home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
dld
/
dld.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
61KB
|
2,208 lines
/* dld -- dynamic link/unlink editor for C
Copyright (C) 1990 by W. Wilson Ho.
Version 3.2.3
The author can be reached electronically by how@cs.ucdavis.edu or
through physical mail at:
W. Wilson Ho
Division of Computer Science
University of California at Davis
Davis, CA 95616
*/
/* This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 1, or (at your option) any
later version.
This program borrows and modifies a number of functions and data
structures from the implementation of the GNU `ld' link editor. The
original copyleft notice from the GNU `ld' is also included. */
/* Linker `ld' for GNU
Copyright (C) 1988 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#if 0
/*
* This part is taken out after the elimination of use of alloca().
*/
/*
* Alloca include.
*/
/* If compiled with GNU C, use the built-in alloca */
#ifdef __GNUC__
#define alloca __builtin_alloca
#endif
#if defined(sun) && defined(sparc) && !defined(__GNUC__)
#include <alloca.h>
#endif
#endif
/* System dependencies */
#ifdef atarist
#include <basepage.h>
/* _initial_stack determines the amount of memory available as stack/heap, */
/* if it's negative this is the amount available to the system, 1L means */
/* use a ratio of 1:3 (stack:system), 2L means ratio 1:1, 3L stands for 3:1 */
static char __patch_str[] = "{PatchVar}stack = %ld bytes";
extern long _initial_stack = - 100 * 1024L;
#endif /* atarist */
/* Ordinary 4.3 bsd lacks these macros in a.out.h */
#ifndef N_TXTADDR
#ifdef vax
#define N_TXTADDR(x) 0
#endif
#ifdef sequent
#define N_TXTADDR(x) (N_ADDRADJ(x))
#endif
#endif
#ifndef N_DATADDR
#ifdef vax
#define N_DATADDR(x) \
(((x).a_magic == OMAGIC) ? (N_TXTADDR(x)+(x).a_text) \
: (page_size + ((N_TXTADDR(x)+(x).a_text-1) & ~(page_size-1))))
#endif
#ifdef sequent
#define N_DATADDR(x) \
(((x).a_magic==OMAGIC)? (N_TXTADDR(x)+(x).a_text) \
: (page_size+(((x).a_text-1) & ~(page_size-1))))
#endif
#endif
#ifndef N_BSSADDR
#ifdef vax
#define N_BSSADDR(x) (N_DATADDR(x)+(x).a_data)
#endif
#endif
/*
* Ok. Following are the relocation information macros. If your
* system cannot use the default set (below), you must define all of these:
* relocation_info: This must be typedef'd (or #define'd) to the type
* of structure that is stored in the relocation info section of your
* a.out files. Often this is defined in the a.out.h for your system.
*
* RELOC_ADDRESS (rval): Offset into the current section of the
* <whatever> to be relocated. *Must be an lvalue*.
*
* RELOC_EXTERN_P (rval): Is this relocation entry based on an
* external symbol (1), or was it fully resolved upon entering the
* loader (0) in which case some combination of the value in memory
* (if RELOC_MEMORY_ADD_P) and the extra (if RELOC_ADD_EXTRA) contains
* what the value of the relocation actually was. *Must be an lvalue*.
*
* RELOC_SYMBOL (rval): For an external relocation, this is the
* index of its symbol in the symbol table. *Must be an lvalue*.
*
* RELOC_PCREL_P (rval): True if the relocation value described is
* pc relative.
*
* RELOC_MEMORY_SUB_P (rval): If this is nonzero, the value previously
* present in the memory location to be relocated is *subtracted*
* from the relocation value, to produce the final result.
* By default, this is always 0.
*
* RELOC_ADD_EXTRA (rval): (Optional) This macro, if defined, gives
* an extra value to be added to the relocation value based on the
* individual relocation entry. *Must be an lvalue if defined*.
*
* RELOC_VALUE_RIGHTSHIFT (rval): Number of bits right to shift the
* final relocation value before putting it where it belongs.
*
* RELOC_TARGET_SIZE (rval): log to the base 2 of the number of
* bytes of size this relocation entry describes; 1 byte == 0; 2 bytes
* == 1; 4 bytes == 2, and etc. This is somewhat redundant (we could
* do everything in terms of the bit operators below), but having this
* macro could end up producing better code on machines without fancy
* bit twiddling. Also, it's easier to understand/code big/little
* endian distinctions with this macro.
*
* RELOC_TARGET_BITSIZE (rval): How many bits are to be replaced
* with the bits of the relocation value. It may be assumed by the
* code that the relocation value will fit into this many bits. This
* may be larger than RELOC_TARGET_SIZE if such be useful.
*
*
* Things I haven't implemented
* ----------------------------
*
* Values for RELOC_TARGET_SIZE other than 0, 1, or 2.
*
* Pc relative relocation for External references.
*
*
*/
#if defined(sun) && defined(sparc)
/* Sparc (Sun 4) macros */
#undef relocation_info
#define relocation_info reloc_info_sparc
#define RELOC_ADDRESS(r) ((r)->r_address)
#define RELOC_EXTERN_P(r) ((r)->r_extern)
#define RELOC_SYMBOL(r) ((r)->r_index)
#define RELOC_MEMORY_SUB_P(r) 0
#define RELOC_ADD_EXTRA(r) ((r)->r_addend)
#define RELOC_PCREL_P(r) \
((r)->r_type >= RELOC_DISP8 && (r)->r_type <= RELOC_WDISP22)
#define RELOC_VALUE_RIGHTSHIFT(r) (reloc_target_rightshift[(r)->r_type])
#define RELOC_TARGET_SIZE(r) (reloc_target_size[(r)->r_type])
#define RELOC_TARGET_BITSIZE(r) (reloc_target_bitsize[(r)->r_type])
/* Note that these are very dependent on the order of the enums in
enum reloc_type (in a.out.h); if they change the following must be
changed */
/* Also note that the last few may be incorrect; I have no information */
static int reloc_target_rightshift[] = {
0, 0, 0, 0, 0, 0, 2, 2, 10, 0, 0, 0, 0, 0, 0,
};
static int reloc_target_size[] = {
0, 1, 2, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
};
static int reloc_target_bitsize[] = {
8, 16, 32, 8, 16, 32, 30, 22, 22, 22, 13, 10, 32, 32, 16,
};
#endif
#if defined(sequent)
#define RELOC_ADDRESS(r) ((r)->r_address)
#define RELOC_EXTERN_P(r) ((r)->r_extern)
#define RELOC_SYMBOL(r) ((r)->r_symbolnum)
#define RELOC_MEMORY_SUB_P(r) ((r)->r_bsr)
#undef RELOC_ADD_EXTRA
#define RELOC_PCREL_P(r) ((r)->r_pcrel || (r)->r_bsr)
#define RELOC_TARGET_SIZE(r) ((r)->r_length)
#endif
/* Default macros */
#ifndef RELOC_ADDRESS
#define RELOC_ADDRESS(r) ((r)->r_address)
#define RELOC_EXTERN_P(r) ((r)->r_extern)
#define RELOC_SYMBOL(r) ((r)->r_symbolnum)
#define RELOC_MEMORY_SUB_P(r) 0
#undef RELOC_ADD_EXTRA
#define RELOC_PCREL_P(r) ((r)->r_pcrel)
#define RELOC_TARGET_SIZE(r) ((r)->r_length)
#endif
/* Size of a page; obtained from the operating system. */
static int page_size;
/* The symbol hash table: a vector of TABSIZE pointers to struct glosym. */
symbol *_dld_symtab[TABSIZE];
/* Count the number of global symbols referenced and not defined. */
int dld_undefined_sym_count = 0;
/* internal format of relocation info entry. */
struct dld_reloc_info {
/* corresponding symbol table entry. */
symbol *sp;
/* The real relocation info entry.
This is an ugly design. In the original relocation_info structure.
The corresponding symbol definition is located by an index to the
nlist array. This array is not kept online, and so this index
must be replace by the address of the corresponding symbol table
kept online. However, on most machine this index takes only 24bits,
which is not large enough (in general) to hold a pointer. So we
need a structure definition with a sp field as shown above. The
complete original relocation info entry is kept here. This is not
very space economical (24 bits are wasted). But since different
system has different format for STRUCT RELOCATION_INFO, I'd rather
let the include file <a.out.h> take care of the difference, than
using a separate definition for each system. */
struct relocation_info reloc_info;
};
/* Format of __.SYMDEF:
First, a longword containing the size of the 'symdef' data that follows.
Second, zero or more 'symdef' structures.
Third, a word containing the length of symbol name strings.
Fourth, zero or more symbol name strings (each followed by a zero). */
struct symdef {
int symbol_name_string_index;
int library_member_offset;
};
/* variable for saving the environment */
jmp_buf _dld_env;
/* pointer to the lastest (newest) file entry */
struct file_entry *_dld_latest_entry = 0;
/* dummy file_entry to hold all "dangling" symbols. */
struct file_entry *_dld_dummy_entry = 0;
/* To avoid close a file and then open the same file again, the following
two variables remember the file that is currently open. Both are zero
if no file is open.
*/
static struct file_entry *input_file = 0;
static int input_desc = 0;
/* global variables to return the error code to the caller */
int dld_errno;
/* true if the executable flags are up-to-date */
char _dld_exec_flags_valid;
/* Miscellaneous routines */
/* save the error code in dld_errno */
static void
fatal (errno)
register int errno;
{
dld_errno = errno;
longjmp (_dld_env, 1);
} /* fatal */
/* Like malloc but get fatal error if memory is exhausted. */
int
_dld_malloc (size)
int size;
{
register int result = malloc (size);
if (!result)
fatal (DLD_ENOMEMORY);
return result;
} /* _dld_malloc */
/* Return a newly-allocated string
whose contents concatenate the strings S1, S2, S3. */
static char *
concat (s1, s2, s3)
char *s1, *s2, *s3;
{
register int len1 = strlen (s1), len2 = strlen (s2), len3 = strlen (s3);
register char *result = (char *) _dld_malloc (len1 + len2 + len3 + 1);
strcpy (result, s1);
strcpy (result + len1, s2);
strcpy (result + len1 + len2, s3);
result[len1 + len2 + len3] = 0;
return result;
} /* concat */
/* Add a new entry to the file chain if it is not already there.
Return 0 if no actual insertion is needed, otherwise, return 1. */
static int
insert_entry (head, entry)
struct file_chain **head;
register struct file_entry *entry;
{
register struct file_chain *fc = *head;
while (fc) {
if (fc->entry == entry)
return 0;
else fc = fc->next;
}
fc = (struct file_chain *) _dld_malloc (sizeof (struct file_chain));
fc->next = *head;
fc->entry = entry;
*head = fc;
return 1;
} /* insert_entry */
/* Close the input file that is now open. */
static void
file_close ()
{
if (input_desc) close (input_desc);
input_desc = 0;
input_file = 0;
} /* file_close */
/* Open the input file specified by 'entry', and return a descriptor.
The open file is remembered; if the same file is opened twice in a row,
a new open is not actually done. */
static int
file_open (entry)
register struct file_entry *entry;
{
register int desc;
if (entry == 0) fatal (DLD_ENOFILE);
if (entry->superfile)
return file_open (entry->superfile);
if (entry == input_file)
return input_desc;
if (input_file) file_close ();
desc = open (entry->filename, O_RDONLY, 0);
if (desc > 0) {
input_file = entry;
input_desc = desc;
return desc;
}
fatal (DLD_ENOFILE);
} /* file_open */
/* Medium-level input routines for rel files. */
/* Read a file's header into the proper place in the file_entry.
DESC is the descriptor on which the file is open.
ENTRY is the file's entry. */
static void
read_header (desc, entry)
int desc;
register struct file_entry *entry;
{
register int len;
struct exec *loc = &entry->header;
lseek (desc, entry->starting_offset, 0);
len = read (desc, loc, sizeof (struct exec));
if (len != sizeof (struct exec))
fatal (DLD_EBADHEADER);
if (N_BADMAG (*loc))
fatal (DLD_EBADMAGIC);
entry->header_read_flag = 1;
} /* read_header */
#ifdef atarist
#include <st-out.h>
static void
st_read_header (desc, entry)
int desc;
register struct file_entry *entry;
{
register int len;
struct exec *loc = &entry->header;
struct aexec file_header;
lseek (desc, 0L, 0);
len = read (desc, &file_header, sizeof (struct aexec));
if (len != sizeof (struct aexec))
fatal (DLD_EBADHEADER);
if (A_BADMAG (file_header))
fatal (DLD_EBADMAGIC);
if (!file_header.a_AZero2)
fatal (DLD_ENOSTRINGS);
bzero (loc, sizeof (struct exec));
loc->a_magic = NMAGIC; /* flag different header size */
loc->a_text = file_header.a_text;
loc->a_data = file_header.a_data;
loc->a_bss = file_header.a_bss;
loc->a_syms = file_header.a_syms - file_header.a_AZero2;
entry->header_read_flag = 1;
} /* st_read_header */
#endif /* atarist */
/* Read the symbols of file ENTRY into core.
Assume it is already open, on descriptor DESC.
Also read the length of the string table, which follows the symbol table,
but don't read the contents of the string table. */
static void
read_entry_symbols (desc, entry)
struct file_entry *entry;
int desc;
{
int str_size;
if (!entry->header_read_flag)
read_header (desc, entry);
if (entry->header.a_syms <= 0)
fatal (DLD_ENOSYMBOLS);
entry->symbols = (struct nlist *) _dld_malloc (entry->header.a_syms);
lseek (desc, N_SYMOFF (entry->header) + entry->starting_offset, 0);
if (entry->header.a_syms !=
read (desc, entry->symbols, entry->header.a_syms)) {
free (entry->symbols);
entry->symbols = 0;
fatal (DLD_ENOSYMBOLS);
}
lseek (desc, N_STROFF (entry->header) + entry->starting_offset, 0);
if (sizeof str_size != read (desc, &str_size, sizeof str_size)) {
free (entry->symbols);
entry->symbols = 0;
fatal (DLD_ENOSTRINGS);
}
entry->string_size = str_size;
} /* read_entry_symboles */
/* Read the string table of file ENTRY into core.
Assume it is already open, on descriptor DESC. */
static void
read_entry_strings (desc, entry)
struct file_entry *entry;
int desc;
{
if (!entry->header_read_flag)
read_header (desc, entry);
entry->strings = (char *) _dld_malloc (entry->string_size);
lseek (desc, N_STROFF (entry->header) + entry->starting_offset, 0);
if (entry->string_size != read (desc, entry->strings,
entry->string_size)) {
free (entry->strings);
entry->strings = 0;
fatal (DLD_ENOSTRINGS);
}
} /* read_entry_strings */
/* Verify the validity of the relocation information.
DATA_SIZE is the length of the contents.
RELOC_INFO is the address of the relocation info, in core.
RELOC_SIZE is its length in bytes.
If everything is ok, return the number of external relocation entry.
Otherwise, return -1. */
int
reloc_info_ok (data_size, reloc_info, reloc_size, sym_size)
register int data_size;
register struct relocation_info *reloc_info;
register int reloc_size;
register int sym_size;
{
register struct relocation_info *p = reloc_info;
register struct relocation_info *end = p +
reloc_size / sizeof (struct relocation_info);
register int extern_count = 0; /* number of external relocation */
for (; p < end; p++) {
register int symbolnum = RELOC_SYMBOL(p);
if (RELOC_ADDRESS(p) >= data_size)
return -1;
if (RELOC_EXTERN_P(p)) {
extern_count++;
if (symbolnum * sizeof (struct nlist) >= sym_size)
return -1;
} else if (symbolnum != N_TEXT && symbolnum != (N_TEXT | N_EXT) &&
symbolnum != N_DATA && symbolnum != (N_DATA | N_EXT) &&
symbolnum != N_BSS && symbolnum != (N_BSS | N_EXT))
return -1;
if (RELOC_TARGET_SIZE(p) > 2) return -1;
}
return extern_count++;
} /* reloc_info_ok */
/* symbol table management */
/* Compute the hash code for symbol name KEY. */
static int
hash_string (key)
char *key;
{
register char *cp;
register int k;
cp = key;
k = 0;
while (*cp)
k = (((k << 1) + (k >> 14)) ^ (*cp++)) & 0x3fff;
return k;
} /* hash_string */
/* Get the symbol table entry for the global symbol named KEY.
Create one if there is none. */
symbol *
_dld_getsym (key)
char *key;
{
register int hashval;
register symbol *bp;
/* Determine the proper bucket. */
hashval = hash_string (key) % TABSIZE;
/* Search the bucket. */
for (bp = _dld_symtab[hashval]; bp; bp = bp->link)
if (! strcmp (key, bp->name))
return bp;
/* Nothing was found; create a new symbol table entry. */
bp = (symbol *) _dld_malloc (sizeof (symbol));
bzero (bp, sizeof (symbol));
bp->name = (char *) _dld_malloc (strlen (key) + 1);
strcpy (bp->name, key);
/* Add the entry to the bucket. */
bp->link = _dld_symtab[hashval];
_dld_symtab[hashval] = bp;
return bp;
} /* _dld_getsym */
/* Like `_dld_getsym' but return 0 if the symbol is not already known. */
symbol *
_dld_getsym_soft (key)
char *key;
{
register int hashval;
register symbol *bp;
/* Determine which bucket. */
hashval = hash_string (key) % TABSIZE;
/* Search the bucket. */
for (bp = _dld_symtab[hashval]; bp; bp = bp->link)
if (! strcmp (key, bp->name))
return bp;
return 0;
} /* _dld_getsym_soft */
/* Enter one global symbol in the hash table.
NLIST_P points to the `struct nlist' read from the file
that describes the global symbol. NAME is the symbol's name.
ENTRY is the file entry for the file the symbol comes from.
The `struct nlist' is modified by making n_name point back to the
corresponding symbols.
For the common definition, the symbol is considered defined by the
first entry that defines it. The problem here is that uninitialized
global variables are all treated as common definitions. Strictly
speacking, in a program there should be exactly one definition
(initialized or uninitialized) of any global variable and all other
files that reference that variable should declare it with the 'extern'
keyword. However, most compiler allows the omission of the 'extern'
keyword, and let the linker map all these definitions to the same
location. In other words, multiple definitions of the same symbol is
allowed. Now, when one of the files that defines such symbol is to be
unlinked, should this symbol become undefined? Or should it remain in
core? The decision made is to treat the symbol defined by the first
file that defines it. All subsequence definitions of the same symbol
will be treated as extern references. However, if any of the
following definition defines the symbol as initialized global, it will
be considered multiple definition and be treated as an error.
*/
void
_dld_enter_global_ref (entry, nlist_p, name)
struct file_entry *entry;
register struct nlist *nlist_p;
char *name;
{
register symbol *sp = _dld_getsym (name);
register int type = nlist_p->n_type;
register int common = (type == (N_UNDF | N_EXT) && nlist_p->n_value);
int oldref = sp->referenced;
int olddef = sp->defined;
nlist_p->n_un.n_name = (char *) sp;
sp->referenced = 1;
/* common definition */
if (common && !olddef)
#ifndef linux
type = N_COMM | N_EXT;
#else
type = N_TYPE | N_EXT;
#endif
if (type != (N_UNDF | N_EXT)) {
/* definition of a symbol */
if (olddef)
fatal (DLD_EMULTDEFS);
else {
sp->defined = type;
sp->value = common ? (long) _dld_malloc (nlist_p->n_value) :
nlist_p->n_value;
if (common) bzero (sp->value, nlist_p->n_value);
sp->defined_by = entry;
}
if (oldref && !olddef) {
register struct file_chain *p = sp->referenced_by;
register struct file_chain *prev = 0;
dld_undefined_sym_count--;
/* We do not set up references link to and from the dummy
entry, nor do we touch the ref_count of it.
Furthermore, if a symbol referenced by the dummy entry is
defined, we remove all connections between the dummy entry
and this symbol. */
/* If the dummy entry references anything other than a library
member, this reference is removed. */
while (p) {
if (entry != _dld_dummy_entry) {
if (p->entry == _dld_dummy_entry && entry->superfile)
entry->ref_count++;
else if (insert_entry (&(p->entry->refs), entry) &&
insert_entry (&(entry->refs_by), p->entry) &&
p->entry != entry)
entry->ref_count++;
}
if (p->entry == _dld_dummy_entry) {
/* we force this to be an entry directly linked-in by
the user (top-level module). */
entry->already_unlink = 0;
del_link_list_elt (sp->referenced_by, prev, p, next);
continue;
} else p->entry->undefined_symbol_count--;
prev = p;
p = p->next;
}
}
} else {
/* this is just a reference */
if (sp->defined_by && sp->defined_by != _dld_dummy_entry)
if (entry != _dld_dummy_entry) {
if (insert_entry (&(entry->refs), sp->defined_by) &&
entry != sp->defined_by)
sp->defined_by->ref_count++;
} else if (sp->defined_by->superfile) {
sp->defined_by->ref_count++;
sp->defined_by->already_unlink = 0;
}
if (entry != _dld_dummy_entry) {
if (insert_entry (&(sp->referenced_by), entry) && !sp->defined)
entry->undefined_symbol_count++;
} else {
if (!sp->defined)
insert_entry (&(sp->referenced_by), entry);
}
if (!oldref) {
dld_undefined_sym_count++;
sp->defined = 0;
sp->value = 0;
}
}
}
/* Enter the external symbol defs and refs of ENTRY in the hash table. */
static void
enter_file_symbols (entry)
struct file_entry *entry;
{
register struct nlist *p,
*end = entry->symbols + entry->header.a_syms / sizeof (struct nlist);
for (p = entry->symbols; p < end; p++)
#ifdef linux
if (p->n_type & N_EXT) {
if (p->n_type == (N_INDR | N_EXT)) {
symbol *sp;
/* Enter an indirect symbol and the following undefined symbol
as it's reference (see ".../linux/a.out.h") */
/* First enter the referenced symbol */
_dld_enter_global_ref (entry, p+1, (p+1)->n_un.n_strx + entry->strings);
/* Get the address of the corresponding 'struct glosym' */
sp = (symbol *)((p+1)->n_un.n_name);
/* Now enter the indirect symbol (alias) */
_dld_enter_global_ref (entry, p, p->n_un.n_strx + entry->strings);
/* Make 'indirect' point to the referenced symbol */
((symbol *)(p->n_un.n_name))->indirect = sp;
p++;
}
else
_dld_enter_global_ref (entry, p, p->n_un.n_strx + entry->strings);
}
#else
if (p->n_type & N_EXT)
_dld_enter_global_ref (entry, p, p->n_un.n_strx + entry->strings);
#endif
}
/* remove all symbols that are no longer needed */
static void
cleanup_symtab ()
{
register int i;
for (i = 0; i < TABSIZE; i++) {
register symbol *sp = _dld_symtab[i];
register symbol *prev_sp = 0;
while (sp) {
register struct file_chain *p = sp->referenced_by;
register struct file_chain *prev = 0;
register int obsolete = (sp->defined_by &&
sp->defined_by->ref_count == 0);
while (p)
if (p->entry->ref_count == 0) {
del_link_list_elt (sp->referenced_by, prev, p, next);
} else {
if (obsolete)
p->entry->undefined_symbol_count++;
prev = p;
p = p->next;
}
if (obsolete) {
#ifndef linux
if (sp->defined == (N_COMM | N_EXT) && sp->value)
#else
if (sp->defined == (N_TYPE | N_EXT) && sp->value)
#endif
free (sp->value);
if (sp->referenced_by == 0) {
free (sp->name);
del_link_list_elt (_dld_symtab[i], prev_sp, sp, link);
continue;
} else {
dld_undefined_sym_count++;
sp->defined = 0;
sp->defined_by = 0;
sp->value = 0;
}
}
if (sp->defined == 0 && sp->referenced_by == 0) {
dld_undefined_sym_count--;
free (sp->name);
#ifndef linux
if (sp->defined == (N_COMM | N_EXT) && sp->value)
#else
if (sp->defined == (N_TYPE | N_EXT) && sp->value)
#endif
free (sp->value);
del_link_list_elt (_dld_symtab[i], prev_sp, sp, link);
continue;
}
prev_sp = sp;
sp = sp->link;
}
}
} /* cleanup_symtab */
/* Searching libraries */
static struct file_entry *decode_library_subfile ();
static void linear_library (), symdef_library ();
static int subfile_wanted_p ();
static void read_text_and_data ();
/* Search the library ENTRY, already open on descriptor DESC.
This means deciding which library members to load,
making a chain of `struct file_entry' for those members,
and entering their global symbols in the hash table. */
static void
search_library (desc, entry)
int desc;
struct file_entry *entry;
{
int member_length;
register char *name;
register struct file_entry *subentry;
if (!dld_undefined_sym_count) return;
/* Examine its first member, which starts SARMAG bytes in. */
subentry = decode_library_subfile (desc, entry, SARMAG, &member_length);
if (!subentry) return;
name = subentry->filename;
free (subentry);
/* Search via __.SYMDEF if that exists, else linearly. */
#ifdef linux
if (!strcmp (name, "__.SYMDEF/"))
#else
if (!strcmp (name, "__.SYMDEF"))
#endif
symdef_library (desc, entry, member_length);
else
linear_library (desc, entry);
free (name);
} /* search_library */
/* Construct and return a file_entry for a library member.
The library's file_entry is library_entry, and the library is open on DESC.
SUBFILE_OFFSET is the byte index in the library of this member's header.
We store the length of the member into *LENGTH_LOC. */
static struct file_entry *
decode_library_subfile (desc, library_entry, subfile_offset, length_loc)
int desc;
struct file_entry *library_entry;
int subfile_offset;
int *length_loc;
{
int bytes_read;
register int namelen;
int member_length;
register char *name;
struct ar_hdr hdr1;
register struct file_entry *subentry;
lseek (desc, subfile_offset, 0);
bytes_read = read (desc, &hdr1, sizeof hdr1);
if (!bytes_read)
return 0; /* end of archive */
if (sizeof hdr1 != bytes_read)
fatal (DLD_EBADLIBRARY);
if (sscanf (hdr1.ar_size, "%d", &member_length) != 1)
fatal (DLD_EBADLIBRARY);
subentry = (struct file_entry *) _dld_malloc (sizeof (struct file_entry));
bzero (subentry, sizeof (struct file_entry));
for (namelen = 0;
namelen < sizeof hdr1.ar_name
&& hdr1.ar_name[namelen] != 0 && hdr1.ar_name[namelen] != ' ';
namelen++);
name = (char *) _dld_malloc (namelen+1);
strncpy (name, hdr1.ar_name, namelen);
name[namelen] = 0;
subentry->filename = name;
subentry->local_sym_name = name;
subentry->starting_offset = subfile_offset + sizeof hdr1;
subentry->superfile = library_entry;
subentry->total_size = member_length;
(*length_loc) = member_length;
return subentry;
} /* decode_library_subfile */
/* Search a library that has a __.SYMDEF member.
DESC is a descriptor on which the library is open.
The file pointer is assumed to point at the __.SYMDEF data.
ENTRY is the library's file_entry.
MEMBER_LENGTH is the length of the __.SYMDEF data. */
static void
symdef_library (desc, entry, member_length)
int desc;
struct file_entry *entry;
int member_length;
{
int *symdef_data = (int *) _dld_malloc (member_length);
register struct symdef *symdef_base;
char *sym_name_base;
int number_of_symdefs;
int length_of_strings;
int not_finished;
int bytes_read;
register int i;
struct file_entry *prev = 0;
int prev_offset = 0;
bytes_read = read (desc, symdef_data, member_length);
if (bytes_read != member_length) {
free (symdef_data);
fatal (DLD_EBADLIBRARY);
}
/* Ugly kludge here: save the address for symdef_data in
entry->strings so that if fatal() is called, this memory block will
be freed by clean_up(). If no error occurs, it is freed before this
function returns. I use entry->strings just for convenience and
don't want to add an extra entry in struct file_entry.
Originally storage for symdef_data was
allocated by alloca(), but I want to avoid the use of that. */
entry->strings = (char *) symdef_data;
number_of_symdefs = *symdef_data / sizeof (struct symdef);
if (number_of_symdefs < 0 ||
number_of_symdefs * sizeof (struct symdef) + 2 * sizeof (int) >=
member_length)
fatal (DLD_EBADLIBRARY);
symdef_base = (struct symdef *) (symdef_data + 1);
length_of_strings = *(int *) (symdef_base + number_of_symdefs);
if (length_of_strings < 0
|| number_of_symdefs * sizeof (struct symdef) + length_of_strings
+ 2 * sizeof (int) != member_length)
fatal (DLD_EBADLIBRARY);
sym_name_base = sizeof (int) + (char *) (symdef_base + number_of_symdefs);
/* Check all the string indexes for validity. */
for (i = 0; i < number_of_symdefs; i++) {
register int index = symdef_base[i].symbol_name_string_index;
if (index < 0 || index >= length_of_strings
|| (index && *(sym_name_base + index - 1)))
fatal (DLD_EBADLIBRARY);
}
/* Search the symdef data for members to load.
Do this until one whole pass finds nothing to load. */
not_finished = 1;
while (not_finished) {
not_finished = 0;
/* Scan all the symbols mentioned in the symdef for ones that we need.
Load the library members that contain such symbols. */
for (i = 0; i < number_of_symdefs && dld_undefined_sym_count; i++)
if (symdef_base[i].symbol_name_string_index >= 0) {
register symbol *sp;
sp = _dld_getsym_soft (sym_name_base +
symdef_base[i].symbol_name_string_index);
/* If we find a symbol that appears to be needed,
think carefully about the archive member that
the symbol is in. */
if (sp && sp->referenced && !sp->defined) {
int junk;
register int j;
register int offset = symdef_base[i].library_member_offset;
struct file_entry *subentry;
/* Don't think carefully about any archive member
more than once in a given pass. */
if (prev_offset == offset)
continue;
prev_offset = offset;
/* Read the symbol table of the archive member. */
subentry = decode_library_subfile (desc, entry, offset, &junk);
if (prev)
prev->chain = subentry;
else entry->subfiles = subentry;
read_entry_symbols (desc, subentry);
read_entry_strings (desc, subentry);
/* Now scan the symbol table and decide whether to load. */
if (!subfile_wanted_p (subentry)) {
if (prev)
prev->chain = 0;
else entry->subfiles = 0;
free (subentry->filename);
free (subentry->symbols);
free (subentry->strings);
free (subentry);
} else {
/* This member is needed; load it.
Since we are loading something on this pass,
we must make another pass through the symdef data. */
not_finished = 1;
/* all library members are considered unlinked
already so that they will be garbage collected
whenever no other modules reference them. */
subentry->already_unlink = 1;
enter_file_symbols (subentry);
free (subentry->strings);
subentry->strings = 0;
read_text_and_data (desc, subentry);
prev = subentry;
/* Clear out this member's symbols from the symdef data
so that following passes won't waste time on them. */
for (j = 0; j < number_of_symdefs; j++) {
if (symdef_base[j].library_member_offset == offset)
symdef_base[j].symbol_name_string_index = -1;
}
}
}
}
}
/* refer to "Ugly kludge" above. */
free (entry->strings);
entry->strings = 0;
} /* symdef_library */
/* Search a library that has no __.SYMDEF.
ENTRY is the library's file_entry.
DESC is the descriptor it is open on. */
static void
linear_library (desc, entry)
int desc;
struct file_entry *entry;
{
register struct file_entry *prev = 0;
register int this_subfile_offset = SARMAG;
while (dld_undefined_sym_count) {
int member_length;
register struct file_entry *subentry;
subentry = decode_library_subfile (desc, entry, this_subfile_offset, &member_length);
if (!subentry) return;
read_entry_symbols (desc, subentry);
read_entry_strings (desc, subentry);
if (!subfile_wanted_p (subentry)) {
free (subentry->filename);
free (subentry->symbols);
free (subentry->strings);
free (subentry);
} else {
subentry->already_unlink = 1;
enter_file_symbols (subentry);
free (subentry->strings);
subentry->strings = 0;
read_text_and_data (desc, subentry);
if (prev)
prev->chain = subentry;
else entry->subfiles = subentry;
prev = subentry;
}
this_subfile_offset += member_length + sizeof (struct ar_hdr);
if (this_subfile_offset & 1) this_subfile_offset++;
}
} /* linear_library */
/* ENTRY is an entry for a library member.
Its symbols have been read into core, but not entered.
Return nonzero if we ought to load this member. */
static int
subfile_wanted_p (entry)
struct file_entry *entry;
{
register struct nlist *p;
register struct nlist *end
= entry->symbols + entry->header.a_syms / sizeof (struct nlist);
for (p = entry->symbols; p < end; p++) {
register int type = p->n_type;
if (type & N_EXT && (type != (N_UNDF | N_EXT) || p->n_value)) {
register char *name = p->n_un.n_strx + entry->strings;
register symbol *sp = _dld_getsym_soft (name);
/* If this symbol has not been hashed, we can't be looking
for it. */
if (!sp) continue;
/* We are looking for definition of external symbols or common
blocks that have not been defined but have been referenced */
if (sp->referenced && !sp->defined &&
(type != (N_UNDF | N_EXT) || p->n_value))
return 1;
}
}
return 0;
} /* subfile_wanted_p */
/* Relocate the addresses of the file's symbols. */
static void
relocate_symbol_address (entry)
register struct file_entry *entry;
{
register struct nlist *p;
register struct nlist *end
= entry->symbols + entry->header.a_syms / sizeof (struct nlist);
register int text_relocation, data_relocation, bss_relocation;
text_relocation = entry->text_start_address;
data_relocation = entry->data_start_address - entry->header.a_text;
bss_relocation = entry->bss_start_address - entry->header.a_text -
entry->header.a_data;
for (p = entry->symbols; p < end; p++) {
/* If this belongs to a section,
update it by the section's start address */
register int type = p->n_type;
register symbol *sp;
if ((type & N_EXT) == 0) continue;
sp = (symbol *) p->n_un.n_name;
if (type == (N_TEXT | N_EXT))
sp->value += text_relocation;
else if (type == (N_DATA | N_EXT))
/* A symbol whose value is in the data section
is present in the input file as if the data section
started at an address equal to the length of the
file's text. */
sp->value += data_relocation;
else if (type == (N_BSS | N_EXT))
/* likewise for symbols with value in BSS. */
sp->value += bss_relocation;
}
} /* relocate_symbol_address */
/* Actually performs the relocation of local symbols.
Do it once and for all for each entry.
Then keep only those with external references online.
This function is copied almost directly from perform_relocation (). */
static void
do_local_relocation (data, pc_relocation, reloc_info, dld_reloc_p, reloc_size,
entry)
char *data;
struct relocation_info *reloc_info;
struct dld_reloc_info *dld_reloc_p;
struct file_entry *entry;
int pc_relocation;
int reloc_size;
{
register struct relocation_info *p = reloc_info;
struct relocation_info *end
= reloc_info + reloc_size / sizeof (struct relocation_info);
int text_relocation = entry->text_start_address;
int data_relocation = entry->data_start_address - entry->header.a_text;
int bss_relocation
= entry->bss_start_address - entry->header.a_text - entry->header.a_data;
for (; p < end; p++) {
register int relocation = 0;
register int addr = RELOC_ADDRESS(p);
register int symbolnum = RELOC_SYMBOL(p);
#if defined(sun) && defined(sparc)
register unsigned int mask = 0;
#else
register int length = RELOC_TARGET_SIZE(p);
#endif
if (RELOC_EXTERN_P(p)) {
register int symindex = symbolnum * sizeof (struct nlist);
dld_reloc_p->sp = ((symbol *)
(((struct nlist *)
(((char *)entry->symbols) + symindex))
->n_un.n_name));
bcopy (p, &(dld_reloc_p->reloc_info),
sizeof (struct relocation_info));
dld_reloc_p++;
continue;
} else switch (symbolnum) {
case N_TEXT:
case N_TEXT | N_EXT:
relocation = text_relocation;
break;
case N_DATA:
case N_DATA | N_EXT:
/* A word that points to beginning of the the data section
initially contains not 0 but rather the "address" of
that section in the input file, which is the length of
the file's text. */
relocation = data_relocation;
break;
case N_BSS:
case N_BSS | N_EXT:
/* Similarly, an input word pointing to the beginning of
the bss initially contains the length of text plus data
of the file. */
relocation = bss_relocation;
break;
case N_ABS:
case N_ABS | N_EXT:
/* just in case */
break;
default:
break;
}
if (RELOC_PCREL_P(p))
relocation -= pc_relocation;
#if defined(sun) && defined(sparc)
relocation += RELOC_ADD_EXTRA(p);
relocation >>= RELOC_VALUE_RIGHTSHIFT(p);
/* Unshifted mask for relocation */
mask = 1 << (RELOC_TARGET_BITSIZE(p) - 1);
mask |= mask - 1;
relocation &= mask;
switch (RELOC_TARGET_SIZE(p)) {
case 0:
*(char *) (data + addr) &= ~mask;
*(char *) (data + addr) |= relocation;
break;
case 1:
*(short *) (data + addr) &= ~mask;
*(short *) (data + addr) |= relocation;
break;
case 2:
*(long *) (data + addr) &= ~mask;
*(long *) (data + addr) |= relocation;
break;
default: break;
}
#else
switch (length) {
case 0: *(char *) (data + addr) += relocation;
break;
case 1: *(short *) (data + addr) += relocation;
break;
case 2: *(int *) (data + addr) += relocation;
break;
default: break;
}
#endif
}
} /* do_local_relocation */
/* Read the relocation information of file ENTRY into core.
Assume it is already open, on descriptor DESC.
Then relocate all the local (non-external) symbols. Save only the
relocation info for the external symbol references.
Update entry->header.a_{trsize,drsize} to reflect the new relocation
table size (in bytes).
*/
static void
relocate_local_refs (desc, entry)
int desc;
struct file_entry *entry;
{
int text_offset;
/* number of relocation info that describes an external references. */
int tr_entry_count = 0, dr_entry_count = 0;
struct relocation_info *reloc_buf;
if (!entry->header_read_flag)
read_header (desc, entry);
text_offset = entry->starting_offset + N_TXTOFF (entry->header);
/* For the text segment */
if (entry->header.a_trsize) {
reloc_buf = (struct relocation_info *)
_dld_malloc (entry->header.a_trsize);
lseek (desc, text_offset + entry->header.a_text +
entry->header.a_data, 0);
if (entry->header.a_trsize !=
read (desc, reloc_buf, entry->header.a_trsize)) {
free (reloc_buf);
fatal (DLD_ENOTXTRELOC);
}
if ((tr_entry_count =
reloc_info_ok (entry->header.a_text, reloc_buf,
entry->header.a_trsize, entry->header.a_syms)
) == -1) {
free (reloc_buf);
fatal (DLD_EBADRELOC);
} else {
entry->text_reloc = (struct dld_reloc_info *)
_dld_malloc (tr_entry_count * sizeof (struct dld_reloc_info));
do_local_relocation (entry->text_start_address,
entry->text_start_address,
reloc_buf, entry->text_reloc,
entry->header.a_trsize, entry);
free (reloc_buf);
}
}
/* For the data segment */
if (entry->header.a_drsize) {
reloc_buf = (struct relocation_info *)
_dld_malloc (entry->header.a_drsize);
lseek (desc, text_offset + entry->header.a_text +
entry->header.a_data + entry->header.a_trsize, 0);
if (entry->header.a_drsize !=
read (desc, reloc_buf, entry->header.a_drsize)) {
free (reloc_buf);
fatal (DLD_ENODATRELOC);
}
if ((dr_entry_count =
reloc_info_ok (entry->header.a_data, reloc_buf,
entry->header.a_drsize, entry->header.a_syms)
) == -1) {
free (reloc_buf);
fatal (DLD_EBADRELOC);
} else {
entry->data_reloc = (struct dld_reloc_info *)
_dld_malloc (dr_entry_count * sizeof (struct dld_reloc_info));
do_local_relocation (entry->data_start_address,
entry->data_start_address -
entry->header.a_data,
reloc_buf, entry->data_reloc,
entry->header.a_drsize, entry);
free (reloc_buf);
}
}
entry->header.a_trsize = tr_entry_count * sizeof (struct dld_reloc_info);
entry->header.a_drsize = dr_entry_count * sizeof (struct dld_reloc_info);
/* Free the nlist array. */
if (entry->symbols) {
free (entry->symbols);
entry->symbols = 0;
}
} /* relocate_local_refs */
/* Relocate ENTRY's text or data section contents.
DATA is the address of the contents, in core.
DATA_SIZE is the length of the contents.
PC_RELOCATION is the difference between the address of the contents
in the output file and its address in the input file.
RELOC_INFO is the address of the relocation info, in core.
RELOC_SIZE is its length in bytes.
REVERSE is true when an 'un-relocation' is to be done.
*/
static void
perform_relocation (data, pc_relocation, reloc_info, reloc_size, reverse)
char *data;
struct dld_reloc_info *reloc_info;
int pc_relocation;
int reloc_size;
int reverse;
{
register struct dld_reloc_info *p = reloc_info;
struct dld_reloc_info *end
= reloc_info + reloc_size / sizeof (struct dld_reloc_info);
#if defined(sun) && defined(sparc)
if (reverse) return;
#endif
for (; p < end; p++) {
#ifdef linux
register int relocation;
register symbol *sp = p->sp;
#else
register int relocation = p->sp->value;
#endif
register struct relocation_info *r = &(p->reloc_info);
register int addr = RELOC_ADDRESS(r);
#if defined(sun) && defined(sparc)
register unsigned int mask = 0;
#else
register int length = RELOC_TARGET_SIZE(r);
#endif
#ifdef linux
while (sp->indirect) sp = sp->indirect;
relocation = sp->value;
#endif
if (RELOC_PCREL_P(r))
relocation -= pc_relocation;
#if defined(sun) && defined(sparc)
relocation += RELOC_ADD_EXTRA(r);
relocation >>= RELOC_VALUE_RIGHTSHIFT(r);
/* Unshifted mask for relocation */
mask = 1 << (RELOC_TARGET_BITSIZE(r) - 1);
mask |= mask - 1;
relocation &= mask;
switch (RELOC_TARGET_SIZE(r)) {
case 0:
*(char *) (data + addr) &= ~mask;
*(char *) (data + addr) |= relocation;
break;
case 1:
*(short *) (data + addr) &= ~mask;
*(short *) (data + addr) |= relocation;
break;
case 2:
*(long *) (data + addr) &= ~mask;
*(long *) (data + addr) |= relocation;
break;
default: break;
}
#else
if (reverse) relocation = - relocation;
switch (length) {
case 0:
if (RELOC_MEMORY_SUB_P(r))
*(char *) (data + addr) = relocation - *(char *) (data + addr);
else *(char *) (data + addr) += relocation;
break;
case 1:
if (RELOC_MEMORY_SUB_P(r))
*(short *) (data + addr) =
relocation - *(short *) (data + addr);
else *(char *) (data + addr) += relocation;
break;
case 2:
if (RELOC_MEMORY_SUB_P(r))
*(int *) (data + addr) = relocation - *(int *) (data + addr);
else *(int *) (data + addr) += relocation;
break;
default: break;
}
#endif
}
} /* perform_relocation */
/* ABSOLUTE_FILENAME_P (fname): True if fname is an absolute filename */
#ifdef atarist
#define ABSOLUTE_FILENAME_P(fname) ((fname[0] == '/') || \
(fname[0] && (fname[1] == ':')))
#else
#define ABSOLUTE_FILENAME_P(fname) (fname[0] == '/')
#endif /* atarist */
/* given a file name, create an appropriate file_entry for it */
static struct file_entry *
make_entry (filename)
char *filename;
{
register struct file_entry *entry =
(struct file_entry *) _dld_malloc (sizeof (struct file_entry));
bzero (entry, sizeof (struct file_entry));
entry->filename = entry->local_sym_name =
(char *) _dld_malloc (strlen (filename) + 1);
strcpy (entry->local_sym_name, filename);
if (!ABSOLUTE_FILENAME_P(filename)) {
char name[MAXPATHLEN];
entry->filename = concat (getwd(name), "/", filename);
}
entry->chain = _dld_latest_entry;
entry->ref_count = 1;
return entry;
} /* make_entry */
/* If ENTRY is a rel file, read its symbol and string sections into core.
If it is a library, search it and load the appropriate members
(which means calling this function recursively on those members). */
static void
read_file_symbols (desc, entry, load_text)
register int desc;
register struct file_entry *entry;
int load_text; /* used only by dld_init */
{
register int len;
int magicnum;
len = read (desc, &magicnum, sizeof magicnum);
if (len != sizeof magicnum)
fatal (DLD_EBADHEADER);
#ifdef atarist
if (!load_text || !N_BADMAG (*((struct exec *)&magicnum))) {
#else
if (!N_BADMAG (*((struct exec *)&magicnum))) {
#endif
read_entry_symbols (desc, entry);
read_entry_strings (desc, entry);
enter_file_symbols (entry);
free (entry->strings);
entry->strings = 0;
if (load_text) read_text_and_data (desc, entry);
} else {
char armag[SARMAG];
lseek (desc, 0, 0);
if (SARMAG != read (desc, armag, SARMAG) || strncmp (armag, ARMAG, SARMAG))
fatal (DLD_EBADOBJECT);
entry->library_flag = 1;
search_library (desc, entry);
}
} /* read_file_symbols */
/* Allocate memory for all text, data and bss segments and read them in
from the file. */
static void
read_text_and_data (desc, entry)
int desc;
register struct file_entry *entry;
{
register size = entry->header.a_text + entry->header.a_data +
entry->header.a_bss;
entry->text_start_address = _dld_malloc (size);
if (size - entry->header.a_text > 0) {
entry->data_start_address = entry->text_start_address +
entry->header.a_text;
entry->bss_start_address = entry->data_start_address +
entry->header.a_data;
} else entry->data_start_address = entry->bss_start_address = 0;
/* Read text and data sections into core.
Note that the bss segment does not actually take up space in the
object file, so its size must be subtracted from SIZE */
lseek (desc, entry->starting_offset + N_TXTOFF(entry->header), 0);
size -= entry->header.a_bss;
if (size != read (desc, entry->text_start_address, size)) {
free (entry->text_start_address);
entry->text_start_address = entry->data_start_address =
entry->bss_start_address = 0;
fatal (DLD_ENODATA);
}
/* zero the bss segment */
if (entry->header.a_bss)
bzero ((void *) entry->bss_start_address, entry->header.a_bss);
} /* read_text_and_data */
/* Allocate memory for the text and data segments and relocate all local
symbols */
static void
relocate_entry_symbols (desc, entry)
int desc;
register struct file_entry *entry;
{
/* Compute start addresses of each sections and symbols. */
if (entry->library_flag) {
register struct file_entry *subentry = entry->subfiles;
for (; subentry; subentry = subentry->chain) {
relocate_symbol_address (subentry);
relocate_local_refs (desc, subentry);
}
} else {
relocate_symbol_address (entry);
relocate_local_refs (desc, entry);
}
} /* relocate_entry_symbols */
/* Find all modules have all external references defined but not resolved. */
void
_dld_patch_all_files (entry)
register struct file_entry *entry;
{
while (entry) {
if (entry->library_flag)
_dld_patch_all_files (entry->subfiles);
else if (!entry->all_symbols_resolved_flag &&
entry->undefined_symbol_count == 0) {
/* entry whose global references have just been resolved */
perform_relocation (entry->text_start_address,
entry->text_start_address,
entry->text_reloc,
entry->header.a_trsize, 0);
perform_relocation (entry->data_start_address,
entry->data_start_address -
entry->header.a_data,
entry->data_reloc,
entry->header.a_drsize, 0);
entry->all_symbols_resolved_flag = 1;
} else if (entry->all_symbols_resolved_flag &&
entry->undefined_symbol_count != 0) {
/* entry that has some of its global references being
"un-defined" */
perform_relocation (entry->text_start_address,
entry->text_start_address,
entry->text_reloc,
entry->header.a_trsize, 1);
perform_relocation (entry->data_start_address,
entry->data_start_address -
entry->header.a_data,
entry->data_reloc,
entry->header.a_drsize, 1);
entry->all_symbols_resolved_flag = 0;
}
entry = entry->chain;
}
} /* _dld_patch_all_files */
/*
* reset the executable_flag of the given entry, and then recursively
* propagate this to all modules that reference symbols in this entry.
*/
static void
invalidate (entry)
struct file_entry *entry;
{
register struct file_chain *p;
if (entry == 0)
return;
entry->executable_flag = 0;
for (p = entry->refs_by; p; p = p->next)
if (p->entry->executable_flag)
invalidate (p->entry);
} /* invalidate */
/*
* For all modules loaded, determine which of them can be safely executed.
* For those that can, set the flag executable_flag.
*/
static void
find_all_executable_modules ()
{
register struct file_entry *p;
/* set all executable flags */
for (p = _dld_latest_entry; p ; p = p->chain) {
if (p->library_flag) {
register struct file_entry *q = p->subfiles;
while (q) {
q->executable_flag = q->all_symbols_resolved_flag;
q = q->chain;
}
}
p->executable_flag = p->all_symbols_resolved_flag;
}
/* invalidate those modules that are not (yet) executable. */
for (p = _dld_latest_entry; p; p = p->chain) {
if (p->library_flag) {
register struct file_entry *q = p->subfiles;
while (q) {
if (!q->all_symbols_resolved_flag && q->refs_by)
invalidate (q);
q = q->chain;
}
} else if (!p->all_symbols_resolved_flag && p->refs_by)
invalidate (p);
}
_dld_exec_flags_valid = 1;
} /* find_all_executable_modules */
/* remove all reference pointers *TO* ENTRY */
static void
remove_cross_references (head_of_chain, entry)
struct file_entry *head_of_chain, *entry;
{
register struct file_entry *ep = head_of_chain;
while (ep) {
register struct file_chain *p = ep->refs;
if (ep->library_flag)
remove_cross_references (ep->subfiles, entry);
else {
register struct file_chain *prev = 0;
while (p) {
if (p->entry == entry || p->entry->superfile == entry) {
del_link_list_elt (ep->refs, prev, p, next);
} else {
prev = p;
p = p->next;
}
}
}
ep = ep->chain;
}
} /* remove_cross_references */
/* remove all cross reference pointers related to an obsolete file entry.
It is assumed that the ref_count of this entry is zero.
Also clear up all other entries that become obsolete when this entry is
removed. */
static void
cleanup_obsolete_entries (entry)
struct file_entry *entry;
{
register struct file_chain *p;
if (entry->ref_count != 0) return;
if (entry->library_flag) {
register struct file_entry *subentry = entry->subfiles;
for (; subentry; subentry = subentry->chain)
cleanup_obsolete_entries (subentry);
}
p = entry->refs;
entry->refs = 0; /* to prevent loop; might be redundant*/
while (p) {
register struct file_chain *next = p->next;
if (p->entry->ref_count) /* ref_count may already be set to zero */
(p->entry->ref_count)--;
if (p->entry->ref_count == 0)
cleanup_obsolete_entries (p->entry);
free (p);
p = next;
}
} /* cleanup_obsolete_entries */
/* remove all memory blocks assigned for ENTRY,
return the pointers to the next entry in chain */
static struct file_entry *
kill_entry (entry)
register struct file_entry *entry;
{
register struct file_chain *p;
if (entry->library_flag) {
register struct file_entry *subentry = entry->subfiles;
while (subentry)
subentry = kill_entry (subentry);
}
p = entry->refs;
while (p) {
register struct file_chain *next_chain = p->next;
free (p);
p = next_chain;
}
p = entry->refs_by;
while (p) {
register struct file_chain *next_chain = p->next;
free (p);
p = next_chain;
}
if (entry->local_sym_name) free (entry->local_sym_name);
if (entry->filename != entry->local_sym_name && entry->filename)
free (entry->filename);
if (entry->symbols) free (entry->symbols);
if (entry->strings) free (entry->strings);
if (entry->text_reloc) free (entry->text_reloc);
if (entry->data_reloc) free (entry->data_reloc);
if (entry->text_start_address) free (entry->text_start_address);
{
register struct file_entry *next = entry->chain;
free (entry);
return (next);
}
} /* kill_entry */
/* clean all data structures so that they return to the original states
after last call to dld */
static void
clean_up ()
{
if (!_dld_latest_entry)
return;
_dld_latest_entry->ref_count = 0;
if (_dld_latest_entry->library_flag) {
register struct file_entry *subentry = _dld_latest_entry->subfiles;
for (; subentry; subentry = subentry->chain)
subentry->ref_count = 0;
}
remove_cross_references (_dld_latest_entry, _dld_latest_entry);
cleanup_obsolete_entries (_dld_latest_entry);
cleanup_symtab ();
_dld_latest_entry = kill_entry (_dld_latest_entry);
} /* clean_up */
/* Actually perform the unlink operation.
Search through the list of file entries, unlink those whose ref_count is
zero. */
static struct file_entry *
do_unlink (entry)
struct file_entry *entry;
{
register struct file_entry *p = entry;
register struct file_entry *prev = 0;
if (p == 0) return p;
while (p) {
if (p->library_flag) {
p->subfiles = do_unlink (p->subfiles);
/* if all subentries are gone, remove itself */
if (p->subfiles == 0)
p->ref_count = 0;
}
if (p->ref_count == 0) {
register struct file_entry *next;
next = kill_entry (p);
if (prev == 0) {
entry = next;
p = entry;
} else {
prev->chain = next;
p = prev->chain;
}
} else {
prev = p;
p = p->chain;
}
}
_dld_exec_flags_valid = 0;
return entry;
} /* do_unlink */
int
dld_init (myname)
char *myname;
{
int desc;
page_size = getpagesize ();
bzero (_dld_symtab, TABSIZE * sizeof(symbol *));
_dld_latest_entry = 0;
_dld_dummy_entry = 0;
dld_undefined_sym_count = 0;
_dld_exec_flags_valid = 0;
if (myname == 0) {
dld_errno = DLD_ENOFILE;
return dld_errno;
}
if (setjmp (_dld_env)) {
clean_up ();
file_close ();
return dld_errno;
}
_dld_latest_entry = make_entry (myname);
desc = file_open (_dld_latest_entry);
#ifdef atarist
st_read_header (desc, _dld_latest_entry);
#endif /* atarist */
read_file_symbols (desc, _dld_latest_entry, 0);
#ifdef atarist
/* do a consistency check of data in entry against data in _base */
if ((_dld_latest_entry->header.a_text != _base->p_tlen) ||
(_dld_latest_entry->header.a_data != _base->p_dlen) ||
(_dld_latest_entry->header.a_bss != _base->p_blen)) {
if (_dld_latest_entry->symbols) {
free (_dld_latest_entry->symbols);
_dld_latest_entry->symbols = 0;
}
file_close ();
dld_errno = DLD_EBADHEADER;
return dld_errno;
}
_dld_latest_entry->text_start_address = (int) _base->p_tbase;
_dld_latest_entry->data_start_address = (int) _base->p_dbase;
_dld_latest_entry->bss_start_address = (int) _base->p_bbase;
relocate_symbol_address (_dld_latest_entry);
#endif /* atarist */
if (_dld_latest_entry->symbols) {
free (_dld_latest_entry->symbols);
_dld_latest_entry->symbols = 0;
}
file_close ();
_dld_latest_entry->undefined_symbol_count = 0;
_dld_latest_entry->all_symbols_resolved_flag = 1;
return 0;
} /* dld_init */
int
dld_link (object_file)
char *object_file;
{
register int desc;
struct file_entry *old_latest_entry = _dld_latest_entry;
if (setjmp (_dld_env)) {
if (old_latest_entry != _dld_latest_entry)
clean_up ();
file_close ();
return dld_errno;
}
dld_errno = 0;
file_close (); /* file might be opened in the last
call */
if (object_file == 0) {
dld_errno = DLD_ENOFILE;
return dld_errno;
}
_dld_latest_entry = make_entry (object_file);
desc = file_open (_dld_latest_entry);
read_file_symbols (desc, _dld_latest_entry, 1);
if (_dld_latest_entry->library_flag && _dld_latest_entry->subfiles == 0) {
free (_dld_latest_entry->local_sym_name);
if (_dld_latest_entry->filename != _dld_latest_entry->local_sym_name)
free (_dld_latest_entry->filename);
_dld_latest_entry->filename = NULL;
_dld_latest_entry->local_sym_name = NULL;
_dld_latest_entry = kill_entry (_dld_latest_entry);
file_close ();
return 0;
}
relocate_entry_symbols (desc, _dld_latest_entry);
file_close ();
_dld_patch_all_files (_dld_latest_entry);
_dld_exec_flags_valid = 0;
return 0;
} /* dld_link */
/* return the location of the given symbol without prepending a '_'. */
unsigned long
dld_get_bare_symbol (name)
char *name;
{
register symbol *sp;
if (name == 0)
return 0;
sp = _dld_getsym_soft (name);
#ifdef linux
if (sp) {
while (sp->indirect) sp = sp->indirect;
if (sp->defined)
return sp->value;
}
#else
if (sp)
if (sp->defined)
return sp->value;
#endif
return 0;
} /* dld_get_bare_symbol */
/* given a file_entry, unlink that (and all its decendents). Modules still
referenced by the remainings will not be unlinked.
ENTRY is assumed to be a valid pointer to a file_entry structure.
if FORCE is true, remove this entry event regardless if it is still
referenced by others */
void
_dld_unlink_entry (entry, force)
struct file_entry *entry;
int force;
{
if (force) {
entry->ref_count = 0;
if (entry->library_flag) {
register struct file_entry *subentry = entry->subfiles;
for (; subentry; subentry = subentry->chain)
subentry->ref_count = 0;
}
} else {
if (entry->library_flag || entry->already_unlink)
return;
entry->ref_count--;
entry->already_unlink = 1;
}
if (entry->ref_count == 0) {
remove_cross_references (_dld_latest_entry, entry);
cleanup_obsolete_entries (entry);
cleanup_symtab ();
_dld_latest_entry = do_unlink (_dld_latest_entry);
}
_dld_patch_all_files (_dld_latest_entry);
_dld_exec_flags_valid = 0;
} /* _dld_unlink_entry */
/*
* return true if the named function can be safely exeucted.
*/
int
dld_function_executable_p (name)
char name[];
{
register symbol *sp;
register char *p;
if (name == 0)
return 0;
if (setjmp (_dld_env))
return 0;
/* prepend an '_' to name, as required by the C convention */
p = (char *) _dld_malloc (strlen(name) + 2);
*p = '_';
strcpy (p+1, name);
sp = _dld_getsym_soft (p);
free (p);
#ifdef linux
if (sp && (sp->defined == (N_EXT | N_TEXT) ||
sp->defined == (N_EXT | N_INDR))) {
#else
if (sp && sp->defined == (N_EXT | N_TEXT)) {
#endif
register struct file_entry *fe = sp->defined_by;
if (fe == 0) return 0;
#ifdef linux
while (sp->indirect) sp = sp->indirect;
if (sp->defined != (N_EXT | N_TEXT)) return 0;
#endif
if (!_dld_exec_flags_valid)
find_all_executable_modules ();
return fe->executable_flag;
}
#ifdef linux
if (sp && sp->defined == (N_EXT | N_ABS))
return 1;
#endif
return 0;
} /* dld_function_executable_p */