home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
dlamc1.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
5KB
|
188 lines
*
************************************************************************
*
SUBROUTINE DLAMC1( BETA, T, RND, IEEE1 )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
LOGICAL IEEE1, RND
INTEGER BETA, T
* ..
*
* Purpose
* =======
*
* DLAMC1 determines the machine parameters given by BETA, T, RND, and
* IEEE1.
*
* Arguments
* =========
*
* BETA (output) INTEGER
* The base of the machine.
*
* T (output) INTEGER
* The number of ( BETA ) digits in the mantissa.
*
* RND (output) LOGICAL
* Specifies whether proper rounding ( RND = .TRUE. ) or
* chopping ( RND = .FALSE. ) occurs in addition. This may not
* be a reliable guide to the way in which the machine performs
* its arithmetic.
*
* IEEE1 (output) LOGICAL
* Specifies whether rounding appears to be done in the IEEE
* 'round to nearest' style.
*
* Further Details
* ===============
*
* The routine is based on the routine ENVRON by Malcolm and
* incorporates suggestions by Gentleman and Marovich. See
*
* Malcolm M. A. (1972) Algorithms to reveal properties of
* floating-point arithmetic. Comms. of the ACM, 15, 949-951.
*
* Gentleman W. M. and Marovich S. B. (1974) More on algorithms
* that reveal properties of floating point arithmetic units.
* Comms. of the ACM, 17, 276-277.
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL FIRST, LIEEE1, LRND
INTEGER LBETA, LT
DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3
EXTERNAL DLAMC3
* ..
* .. Save statement ..
SAVE FIRST, LIEEE1, LBETA, LRND, LT
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
FIRST = .FALSE.
ONE = 1
*
* LBETA, LIEEE1, LT and LRND are the local values of BETA,
* IEEE1, T and RND.
*
* Throughout this routine we use the function DLAMC3 to ensure
* that relevant values are stored and not held in registers, or
* are not affected by optimizers.
*
* Compute a = 2.0**m with the smallest positive integer m such
* that
*
* fl( a + 1.0 ) = a.
*
A = 1
C = 1
*
*+ WHILE( C.EQ.ONE )LOOP
10 CONTINUE
IF( C.EQ.ONE ) THEN
A = 2*A
C = DLAMC3( A, ONE )
C = DLAMC3( C, -A )
GO TO 10
END IF
*+ END WHILE
*
* Now compute b = 2.0**m with the smallest positive integer m
* such that
*
* fl( a + b ) .gt. a.
*
B = 1
C = DLAMC3( A, B )
*
*+ WHILE( C.EQ.A )LOOP
20 CONTINUE
IF( C.EQ.A ) THEN
B = 2*B
C = DLAMC3( A, B )
GO TO 20
END IF
*+ END WHILE
*
* Now compute the base. a and c are neighbouring floating point
* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
* their difference is beta. Adding 0.25 to c is to ensure that it
* is truncated to beta and not ( beta - 1 ).
*
QTR = ONE / 4
SAVEC = C
C = DLAMC3( C, -A )
LBETA = C + QTR
*
* Now determine whether rounding or chopping occurs, by adding a
* bit less than beta/2 and a bit more than beta/2 to a.
*
B = LBETA
F = DLAMC3( B / 2, -B / 100 )
C = DLAMC3( F, A )
IF( C.EQ.A ) THEN
LRND = .TRUE.
ELSE
LRND = .FALSE.
END IF
F = DLAMC3( B / 2, B / 100 )
C = DLAMC3( F, A )
IF( ( LRND ) .AND. ( C.EQ.A ) )
$ LRND = .FALSE.
*
* Try and decide whether rounding is done in the IEEE 'round to
* nearest' style. B/2 is half a unit in the last place of the two
* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
* zero, and SAVEC is odd. Thus adding B/2 to A should not change
* A, but adding B/2 to SAVEC should change SAVEC.
*
T1 = DLAMC3( B / 2, A )
T2 = DLAMC3( B / 2, SAVEC )
LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
*
* Now find the mantissa, t. It should be the integer part of
* log to the base beta of a, however it is safer to determine t
* by powering. So we find t as the smallest positive integer for
* which
*
* fl( beta**t + 1.0 ) = 1.0.
*
LT = 0
A = 1
C = 1
*
*+ WHILE( C.EQ.ONE )LOOP
30 CONTINUE
IF( C.EQ.ONE ) THEN
LT = LT + 1
A = A*LBETA
C = DLAMC3( A, ONE )
C = DLAMC3( C, -A )
GO TO 30
END IF
*+ END WHILE
*
END IF
*
BETA = LBETA
T = LT
RND = LRND
IEEE1 = LIEEE1
RETURN
*
* End of DLAMC1
*
END