*j+i);
}
template <class T>
T&
Array2<T>::xelem (int i, int j)
{
return Array<T>::xelem (d1*j+i);
}
template <class T>
T
Array2<T>::elem (int i, int j) const
{
return Array<T>::elem (d1*j+i);
}
template <class T>
T
Array2<T>::checkelem (int i, int j) const
{
if (i < 0 || j < 0 || i >= d1 || j >= d2)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return Array<T>::elem (d1*j+i);
}
template <class T>
T
Array2<T>::operator () (int i, int j) const
{
if (i < 0 || j < 0 || i >= d1 || j >= d2)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return Array<T>::elem (d1*j+i);
}
template <class T>
void
Array2<T>::resize (int r, int c)
{
if (r < 0 || c < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimension");
return;
}
if (r == dim1 () && c == dim2 ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_d1 = dim1 ();
int old_d2 = dim2 ();
int old_len = length ();
rep = new ArrayRep<T> (r*c);
rep->count = 1;
d1 = r;
d2 = c;
if (old_data && old_len > 0)
{
int min_r = old_d1 < r ? old_d1 : r;
int min_c = old_d2 < c ? old_d2 : c;
for (int j = 0; j < min_c; j++)
for (int i = 0; i < min_r; i++)
xelem (i, j) = old_data[old_d1*j+i];
}
if (--old_rep->count <= 0)
delete old_rep;
}
template <class T>
void
Array2<T>::resize (int r, int c, const T& val)
{
if (r < 0 || c < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimension");
return;
}
if (r == dim1 () && c == dim2 ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_d1 = dim1 ();
int old_d2 = dim2 ();
int old_len = length ();
rep = new ArrayRep<T> (r*c);
rep->count = 1;
d1 = r;
d2 = c;
int min_r = old_d1 < r ? old_d1 : r;
int min_c = old_d2 < c ? old_d2 : c;
int i, j;
if (old_data && old_len > 0)
{
for (j = 0; j < min_c; j++)
for (i = 0; i < min_r; i++)
xelem (i, j) = old_data[old_d1*j+i];
}
for (j = 0; j < min_c; j++)
for (i = min_r; i < r; i++)
xelem (i, j) = val;
for (j = min_c; j < c; j++)
for (i = 0; i < r; i++)
xelem (i, j) = val;
if (--old_rep->count <= 0)
delete old_rep;
}
/*
* Three dimensional array class.
*/
template <class T>
Array3<T>::Array3 (T *d, int n, int m, int k) : Array2<T> (d, n, m*k)
{
d2 = m;
d3 = k;
}
template <class T>
Array3<T>::Array3 (void) : Array2<T> ()
{
d2 = 0;
d3 = 0;
}
template <class T>
Array3<T>::Array3 (int n, int m, int k) : Array2<T> (n, m*k)
{
d2 = m;
d3 = k;
}
template <class T>
Array3<T>::Array3 (int n, int m, int k, const T& val) : Array2<T> (n, m*k, val)
{
d2 = m;
d3 = k;
}
template <class T>
Array3<T>::Array3 (const Array3<T>& a) : Array2<T> (a)
{
d2 = a.d2;
d3 = a.d3;
}
template <class T>
Array3<T>&
Array3<T>::operator = (const Array3<T>& a)
{
if (this != &a)
{
Array<T>::operator = (a);
d1 = a.d1;
d2 = a.d2;
d3 = a.d3;
}
return *this;
}
template <class T>
int
Array3<T>::dim3 (void) const
{
return d3;
}
template <class T>
T&
Array3<T>::elem (int i, int j, int k)
{
return Array2<T>::elem (i, d2*k+j);
}
template <class T>
T&
Array3<T>::checkelem (int i, int j, int k)
{
if (i < 0 || j < 0 || k < 0 || i >= d1 || j >= d2 || k >= d3)
{
(*current_liboctave_error_handler) ("range error");
static T foo;
return foo;
}
return Array2<T>::elem (i, d1*k+j);
}
template <class T>
T&
Array3<T>::operator () (int i, int j, int k)
{
if (i < 0 || j < 0 || k < 0 || i >= d1 || j >= d2 || k >= d3)
{
(*current_liboctave_error_handler) ("range error");
static T foo;
return foo;
}
return Array2<T>::elem (i, d2*k+j);
}
template <class T>
T&
Array3<T>::xelem (int i, int j, int k)
{
return Array2<T>::xelem (i, d2*k+j);
}
template <class T>
T
Array3<T>::elem (int i, int j, int k) const
{
return Array2<T>::elem (i, d2*k+j);
}
template <class T>
T
Array3<T>::checkelem (int i, int j, int k) const
{
if (i < 0 || j < 0 || k < 0 || i >= d1 || j >= d2 || k >= d3)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return Array2<T>::elem (i, d1*k+j);
}
template <class T>
T
Array3<T>::operator () (int i, int j, int k) const
{
if (i < 0 || j < 0 || k < 0 || i >= d1 || j >= d2 || k >= d3)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return Array2<T>::elem (i, d2*k+j);
}
template <class T>
void
Array3<T>::resize (int n, int m, int k)
{
assert (0); /* XXX FIXME XXX */
}
template <class T>
void
Array3<T>::resize (int n, int m, int k, const T& val)
{
assert (0); /* XXX FIXME XXX */
}
/*
* A two-dimensional array with diagonal elements only.
*/
template <class T>
DiagArray<T>::DiagArray (T *d, int r, int c) : Array<T> (d, r < c ? r : c)
{
nr = r;
nc = c;
}
template <class T>
DiagArray<T>::DiagArray (void) : Array<T> ()
{
nr = 0;
nc = 0;
}
template <class T>
DiagArray<T>::DiagArray (int n) : Array<T> (n)
{
nr = n;
nc = n;
}
template <class T>
DiagArray<T>::DiagArray (int n, const T& val) : Array<T> (n, val)
{
nr = nc = n;
}
template <class T>
DiagArray<T>::DiagArray (int r, int c) : Array<T> (r < c ? r : c)
{
nr = r;
nc = c;
}
template <class T>
DiagArray<T>::DiagArray (int r, int c, const T& val)
: Array<T> (r < c ? r : c, val)
{
nr = r;
nc = c;
}
template <class T>
DiagArray<T>::DiagArray (const Array<T>& a) : Array<T> (a)
{
nr = nc = a.length ();
}
template <class T>
DiagArray<T>::DiagArray (const DiagArray<T>& a) : Array<T> (a)
{
nr = a.nr;
nc = a.nc;
}
template <class T>
DiagArray<T>&
DiagArray<T>::operator = (const DiagArray<T>& a)
{
if (this != &a)
{
Array<T>::operator = (a);
nr = a.nr;
nc = a.nc;
}
return *this;
}
template <class T>
int
DiagArray<T>::dim1 (void) const
{
return nr;
}
template <class T>
int
DiagArray<T>::dim2 (void) const
{
return nc;
}
template <class T>
int
DiagArray<T>::rows (void) const
{
return nr;
}
template <class T>
int
DiagArray<T>::cols (void) const
{
return nc;
}
template <class T>
int
DiagArray<T>::columns (void) const
{
return nc;
}
#if 1
template <class T>
T&
DiagArray<T>::elem (int r, int c)
{
static T foo (0);
return (r == c) ? Array<T>::elem (r) : foo;
}
template <class T>
T&
DiagArray<T>::checkelem (int r, int c)
{
static T foo (0);
if (r < 0 || c < 0 || r >= nr || c >= nc)
{
(*current_liboctave_error_handler) ("range error");
return foo;
}
return (r == c) ? Array<T>::elem (r) : foo;
}
template <class T>
T&
DiagArray<T>::operator () (int r, int c)
{
static T foo (0);
if (r < 0 || c < 0 || r >= nr || c >= nc)
{
(*current_liboctave_error_handler) ("range error");
return foo;
}
return (r == c) ? Array<T>::elem (r) : foo;
}
#endif
template <class T>
T&
DiagArray<T>::xelem (int r, int c)
{
static T foo (0);
return (r == c) ? Array<T>::xelem (r) : foo;
}
template <class T>
T
DiagArray<T>::elem (int r, int c) const
{
return (r == c) ? Array<T>::elem (r) : T (0);
}
template <class T>
T
DiagArray<T>::checkelem (int r, int c) const
{
if (r < 0 || c < 0 || r >= nr || c >= nc)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return (r == c) ? Array<T>::elem (r) : T (0);
}
template <class T>
T
DiagArray<T>::operator () (int r, int c) const
{
if (r < 0 || c < 0 || r >= nr || c >= nc)
{
(*current_liboctave_error_handler) ("range error");
T foo;
return foo;
}
return (r == c) ? Array<T>::elem (r) : T (0);
}
template <class T>
void
DiagArray<T>::resize (int r, int c)
{
if (r < 0 || c < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimensions");
return;
}
if (r == dim1 () && c == dim2 ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_len = length ();
int new_len = r < c ? r : c;
rep = new ArrayRep<T> (new_len);
rep->count = 1;
nr = r;
nc = c;
if (old_data && old_len > 0)
{
int min_len = old_len < new_len ? old_len : new_len;
for (int i = 0; i < min_len; i++)
xelem (i, i) = old_data[i];
}
if (--old_rep->count <= 0)
delete old_rep;
}
template <class T>
void
DiagArray<T>::resize (int r, int c, const T& val)
{
if (r < 0 || c < 0)
{
(*current_liboctave_error_handler)
("can't resize to negative dimensions");
return;
}
if (r == dim1 () && c == dim2 ())
return;
ArrayRep<T> *old_rep = rep;
const T *old_data = data ();
int old_len = length ();
int new_len = r < c ? r : c;
rep = new ArrayRep<T> (new_len);
rep->count = 1;
nr = r;
nc = c;
int min_len = old_len < new_len ? old_len : new_len;
if (old_data && old_len > 0)
{
for (int i = 0; i < min_len; i++)
xelem (i, i) = old_data[i];
}
for (int i = min_len; i < new_len; i++)
xelem (i, i) = val;
if (--old_rep->count <= 0)
delete old_rep;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/