home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
lapack
/
zlarft.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
8KB
|
226 lines
SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
* Purpose
* =======
*
* ZLARFT forms the triangular factor T of a complex block reflector H
* of order n, which is defined as a product of k elementary reflectors.
*
* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
* If STOREV = 'C', the vector which defines the elementary reflector
* H(i) is stored in the i-th column of the array V, and
*
* H = I - V * T * V'
*
* If STOREV = 'R', the vector which defines the elementary reflector
* H(i) is stored in the i-th row of the array V, and
*
* H = I - V' * T * V
*
* Arguments
* =========
*
* DIRECT (input) CHARACTER*1
* Specifies the order in which the elementary reflectors are
* multiplied to form the block reflector:
* = 'F': H = H(1) H(2) . . . H(k) (Forward)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (input) CHARACTER*1
* Specifies how the vectors which define the elementary
* reflectors are stored (see also Further Details):
* = 'C': columnwise
* = 'R': rowwise
*
* N (input) INTEGER
* The order of the block reflector H. N >= 0.
*
* K (input) INTEGER
* The order of the triangular factor T (= the number of
* elementary reflectors). K >= 1.
*
* V (input/output) COMPLEX*16 array, dimension
* (LDV,K) if STOREV = 'C'
* (LDV,N) if STOREV = 'R'
* The matrix V. See further details.
*
* LDV (input) INTEGER
* The leading dimension of the array V.
* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
* TAU (input) COMPLEX*16 array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i).
*
* T (output) COMPLEX*16 array, dimension (LDT,K)
* The k by k triangular factor T of the block reflector.
* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
* lower triangular. The rest of the array is not used.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= K.
*
* Further Details
* ===============
*
* The shape of the matrix V and the storage of the vectors which define
* the H(i) is best illustrated by the following example with n = 5 and
* k = 3. The elements equal to 1 are not stored; the corresponding
* array elements are modified but restored on exit. The rest of the
* array is not used.
*
* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*
* V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
* ( v1 1 ) ( 1 v2 v2 v2 )
* ( v1 v2 1 ) ( 1 v3 v3 )
* ( v1 v2 v3 )
* ( v1 v2 v3 )
*
* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*
* V = ( v1 v2 v3 ) V = ( v1 v1 1 )
* ( v1 v2 v3 ) ( v2 v2 v2 1 )
* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
* ( 1 v3 )
* ( 1 )
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
COMPLEX*16 VII
* ..
* .. External Subroutines ..
EXTERNAL ZGEMV, ZLACGV, ZTRMV
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 20 I = 1, K
IF( TAU( I ).EQ.ZERO ) THEN
*
* H(i) = I
*
DO 10 J = 1, I
T( J, I ) = ZERO
10 CONTINUE
ELSE
*
* general case
*
VII = V( I, I )
V( I, I ) = ONE
IF( LSAME( STOREV, 'C' ) ) THEN
*
* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
*
CALL ZGEMV( 'Conjugate transpose', N-I+1, I-1,
$ -TAU( I ), V( I, 1 ), LDV, V( I, I ), 1,
$ ZERO, T( 1, I ), 1 )
ELSE
*
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
*
IF( I.LT.N )
$ CALL ZLACGV( N-I, V( I, I+1 ), LDV )
CALL ZGEMV( 'No transpose', I-1, N-I+1, -TAU( I ),
$ V( 1, I ), LDV, V( I, I ), LDV, ZERO,
$ T( 1, I ), 1 )
IF( I.LT.N )
$ CALL ZLACGV( N-I, V( I, I+1 ), LDV )
END IF
V( I, I ) = VII
*
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
$ LDT, T( 1, I ), 1 )
T( I, I ) = TAU( I )
END IF
20 CONTINUE
ELSE
DO 40 I = K, 1, -1
IF( TAU( I ).EQ.ZERO ) THEN
*
* H(i) = I
*
DO 30 J = I, K
T( J, I ) = ZERO
30 CONTINUE
ELSE
*
* general case
*
IF( I.LT.K ) THEN
IF( LSAME( STOREV, 'C' ) ) THEN
VII = V( N-K+I, I )
V( N-K+I, I ) = ONE
*
* T(i+1:k,i) :=
* - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
*
CALL ZGEMV( 'Conjugate transpose', N-K+I, K-I,
$ -TAU( I ), V( 1, I+1 ), LDV, V( 1, I ),
$ 1, ZERO, T( I+1, I ), 1 )
V( N-K+I, I ) = VII
ELSE
VII = V( I, N-K+I )
V( I, N-K+I ) = ONE
*
* T(i+1:k,i) :=
* - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
*
CALL ZLACGV( N-K+I-1, V( I, 1 ), LDV )
CALL ZGEMV( 'No transpose', K-I, N-K+I, -TAU( I ),
$ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
$ T( I+1, I ), 1 )
CALL ZLACGV( N-K+I-1, V( I, 1 ), LDV )
V( I, N-K+I ) = VII
END IF
*
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
END IF
T( I, I ) = TAU( I )
END IF
40 CONTINUE
END IF
RETURN
*
* End of ZLARFT
*
END