home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zlahqr.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
12KB
|
381 lines
SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
$ IHIZ, Z, LDZ, INFO )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
LOGICAL WANTT, WANTZ
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
* ..
* .. Array Arguments ..
COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* ZLAHQR is an auxiliary routine called by ZHSEQR to update the
* eigenvalues and Schur decomposition already computed by ZHSEQR, by
* dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
*
* Arguments
* =========
*
* WANTT (input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (input) INTEGER
* The order of the matrix H. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper triangular in rows and
* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
* ZLAHQR works primarily with the Hessenberg submatrix in rows
* and columns ILO to IHI, but applies transformations to all of
* H if WANTT is .TRUE..
* 1 <= ILO <= max(1,IHI); IHI <= N.
*
* H (input/output) COMPLEX*16 array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if WANTT is .TRUE., H is upper triangular in rows
* and columns ILO:IHI, with any 2-by-2 diagonal blocks in
* standard form. If WANTT is .FALSE., the contents of H are
* unspecified on exit.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max(1,N).
*
* W (output) COMPLEX*16 array, dimension (N)
* The computed eigenvalues ILO to IHI are stored in the
* corresponding elements of W. If WANTT is .TRUE., the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in H, with W(i) = H(i,i).
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
* If WANTZ is .TRUE., on entry Z must contain the current
* matrix Z of transformations accumulated by ZHSEQR, and on
* exit Z has been updated; transformations are applied only to
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
* If WANTZ is .FALSE., Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: if INFO = i, ZLAHQR failed to compute all the
* eigenvalues ILO to IHI in a total of 30*(IHI-ILO+1)
* iterations; elements i+1:ihi of W contain those
* eigenvalues which have been successfully computed.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
DOUBLE PRECISION RZERO, RONE, HALF
PARAMETER ( RZERO = 0.0D+0, RONE = 1.0D+0,
$ HALF = 0.5D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, ITN, ITS, J, K, L, M, NH, NZ
DOUBLE PRECISION H10, H21, OVFL, RTEMP, S, SMLNUM, T2, TST1,
$ ULP, UNFL
COMPLEX*16 CDUM, H11, H11S, H22, SUM, T, T1, TEMP, U, V2,
$ X, Y
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 1 )
COMPLEX*16 V( 2 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2, ZLANHS
COMPLEX*16 ZLADIV
EXTERNAL DLAMCH, DLAPY2, ZLANHS, ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZCOPY, ZLARFG, ZSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( ILO.EQ.IHI ) THEN
W( ILO ) = H( ILO, ILO )
RETURN
END IF
*
NH = IHI - ILO + 1
NZ = IHIZ - ILOZ + 1
*
* Set machine-dependent constants for the stopping criterion.
* If norm(H) <= sqrt(OVFL), overflow should not occur.
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = RONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( NH / ULP )
*
* I1 and I2 are the indices of the first row and last column of H
* to which transformations must be applied. If eigenvalues only are
* being computed, I1 and I2 are set inside the main loop.
*
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
*
* ITN is the total number of QR iterations allowed.
*
ITN = 30*NH
*
* The main loop begins here. I is the loop index and decreases from
* IHI to ILO in steps of 1. Each iteration of the loop works
* with the active submatrix in rows and columns L to I.
* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
* H(L,L-1) is negligible so that the matrix splits.
*
I = IHI
10 CONTINUE
IF( I.LT.ILO )
$ GO TO 130
*
* Perform QR iterations on rows and columns ILO to I until a
* submatrix of order 1 splits off at the bottom because a
* subdiagonal element has become negligible.
*
L = ILO
DO 110 ITS = 0, ITN
*
* Look for a single small subdiagonal element.
*
DO 20 K = I, L + 1, -1
TST1 = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
IF( TST1.EQ.RZERO )
$ TST1 = ZLANHS( '1', I-L+1, H( L, L ), LDH, RWORK )
IF( ABS( DBLE( H( K, K-1 ) ) ).LE.MAX( ULP*TST1, SMLNUM ) )
$ GO TO 30
20 CONTINUE
30 CONTINUE
L = K
IF( L.GT.ILO ) THEN
*
* H(L,L-1) is negligible
*
H( L, L-1 ) = ZERO
END IF
*
* Exit from loop if a submatrix of order 1 has split off.
*
IF( L.GE.I )
$ GO TO 120
*
* Now the active submatrix is in rows and columns L to I. If
* eigenvalues only are being computed, only the active submatrix
* need be transformed.
*
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
*
IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
*
* Exceptional shift.
*
T = ABS( DBLE( H( I, I-1 ) ) ) +
$ ABS( DBLE( H( I-1, I-2 ) ) )
ELSE
*
* Wilkinson's shift.
*
T = H( I, I )
U = H( I-1, I )*DBLE( H( I, I-1 ) )
IF( U.NE.ZERO ) THEN
X = HALF*( H( I-1, I-1 )-T )
Y = SQRT( X*X+U )
IF( DBLE( X )*DBLE( Y )+DIMAG( X )*DIMAG( Y ).LT.RZERO )
$ Y = -Y
T = T - ZLADIV( U, ( X+Y ) )
END IF
END IF
*
* Look for two consecutive small subdiagonal elements.
*
DO 40 M = I - 1, L, -1
*
* Determine the effect of starting the single-shift QR
* iteration at row M, and see if this would make H(M,M-1)
* negligible.
*
H11 = H( M, M )
H22 = H( M+1, M+1 )
H11S = H11 - T
H21 = H( M+1, M )
S = CABS1( H11S ) + ABS( H21 )
H11S = H11S / S
H21 = H21 / S
V( 1 ) = H11S
V( 2 ) = H21
IF( M.EQ.L )
$ GO TO 50
H10 = H( M, M-1 )
TST1 = CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) )
IF( ABS( H10*H21 ).LE.ULP*TST1 )
$ GO TO 50
40 CONTINUE
50 CONTINUE
*
* Single-shift QR step
*
DO 100 K = M, I - 1
*
* The first iteration of this loop determines a reflection G
* from the vector V and applies it from left and right to H,
* thus creating a nonzero bulge below the subdiagonal.
*
* Each subsequent iteration determines a reflection G to
* restore the Hessenberg form in the (K-1)th column, and thus
* chases the bulge one step toward the bottom of the active
* submatrix.
*
* V(2) is always real before the call to ZLARFG, and hence
* after the call T2 ( = T1*V(2) ) is also real.
*
IF( K.GT.M )
$ CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
IF( K.GT.M ) THEN
H( K, K-1 ) = V( 1 )
H( K+1, K-1 ) = ZERO
END IF
V2 = V( 2 )
T2 = DBLE( T1*V2 )
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 60 J = K, I2
SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
H( K, J ) = H( K, J ) - SUM
H( K+1, J ) = H( K+1, J ) - SUM*V2
60 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+2,I).
*
DO 70 J = I1, MIN( K+2, I )
SUM = T1*H( J, K ) + T2*H( J, K+1 )
H( J, K ) = H( J, K ) - SUM
H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
70 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 80 J = ILOZ, IHIZ
SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
Z( J, K ) = Z( J, K ) - SUM
Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
80 CONTINUE
END IF
*
IF( K.EQ.M .AND. M.GT.L ) THEN
*
* If the QR step was started at row M > L because two
* consecutive small subdiagonals were found, then extra
* scaling must be performed to ensure that H(M,M-1) remains
* real.
*
TEMP = ONE - T1
TEMP = TEMP / DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) )
H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
IF( M+2.LE.I )
$ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
DO 90 J = M, I
IF( J.NE.M+1 ) THEN
IF( I2.GT.J )
$ CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
IF( WANTZ ) THEN
CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
$ 1 )
END IF
END IF
90 CONTINUE
END IF
100 CONTINUE
*
* Ensure that H(I,I-1) is real.
*
TEMP = H( I, I-1 )
IF( DIMAG( TEMP ).NE.RZERO ) THEN
RTEMP = DLAPY2( DBLE( TEMP ), DIMAG( TEMP ) )
H( I, I-1 ) = RTEMP
TEMP = TEMP / RTEMP
IF( I2.GT.I )
$ CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
IF( WANTZ ) THEN
CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
END IF
END IF
*
110 CONTINUE
*
* Failure to converge in remaining number of iterations
*
INFO = I
RETURN
*
120 CONTINUE
*
* H(I,I-1) is negligible: one eigenvalue has converged.
*
W( I ) = H( I, I )
*
* Decrement number of remaining iterations, and return to start of
* the main loop with new value of I.
*
ITN = ITN - ITS
I = L - 1
GO TO 10
*
130 CONTINUE
RETURN
*
* End of ZLAHQR
*
END