home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zlabrd.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
13KB
|
330 lines
SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
$ LDY )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER LDA, LDX, LDY, M, N, NB
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * )
COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
$ Y( LDY, * )
* ..
*
* Purpose
* =======
*
* ZLABRD reduces the first NB rows and columns of a complex general
* m by n matrix A to upper or lower real bidiagonal form by a unitary
* transformation Q' * A * P, and returns the matrices X and Y which
* are needed to apply the transformation to the unreduced part of A.
*
* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
* bidiagonal form.
*
* This is an auxiliary routine called by ZGEBRD
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows in the matrix A.
*
* N (input) INTEGER
* The number of columns in the matrix A.
*
* NB (input) INTEGER
* The number of leading rows and columns of A to be reduced.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the m by n general matrix to be reduced.
* On exit, the first NB rows and columns of the matrix are
* overwritten; the rest of the array is unchanged.
* If m >= n, elements on and below the diagonal in the first NB
* columns, with the array TAUQ, represent the unitary
* matrix Q as a product of elementary reflectors; and
* elements above the diagonal in the first NB rows, with the
* array TAUP, represent the unitary matrix P as a product
* of elementary reflectors.
* If m < n, elements below the diagonal in the first NB
* columns, with the array TAUQ, represent the unitary
* matrix Q as a product of elementary reflectors, and
* elements on and above the diagonal in the first NB rows,
* with the array TAUP, represent the unitary matrix P as
* a product of elementary reflectors.
* See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* D (output) DOUBLE PRECISION array, dimension (NB)
* The diagonal elements of the first NB rows and columns of
* the reduced matrix. D(i) = A(i,i).
*
* E (output) DOUBLE PRECISION array, dimension (NB)
* The off-diagonal elements of the first NB rows and columns of
* the reduced matrix.
*
* TAUQ (output) COMPLEX*16 array dimension (NB)
* The scalar factors of the elementary reflectors which
* represent the unitary matrix Q. See Further Details.
*
* TAUP (output) COMPLEX*16 array, dimension (NB)
* The scalar factors of the elementary reflectors which
* represent the unitary matrix P. See Further Details.
*
* X (output) COMPLEX*16 array, dimension (LDX,NB)
* The m-by-nb matrix X required to update the unreduced part
* of A.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,M).
*
* Y (output) COMPLEX*16 array, dimension (LDY,NB)
* The n-by-nb matrix Y required to update the unreduced part
* of A.
*
* LDY (output) INTEGER
* The leading dimension of the array Y. LDY >= max(1,N).
*
* Further Details
* ===============
*
* The matrices Q and P are represented as products of elementary
* reflectors:
*
* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are complex scalars, and v and u are complex
* vectors.
*
* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*
* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*
* The elements of the vectors v and u together form the m-by-nb matrix
* V and the nb-by-n matrix U' which are needed, with X and Y, to apply
* the transformation to the unreduced part of the matrix, using a block
* update of the form: A := A - V*Y' - X*U'.
*
* The contents of A on exit are illustrated by the following examples
* with nb = 2:
*
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*
* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
* ( v1 v2 a a a ) ( v1 1 a a a a )
* ( v1 v2 a a a ) ( v1 v2 a a a a )
* ( v1 v2 a a a ) ( v1 v2 a a a a )
* ( v1 v2 a a a )
*
* where a denotes an element of the original matrix which is unchanged,
* vi denotes an element of the vector defining H(i), and ui an element
* of the vector defining G(i).
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
COMPLEX*16 ALPHA
* ..
* .. External Subroutines ..
EXTERNAL ZGEMV, ZLACGV, ZLARFG, ZSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
IF( M.GE.N ) THEN
*
* Reduce to upper bidiagonal form
*
DO 10 I = 1, NB
*
* Update A(i:m,i)
*
CALL ZLACGV( I-1, Y( I, 1 ), LDY )
CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
$ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
CALL ZLACGV( I-1, Y( I, 1 ), LDY )
CALL ZGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
$ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
*
* Generate reflection Q(i) to annihilate A(i+1:m,i)
*
ALPHA = A( I, I )
CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
$ TAUQ( I ) )
D( I ) = ALPHA
IF( I.LT.N ) THEN
A( I, I ) = ONE
*
* Compute Y(i+1:n,i)
*
CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
$ A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
$ Y( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
$ A( I, 1 ), LDA, A( I, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
$ X( I, 1 ), LDX, A( I, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
$ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
$ Y( I+1, I ), 1 )
CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
*
* Update A(i,i+1:n)
*
CALL ZLACGV( N-I, A( I, I+1 ), LDA )
CALL ZLACGV( I, A( I, 1 ), LDA )
CALL ZGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
$ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
CALL ZLACGV( I, A( I, 1 ), LDA )
CALL ZLACGV( I-1, X( I, 1 ), LDX )
CALL ZGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
$ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
$ A( I, I+1 ), LDA )
CALL ZLACGV( I-1, X( I, 1 ), LDX )
*
* Generate reflection P(i) to annihilate A(i,i+2:n)
*
ALPHA = A( I, I+1 )
CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
$ TAUP( I ) )
E( I ) = ALPHA
A( I, I+1 ) = ONE
*
* Compute X(i+1:m,i)
*
CALL ZGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
$ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', N-I, I, ONE,
$ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
$ X( 1, I ), 1 )
CALL ZGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL ZGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
$ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
CALL ZLACGV( N-I, A( I, I+1 ), LDA )
END IF
10 CONTINUE
ELSE
*
* Reduce to lower bidiagonal form
*
DO 20 I = 1, NB
*
* Update A(i,i:n)
*
CALL ZLACGV( N-I+1, A( I, I ), LDA )
CALL ZLACGV( I-1, A( I, 1 ), LDA )
CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
$ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
CALL ZLACGV( I-1, A( I, 1 ), LDA )
CALL ZLACGV( I-1, X( I, 1 ), LDX )
CALL ZGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
$ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
$ LDA )
CALL ZLACGV( I-1, X( I, 1 ), LDX )
*
* Generate reflection P(i) to annihilate A(i,i+1:n)
*
ALPHA = A( I, I )
CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
$ TAUP( I ) )
D( I ) = ALPHA
IF( I.LT.M ) THEN
A( I, I ) = ONE
*
* Compute X(i+1:m,i)
*
CALL ZGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
$ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
$ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
$ X( 1, I ), 1 )
CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL ZGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
$ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL ZSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
CALL ZLACGV( N-I+1, A( I, I ), LDA )
*
* Update A(i+1:m,i)
*
CALL ZLACGV( I-1, Y( I, 1 ), LDY )
CALL ZGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
$ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
CALL ZLACGV( I-1, Y( I, 1 ), LDY )
CALL ZGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
$ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
*
* Generate reflection Q(i) to annihilate A(i+2:m,i)
*
ALPHA = A( I+1, I )
CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
$ TAUQ( I ) )
E( I ) = ALPHA
A( I+1, I ) = ONE
*
* Compute Y(i+1:n,i)
*
CALL ZGEMV( 'Conjugate transpose', M-I, N-I, ONE,
$ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
$ Y( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', M-I, I-1, ONE,
$ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', M-I, I, ONE,
$ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL ZGEMV( 'Conjugate transpose', I, N-I, -ONE,
$ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
$ Y( I+1, I ), 1 )
CALL ZSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
ELSE
CALL ZLACGV( N-I+1, A( I, I ), LDA )
END IF
20 CONTINUE
END IF
RETURN
*
* End of ZLABRD
*
END