home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zgeqr2.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
3KB
|
123 lines
SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZGEQR2 computes a QR factorization of a complex m by n matrix A:
* A = Q * R.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the m by n matrix A.
* On exit, the elements on and above the diagonal of the array
* contain the min(m,n) by n upper trapezoidal matrix R (R is
* upper triangular if m >= n); the elements below the diagonal,
* with the array TAU, represent the unitary matrix Q as a
* product of elementary reflectors (see Further Details).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (output) COMPLEX*16 array, dimension (min(M,N))
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace) COMPLEX*16 array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of elementary reflectors
*
* Q = H(1) H(2) . . . H(k), where k = min(m,n).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a complex scalar, and v is a complex vector with
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
* and tau in TAU(i).
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, K
COMPLEX*16 ALPHA
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLARF, ZLARFG
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQR2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = 1, K
*
* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
CALL ZLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
$ TAU( I ) )
IF( I.LT.N ) THEN
*
* Apply H(i)' to A(i:m,i+1:n) from the left
*
ALPHA = A( I, I )
A( I, I ) = ONE
CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
$ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
A( I, I ) = ALPHA
END IF
10 CONTINUE
RETURN
*
* End of ZGEQR2
*
END