home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
dtrsyl.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
34KB
|
915 lines
SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
$ LDC, SCALE, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* DTRSYL solves the real Sylvester matrix equation:
*
* op(A)*X + X*op(B) = scale*C or
* op(A)*X - X*op(B) = scale*C,
*
* where op(A) = A or A**T, and A and B are both upper quasi-
* triangular. A is M-by-M and B is N-by-N; the right hand side C and
* the solution X are M-by-N; and scale is an output scale factor, set
* <= 1 to avoid overflow in X.
*
* A and B must be in Schur canonical form (as returned by DHSEQR), that
* is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
* each 2-by-2 diagonal block has its diagonal elements equal and its
* off-diagonal elements of opposite sign.
*
* Arguments
* =========
*
* TRANA (input) CHARACTER*1
* Specifies the option op(A):
* = 'N': op(A) = A (No transpose)
* = 'T': op(A) = A**T (Transpose)
* = 'C': op(A) = A**H (Conjugate transpose = Transpose)
*
* TRANB (input) CHARACTER*1
* Specifies the option op(B):
* = 'N': op(B) = B (No transpose)
* = 'T': op(B) = B**T (Transpose)
* = 'C': op(B) = B**H (Conjugate transpose = Transpose)
*
* ISGN (input) INTEGER
* Specifies the sign in the equation:
* = +1: solve op(A)*X + X*op(B) = scale*C
* = -1: solve op(A)*X - X*op(B) = scale*C
*
* M (input) INTEGER
* The order of the matrix A, and the number of rows in the
* matrices X and C. M >= 0.
*
* N (input) INTEGER
* The order of the matrix B, and the number of columns in the
* matrices X and C. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,M)
* The upper quasi-triangular matrix A, in Schur canonical form.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input) DOUBLE PRECISION array, dimension (LDB,N)
* The upper quasi-triangular matrix B, in Schur canonical form.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
* On entry, the M-by-N right hand side matrix C.
* On exit, C is overwritten by the solution matrix X.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M)
*
* SCALE (output) DOUBLE PRECISION
* The scale factor, scale, set <= 1 to avoid overflow in X.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* = 1: A and B have common or very close eigenvalues; perturbed
* values were used to solve the equation (but the matrices
* A and B are unchanged).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRNA, NOTRNB
INTEGER IERR, J, K, K1, K2, KNEXT, L, L1, L2, LNEXT
DOUBLE PRECISION A11, BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
$ SMLNUM, SUML, SUMR, XNORM
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 ), VEC( 2, 2 ), X( 2, 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT, DLAMCH, DLANGE
EXTERNAL LSAME, DDOT, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, DLALN2, DLASY2, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and Test input parameters
*
NOTRNA = LSAME( TRANA, 'N' )
NOTRNB = LSAME( TRANB, 'N' )
*
INFO = 0
IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND. .NOT.
$ LSAME( TRANA, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'T' ) .AND. .NOT.
$ LSAME( TRANB, 'C' ) ) THEN
INFO = -2
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRSYL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Set constants to control overflow
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM*DBLE( M*N ) / EPS
BIGNUM = ONE / SMLNUM
*
SMIN = MAX( SMLNUM, EPS*DLANGE( 'M', M, M, A, LDA, DUM ),
$ EPS*DLANGE( 'M', N, N, B, LDB, DUM ) )
*
SCALE = ONE
SGN = ISGN
*
IF( NOTRNA .AND. NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-left corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* M L-1
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)].
* I=K+1 J=1
*
* Start column loop (index = L)
* L1 (L2) : column index of the first (first) row of X(K,L).
*
LNEXT = 1
DO 60 L = 1, N
IF( L.LT.LNEXT )
$ GO TO 60
IF( L.EQ.N ) THEN
L1 = L
L2 = L
ELSE
IF( B( L+1, L ).NE.ZERO ) THEN
L1 = L
L2 = L + 1
LNEXT = L + 2
ELSE
L1 = L
L2 = L
LNEXT = L + 1
END IF
END IF
*
* Start row loop (index = K)
* K1 (K2): row index of the first (last) row of X(K,L).
*
KNEXT = M
DO 50 K = M, 1, -1
IF( K.GT.KNEXT )
$ GO TO 50
IF( K.EQ.1 ) THEN
K1 = K
K2 = K
ELSE
IF( A( K, K-1 ).NE.ZERO ) THEN
K1 = K - 1
K2 = K
KNEXT = K - 2
ELSE
K1 = K
K2 = K
KNEXT = K - 1
END IF
END IF
*
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
SCALOC = ONE
*
A11 = A( K1, K1 ) + SGN*B( L1, L1 )
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
*
IF( SCALOC.NE.ONE ) THEN
DO 10 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
10 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
*
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
CALL DLALN2( .FALSE., 2, 1, SMIN, ONE, A( K1, K1 ),
$ LDA, ONE, ONE, VEC, 2, -SGN*B( L1, L1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 20 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
20 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
*
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = SGN*( C( K1, L1 )-( SUML+SGN*SUMR ) )
*
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L2 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 2, 1 ) = SGN*( C( K1, L2 )-( SUML+SGN*SUMR ) )
*
CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, B( L1, L1 ),
$ LDB, ONE, ONE, VEC, 2, -SGN*A( K1, K1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 30 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
30 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L2 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 1, 2 ) = C( K1, L2 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L2 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 2, 2 ) = C( K2, L2 ) - ( SUML+SGN*SUMR )
*
CALL DLASY2( .FALSE., .FALSE., ISGN, 2, 2,
$ A( K1, K1 ), LDA, B( L1, L1 ), LDB, VEC,
$ 2, SCALOC, X, 2, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 40 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
40 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
END IF
*
50 CONTINUE
*
60 CONTINUE
*
ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
*
* Solve A' *X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* upper-left corner column by column by
*
* A(K,K)'*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* K-1 L-1
* R(K,L) = SUM [A(I,K)'*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]
* I=1 J=1
*
* Start column loop (index = L)
* L1 (L2): column index of the first (last) row of X(K,L)
*
LNEXT = 1
DO 120 L = 1, N
IF( L.LT.LNEXT )
$ GO TO 120
IF( L.EQ.N ) THEN
L1 = L
L2 = L
ELSE
IF( B( L+1, L ).NE.ZERO ) THEN
L1 = L
L2 = L + 1
LNEXT = L + 2
ELSE
L1 = L
L2 = L
LNEXT = L + 1
END IF
END IF
*
* Start row loop (index = K)
* K1 (K2): row index of the first (last) row of X(K,L)
*
KNEXT = 1
DO 110 K = 1, M
IF( K.LT.KNEXT )
$ GO TO 110
IF( K.EQ.M ) THEN
K1 = K
K2 = K
ELSE
IF( A( K+1, K ).NE.ZERO ) THEN
K1 = K
K2 = K + 1
KNEXT = K + 2
ELSE
K1 = K
K2 = K
KNEXT = K + 1
END IF
END IF
*
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
SCALOC = ONE
*
A11 = A( K1, K1 ) + SGN*B( L1, L1 )
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
*
IF( SCALOC.NE.ONE ) THEN
DO 70 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
70 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
*
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, A( K1, K1 ),
$ LDA, ONE, ONE, VEC, 2, -SGN*B( L1, L1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 80 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
80 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = SGN*( C( K1, L1 )-( SUML+SGN*SUMR ) )
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 2, 1 ) = SGN*( C( K1, L2 )-( SUML+SGN*SUMR ) )
*
CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, B( L1, L1 ),
$ LDB, ONE, ONE, VEC, 2, -SGN*A( K1, K1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 90 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
90 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( L1-1, C( K1, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 1, 2 ) = C( K1, L2 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L1 ), 1 )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( L1-1, C( K2, 1 ), LDC, B( 1, L2 ), 1 )
VEC( 2, 2 ) = C( K2, L2 ) - ( SUML+SGN*SUMR )
*
CALL DLASY2( .TRUE., .FALSE., ISGN, 2, 2, A( K1, K1 ),
$ LDA, B( L1, L1 ), LDB, VEC, 2, SCALOC, X,
$ 2, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 100 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
100 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
END IF
*
110 CONTINUE
120 CONTINUE
*
ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A'*X + ISGN*X*B' = scale*C.
*
* The (K,L)th block of X is determined starting from
* top-right corner column by column by
*
* A(K,K)'*X(K,L) + ISGN*X(K,L)*B(L,L)' = C(K,L) - R(K,L)
*
* Where
* K-1 N
* R(K,L) = SUM [A(I,K)'*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)'].
* I=1 J=L+1
*
* Start column loop (index = L)
* L1 (L2): column index of the first (last) row of X(K,L)
*
LNEXT = N
DO 180 L = N, 1, -1
IF( L.GT.LNEXT )
$ GO TO 180
IF( L.EQ.1 ) THEN
L1 = L
L2 = L
ELSE
IF( B( L, L-1 ).NE.ZERO ) THEN
L1 = L - 1
L2 = L
LNEXT = L - 2
ELSE
L1 = L
L2 = L
LNEXT = L - 1
END IF
END IF
*
* Start row loop (index = K)
* K1 (K2): row index of the first (last) row of X(K,L)
*
KNEXT = 1
DO 170 K = 1, M
IF( K.LT.KNEXT )
$ GO TO 170
IF( K.EQ.M ) THEN
K1 = K
K2 = K
ELSE
IF( A( K+1, K ).NE.ZERO ) THEN
K1 = K
K2 = K + 1
KNEXT = K + 2
ELSE
K1 = K
K2 = K
KNEXT = K + 1
END IF
END IF
*
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L1, C( K1, MIN( L1+1, N ) ), LDC,
$ B( L1, MIN( L1+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
SCALOC = ONE
*
A11 = A( K1, K1 ) + SGN*B( L1, L1 )
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
*
IF( SCALOC.NE.ONE ) THEN
DO 130 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
130 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
*
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, A( K1, K1 ),
$ LDA, ONE, ONE, VEC, 2, -SGN*B( L1, L1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 140 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
140 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = SGN*( C( K1, L1 )-( SUML+SGN*SUMR ) )
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = SGN*( C( K1, L2 )-( SUML+SGN*SUMR ) )
*
CALL DLALN2( .FALSE., 2, 1, SMIN, ONE, B( L1, L1 ),
$ LDB, ONE, ONE, VEC, 2, -SGN*A( K1, K1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 150 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
150 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K1 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 1, 2 ) = C( K1, L2 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L1 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( K1-1, A( 1, K2 ), 1, C( 1, L2 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 2, 2 ) = C( K2, L2 ) - ( SUML+SGN*SUMR )
*
CALL DLASY2( .TRUE., .TRUE., ISGN, 2, 2, A( K1, K1 ),
$ LDA, B( L1, L1 ), LDB, VEC, 2, SCALOC, X,
$ 2, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 160 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
160 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
END IF
*
170 CONTINUE
180 CONTINUE
*
ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B' = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-right corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)' = C(K,L) - R(K,L)
*
* Where
* M N
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)'].
* I=K+1 J=L+1
*
* Start column loop (index = L)
* L1 (L2): column index of the first (last) row of X(K,L)
*
LNEXT = N
DO 240 L = N, 1, -1
IF( L.GT.LNEXT )
$ GO TO 240
IF( L.EQ.1 ) THEN
L1 = L
L2 = L
ELSE
IF( B( L, L-1 ).NE.ZERO ) THEN
L1 = L - 1
L2 = L
LNEXT = L - 2
ELSE
L1 = L
L2 = L
LNEXT = L - 1
END IF
END IF
*
* Start row loop (index = K)
* K1 (K2): row index of the first (last) row of X(K,L)
*
KNEXT = M
DO 230 K = M, 1, -1
IF( K.GT.KNEXT )
$ GO TO 230
IF( K.EQ.1 ) THEN
K1 = K
K2 = K
ELSE
IF( A( K, K-1 ).NE.ZERO ) THEN
K1 = K - 1
K2 = K
KNEXT = K - 2
ELSE
K1 = K
K2 = K
KNEXT = K - 1
END IF
END IF
*
IF( L1.EQ.L2 .AND. K1.EQ.K2 ) THEN
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L1 ), 1 )
SUMR = DDOT( N-L1, C( K1, MIN( L1+1, N ) ), LDC,
$ B( L1, MIN( L1+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
SCALOC = ONE
*
A11 = A( K1, K1 ) + SGN*B( L1, L1 )
DA11 = ABS( A11 )
IF( DA11.LE.SMIN ) THEN
A11 = SMIN
DA11 = SMIN
INFO = 1
END IF
DB = ABS( VEC( 1, 1 ) )
IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
IF( DB.GT.BIGNUM*DA11 )
$ SCALOC = ONE / DB
END IF
X( 1, 1 ) = ( VEC( 1, 1 )*SCALOC ) / A11
*
IF( SCALOC.NE.ONE ) THEN
DO 190 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
190 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
*
ELSE IF( L1.EQ.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
CALL DLALN2( .FALSE., 2, 1, SMIN, ONE, A( K1, K1 ),
$ LDA, ONE, ONE, VEC, 2, -SGN*B( L1, L1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 200 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
200 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K2, L1 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.EQ.K2 ) THEN
*
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = SGN*( C( K1, L1 )-( SUML+SGN*SUMR ) )
*
SUML = DDOT( M-K1, A( K1, MIN( K1+1, M ) ), LDA,
$ C( MIN( K1+1, M ), L2 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = SGN*( C( K1, L2 )-( SUML+SGN*SUMR ) )
*
CALL DLALN2( .FALSE., 2, 1, SMIN, ONE, B( L1, L1 ),
$ LDB, ONE, ONE, VEC, 2, -SGN*A( K1, K1 ),
$ ZERO, X, 2, SCALOC, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 210 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
210 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 2, 1 )
*
ELSE IF( L1.NE.L2 .AND. K1.NE.K2 ) THEN
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 1, 1 ) = C( K1, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K1, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L2 ), 1 )
SUMR = DDOT( N-L2, C( K1, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 1, 2 ) = C( K1, L2 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L1 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L1, MIN( L2+1, N ) ), LDB )
VEC( 2, 1 ) = C( K2, L1 ) - ( SUML+SGN*SUMR )
*
SUML = DDOT( M-K2, A( K2, MIN( K2+1, M ) ), LDA,
$ C( MIN( K2+1, M ), L2 ), 1 )
SUMR = DDOT( N-L2, C( K2, MIN( L2+1, N ) ), LDC,
$ B( L2, MIN( L2+1, N ) ), LDB )
VEC( 2, 2 ) = C( K2, L2 ) - ( SUML+SGN*SUMR )
*
CALL DLASY2( .FALSE., .TRUE., ISGN, 2, 2, A( K1, K1 ),
$ LDA, B( L1, L1 ), LDB, VEC, 2, SCALOC, X,
$ 2, XNORM, IERR )
IF( IERR.NE.0 )
$ INFO = 1
*
IF( SCALOC.NE.ONE ) THEN
DO 220 J = 1, N
CALL DSCAL( M, SCALOC, C( 1, J ), 1 )
220 CONTINUE
SCALE = SCALE*SCALOC
END IF
C( K1, L1 ) = X( 1, 1 )
C( K1, L2 ) = X( 1, 2 )
C( K2, L1 ) = X( 2, 1 )
C( K2, L2 ) = X( 2, 2 )
END IF
*
230 CONTINUE
240 CONTINUE
*
END IF
*
RETURN
*
* End of DTRSYL
*
END