home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
balgen
/
gradeq.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
5KB
|
178 lines
subroutine gradeq (n,ma,a,mb,b,low,igh,cperm,wk)
c
c *****parameters:
integer igh,low,ma,mb,n
double precision a(ma,n),b(mb,n),cperm(n),wk(n,2)
c
c *****local variables:
integer i,ighm1,im,ip1,j,jm,jp1,k
double precision cmax,rmax,suma,sumb,temp
c
c *****fortran functions:
double precision dabs
c
c *****subroutines called:
c none
c
c ---------------------------------------------------------------
c
c *****purpose:
c this subroutine grades the submatrices of a and b given by
c starting -1 low and ending -1 igh in the generalized
c eigenvalue problem a*x = (lambda)*b*x by permuting rows and
c columns such that the norm of the i-th row (column) of the
c a submatrix divided by the norm of the i-th row (column) of
c the b submatrix becomes smaller as i increases.
c ref.: ward, r. c., balancing the generalized eigenvalue
c problem, siam j. sci. stat. comput., vol. 2, no. 2, june 1981,
c 141-152.
c
c *****parameter description:
c
c on input:
c
c ma,mb integer
c row dimensions of the arrays containing matrices
c a and b respectively, as declared in the main calling
c program dimension statement;
c
c n integer
c order of the matrices a and b;
c
c a real(ma,n)
c contains the a matrix of the generalized eigenproblem
c defined above;
c
c b real(mb,n)
c contains the b matrix of the generalized eigenproblem
c defined above;
c
c low integer
c specifies the beginning -1 for the rows and
c columns of a and b to be graded;
c
c igh integer
c specifies the ending -1 for the rows and columns
c of a and b to be graded;
c
c wk real(n,2)
c work array that must contain at least 2*n locations.
c only locations low through igh and n+low through
c n+igh are referenced by this subroutine.
c
c on output:
c
c a,b contain the permuted and graded a and b matrices;
c
c cperm real(n)
c contains in its low through igh locations the
c column permutations applied in grading the
c submatrices. the other locations are not referenced
c by this subroutine;
c
c wk contains in its low through igh locations the row
c permutations applied in grading the submatrices.
c
c *****algorithm notes:
c none.
c
c *****history:
c written by r. c. ward.......
c
c ---------------------------------------------------------------
c
if (low .eq. igh) go to 510
ighm1 = igh-1
c
c compute column norms of a / those of b
c
do 420 j = low,igh
suma = 0.0d0
sumb = 0.0d0
do 410 i = low,igh
suma = suma + dabs(a(i,j))
sumb = sumb + dabs(b(i,j))
410 continue
if (sumb .eq. 0.0d0) go to 415
wk(j,2) = suma / sumb
go to 420
415 continue
wk(j,2) = 1.0d38
420 continue
c
c permute columns to order them by decreasing quotients
c
do 450 j = low,ighm1
cmax = wk(j,2)
jm = j
jp1 = j+1
do 430 k = jp1,igh
if (cmax .ge. wk(k,2)) go to 430
jm = k
cmax = wk(k,2)
430 continue
cperm(j) = jm
if (jm .eq. j) go to 450
temp = wk(j,2)
wk(j,2) = wk(jm,2)
wk(jm,2) = temp
do 440 i = 1,igh
temp = b(i,j)
b(i,j) = b(i,jm)
b(i,jm) = temp
temp = a(i,j)
a(i,j) = a(i,jm)
a(i,jm) = temp
440 continue
450 continue
cperm(igh) = igh
c
c compute row norms of a / those of b
c
do 470 i = low,igh
suma = 0.0d0
sumb = 0.0d0
do 460 j = low,igh
suma = suma + dabs(a(i,j))
sumb = sumb + dabs(b(i,j))
460 continue
if (sumb .eq. 0.0d0) go to 465
wk(i,2) = suma / sumb
go to 470
465 continue
wk(i,2) = 1.0d38
c
c permute rows to order them by decreasing quotients
c
470 continue
do 500 i = low,ighm1
rmax = wk(i,2)
im = i
ip1 = i+1
do 480 k = ip1,igh
if (rmax .ge. wk(k,2)) go to 480
im = k
rmax = wk(k,2)
480 continue
wk(i,1) = im
if (im .eq. i) go to 500
temp = wk(i,2)
wk(i,2) = wk(im,2)
wk(im,2) = temp
do 490 j = low,n
temp = b(i,j)
b(i,j) = b(im,j)
b(im,j) = temp
temp = a(i,j)
a(i,j) = a(im,j)
a(im,j) = temp
490 continue
500 continue
wk(igh,1) = igh
510 continue
return
c
c last line of gradeq
c
end