home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zgesvd.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
142KB
|
3,611 lines
SUBROUTINE ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
$ WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER JOBU, JOBVT
INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * ), S( * )
COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* ZGESVD computes the singular value decomposition (SVD) of a complex
* M-by-N matrix A, optionally computing the left and/or right singular
* vectors. The SVD is written
*
* A = U * SIGMA * conjugate-transpose(V)
*
* where SIGMA is an M-by-N matrix which is zero except for its
* min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
* V is an N-by-N unitary matrix. The diagonal elements of SIGMA
* are the singular values of A; they are real and non-negative, and
* are returned in descending order. The first min(m,n) columns of
* U and V are the left and right singular vectors of A.
*
* Note that the routine returns V**H, not V.
*
* Arguments
* =========
*
* JOBU (input) CHARACTER*1
* Specifies options for computing all or part of the matrix U:
* = 'A': all M columns of U are returned in array U:
* = 'S': the first min(m,n) columns of U (the left singular
* vectors) are returned in the array U;
* = 'O': the first min(m,n) columns of U (the left singular
* vectors) are overwritten on the array A;
* = 'N': no columns of U (no left singular vectors) are
* computed.
*
* JOBVT (input) CHARACTER*1
* Specifies options for computing all or part of the matrix
* V**H:
* = 'A': all N rows of V**H are returned in the array VT;
* = 'S': the first min(m,n) rows of V**H (the right singular
* vectors) are returned in the array VT;
* = 'O': the first min(m,n) rows of V**H (the right singular
* vectors) are overwritten on the array A;
* = 'N': no rows of V**H (no right singular vectors) are
* computed.
*
* JOBVT and JOBU cannot both be 'O'.
*
* M (input) INTEGER
* The number of rows of the input matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the input matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit,
* if JOBU = 'O', A is overwritten with the first min(m,n)
* columns of U (the left singular vectors,
* stored columnwise);
* if JOBVT = 'O', A is overwritten with the first min(m,n)
* rows of V**H (the right singular vectors,
* stored rowwise);
* if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
* are destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* S (output) DOUBLE PRECISION array, dimension (min(M,N))
* The singular values of A, sorted so that S(i) >= S(i+1).
*
* U (output) COMPLEX*16 array, dimension (LDU,UCOL)
* (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
* If JOBU = 'A', U contains the M-by-M unitary matrix U;
* if JOBU = 'S', U contains the first min(m,n) columns of U
* (the left singular vectors, stored columnwise);
* if JOBU = 'N' or 'O', U is not referenced.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= 1; if
* JOBU = 'S' or 'A', LDU >= M.
*
* VT (output) COMPLEX*16 array, dimension (LDVT,N)
* If JOBVT = 'A', VT contains the N-by-N unitary matrix
* V**H;
* if JOBVT = 'S', VT contains the first min(m,n) rows of
* V**H (the right singular vectors, stored rowwise);
* if JOBVT = 'N' or 'O', VT is not referenced.
*
* LDVT (input) INTEGER
* The leading dimension of the array VT. LDVT >= 1; if
* JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
*
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= 1.
* LWORK >= 2*MIN(M,N)+MAX(M,N).
* For good performance, LWORK should generally be larger.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension
* (max(3*min(M,N),5*min(M,N)-4))
* On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
* unconverged superdiagonal elements of an upper bidiagonal
* matrix B whose diagonal is in S (not necessarily sorted).
* B satisfies A = U * B * VT, so it has the same singular
* values as A, and singular vectors related by U and VT.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: if ZBDSQR did not converge, INFO specifies how many
* superdiagonals of an intermediate bidiagonal form B
* did not converge to zero. See the description of RWORK
* above for details.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
$ CONE = ( 1.0D0, 0.0D0 ) )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS, WNTVA,
$ WNTVAS, WNTVN, WNTVO, WNTVS
INTEGER BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL,
$ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
$ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
$ NRVT, WRKBL
DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 )
COMPLEX*16 CDUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL DLASCL, XERBLA, ZBDSQR, ZGEBRD, ZGELQF, ZGEMM,
$ ZGEQRF, ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNGLQ,
$ ZUNGQR, ZUNMBR
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
MINMN = MIN( M, N )
MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, 0 )
WNTUA = LSAME( JOBU, 'A' )
WNTUS = LSAME( JOBU, 'S' )
WNTUAS = WNTUA .OR. WNTUS
WNTUO = LSAME( JOBU, 'O' )
WNTUN = LSAME( JOBU, 'N' )
WNTVA = LSAME( JOBVT, 'A' )
WNTVS = LSAME( JOBVT, 'S' )
WNTVAS = WNTVA .OR. WNTVS
WNTVO = LSAME( JOBVT, 'O' )
WNTVN = LSAME( JOBVT, 'N' )
MINWRK = 1
*
IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
INFO = -1
ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
$ ( WNTVO .AND. WNTUO ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
INFO = -9
ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
$ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
INFO = -11
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* CWorkspace refers to complex workspace, and RWorkspace to
* real workspace. NB refers to the optimal block size for the
* immediately following subroutine, as returned by ILAENV.)
*
IF( INFO.EQ.0 .AND. LWORK.GE.1 .AND. M.GT.0 .AND. N.GT.0 ) THEN
IF( M.GE.N ) THEN
*
* Space needed for ZBDSQR is BDSPAC = MAX( 3*N, 5*N-4 )
*
IF( M.GE.MNTHR ) THEN
IF( WNTUN ) THEN
*
* Path 1 (M much larger than N, JOBU='N')
*
MAXWRK = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1,
$ -1 )
MAXWRK = MAX( MAXWRK, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
IF( WNTVO .OR. WNTVAS )
$ MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MINWRK = 3*N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUO .AND. WNTVN ) THEN
*
* Path 2 (M much larger than N, JOBU='O', JOBVT='N')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUO .AND. WNTVAS ) THEN
*
* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
* 'A')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUS .AND. WNTVN ) THEN
*
* Path 4 (M much larger than N, JOBU='S', JOBVT='N')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUS .AND. WNTVO ) THEN
*
* Path 5 (M much larger than N, JOBU='S', JOBVT='O')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = 2*N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUS .AND. WNTVAS ) THEN
*
* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
* 'A')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUA .AND. WNTVN ) THEN
*
* Path 7 (M much larger than N, JOBU='A', JOBVT='N')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'ZUNGQR', ' ', M,
$ M, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUA .AND. WNTVO ) THEN
*
* Path 8 (M much larger than N, JOBU='A', JOBVT='O')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'ZUNGQR', ' ', M,
$ M, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = 2*N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTUA .AND. WNTVAS ) THEN
*
* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
* 'A')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'ZUNGQR', ' ', M,
$ M, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
ELSE
*
* Path 10 (M at least N, but not much larger)
*
MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,
$ -1, -1 )
IF( WNTUS .OR. WNTUO )
$ MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, N, N, -1 ) )
IF( WNTUA )
$ MAXWRK = MAX( MAXWRK, 2*N+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, N, -1 ) )
IF( .NOT.WNTVN )
$ MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MINWRK = 2*N + M
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
ELSE
*
* Space needed for ZBDSQR is BDSPAC = MAX( 3*M, 5*M-4 )
*
IF( N.GE.MNTHR ) THEN
IF( WNTVN ) THEN
*
* Path 1t(N much larger than M, JOBVT='N')
*
MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
$ -1 )
MAXWRK = MAX( MAXWRK, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
IF( WNTUO .OR. WNTUAS )
$ MAXWRK = MAX( MAXWRK, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MINWRK = 3*M
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVO .AND. WNTUN ) THEN
*
* Path 2t(N much larger than M, JOBU='N', JOBVT='O')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'ZUNGLQ', ' ', M,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVO .AND. WNTUAS ) THEN
*
* Path 3t(N much larger than M, JOBU='S' or 'A',
* JOBVT='O')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'ZUNGLQ', ' ', M,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVS .AND. WNTUN ) THEN
*
* Path 4t(N much larger than M, JOBU='N', JOBVT='S')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'ZUNGLQ', ' ', M,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
MAXWRK = M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVS .AND. WNTUO ) THEN
*
* Path 5t(N much larger than M, JOBU='O', JOBVT='S')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'ZUNGLQ', ' ', M,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MAXWRK = 2*M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVS .AND. WNTUAS ) THEN
*
* Path 6t(N much larger than M, JOBU='S' or 'A',
* JOBVT='S')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'ZUNGLQ', ' ', M,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MAXWRK = M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVA .AND. WNTUN ) THEN
*
* Path 7t(N much larger than M, JOBU='N', JOBVT='A')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'ZUNGLQ', ' ', N,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
MAXWRK = M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVA .AND. WNTUO ) THEN
*
* Path 8t(N much larger than M, JOBU='O', JOBVT='A')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'ZUNGLQ', ' ', N,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MAXWRK = 2*M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
ELSE IF( WNTVA .AND. WNTUAS ) THEN
*
* Path 9t(N much larger than M, JOBU='S' or 'A',
* JOBVT='A')
*
WRKBL = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'ZUNGLQ', ' ', N,
$ N, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+2*M*
$ ILAENV( 1, 'ZGEBRD', ' ', M, M, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'P', M, M, M, -1 ) )
WRKBL = MAX( WRKBL, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MAXWRK = M*M + WRKBL
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
ELSE
*
* Path 10t(N greater than M, but not much larger)
*
MAXWRK = 2*M + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,
$ -1, -1 )
IF( WNTVS .OR. WNTVO )
$ MAXWRK = MAX( MAXWRK, 2*M+M*
$ ILAENV( 1, 'ZUNGBR', 'P', M, N, M, -1 ) )
IF( WNTVA )
$ MAXWRK = MAX( MAXWRK, 2*M+N*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, M, -1 ) )
IF( .NOT.WNTUN )
$ MAXWRK = MAX( MAXWRK, 2*M+( M-1 )*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, M, -1 ) )
MINWRK = 2*M + N
MAXWRK = MAX( MINWRK, MAXWRK )
END IF
END IF
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK ) THEN
INFO = -13
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGESVD', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
IF( LWORK.GE.1 )
$ WORK( 1 ) = ONE
RETURN
END IF
*
* Get machine constants
*
EPS = DLAMCH( 'P' )
SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
ISCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ISCL = 1
CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
ELSE IF( ANRM.GT.BIGNUM ) THEN
ISCL = 1
CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
END IF
*
IF( M.GE.N ) THEN
*
* A has at least as many rows as columns. If A has sufficiently
* more rows than columns, first reduce using the QR
* decomposition (if sufficient workspace available)
*
IF( M.GE.MNTHR ) THEN
*
IF( WNTUN ) THEN
*
* Path 1 (M much larger than N, JOBU='N')
* No left singular vectors to be computed
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: need 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Zero out below R
*
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
$ LDA )
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in A
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ IERR )
NCVT = 0
IF( WNTVO .OR. WNTVAS ) THEN
*
* If right singular vectors desired, generate P'.
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
NCVT = N
END IF
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of A in A if desired
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA,
$ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
*
* If right singular vectors desired in VT, copy them there
*
IF( WNTVAS )
$ CALL ZLACPY( 'F', N, N, A, LDA, VT, LDVT )
*
ELSE IF( WNTUO .AND. WNTVN ) THEN
*
* Path 2 (M much larger than N, JOBU='O', JOBVT='N')
* N left singular vectors to be overwritten on A and
* no right singular vectors to be computed
*
IF( LWORK.GE.N*N+3*N ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
*
* WORK(IU) is LDA by N, WORK(IR) is LDA by N
*
LDWRKU = LDA
LDWRKR = LDA
ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
*
* WORK(IU) is LDA by N, WORK(IR) is N by N
*
LDWRKU = LDA
LDWRKR = N
ELSE
*
* WORK(IU) is LDWRKU by N, WORK(IR) is N by N
*
LDWRKU = ( LWORK-N*N ) / N
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IR) and zero out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IR+1 ), LDWRKR )
*
* Generate Q in A
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left vectors bidiagonalizing R
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: need 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IR)
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1,
$ WORK( IR ), LDWRKR, CDUM, 1,
$ RWORK( IRWORK ), INFO )
IU = ITAUQ
*
* Multiply Q in A by left singular vectors of R in
* WORK(IR), storing result in WORK(IU) and copying to A
* (CWorkspace: need N*N+N, prefer N*N+M*N)
* (RWorkspace: 0)
*
DO 10 I = 1, M, LDWRKU
CHUNK = MIN( M-I+1, LDWRKU )
CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
$ LDA, WORK( IR ), LDWRKR, CZERO,
$ WORK( IU ), LDWRKU )
CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
$ A( I, 1 ), LDA )
10 CONTINUE
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize A
* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
* (RWorkspace: N)
*
CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left vectors bidiagonalizing A
* (CWorkspace: need 3*N, prefer 2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in A
* (CWorkspace: need 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1,
$ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTUO .AND. WNTVAS ) THEN
*
* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
* N left singular vectors to be overwritten on A and
* N right singular vectors to be computed in VT
*
IF( LWORK.GE.N*N+3*N ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
LDWRKU = LDA
LDWRKR = LDA
ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is N by N
*
LDWRKU = LDA
LDWRKR = N
ELSE
*
* WORK(IU) is LDWRKU by N and WORK(IR) is N by N
*
LDWRKU = ( LWORK-N*N ) / N
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to VT, zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, VT( 2, 1 ),
$ LDVT )
*
* Generate Q in A
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in VT, copying result to WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
*
* Generate left vectors bidiagonalizing R in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing R in VT
* (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IR) and computing right
* singular vectors of R in VT
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
$ LDVT, WORK( IR ), LDWRKR, CDUM, 1,
$ RWORK( IRWORK ), INFO )
IU = ITAUQ
*
* Multiply Q in A by left singular vectors of R in
* WORK(IR), storing result in WORK(IU) and copying to A
* (CWorkspace: need N*N+N, prefer N*N+M*N)
* (RWorkspace: 0)
*
DO 20 I = 1, M, LDWRKU
CHUNK = MIN( M-I+1, LDWRKU )
CALL ZGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
$ LDA, WORK( IR ), LDWRKR, CZERO,
$ WORK( IU ), LDWRKU )
CALL ZLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
$ A( I, 1 ), LDA )
20 CONTINUE
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to VT, zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, VT( 2, 1 ),
$ LDVT )
*
* Generate Q in A
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in VT
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: N)
*
CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in A by left vectors bidiagonalizing R
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
$ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing R in VT
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in A and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
END IF
*
ELSE IF( WNTUS ) THEN
*
IF( WNTVN ) THEN
*
* Path 4 (M much larger than N, JOBU='S', JOBVT='N')
* N left singular vectors to be computed in U and
* no right singular vectors to be computed
*
IF( LWORK.GE.N*N+3*N ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
* WORK(IR) is LDA by N
*
LDWRKR = LDA
ELSE
*
* WORK(IR) is N by N
*
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IR), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
$ LDWRKR )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IR+1 ), LDWRKR )
*
* Generate Q in A
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left vectors bidiagonalizing R in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IR)
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
$ 1, WORK( IR ), LDWRKR, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply Q in A by left singular vectors of R in
* WORK(IR), storing result in U
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
$ WORK( IR ), LDWRKR, CZERO, U, LDU )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Zero out below R in A
*
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ A( 2, 1 ), LDA )
*
* Bidiagonalize R in A
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left vectors bidiagonalizing R
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
$ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
END IF
*
ELSE IF( WNTVO ) THEN
*
* Path 5 (M much larger than N, JOBU='S', JOBVT='O')
* N left singular vectors to be computed in U and
* N right singular vectors to be overwritten on A
*
IF( LWORK.GE.2*N*N+3*N ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
LDWRKU = LDA
IR = IU + LDWRKU*N
LDWRKR = LDA
ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is N by N
*
LDWRKU = LDA
IR = IU + LDWRKU*N
LDWRKR = N
ELSE
*
* WORK(IU) is N by N and WORK(IR) is N by N
*
LDWRKU = N
IR = IU + LDWRKU*N
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IU), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IU+1 ), LDWRKU )
*
* Generate Q in A
* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IU), copying result to
* WORK(IR)
* (CWorkspace: need 2*N*N+3*N,
* prefer 2*N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
$ WORK( IR ), LDWRKR )
*
* Generate left bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need 2*N*N+3*N-1,
* prefer 2*N*N+2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IU) and computing
* right singular vectors of R in WORK(IR)
* (CWorkspace: need 2*N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, WORK( IU ),
$ LDWRKU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
* Multiply Q in A by left singular vectors of R in
* WORK(IU), storing result in U
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
$ WORK( IU ), LDWRKU, CZERO, U, LDU )
*
* Copy right singular vectors of R to A
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
$ LDA )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Zero out below R in A
*
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ A( 2, 1 ), LDA )
*
* Bidiagonalize R in A
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left vectors bidiagonalizing R
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing R in A
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
$ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
END IF
*
ELSE IF( WNTVAS ) THEN
*
* Path 6 (M much larger than N, JOBU='S', JOBVT='S'
* or 'A')
* N left singular vectors to be computed in U and
* N right singular vectors to be computed in VT
*
IF( LWORK.GE.N*N+3*N ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
* WORK(IU) is LDA by N
*
LDWRKU = LDA
ELSE
*
* WORK(IU) is N by N
*
LDWRKU = N
END IF
ITAU = IU + LDWRKU*N
IWORK = ITAU + N
*
* Compute A=Q*R
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IU), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IU+1 ), LDWRKU )
*
* Generate Q in A
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IU), copying result to VT
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
$ LDVT )
*
* Generate left bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in VT
* (CWorkspace: need N*N+3*N-1,
* prefer N*N+2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IU) and computing
* right singular vectors of R in VT
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
$ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply Q in A by left singular vectors of R in
* WORK(IU), storing result in U
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
$ WORK( IU ), LDWRKU, CZERO, U, LDU )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, N, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to VT, zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ VT( 2, 1 ), LDVT )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in VT
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left bidiagonalizing vectors
* in VT
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in VT
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
END IF
*
ELSE IF( WNTUA ) THEN
*
IF( WNTVN ) THEN
*
* Path 7 (M much larger than N, JOBU='A', JOBVT='N')
* M left singular vectors to be computed in U and
* no right singular vectors to be computed
*
IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
* WORK(IR) is LDA by N
*
LDWRKR = LDA
ELSE
*
* WORK(IR) is N by N
*
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Copy R to WORK(IR), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IR ),
$ LDWRKR )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IR+1 ), LDWRKR )
*
* Generate Q in U
* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IR ), LDWRKR, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IR)
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
$ 1, WORK( IR ), LDWRKR, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply Q in U by left singular vectors of R in
* WORK(IR), storing result in A
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
$ WORK( IR ), LDWRKR, CZERO, A, LDA )
*
* Copy left singular vectors of A from A to U
*
CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need N+M, prefer N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Zero out below R in A
*
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ A( 2, 1 ), LDA )
*
* Bidiagonalize R in A
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left bidiagonalizing vectors
* in A
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
$ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
END IF
*
ELSE IF( WNTVO ) THEN
*
* Path 8 (M much larger than N, JOBU='A', JOBVT='O')
* M left singular vectors to be computed in U and
* N right singular vectors to be overwritten on A
*
IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
LDWRKU = LDA
IR = IU + LDWRKU*N
LDWRKR = LDA
ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is N by N
*
LDWRKU = LDA
IR = IU + LDWRKU*N
LDWRKR = N
ELSE
*
* WORK(IU) is N by N and WORK(IR) is N by N
*
LDWRKU = N
IR = IU + LDWRKU*N
LDWRKR = N
END IF
ITAU = IR + LDWRKR*N
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IU), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IU+1 ), LDWRKU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IU), copying result to
* WORK(IR)
* (CWorkspace: need 2*N*N+3*N,
* prefer 2*N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU,
$ WORK( IR ), LDWRKR )
*
* Generate left bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need 2*N*N+3*N-1,
* prefer 2*N*N+2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IU) and computing
* right singular vectors of R in WORK(IR)
* (CWorkspace: need 2*N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, WORK( IU ),
$ LDWRKU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
* Multiply Q in U by left singular vectors of R in
* WORK(IU), storing result in A
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
$ WORK( IU ), LDWRKU, CZERO, A, LDA )
*
* Copy left singular vectors of A from A to U
*
CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
*
* Copy right singular vectors of R from WORK(IR) to A
*
CALL ZLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
$ LDA )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need N+M, prefer N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Zero out below R in A
*
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ A( 2, 1 ), LDA )
*
* Bidiagonalize R in A
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left bidiagonalizing vectors
* in A
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in A
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
$ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
END IF
*
ELSE IF( WNTVAS ) THEN
*
* Path 9 (M much larger than N, JOBU='A', JOBVT='S'
* or 'A')
* M left singular vectors to be computed in U and
* N right singular vectors to be computed in VT
*
IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
* WORK(IU) is LDA by N
*
LDWRKU = LDA
ELSE
*
* WORK(IU) is N by N
*
LDWRKU = N
END IF
ITAU = IU + LDWRKU*N
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R to WORK(IU), zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ WORK( IU+1 ), LDWRKU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in WORK(IU), copying result to VT
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
$ LDVT )
*
* Generate left bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in VT
* (CWorkspace: need N*N+3*N-1,
* prefer N*N+2*N+(N-1)*NB)
* (RWorkspace: need 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of R in WORK(IU) and computing
* right singular vectors of R in VT
* (CWorkspace: need N*N)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
$ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply Q in U by left singular vectors of R in
* WORK(IU), storing result in A
* (CWorkspace: need N*N)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
$ WORK( IU ), LDWRKU, CZERO, A, LDA )
*
* Copy left singular vectors of A from A to U
*
CALL ZLACPY( 'F', M, N, A, LDA, U, LDU )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + N
*
* Compute A=Q*R, copying result to U
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: 0)
*
CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
*
* Generate Q in U
* (CWorkspace: need N+M, prefer N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGQR( M, M, N, U, LDU, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy R from A to VT, zeroing out below it
*
CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO,
$ VT( 2, 1 ), LDVT )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize R in VT
* (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply Q in U by left bidiagonalizing vectors
* in VT
* (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
$ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in VT
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + N
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
END IF
*
END IF
*
ELSE
*
* M .LT. MNTHR
*
* Path 10 (M at least N, but not much larger)
* Reduce to bidiagonal form without QR decomposition
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + N
IWORK = ITAUP + N
*
* Bidiagonalize A
* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
* (RWorkspace: need N)
*
CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ IERR )
IF( WNTUAS ) THEN
*
* If left singular vectors desired in U, copy result to U
* and generate left bidiagonalizing vectors in U
* (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB)
* (RWorkspace: 0)
*
CALL ZLACPY( 'L', M, N, A, LDA, U, LDU )
IF( WNTUS )
$ NCU = N
IF( WNTUA )
$ NCU = M
CALL ZUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTVAS ) THEN
*
* If right singular vectors desired in VT, copy result to
* VT and generate right bidiagonalizing vectors in VT
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZLACPY( 'U', N, N, A, LDA, VT, LDVT )
CALL ZUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTUO ) THEN
*
* If left singular vectors desired in A, generate left
* bidiagonalizing vectors in A
* (CWorkspace: need 3*N, prefer 2*N+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTVO ) THEN
*
* If right singular vectors desired in A, generate right
* bidiagonalizing vectors in A
* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IRWORK = IE + N
IF( WNTUAS .OR. WNTUO )
$ NRU = M
IF( WNTUN )
$ NRU = 0
IF( WNTVAS .OR. WNTVO )
$ NCVT = N
IF( WNTVN )
$ NCVT = 0
IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in U and computing right singular
* vectors in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in U and computing right singular
* vectors in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A,
$ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
ELSE
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in A and computing right singular
* vectors in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
$ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
$ INFO )
END IF
*
END IF
*
ELSE
*
* A has more columns than rows. If A has sufficiently more
* columns than rows, first reduce using the LQ decomposition (if
* sufficient workspace available)
*
IF( N.GE.MNTHR ) THEN
*
IF( WNTVN ) THEN
*
* Path 1t(N much larger than M, JOBVT='N')
* No right singular vectors to be computed
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Zero out above L
*
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
$ LDA )
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in A
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ IERR )
IF( WNTUO .OR. WNTUAS ) THEN
*
* If left singular vectors desired, generate Q
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IRWORK = IE + M
NRU = 0
IF( WNTUO .OR. WNTUAS )
$ NRU = M
*
* Perform bidiagonal QR iteration, computing left singular
* vectors of A in A if desired
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1,
$ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
*
* If left singular vectors desired in U, copy them there
*
IF( WNTUAS )
$ CALL ZLACPY( 'F', M, M, A, LDA, U, LDU )
*
ELSE IF( WNTVO .AND. WNTUN ) THEN
*
* Path 2t(N much larger than M, JOBU='N', JOBVT='O')
* M right singular vectors to be overwritten on A and
* no left singular vectors to be computed
*
IF( LWORK.GE.M*M+3*M ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is LDA by M
*
LDWRKU = LDA
CHUNK = N
LDWRKR = LDA
ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is M by M
*
LDWRKU = LDA
CHUNK = N
LDWRKR = M
ELSE
*
* WORK(IU) is M by CHUNK and WORK(IR) is M by M
*
LDWRKU = M
CHUNK = ( LWORK-M*M ) / M
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IR) and zero out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IR+LDWRKR ), LDWRKR )
*
* Generate Q in A
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IR)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing L
* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of L in WORK(IR)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
$ RWORK( IRWORK ), INFO )
IU = ITAUQ
*
* Multiply right singular vectors of L in WORK(IR) by Q
* in A, storing result in WORK(IU) and copying to A
* (CWorkspace: need M*M+M, prefer M*M+M*N)
* (RWorkspace: 0)
*
DO 30 I = 1, N, CHUNK
BLK = MIN( N-I+1, CHUNK )
CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
$ LDWRKR, A( 1, I ), LDA, CZERO,
$ WORK( IU ), LDWRKU )
CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
$ A( 1, I ), LDA )
30 CONTINUE
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize A
* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing A
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of A in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA,
$ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTVO .AND. WNTUAS ) THEN
*
* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
* M right singular vectors to be overwritten on A and
* M left singular vectors to be computed in U
*
IF( LWORK.GE.M*M+3*M ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is LDA by M
*
LDWRKU = LDA
CHUNK = N
LDWRKR = LDA
ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
*
* WORK(IU) is LDA by N and WORK(IR) is M by M
*
LDWRKU = LDA
CHUNK = N
LDWRKR = M
ELSE
*
* WORK(IU) is M by CHUNK and WORK(IR) is M by M
*
LDWRKU = M
CHUNK = ( LWORK-M*M ) / M
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to U, zeroing about above it
*
CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
$ LDU )
*
* Generate Q in A
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in U, copying result to WORK(IR)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
*
* Generate right vectors bidiagonalizing L in WORK(IR)
* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left vectors bidiagonalizing L in U
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of L in U, and computing right
* singular vectors of L in WORK(IR)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
IU = ITAUQ
*
* Multiply right singular vectors of L in WORK(IR) by Q
* in A, storing result in WORK(IU) and copying to A
* (CWorkspace: need M*M+M, prefer M*M+M*N))
* (RWorkspace: 0)
*
DO 40 I = 1, N, CHUNK
BLK = MIN( N-I+1, CHUNK )
CALL ZGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
$ LDWRKR, A( 1, I ), LDA, CZERO,
$ WORK( IU ), LDWRKU )
CALL ZLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
$ A( 1, I ), LDA )
40 CONTINUE
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to U, zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
$ LDU )
*
* Generate Q in A
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in U
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right vectors bidiagonalizing L by Q in A
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
$ WORK( ITAUP ), A, LDA, WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left vectors bidiagonalizing L in U
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA,
$ U, LDU, CDUM, 1, RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTVS ) THEN
*
IF( WNTUN ) THEN
*
* Path 4t(N much larger than M, JOBU='N', JOBVT='S')
* M right singular vectors to be computed in VT and
* no left singular vectors to be computed
*
IF( LWORK.GE.M*M+3*M ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
* WORK(IR) is LDA by M
*
LDWRKR = LDA
ELSE
*
* WORK(IR) is M by M
*
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IR), zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
$ LDWRKR )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IR+LDWRKR ), LDWRKR )
*
* Generate Q in A
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IR)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right vectors bidiagonalizing L in
* WORK(IR)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of L in WORK(IR)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply right singular vectors of L in WORK(IR) by
* Q in A, storing result in VT
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
$ LDWRKR, A, LDA, CZERO, VT, LDVT )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy result to VT
*
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Zero out above L in A
*
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ A( 1, 2 ), LDA )
*
* Bidiagonalize L in A
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right vectors bidiagonalizing L by Q in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
$ LDVT, CDUM, 1, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTUO ) THEN
*
* Path 5t(N much larger than M, JOBU='O', JOBVT='S')
* M right singular vectors to be computed in VT and
* M left singular vectors to be overwritten on A
*
IF( LWORK.GE.2*M*M+3*M ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
*
* WORK(IU) is LDA by M and WORK(IR) is LDA by M
*
LDWRKU = LDA
IR = IU + LDWRKU*M
LDWRKR = LDA
ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
*
* WORK(IU) is LDA by M and WORK(IR) is M by M
*
LDWRKU = LDA
IR = IU + LDWRKU*M
LDWRKR = M
ELSE
*
* WORK(IU) is M by M and WORK(IR) is M by M
*
LDWRKU = M
IR = IU + LDWRKU*M
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IU), zeroing out below it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IU+LDWRKU ), LDWRKU )
*
* Generate Q in A
* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IU), copying result to
* WORK(IR)
* (CWorkspace: need 2*M*M+3*M,
* prefer 2*M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
$ WORK( IR ), LDWRKR )
*
* Generate right bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need 2*M*M+3*M-1,
* prefer 2*M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of L in WORK(IR) and computing
* right singular vectors of L in WORK(IU)
* (CWorkspace: need 2*M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
$ WORK( IU ), LDWRKU, WORK( IR ),
$ LDWRKR, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
* Multiply right singular vectors of L in WORK(IU) by
* Q in A, storing result in VT
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
$ LDWRKU, A, LDA, CZERO, VT, LDVT )
*
* Copy left singular vectors of L to A
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
$ LDA )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Zero out above L in A
*
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ A( 1, 2 ), LDA )
*
* Bidiagonalize L in A
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right vectors bidiagonalizing L by Q in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors of L in A
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in A and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, A, LDA, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTUAS ) THEN
*
* Path 6t(N much larger than M, JOBU='S' or 'A',
* JOBVT='S')
* M right singular vectors to be computed in VT and
* M left singular vectors to be computed in U
*
IF( LWORK.GE.M*M+3*M ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
* WORK(IU) is LDA by N
*
LDWRKU = LDA
ELSE
*
* WORK(IU) is LDA by M
*
LDWRKU = M
END IF
ITAU = IU + LDWRKU*M
IWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IU), zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IU+LDWRKU ), LDWRKU )
*
* Generate Q in A
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IU), copying result to U
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
$ LDU )
*
* Generate right bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need M*M+3*M-1,
* prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in U
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of L in U and computing right
* singular vectors of L in WORK(IU)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
$ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply right singular vectors of L in WORK(IU) by
* Q in A, storing result in VT
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
$ LDWRKU, A, LDA, CZERO, VT, LDVT )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to U, zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ U( 1, 2 ), LDU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in U
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right bidiagonalizing vectors in U by Q
* in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in U
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
END IF
*
ELSE IF( WNTVA ) THEN
*
IF( WNTUN ) THEN
*
* Path 7t(N much larger than M, JOBU='N', JOBVT='A')
* N right singular vectors to be computed in VT and
* no left singular vectors to be computed
*
IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IR = 1
IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
* WORK(IR) is LDA by M
*
LDWRKR = LDA
ELSE
*
* WORK(IR) is M by M
*
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Copy L to WORK(IR), zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IR ),
$ LDWRKR )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IR+LDWRKR ), LDWRKR )
*
* Generate Q in VT
* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IR)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IR ), LDWRKR, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate right bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need M*M+3*M-1,
* prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of L in WORK(IR)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
$ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply right singular vectors of L in WORK(IR) by
* Q in VT, storing result in A
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
$ LDWRKR, VT, LDVT, CZERO, A, LDA )
*
* Copy right singular vectors of A from A to VT
*
CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need M+N, prefer M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Zero out above L in A
*
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ A( 1, 2 ), LDA )
*
* Bidiagonalize L in A
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right bidiagonalizing vectors in A by Q
* in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
$ LDVT, CDUM, 1, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTUO ) THEN
*
* Path 8t(N much larger than M, JOBU='O', JOBVT='A')
* N right singular vectors to be computed in VT and
* M left singular vectors to be overwritten on A
*
IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
*
* WORK(IU) is LDA by M and WORK(IR) is LDA by M
*
LDWRKU = LDA
IR = IU + LDWRKU*M
LDWRKR = LDA
ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
*
* WORK(IU) is LDA by M and WORK(IR) is M by M
*
LDWRKU = LDA
IR = IU + LDWRKU*M
LDWRKR = M
ELSE
*
* WORK(IU) is M by M and WORK(IR) is M by M
*
LDWRKU = M
IR = IU + LDWRKU*M
LDWRKR = M
END IF
ITAU = IR + LDWRKR*M
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IU), zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IU+LDWRKU ), LDWRKU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IU), copying result to
* WORK(IR)
* (CWorkspace: need 2*M*M+3*M,
* prefer 2*M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU,
$ WORK( IR ), LDWRKR )
*
* Generate right bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need 2*M*M+3*M-1,
* prefer 2*M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in WORK(IR)
* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
$ WORK( ITAUQ ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of L in WORK(IR) and computing
* right singular vectors of L in WORK(IU)
* (CWorkspace: need 2*M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
$ WORK( IU ), LDWRKU, WORK( IR ),
$ LDWRKR, CDUM, 1, RWORK( IRWORK ),
$ INFO )
*
* Multiply right singular vectors of L in WORK(IU) by
* Q in VT, storing result in A
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
$ LDWRKU, VT, LDVT, CZERO, A, LDA )
*
* Copy right singular vectors of A from A to VT
*
CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
* Copy left singular vectors of A from WORK(IR) to A
*
CALL ZLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
$ LDA )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need M+N, prefer M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Zero out above L in A
*
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ A( 1, 2 ), LDA )
*
* Bidiagonalize L in A
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, A, LDA, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right bidiagonalizing vectors in A by Q
* in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in A
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in A and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, A, LDA, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
ELSE IF( WNTUAS ) THEN
*
* Path 9t(N much larger than M, JOBU='S' or 'A',
* JOBVT='A')
* N right singular vectors to be computed in VT and
* M left singular vectors to be computed in U
*
IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
*
* Sufficient workspace for a fast algorithm
*
IU = 1
IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
* WORK(IU) is LDA by M
*
LDWRKU = LDA
ELSE
*
* WORK(IU) is M by M
*
LDWRKU = M
END IF
ITAU = IU + LDWRKU*M
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to WORK(IU), zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, WORK( IU ),
$ LDWRKU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IU+LDWRKU ), LDWRKU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IU), copying result to U
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, WORK( IU ), LDWRKU, S,
$ RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
CALL ZLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
$ LDU )
*
* Generate right bidiagonalizing vectors in WORK(IU)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
$ WORK( ITAUP ), WORK( IWORK ),
$ LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in U
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of L in U and computing right
* singular vectors of L in WORK(IU)
* (CWorkspace: need M*M)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
$ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
* Multiply right singular vectors of L in WORK(IU) by
* Q in VT, storing result in A
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL ZGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
$ LDWRKU, VT, LDVT, CZERO, A, LDA )
*
* Copy right singular vectors of A from A to VT
*
CALL ZLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
ELSE
*
* Insufficient workspace for a fast algorithm
*
ITAU = 1
IWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL ZGELQF( M, N, A, LDA, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need M+N, prefer M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Copy L to U, zeroing out above it
*
CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO,
$ U( 1, 2 ), LDU )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize L in U
* (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL ZGEBRD( M, M, U, LDU, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Multiply right bidiagonalizing vectors in U by Q
* in VT
* (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
* (RWorkspace: 0)
*
CALL ZUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
$ WORK( ITAUP ), VT, LDVT,
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
*
* Generate left bidiagonalizing vectors in U
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
IRWORK = IE + M
*
* Perform bidiagonal QR iteration, computing left
* singular vectors of A in U and computing right
* singular vectors of A in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1,
$ RWORK( IRWORK ), INFO )
*
END IF
*
END IF
*
END IF
*
ELSE
*
* N .LT. MNTHR
*
* Path 10t(N greater than M, but not much larger)
* Reduce to bidiagonal form without LQ decomposition
*
IE = 1
ITAUQ = 1
ITAUP = ITAUQ + M
IWORK = ITAUP + M
*
* Bidiagonalize A
* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
* (RWorkspace: M)
*
CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
$ IERR )
IF( WNTUAS ) THEN
*
* If left singular vectors desired in U, copy result to U
* and generate left bidiagonalizing vectors in U
* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZLACPY( 'L', M, M, A, LDA, U, LDU )
CALL ZUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTVAS ) THEN
*
* If right singular vectors desired in VT, copy result to
* VT and generate right bidiagonalizing vectors in VT
* (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB)
* (RWorkspace: 0)
*
CALL ZLACPY( 'U', M, N, A, LDA, VT, LDVT )
IF( WNTVA )
$ NRVT = N
IF( WNTVS )
$ NRVT = M
CALL ZUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTUO ) THEN
*
* If left singular vectors desired in A, generate left
* bidiagonalizing vectors in A
* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IF( WNTVO ) THEN
*
* If right singular vectors desired in A, generate right
* bidiagonalizing vectors in A
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
$ WORK( IWORK ), LWORK-IWORK+1, IERR )
END IF
IRWORK = IE + M
IF( WNTUAS .OR. WNTUO )
$ NRU = M
IF( WNTUN )
$ NRU = 0
IF( WNTVAS .OR. WNTVO )
$ NCVT = N
IF( WNTVN )
$ NCVT = 0
IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in U and computing right singular
* vectors in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
$ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in U and computing right singular
* vectors in A
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A,
$ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
$ INFO )
ELSE
*
* Perform bidiagonal QR iteration, if desired, computing
* left singular vectors in A and computing right singular
* vectors in VT
* (CWorkspace: 0)
* (RWorkspace: need BDSPAC)
*
CALL ZBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
$ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
$ INFO )
END IF
*
END IF
*
END IF
*
* Undo scaling if necessary
*
IF( ISCL.EQ.1 ) THEN
IF( ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
$ IERR )
IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
$ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
$ RWORK( IE ), MINMN, IERR )
IF( ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
$ IERR )
IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
$ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
$ RWORK( IE ), MINMN, IERR )
END IF
*
* Return optimal workspace in WORK(1)
*
WORK( 1 ) = MAXWRK
*
RETURN
*
* End of ZGESVD
*
END